| //===-- Execution.cpp - Implement code to simulate the program ------------===// |
| // |
| // This file contains the actual instruction interpreter. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Interpreter.h" |
| #include "ExecutionAnnotations.h" |
| #include "llvm/Module.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "Support/CommandLine.h" |
| #include "Support/Statistic.h" |
| #include <cmath> // For fmod |
| |
| Interpreter *TheEE = 0; |
| |
| namespace { |
| Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); |
| |
| cl::opt<bool> |
| QuietMode("quiet", cl::desc("Do not emit any non-program output"), |
| cl::init(true)); |
| |
| cl::alias |
| QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode)); |
| |
| cl::opt<bool> |
| ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks")); |
| } |
| |
| // Create a TargetData structure to handle memory addressing and size/alignment |
| // computations |
| // |
| CachedWriter CW; // Object to accelerate printing of LLVM |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Value Manipulation code |
| //===----------------------------------------------------------------------===// |
| |
| static unsigned getOperandSlot(Value *V) { |
| SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID); |
| assert(SN && "Operand does not have a slot number annotation!"); |
| return SN->SlotNum; |
| } |
| |
| // Operations used by constant expr implementations... |
| static GenericValue executeCastOperation(Value *Src, const Type *DestTy, |
| ExecutionContext &SF); |
| static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty); |
| |
| |
| GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| switch (CE->getOpcode()) { |
| case Instruction::Cast: |
| return executeCastOperation(CE->getOperand(0), CE->getType(), SF); |
| case Instruction::GetElementPtr: |
| return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1, |
| CE->op_end(), SF); |
| case Instruction::Add: |
| return executeAddInst(getOperandValue(CE->getOperand(0), SF), |
| getOperandValue(CE->getOperand(1), SF), |
| CE->getType()); |
| default: |
| std::cerr << "Unhandled ConstantExpr: " << CE << "\n"; |
| abort(); |
| return GenericValue(); |
| } |
| } else if (Constant *CPV = dyn_cast<Constant>(V)) { |
| return TheEE->getConstantValue(CPV); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| return PTOGV(TheEE->getPointerToGlobal(GV)); |
| } else { |
| unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value |
| unsigned OpSlot = getOperandSlot(V); |
| assert(TyP < SF.Values.size() && |
| OpSlot < SF.Values[TyP].size() && "Value out of range!"); |
| return SF.Values[TyP][getOperandSlot(V)]; |
| } |
| } |
| |
| static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { |
| unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value |
| |
| //std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n"; |
| SF.Values[TyP][getOperandSlot(V)] = Val; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Annotation Wrangling code |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::initializeExecutionEngine() { |
| TheEE = this; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ |
| case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break |
| |
| static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(+, UByte); |
| IMPLEMENT_BINARY_OPERATOR(+, SByte); |
| IMPLEMENT_BINARY_OPERATOR(+, UShort); |
| IMPLEMENT_BINARY_OPERATOR(+, Short); |
| IMPLEMENT_BINARY_OPERATOR(+, UInt); |
| IMPLEMENT_BINARY_OPERATOR(+, Int); |
| IMPLEMENT_BINARY_OPERATOR(+, ULong); |
| IMPLEMENT_BINARY_OPERATOR(+, Long); |
| IMPLEMENT_BINARY_OPERATOR(+, Float); |
| IMPLEMENT_BINARY_OPERATOR(+, Double); |
| default: |
| std::cout << "Unhandled type for Add instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(-, UByte); |
| IMPLEMENT_BINARY_OPERATOR(-, SByte); |
| IMPLEMENT_BINARY_OPERATOR(-, UShort); |
| IMPLEMENT_BINARY_OPERATOR(-, Short); |
| IMPLEMENT_BINARY_OPERATOR(-, UInt); |
| IMPLEMENT_BINARY_OPERATOR(-, Int); |
| IMPLEMENT_BINARY_OPERATOR(-, ULong); |
| IMPLEMENT_BINARY_OPERATOR(-, Long); |
| IMPLEMENT_BINARY_OPERATOR(-, Float); |
| IMPLEMENT_BINARY_OPERATOR(-, Double); |
| default: |
| std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(*, UByte); |
| IMPLEMENT_BINARY_OPERATOR(*, SByte); |
| IMPLEMENT_BINARY_OPERATOR(*, UShort); |
| IMPLEMENT_BINARY_OPERATOR(*, Short); |
| IMPLEMENT_BINARY_OPERATOR(*, UInt); |
| IMPLEMENT_BINARY_OPERATOR(*, Int); |
| IMPLEMENT_BINARY_OPERATOR(*, ULong); |
| IMPLEMENT_BINARY_OPERATOR(*, Long); |
| IMPLEMENT_BINARY_OPERATOR(*, Float); |
| IMPLEMENT_BINARY_OPERATOR(*, Double); |
| default: |
| std::cout << "Unhandled type for Mul instruction: " << Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(/, UByte); |
| IMPLEMENT_BINARY_OPERATOR(/, SByte); |
| IMPLEMENT_BINARY_OPERATOR(/, UShort); |
| IMPLEMENT_BINARY_OPERATOR(/, Short); |
| IMPLEMENT_BINARY_OPERATOR(/, UInt); |
| IMPLEMENT_BINARY_OPERATOR(/, Int); |
| IMPLEMENT_BINARY_OPERATOR(/, ULong); |
| IMPLEMENT_BINARY_OPERATOR(/, Long); |
| IMPLEMENT_BINARY_OPERATOR(/, Float); |
| IMPLEMENT_BINARY_OPERATOR(/, Double); |
| default: |
| std::cout << "Unhandled type for Div instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(%, UByte); |
| IMPLEMENT_BINARY_OPERATOR(%, SByte); |
| IMPLEMENT_BINARY_OPERATOR(%, UShort); |
| IMPLEMENT_BINARY_OPERATOR(%, Short); |
| IMPLEMENT_BINARY_OPERATOR(%, UInt); |
| IMPLEMENT_BINARY_OPERATOR(%, Int); |
| IMPLEMENT_BINARY_OPERATOR(%, ULong); |
| IMPLEMENT_BINARY_OPERATOR(%, Long); |
| case Type::FloatTyID: |
| Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); |
| break; |
| case Type::DoubleTyID: |
| Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); |
| break; |
| default: |
| std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(&, Bool); |
| IMPLEMENT_BINARY_OPERATOR(&, UByte); |
| IMPLEMENT_BINARY_OPERATOR(&, SByte); |
| IMPLEMENT_BINARY_OPERATOR(&, UShort); |
| IMPLEMENT_BINARY_OPERATOR(&, Short); |
| IMPLEMENT_BINARY_OPERATOR(&, UInt); |
| IMPLEMENT_BINARY_OPERATOR(&, Int); |
| IMPLEMENT_BINARY_OPERATOR(&, ULong); |
| IMPLEMENT_BINARY_OPERATOR(&, Long); |
| default: |
| std::cout << "Unhandled type for And instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| |
| static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(|, Bool); |
| IMPLEMENT_BINARY_OPERATOR(|, UByte); |
| IMPLEMENT_BINARY_OPERATOR(|, SByte); |
| IMPLEMENT_BINARY_OPERATOR(|, UShort); |
| IMPLEMENT_BINARY_OPERATOR(|, Short); |
| IMPLEMENT_BINARY_OPERATOR(|, UInt); |
| IMPLEMENT_BINARY_OPERATOR(|, Int); |
| IMPLEMENT_BINARY_OPERATOR(|, ULong); |
| IMPLEMENT_BINARY_OPERATOR(|, Long); |
| default: |
| std::cout << "Unhandled type for Or instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| |
| static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_BINARY_OPERATOR(^, Bool); |
| IMPLEMENT_BINARY_OPERATOR(^, UByte); |
| IMPLEMENT_BINARY_OPERATOR(^, SByte); |
| IMPLEMENT_BINARY_OPERATOR(^, UShort); |
| IMPLEMENT_BINARY_OPERATOR(^, Short); |
| IMPLEMENT_BINARY_OPERATOR(^, UInt); |
| IMPLEMENT_BINARY_OPERATOR(^, Int); |
| IMPLEMENT_BINARY_OPERATOR(^, ULong); |
| IMPLEMENT_BINARY_OPERATOR(^, Long); |
| default: |
| std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| |
| #define IMPLEMENT_SETCC(OP, TY) \ |
| case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break |
| |
| // Handle pointers specially because they must be compared with only as much |
| // width as the host has. We _do not_ want to be comparing 64 bit values when |
| // running on a 32-bit target, otherwise the upper 32 bits might mess up |
| // comparisons if they contain garbage. |
| #define IMPLEMENT_POINTERSETCC(OP) \ |
| case Type::PointerTyID: \ |
| Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ |
| (void*)(intptr_t)Src2.PointerVal; break |
| |
| static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(==, UByte); |
| IMPLEMENT_SETCC(==, SByte); |
| IMPLEMENT_SETCC(==, UShort); |
| IMPLEMENT_SETCC(==, Short); |
| IMPLEMENT_SETCC(==, UInt); |
| IMPLEMENT_SETCC(==, Int); |
| IMPLEMENT_SETCC(==, ULong); |
| IMPLEMENT_SETCC(==, Long); |
| IMPLEMENT_SETCC(==, Float); |
| IMPLEMENT_SETCC(==, Double); |
| IMPLEMENT_POINTERSETCC(==); |
| default: |
| std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(!=, UByte); |
| IMPLEMENT_SETCC(!=, SByte); |
| IMPLEMENT_SETCC(!=, UShort); |
| IMPLEMENT_SETCC(!=, Short); |
| IMPLEMENT_SETCC(!=, UInt); |
| IMPLEMENT_SETCC(!=, Int); |
| IMPLEMENT_SETCC(!=, ULong); |
| IMPLEMENT_SETCC(!=, Long); |
| IMPLEMENT_SETCC(!=, Float); |
| IMPLEMENT_SETCC(!=, Double); |
| IMPLEMENT_POINTERSETCC(!=); |
| |
| default: |
| std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(<=, UByte); |
| IMPLEMENT_SETCC(<=, SByte); |
| IMPLEMENT_SETCC(<=, UShort); |
| IMPLEMENT_SETCC(<=, Short); |
| IMPLEMENT_SETCC(<=, UInt); |
| IMPLEMENT_SETCC(<=, Int); |
| IMPLEMENT_SETCC(<=, ULong); |
| IMPLEMENT_SETCC(<=, Long); |
| IMPLEMENT_SETCC(<=, Float); |
| IMPLEMENT_SETCC(<=, Double); |
| IMPLEMENT_POINTERSETCC(<=); |
| default: |
| std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(>=, UByte); |
| IMPLEMENT_SETCC(>=, SByte); |
| IMPLEMENT_SETCC(>=, UShort); |
| IMPLEMENT_SETCC(>=, Short); |
| IMPLEMENT_SETCC(>=, UInt); |
| IMPLEMENT_SETCC(>=, Int); |
| IMPLEMENT_SETCC(>=, ULong); |
| IMPLEMENT_SETCC(>=, Long); |
| IMPLEMENT_SETCC(>=, Float); |
| IMPLEMENT_SETCC(>=, Double); |
| IMPLEMENT_POINTERSETCC(>=); |
| default: |
| std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(<, UByte); |
| IMPLEMENT_SETCC(<, SByte); |
| IMPLEMENT_SETCC(<, UShort); |
| IMPLEMENT_SETCC(<, Short); |
| IMPLEMENT_SETCC(<, UInt); |
| IMPLEMENT_SETCC(<, Int); |
| IMPLEMENT_SETCC(<, ULong); |
| IMPLEMENT_SETCC(<, Long); |
| IMPLEMENT_SETCC(<, Float); |
| IMPLEMENT_SETCC(<, Double); |
| IMPLEMENT_POINTERSETCC(<); |
| default: |
| std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, |
| const Type *Ty) { |
| GenericValue Dest; |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SETCC(>, UByte); |
| IMPLEMENT_SETCC(>, SByte); |
| IMPLEMENT_SETCC(>, UShort); |
| IMPLEMENT_SETCC(>, Short); |
| IMPLEMENT_SETCC(>, UInt); |
| IMPLEMENT_SETCC(>, Int); |
| IMPLEMENT_SETCC(>, ULong); |
| IMPLEMENT_SETCC(>, Long); |
| IMPLEMENT_SETCC(>, Float); |
| IMPLEMENT_SETCC(>, Double); |
| IMPLEMENT_POINTERSETCC(>); |
| default: |
| std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| return Dest; |
| } |
| |
| void Interpreter::visitBinaryOperator(BinaryOperator &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue R; // Result |
| |
| switch (I.getOpcode()) { |
| case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; |
| case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; |
| case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; |
| case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break; |
| case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break; |
| case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; |
| case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; |
| case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; |
| case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; |
| case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; |
| case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; |
| case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; |
| case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; |
| case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; |
| default: |
| std::cout << "Don't know how to handle this binary operator!\n-->" << I; |
| abort(); |
| } |
| |
| SetValue(&I, R, SF); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Terminator Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::exitCalled(GenericValue GV) { |
| if (!QuietMode) { |
| std::cout << "Program returned "; |
| print(Type::IntTy, GV); |
| std::cout << " via 'void exit(int)'\n"; |
| } |
| |
| ExitCode = GV.SByteVal; |
| ECStack.clear(); |
| } |
| |
| void Interpreter::visitReturnInst(ReturnInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *RetTy = 0; |
| GenericValue Result; |
| |
| // Save away the return value... (if we are not 'ret void') |
| if (I.getNumOperands()) { |
| RetTy = I.getReturnValue()->getType(); |
| Result = getOperandValue(I.getReturnValue(), SF); |
| } |
| |
| // Save previously executing meth |
| const Function *M = ECStack.back().CurFunction; |
| |
| // Pop the current stack frame... this invalidates SF |
| ECStack.pop_back(); |
| |
| if (ECStack.empty()) { // Finished main. Put result into exit code... |
| if (RetTy) { // Nonvoid return type? |
| if (!QuietMode) { |
| CW << "Function " << M->getType() << " \"" << M->getName() |
| << "\" returned "; |
| print(RetTy, Result); |
| std::cout << "\n"; |
| } |
| |
| if (RetTy->isIntegral()) |
| ExitCode = Result.IntVal; // Capture the exit code of the program |
| } else { |
| ExitCode = 0; |
| } |
| return; |
| } |
| |
| // If we have a previous stack frame, and we have a previous call, fill in |
| // the return value... |
| // |
| ExecutionContext &NewSF = ECStack.back(); |
| if (NewSF.Caller) { |
| if (NewSF.Caller->getType() != Type::VoidTy) // Save result... |
| SetValue(NewSF.Caller, Result, NewSF); |
| |
| NewSF.Caller = 0; // We returned from the call... |
| } else if (!QuietMode) { |
| // This must be a function that is executing because of a user 'call' |
| // instruction. |
| CW << "Function " << M->getType() << " \"" << M->getName() |
| << "\" returned "; |
| print(RetTy, Result); |
| std::cout << "\n"; |
| } |
| } |
| |
| void Interpreter::visitBranchInst(BranchInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| BasicBlock *Dest; |
| |
| Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... |
| if (!I.isUnconditional()) { |
| Value *Cond = I.getCondition(); |
| if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... |
| Dest = I.getSuccessor(1); |
| } |
| SwitchToNewBasicBlock(Dest, SF); |
| } |
| |
| void Interpreter::visitSwitchInst(SwitchInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue CondVal = getOperandValue(I.getOperand(0), SF); |
| const Type *ElTy = I.getOperand(0)->getType(); |
| |
| // Check to see if any of the cases match... |
| BasicBlock *Dest = 0; |
| for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) |
| if (executeSetEQInst(CondVal, |
| getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { |
| Dest = cast<BasicBlock>(I.getOperand(i+1)); |
| break; |
| } |
| |
| if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default |
| SwitchToNewBasicBlock(Dest, SF); |
| } |
| |
| // SwitchToNewBasicBlock - This method is used to jump to a new basic block. |
| // This function handles the actual updating of block and instruction iterators |
| // as well as execution of all of the PHI nodes in the destination block. |
| // |
| // This method does this because all of the PHI nodes must be executed |
| // atomically, reading their inputs before any of the results are updated. Not |
| // doing this can cause problems if the PHI nodes depend on other PHI nodes for |
| // their inputs. If the input PHI node is updated before it is read, incorrect |
| // results can happen. Thus we use a two phase approach. |
| // |
| void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ |
| BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... |
| SF.CurBB = Dest; // Update CurBB to branch destination |
| SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... |
| |
| if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do |
| |
| // Loop over all of the PHI nodes in the current block, reading their inputs. |
| std::vector<GenericValue> ResultValues; |
| |
| for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { |
| if (Trace) CW << "Run:" << PN; |
| |
| // Search for the value corresponding to this previous bb... |
| int i = PN->getBasicBlockIndex(PrevBB); |
| assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); |
| Value *IncomingValue = PN->getIncomingValue(i); |
| |
| // Save the incoming value for this PHI node... |
| ResultValues.push_back(getOperandValue(IncomingValue, SF)); |
| } |
| |
| // Now loop over all of the PHI nodes setting their values... |
| SF.CurInst = SF.CurBB->begin(); |
| for (unsigned i = 0; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); |
| ++SF.CurInst, ++i) |
| SetValue(PN, ResultValues[i], SF); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::visitAllocationInst(AllocationInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| const Type *Ty = I.getType()->getElementType(); // Type to be allocated |
| |
| // Get the number of elements being allocated by the array... |
| unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; |
| |
| // Allocate enough memory to hold the type... |
| // FIXME: Don't use CALLOC, use a tainted malloc. |
| void *Memory = calloc(NumElements, TD.getTypeSize(Ty)); |
| |
| GenericValue Result = PTOGV(Memory); |
| assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); |
| SetValue(&I, Result, SF); |
| |
| if (I.getOpcode() == Instruction::Alloca) |
| ECStack.back().Allocas.add(Memory); |
| } |
| |
| void Interpreter::visitFreeInst(FreeInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?"); |
| GenericValue Value = getOperandValue(I.getOperand(0), SF); |
| // TODO: Check to make sure memory is allocated |
| free(GVTOP(Value)); // Free memory |
| } |
| |
| |
| // getElementOffset - The workhorse for getelementptr. |
| // |
| GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, |
| User::op_iterator E, |
| ExecutionContext &SF) { |
| assert(isa<PointerType>(Ptr->getType()) && |
| "Cannot getElementOffset of a nonpointer type!"); |
| |
| PointerTy Total = 0; |
| const Type *Ty = Ptr->getType(); |
| |
| for (; I != E; ++I) { |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SLO = TD.getStructLayout(STy); |
| |
| // Indicies must be ubyte constants... |
| const ConstantUInt *CPU = cast<ConstantUInt>(*I); |
| assert(CPU->getType() == Type::UByteTy); |
| unsigned Index = CPU->getValue(); |
| |
| Total += SLO->MemberOffsets[Index]; |
| Ty = STy->getElementTypes()[Index]; |
| } else if (const SequentialType *ST = cast<SequentialType>(Ty)) { |
| |
| // Get the index number for the array... which must be long type... |
| assert((*I)->getType() == Type::LongTy); |
| unsigned Idx = getOperandValue(*I, SF).LongVal; |
| if (const ArrayType *AT = dyn_cast<ArrayType>(ST)) |
| if (Idx >= AT->getNumElements() && ArrayChecksEnabled) { |
| std::cerr << "Out of range memory access to element #" << Idx |
| << " of a " << AT->getNumElements() << " element array." |
| << " Subscript #" << *I << "\n"; |
| abort(); |
| } |
| |
| Ty = ST->getElementType(); |
| unsigned Size = TD.getTypeSize(Ty); |
| Total += Size*Idx; |
| } |
| } |
| |
| GenericValue Result; |
| Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total; |
| return Result; |
| } |
| |
| void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), |
| I.idx_begin(), I.idx_end(), SF), SF); |
| } |
| |
| void Interpreter::visitLoadInst(LoadInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| GenericValue *Ptr = (GenericValue*)GVTOP(SRC); |
| GenericValue Result = LoadValueFromMemory(Ptr, I.getType()); |
| SetValue(&I, Result, SF); |
| } |
| |
| void Interpreter::visitStoreInst(StoreInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| GenericValue Val = getOperandValue(I.getOperand(0), SF); |
| GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); |
| StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), |
| I.getOperand(0)->getType()); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous Instruction Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void Interpreter::visitCallInst(CallInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SF.Caller = &I; |
| std::vector<GenericValue> ArgVals; |
| ArgVals.reserve(I.getNumOperands()-1); |
| for (unsigned i = 1; i < I.getNumOperands(); ++i) { |
| ArgVals.push_back(getOperandValue(I.getOperand(i), SF)); |
| // Promote all integral types whose size is < sizeof(int) into ints. We do |
| // this by zero or sign extending the value as appropriate according to the |
| // source type. |
| if (I.getOperand(i)->getType()->isIntegral() && |
| I.getOperand(i)->getType()->getPrimitiveSize() < 4) { |
| const Type *Ty = I.getOperand(i)->getType(); |
| if (Ty == Type::ShortTy) |
| ArgVals.back().IntVal = ArgVals.back().ShortVal; |
| else if (Ty == Type::UShortTy) |
| ArgVals.back().UIntVal = ArgVals.back().UShortVal; |
| else if (Ty == Type::SByteTy) |
| ArgVals.back().IntVal = ArgVals.back().SByteVal; |
| else if (Ty == Type::UByteTy) |
| ArgVals.back().UIntVal = ArgVals.back().UByteVal; |
| else if (Ty == Type::BoolTy) |
| ArgVals.back().UIntVal = ArgVals.back().BoolVal; |
| else |
| assert(0 && "Unknown type!"); |
| } |
| } |
| |
| // To handle indirect calls, we must get the pointer value from the argument |
| // and treat it as a function pointer. |
| GenericValue SRC = getOperandValue(I.getCalledValue(), SF); |
| callFunction((Function*)GVTOP(SRC), ArgVals); |
| } |
| |
| #define IMPLEMENT_SHIFT(OP, TY) \ |
| case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break |
| |
| void Interpreter::visitShl(ShiftInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SHIFT(<<, UByte); |
| IMPLEMENT_SHIFT(<<, SByte); |
| IMPLEMENT_SHIFT(<<, UShort); |
| IMPLEMENT_SHIFT(<<, Short); |
| IMPLEMENT_SHIFT(<<, UInt); |
| IMPLEMENT_SHIFT(<<, Int); |
| IMPLEMENT_SHIFT(<<, ULong); |
| IMPLEMENT_SHIFT(<<, Long); |
| default: |
| std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n"; |
| } |
| SetValue(&I, Dest, SF); |
| } |
| |
| void Interpreter::visitShr(ShiftInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| const Type *Ty = I.getOperand(0)->getType(); |
| GenericValue Src1 = getOperandValue(I.getOperand(0), SF); |
| GenericValue Src2 = getOperandValue(I.getOperand(1), SF); |
| GenericValue Dest; |
| |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_SHIFT(>>, UByte); |
| IMPLEMENT_SHIFT(>>, SByte); |
| IMPLEMENT_SHIFT(>>, UShort); |
| IMPLEMENT_SHIFT(>>, Short); |
| IMPLEMENT_SHIFT(>>, UInt); |
| IMPLEMENT_SHIFT(>>, Int); |
| IMPLEMENT_SHIFT(>>, ULong); |
| IMPLEMENT_SHIFT(>>, Long); |
| default: |
| std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| SetValue(&I, Dest, SF); |
| } |
| |
| #define IMPLEMENT_CAST(DTY, DCTY, STY) \ |
| case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; |
| |
| #define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ |
| case Type::DESTTY##TyID: \ |
| switch (SrcTy->getPrimitiveID()) { \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); |
| |
| #define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ |
| IMPLEMENT_CAST(DESTTY, DESTCTY, Double) |
| |
| #define IMPLEMENT_CAST_CASE_END() \ |
| default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \ |
| abort(); \ |
| } \ |
| break |
| |
| #define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ |
| IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ |
| IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ |
| IMPLEMENT_CAST_CASE_END() |
| |
| GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty, |
| ExecutionContext &SF) { |
| const Type *SrcTy = SrcVal->getType(); |
| GenericValue Dest, Src = getOperandValue(SrcVal, SF); |
| |
| switch (Ty->getPrimitiveID()) { |
| IMPLEMENT_CAST_CASE(UByte , (unsigned char)); |
| IMPLEMENT_CAST_CASE(SByte , ( signed char)); |
| IMPLEMENT_CAST_CASE(UShort , (unsigned short)); |
| IMPLEMENT_CAST_CASE(Short , ( signed short)); |
| IMPLEMENT_CAST_CASE(UInt , (unsigned int )); |
| IMPLEMENT_CAST_CASE(Int , ( signed int )); |
| IMPLEMENT_CAST_CASE(ULong , (uint64_t)); |
| IMPLEMENT_CAST_CASE(Long , ( int64_t)); |
| IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); |
| IMPLEMENT_CAST_CASE(Float , (float)); |
| IMPLEMENT_CAST_CASE(Double , (double)); |
| IMPLEMENT_CAST_CASE(Bool , (bool)); |
| default: |
| std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n"; |
| abort(); |
| } |
| |
| return Dest; |
| } |
| |
| |
| void Interpreter::visitCastInst(CastInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); |
| } |
| |
| void Interpreter::visitVarArgInst(VarArgInst &I) { |
| ExecutionContext &SF = ECStack.back(); |
| |
| // Get the pointer to the valist element. LLI treats the valist in memory as |
| // an integer. |
| GenericValue VAListPtr = getOperandValue(I.getOperand(0), SF); |
| |
| // Load the pointer |
| GenericValue VAList = |
| TheEE->LoadValueFromMemory((GenericValue *)GVTOP(VAListPtr), Type::UIntTy); |
| |
| unsigned Argument = VAList.IntVal++; |
| |
| // Update the valist to point to the next argument... |
| TheEE->StoreValueToMemory(VAList, (GenericValue *)GVTOP(VAListPtr), |
| Type::UIntTy); |
| |
| // Set the value... |
| assert(Argument < SF.VarArgs.size() && |
| "Accessing past the last vararg argument!"); |
| SetValue(&I, SF.VarArgs[Argument], SF); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Dispatch and Execution Code |
| //===----------------------------------------------------------------------===// |
| |
| FunctionInfo::FunctionInfo(Function *F) { |
| // Assign slot numbers to the function arguments... |
| for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) |
| AI->addAnnotation(new SlotNumber(getValueSlot(AI))); |
| |
| // Iterate over all of the instructions... |
| unsigned InstNum = 0; |
| for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) |
| for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) |
| // For each instruction... Add Annote |
| II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II))); |
| } |
| |
| unsigned FunctionInfo::getValueSlot(const Value *V) { |
| unsigned Plane = V->getType()->getUniqueID(); |
| if (Plane >= NumPlaneElements.size()) |
| NumPlaneElements.resize(Plane+1, 0); |
| return NumPlaneElements[Plane]++; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // callFunction - Execute the specified function... |
| // |
| void Interpreter::callFunction(Function *F, |
| const std::vector<GenericValue> &ArgVals) { |
| assert((ECStack.empty() || ECStack.back().Caller == 0 || |
| ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && |
| "Incorrect number of arguments passed into function call!"); |
| if (F->isExternal()) { |
| GenericValue Result = callExternalFunction(F, ArgVals); |
| const Type *RetTy = F->getReturnType(); |
| |
| // Copy the result back into the result variable if we are not returning |
| // void. |
| if (RetTy != Type::VoidTy) { |
| if (!ECStack.empty() && ECStack.back().Caller) { |
| ExecutionContext &SF = ECStack.back(); |
| SetValue(SF.Caller, Result, SF); |
| |
| SF.Caller = 0; // We returned from the call... |
| } else if (!QuietMode) { |
| // print it. |
| CW << "Function " << F->getType() << " \"" << F->getName() |
| << "\" returned "; |
| print(RetTy, Result); |
| std::cout << "\n"; |
| |
| if (RetTy->isIntegral()) |
| ExitCode = Result.IntVal; // Capture the exit code of the program |
| } |
| } |
| |
| return; |
| } |
| |
| // Process the function, assigning instruction numbers to the instructions in |
| // the function. Also calculate the number of values for each type slot |
| // active. |
| // |
| FunctionInfo *&FuncInfo = FunctionInfoMap[F]; |
| if (!FuncInfo) FuncInfo = new FunctionInfo(F); |
| |
| // Make a new stack frame... and fill it in. |
| ECStack.push_back(ExecutionContext()); |
| ExecutionContext &StackFrame = ECStack.back(); |
| StackFrame.CurFunction = F; |
| StackFrame.CurBB = F->begin(); |
| StackFrame.CurInst = StackFrame.CurBB->begin(); |
| StackFrame.FuncInfo = FuncInfo; |
| |
| // Initialize the values to nothing... |
| StackFrame.Values.resize(FuncInfo->NumPlaneElements.size()); |
| for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) { |
| StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]); |
| |
| // Taint the initial values of stuff |
| memset(&StackFrame.Values[i][0], 42, |
| FuncInfo->NumPlaneElements[i]*sizeof(GenericValue)); |
| } |
| |
| |
| // Run through the function arguments and initialize their values... |
| assert((ArgVals.size() == F->asize() || |
| (ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) && |
| "Invalid number of values passed to function invocation!"); |
| |
| // Handle non-varargs arguments... |
| unsigned i = 0; |
| for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i) |
| SetValue(AI, ArgVals[i], StackFrame); |
| |
| // Handle varargs arguments... |
| StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); |
| } |
| |
| // executeInstruction - Interpret a single instruction & increment the "PC". |
| // |
| void Interpreter::executeInstruction() { |
| assert(!ECStack.empty() && "No program running, cannot execute inst!"); |
| |
| ExecutionContext &SF = ECStack.back(); // Current stack frame |
| Instruction &I = *SF.CurInst++; // Increment before execute |
| |
| if (Trace) CW << "Run:" << I; |
| |
| // Track the number of dynamic instructions executed. |
| ++NumDynamicInsts; |
| |
| visit(I); // Dispatch to one of the visit* methods... |
| |
| // Reset the current frame location to the top of stack |
| CurFrame = ECStack.size()-1; |
| } |
| |
| void Interpreter::run() { |
| while (!ECStack.empty()) { |
| // Run an instruction... |
| executeInstruction(); |
| } |
| } |
| |
| void Interpreter::printValue(const Type *Ty, GenericValue V) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::BoolTyID: std::cout << (V.BoolVal?"true":"false"); break; |
| case Type::SByteTyID: |
| std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break; |
| case Type::UByteTyID: |
| std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break; |
| case Type::ShortTyID: std::cout << V.ShortVal; break; |
| case Type::UShortTyID: std::cout << V.UShortVal; break; |
| case Type::IntTyID: std::cout << V.IntVal; break; |
| case Type::UIntTyID: std::cout << V.UIntVal; break; |
| case Type::LongTyID: std::cout << (long)V.LongVal; break; |
| case Type::ULongTyID: std::cout << (unsigned long)V.ULongVal; break; |
| case Type::FloatTyID: std::cout << V.FloatVal; break; |
| case Type::DoubleTyID: std::cout << V.DoubleVal; break; |
| case Type::PointerTyID:std::cout << (void*)GVTOP(V); break; |
| default: |
| std::cout << "- Don't know how to print value of this type!"; |
| break; |
| } |
| } |
| |
| void Interpreter::print(const Type *Ty, GenericValue V) { |
| CW << Ty << " "; |
| printValue(Ty, V); |
| } |