| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a MachineCodeEmitter object that is used by the JIT to |
| // write machine code to memory and remember where relocatable values are. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "JIT.h" |
| #include "JITDebugRegisterer.h" |
| #include "JITDwarfEmitter.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/CodeGen/JITCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRelocation.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/ExecutionEngine/JITEventListener.h" |
| #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| #include "llvm/CodeGen/MachineCodeInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/System/Disassembler.h" |
| #include "llvm/System/Memory.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/ValueMap.h" |
| #include <algorithm> |
| #ifndef NDEBUG |
| #include <iomanip> |
| #endif |
| using namespace llvm; |
| |
| STATISTIC(NumBytes, "Number of bytes of machine code compiled"); |
| STATISTIC(NumRelos, "Number of relocations applied"); |
| STATISTIC(NumRetries, "Number of retries with more memory"); |
| static JIT *TheJIT = 0; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JIT lazy compilation code. |
| // |
| namespace { |
| class JITEmitter; |
| class JITResolverState; |
| |
| template<typename ValueTy> |
| struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { |
| typedef JITResolverState *ExtraData; |
| static void onRAUW(JITResolverState *, Value *Old, Value *New) { |
| assert(false && "The JIT doesn't know how to handle a" |
| " RAUW on a value it has emitted."); |
| } |
| }; |
| |
| struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { |
| typedef JITResolverState *ExtraData; |
| static void onDelete(JITResolverState *JRS, Function *F); |
| }; |
| |
| class JITResolverState { |
| public: |
| typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > |
| FunctionToLazyStubMapTy; |
| typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; |
| typedef ValueMap<Function *, SmallPtrSet<void*, 1>, |
| CallSiteValueMapConfig> FunctionToCallSitesMapTy; |
| typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; |
| private: |
| /// FunctionToLazyStubMap - Keep track of the lazy stub created for a |
| /// particular function so that we can reuse them if necessary. |
| FunctionToLazyStubMapTy FunctionToLazyStubMap; |
| |
| /// CallSiteToFunctionMap - Keep track of the function that each lazy call |
| /// site corresponds to, and vice versa. |
| CallSiteToFunctionMapTy CallSiteToFunctionMap; |
| FunctionToCallSitesMapTy FunctionToCallSitesMap; |
| |
| /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a |
| /// particular GlobalVariable so that we can reuse them if necessary. |
| GlobalToIndirectSymMapTy GlobalToIndirectSymMap; |
| |
| public: |
| JITResolverState() : FunctionToLazyStubMap(this), |
| FunctionToCallSitesMap(this) {} |
| |
| FunctionToLazyStubMapTy& getFunctionToLazyStubMap( |
| const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return FunctionToLazyStubMap; |
| } |
| |
| GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return GlobalToIndirectSymMap; |
| } |
| |
| pair<void *, Function *> LookupFunctionFromCallSite( |
| const MutexGuard &locked, void *CallSite) const { |
| assert(locked.holds(TheJIT->lock)); |
| |
| // The address given to us for the stub may not be exactly right, it might be |
| // a little bit after the stub. As such, use upper_bound to find it. |
| CallSiteToFunctionMapTy::const_iterator I = |
| CallSiteToFunctionMap.upper_bound(CallSite); |
| assert(I != CallSiteToFunctionMap.begin() && |
| "This is not a known call site!"); |
| --I; |
| return *I; |
| } |
| |
| void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { |
| assert(locked.holds(TheJIT->lock)); |
| |
| bool Inserted = CallSiteToFunctionMap.insert( |
| std::make_pair(CallSite, F)).second; |
| (void)Inserted; |
| assert(Inserted && "Pair was already in CallSiteToFunctionMap"); |
| FunctionToCallSitesMap[F].insert(CallSite); |
| } |
| |
| // Returns the Function of the stub if a stub was erased, or NULL if there |
| // was no stub. This function uses the call-site->function map to find a |
| // relevant function, but asserts that only stubs and not other call sites |
| // will be passed in. |
| Function *EraseStub(const MutexGuard &locked, void *Stub) { |
| CallSiteToFunctionMapTy::iterator C2F_I = |
| CallSiteToFunctionMap.find(Stub); |
| if (C2F_I == CallSiteToFunctionMap.end()) { |
| // Not a stub. |
| return NULL; |
| } |
| |
| Function *const F = C2F_I->second; |
| #ifndef NDEBUG |
| void *RealStub = FunctionToLazyStubMap.lookup(F); |
| assert(RealStub == Stub && |
| "Call-site that wasn't a stub pass in to EraseStub"); |
| #endif |
| FunctionToLazyStubMap.erase(F); |
| CallSiteToFunctionMap.erase(C2F_I); |
| |
| // Remove the stub from the function->call-sites map, and remove the whole |
| // entry from the map if that was the last call site. |
| FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F); |
| assert(F2C_I != FunctionToCallSitesMap.end() && |
| "FunctionToCallSitesMap broken"); |
| bool Erased = F2C_I->second.erase(Stub); |
| (void)Erased; |
| assert(Erased && "FunctionToCallSitesMap broken"); |
| if (F2C_I->second.empty()) |
| FunctionToCallSitesMap.erase(F2C_I); |
| |
| return F; |
| } |
| |
| void EraseAllCallSites(const MutexGuard &locked, Function *F) { |
| assert(locked.holds(TheJIT->lock)); |
| EraseAllCallSitesPrelocked(F); |
| } |
| void EraseAllCallSitesPrelocked(Function *F) { |
| FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); |
| if (F2C == FunctionToCallSitesMap.end()) |
| return; |
| for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), |
| E = F2C->second.end(); I != E; ++I) { |
| bool Erased = CallSiteToFunctionMap.erase(*I); |
| (void)Erased; |
| assert(Erased && "Missing call site->function mapping"); |
| } |
| FunctionToCallSitesMap.erase(F2C); |
| } |
| }; |
| |
| /// JITResolver - Keep track of, and resolve, call sites for functions that |
| /// have not yet been compiled. |
| class JITResolver { |
| typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; |
| typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; |
| typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; |
| |
| /// LazyResolverFn - The target lazy resolver function that we actually |
| /// rewrite instructions to use. |
| TargetJITInfo::LazyResolverFn LazyResolverFn; |
| |
| JITResolverState state; |
| |
| /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap |
| /// for external functions. TODO: Of course, external functions don't need |
| /// a lazy stub. It's actually here to make it more likely that far calls |
| /// succeed, but no single stub can guarantee that. I'll remove this in a |
| /// subsequent checkin when I actually fix far calls. |
| std::map<void*, void*> ExternalFnToStubMap; |
| |
| /// revGOTMap - map addresses to indexes in the GOT |
| std::map<void*, unsigned> revGOTMap; |
| unsigned nextGOTIndex; |
| |
| JITEmitter &JE; |
| |
| static JITResolver *TheJITResolver; |
| public: |
| explicit JITResolver(JIT &jit, JITEmitter &je) : nextGOTIndex(0), JE(je) { |
| TheJIT = &jit; |
| |
| LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); |
| assert(TheJITResolver == 0 && "Multiple JIT resolvers?"); |
| TheJITResolver = this; |
| } |
| |
| ~JITResolver() { |
| TheJITResolver = 0; |
| } |
| |
| /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's |
| /// lazy-compilation stub if it has already been created. |
| void *getLazyFunctionStubIfAvailable(Function *F); |
| |
| /// getLazyFunctionStub - This returns a pointer to a function's |
| /// lazy-compilation stub, creating one on demand as needed. |
| void *getLazyFunctionStub(Function *F); |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *getExternalFunctionStub(void *FnAddr); |
| |
| /// getGlobalValueIndirectSym - Return an indirect symbol containing the |
| /// specified GV address. |
| void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); |
| |
| void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs, |
| SmallVectorImpl<void*> &Ptrs); |
| |
| GlobalValue *invalidateStub(void *Stub); |
| |
| /// getGOTIndexForAddress - Return a new or existing index in the GOT for |
| /// an address. This function only manages slots, it does not manage the |
| /// contents of the slots or the memory associated with the GOT. |
| unsigned getGOTIndexForAddr(void *addr); |
| |
| /// JITCompilerFn - This function is called to resolve a stub to a compiled |
| /// address. If the LLVM Function corresponding to the stub has not yet |
| /// been compiled, this function compiles it first. |
| static void *JITCompilerFn(void *Stub); |
| }; |
| |
| /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is |
| /// used to output functions to memory for execution. |
| class JITEmitter : public JITCodeEmitter { |
| JITMemoryManager *MemMgr; |
| |
| // When outputting a function stub in the context of some other function, we |
| // save BufferBegin/BufferEnd/CurBufferPtr here. |
| uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; |
| |
| // When reattempting to JIT a function after running out of space, we store |
| // the estimated size of the function we're trying to JIT here, so we can |
| // ask the memory manager for at least this much space. When we |
| // successfully emit the function, we reset this back to zero. |
| uintptr_t SizeEstimate; |
| |
| /// Relocations - These are the relocations that the function needs, as |
| /// emitted. |
| std::vector<MachineRelocation> Relocations; |
| |
| /// MBBLocations - This vector is a mapping from MBB ID's to their address. |
| /// It is filled in by the StartMachineBasicBlock callback and queried by |
| /// the getMachineBasicBlockAddress callback. |
| std::vector<uintptr_t> MBBLocations; |
| |
| /// ConstantPool - The constant pool for the current function. |
| /// |
| MachineConstantPool *ConstantPool; |
| |
| /// ConstantPoolBase - A pointer to the first entry in the constant pool. |
| /// |
| void *ConstantPoolBase; |
| |
| /// ConstPoolAddresses - Addresses of individual constant pool entries. |
| /// |
| SmallVector<uintptr_t, 8> ConstPoolAddresses; |
| |
| /// JumpTable - The jump tables for the current function. |
| /// |
| MachineJumpTableInfo *JumpTable; |
| |
| /// JumpTableBase - A pointer to the first entry in the jump table. |
| /// |
| void *JumpTableBase; |
| |
| /// Resolver - This contains info about the currently resolved functions. |
| JITResolver Resolver; |
| |
| /// DE - The dwarf emitter for the jit. |
| OwningPtr<JITDwarfEmitter> DE; |
| |
| /// DR - The debug registerer for the jit. |
| OwningPtr<JITDebugRegisterer> DR; |
| |
| /// LabelLocations - This vector is a mapping from Label ID's to their |
| /// address. |
| std::vector<uintptr_t> LabelLocations; |
| |
| /// MMI - Machine module info for exception informations |
| MachineModuleInfo* MMI; |
| |
| // GVSet - a set to keep track of which globals have been seen |
| SmallPtrSet<const GlobalVariable*, 8> GVSet; |
| |
| // CurFn - The llvm function being emitted. Only valid during |
| // finishFunction(). |
| const Function *CurFn; |
| |
| /// Information about emitted code, which is passed to the |
| /// JITEventListeners. This is reset in startFunction and used in |
| /// finishFunction. |
| JITEvent_EmittedFunctionDetails EmissionDetails; |
| |
| struct EmittedCode { |
| void *FunctionBody; // Beginning of the function's allocation. |
| void *Code; // The address the function's code actually starts at. |
| void *ExceptionTable; |
| EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} |
| }; |
| struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { |
| typedef JITEmitter *ExtraData; |
| static void onDelete(JITEmitter *, const Function*); |
| static void onRAUW(JITEmitter *, const Function*, const Function*); |
| }; |
| ValueMap<const Function *, EmittedCode, |
| EmittedFunctionConfig> EmittedFunctions; |
| |
| // CurFnStubUses - For a given Function, a vector of stubs that it |
| // references. This facilitates the JIT detecting that a stub is no |
| // longer used, so that it may be deallocated. |
| DenseMap<AssertingVH<const Function>, SmallVector<void*, 1> > CurFnStubUses; |
| |
| // StubFnRefs - For a given pointer to a stub, a set of Functions which |
| // reference the stub. When the count of a stub's references drops to zero, |
| // the stub is unused. |
| DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs; |
| |
| DebugLocTuple PrevDLT; |
| |
| public: |
| JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) |
| : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), |
| EmittedFunctions(this) { |
| MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); |
| if (jit.getJITInfo().needsGOT()) { |
| MemMgr->AllocateGOT(); |
| DEBUG(errs() << "JIT is managing a GOT\n"); |
| } |
| |
| if (DwarfExceptionHandling || JITEmitDebugInfo) { |
| DE.reset(new JITDwarfEmitter(jit)); |
| } |
| if (JITEmitDebugInfo) { |
| DR.reset(new JITDebugRegisterer(TM)); |
| } |
| } |
| ~JITEmitter() { |
| delete MemMgr; |
| } |
| |
| /// classof - Methods for support type inquiry through isa, cast, and |
| /// dyn_cast: |
| /// |
| static inline bool classof(const JITEmitter*) { return true; } |
| static inline bool classof(const MachineCodeEmitter*) { return true; } |
| |
| JITResolver &getJITResolver() { return Resolver; } |
| |
| virtual void startFunction(MachineFunction &F); |
| virtual bool finishFunction(MachineFunction &F); |
| |
| void emitConstantPool(MachineConstantPool *MCP); |
| void initJumpTableInfo(MachineJumpTableInfo *MJTI); |
| void emitJumpTableInfo(MachineJumpTableInfo *MJTI); |
| |
| void startGVStub(const GlobalValue* GV, |
| unsigned StubSize, unsigned Alignment = 1); |
| void startGVStub(void *Buffer, unsigned StubSize); |
| void finishGVStub(); |
| virtual void *allocIndirectGV(const GlobalValue *GV, |
| const uint8_t *Buffer, size_t Size, |
| unsigned Alignment); |
| |
| /// allocateSpace - Reserves space in the current block if any, or |
| /// allocate a new one of the given size. |
| virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); |
| |
| /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, |
| /// this method does not allocate memory in the current output buffer, |
| /// because a global may live longer than the current function. |
| virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); |
| |
| virtual void addRelocation(const MachineRelocation &MR) { |
| Relocations.push_back(MR); |
| } |
| |
| virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { |
| if (MBBLocations.size() <= (unsigned)MBB->getNumber()) |
| MBBLocations.resize((MBB->getNumber()+1)*2); |
| MBBLocations[MBB->getNumber()] = getCurrentPCValue(); |
| DEBUG(errs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" |
| << (void*) getCurrentPCValue() << "]\n"); |
| } |
| |
| virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; |
| virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; |
| |
| virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { |
| assert(MBBLocations.size() > (unsigned)MBB->getNumber() && |
| MBBLocations[MBB->getNumber()] && "MBB not emitted!"); |
| return MBBLocations[MBB->getNumber()]; |
| } |
| |
| /// retryWithMoreMemory - Log a retry and deallocate all memory for the |
| /// given function. Increase the minimum allocation size so that we get |
| /// more memory next time. |
| void retryWithMoreMemory(MachineFunction &F); |
| |
| /// deallocateMemForFunction - Deallocate all memory for the specified |
| /// function body. |
| void deallocateMemForFunction(const Function *F); |
| |
| /// AddStubToCurrentFunction - Mark the current function being JIT'd as |
| /// using the stub at the specified address. Allows |
| /// deallocateMemForFunction to also remove stubs no longer referenced. |
| void AddStubToCurrentFunction(void *Stub); |
| |
| virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); |
| |
| virtual void emitLabel(uint64_t LabelID) { |
| if (LabelLocations.size() <= LabelID) |
| LabelLocations.resize((LabelID+1)*2); |
| LabelLocations[LabelID] = getCurrentPCValue(); |
| } |
| |
| virtual uintptr_t getLabelAddress(uint64_t LabelID) const { |
| assert(LabelLocations.size() > (unsigned)LabelID && |
| LabelLocations[LabelID] && "Label not emitted!"); |
| return LabelLocations[LabelID]; |
| } |
| |
| virtual void setModuleInfo(MachineModuleInfo* Info) { |
| MMI = Info; |
| if (DE.get()) DE->setModuleInfo(Info); |
| } |
| |
| void setMemoryExecutable() { |
| MemMgr->setMemoryExecutable(); |
| } |
| |
| JITMemoryManager *getMemMgr() const { return MemMgr; } |
| |
| private: |
| void *getPointerToGlobal(GlobalValue *GV, void *Reference, |
| bool MayNeedFarStub); |
| void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); |
| unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size); |
| unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size); |
| unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size); |
| unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF); |
| }; |
| } |
| |
| JITResolver *JITResolver::TheJITResolver = 0; |
| |
| void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { |
| JRS->EraseAllCallSitesPrelocked(F); |
| } |
| |
| /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub |
| /// if it has already been created. |
| void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this function, recycle it. |
| return state.getFunctionToLazyStubMap(locked).lookup(F); |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *JITResolver::getLazyFunctionStub(Function *F) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a lazy stub for this function, recycle it. |
| void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; |
| if (Stub) return Stub; |
| |
| // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we |
| // must resolve the symbol now. |
| void *Actual = TheJIT->isCompilingLazily() |
| ? (void *)(intptr_t)LazyResolverFn : (void *)0; |
| |
| // TODO: Delete this when PR5737 is fixed. |
| std::string ErrorMsg; |
| if (TheJIT->materializeFunction(F, &ErrorMsg)) { |
| llvm_report_error("Error reading function '" + F->getName()+ |
| "' from bitcode file: " + ErrorMsg); |
| } |
| // If this is an external declaration, attempt to resolve the address now |
| // to place in the stub. |
| if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { |
| Actual = TheJIT->getPointerToFunction(F); |
| |
| // If we resolved the symbol to a null address (eg. a weak external) |
| // don't emit a stub. Return a null pointer to the application. |
| if (!Actual) return 0; |
| } |
| |
| TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); |
| JE.startGVStub(F, SL.Size, SL.Alignment); |
| // Codegen a new stub, calling the lazy resolver or the actual address of the |
| // external function, if it was resolved. |
| Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); |
| JE.finishGVStub(); |
| |
| if (Actual != (void*)(intptr_t)LazyResolverFn) { |
| // If we are getting the stub for an external function, we really want the |
| // address of the stub in the GlobalAddressMap for the JIT, not the address |
| // of the external function. |
| TheJIT->updateGlobalMapping(F, Stub); |
| } |
| |
| DEBUG(errs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" |
| << F->getName() << "'\n"); |
| |
| // Finally, keep track of the stub-to-Function mapping so that the |
| // JITCompilerFn knows which function to compile! |
| state.AddCallSite(locked, Stub, F); |
| |
| // If we are JIT'ing non-lazily but need to call a function that does not |
| // exist yet, add it to the JIT's work list so that we can fill in the stub |
| // address later. |
| if (!Actual && !TheJIT->isCompilingLazily()) |
| if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) |
| TheJIT->addPendingFunction(F); |
| |
| return Stub; |
| } |
| |
| /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified |
| /// GV address. |
| void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this global variable, recycle it. |
| void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; |
| if (IndirectSym) return IndirectSym; |
| |
| // Otherwise, codegen a new indirect symbol. |
| IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, |
| JE); |
| |
| DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym |
| << "] for GV '" << GV->getName() << "'\n"); |
| |
| return IndirectSym; |
| } |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) { |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = ExternalFnToStubMap[FnAddr]; |
| if (Stub) return Stub; |
| |
| TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); |
| JE.startGVStub(0, SL.Size, SL.Alignment); |
| Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); |
| JE.finishGVStub(); |
| |
| DEBUG(errs() << "JIT: Stub emitted at [" << Stub |
| << "] for external function at '" << FnAddr << "'\n"); |
| return Stub; |
| } |
| |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) { |
| unsigned idx = revGOTMap[addr]; |
| if (!idx) { |
| idx = ++nextGOTIndex; |
| revGOTMap[addr] = idx; |
| DEBUG(errs() << "JIT: Adding GOT entry " << idx << " for addr [" |
| << addr << "]\n"); |
| } |
| return idx; |
| } |
| |
| void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs, |
| SmallVectorImpl<void*> &Ptrs) { |
| MutexGuard locked(TheJIT->lock); |
| |
| const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked); |
| GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked); |
| |
| for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end(); |
| i != e; ++i){ |
| Function *F = i->first; |
| if (F->isDeclaration() && F->hasExternalLinkage()) { |
| GVs.push_back(i->first); |
| Ptrs.push_back(i->second); |
| } |
| } |
| for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end(); |
| i != e; ++i) { |
| GVs.push_back(i->first); |
| Ptrs.push_back(i->second); |
| } |
| } |
| |
| GlobalValue *JITResolver::invalidateStub(void *Stub) { |
| MutexGuard locked(TheJIT->lock); |
| |
| GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked); |
| |
| // Look up the cheap way first, to see if it's a function stub we are |
| // invalidating. If so, remove it from both the forward and reverse maps. |
| if (Function *F = state.EraseStub(locked, Stub)) { |
| return F; |
| } |
| |
| // Otherwise, it might be an indirect symbol stub. Find it and remove it. |
| for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end(); |
| i != e; ++i) { |
| if (i->second != Stub) |
| continue; |
| GlobalValue *GV = i->first; |
| GM.erase(i); |
| return GV; |
| } |
| |
| // Lastly, check to see if it's in the ExternalFnToStubMap. |
| for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(), |
| e = ExternalFnToStubMap.end(); i != e; ++i) { |
| if (i->second != Stub) |
| continue; |
| ExternalFnToStubMap.erase(i); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /// JITCompilerFn - This function is called when a lazy compilation stub has |
| /// been entered. It looks up which function this stub corresponds to, compiles |
| /// it if necessary, then returns the resultant function pointer. |
| void *JITResolver::JITCompilerFn(void *Stub) { |
| JITResolver &JR = *TheJITResolver; |
| |
| Function* F = 0; |
| void* ActualPtr = 0; |
| |
| { |
| // Only lock for getting the Function. The call getPointerToFunction made |
| // in this function might trigger function materializing, which requires |
| // JIT lock to be unlocked. |
| MutexGuard locked(TheJIT->lock); |
| |
| // The address given to us for the stub may not be exactly right, it might |
| // be a little bit after the stub. As such, use upper_bound to find it. |
| pair<void*, Function*> I = |
| JR.state.LookupFunctionFromCallSite(locked, Stub); |
| F = I.second; |
| ActualPtr = I.first; |
| } |
| |
| // If we have already code generated the function, just return the address. |
| void *Result = TheJIT->getPointerToGlobalIfAvailable(F); |
| |
| if (!Result) { |
| // Otherwise we don't have it, do lazy compilation now. |
| |
| // If lazy compilation is disabled, emit a useful error message and abort. |
| if (!TheJIT->isCompilingLazily()) { |
| llvm_report_error("LLVM JIT requested to do lazy compilation of function '" |
| + F->getName() + "' when lazy compiles are disabled!"); |
| } |
| |
| DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName() |
| << "' In stub ptr = " << Stub << " actual ptr = " |
| << ActualPtr << "\n"); |
| |
| Result = TheJIT->getPointerToFunction(F); |
| } |
| |
| // Reacquire the lock to update the GOT map. |
| MutexGuard locked(TheJIT->lock); |
| |
| // We might like to remove the call site from the CallSiteToFunction map, but |
| // we can't do that! Multiple threads could be stuck, waiting to acquire the |
| // lock above. As soon as the 1st function finishes compiling the function, |
| // the next one will be released, and needs to be able to find the function it |
| // needs to call. |
| |
| // FIXME: We could rewrite all references to this stub if we knew them. |
| |
| // What we will do is set the compiled function address to map to the |
| // same GOT entry as the stub so that later clients may update the GOT |
| // if they see it still using the stub address. |
| // Note: this is done so the Resolver doesn't have to manage GOT memory |
| // Do this without allocating map space if the target isn't using a GOT |
| if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) |
| JR.revGOTMap[Result] = JR.revGOTMap[Stub]; |
| |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // JITEmitter code. |
| // |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, |
| bool MayNeedFarStub) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| return TheJIT->getOrEmitGlobalVariable(GV); |
| |
| if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); |
| |
| // If we have already compiled the function, return a pointer to its body. |
| Function *F = cast<Function>(V); |
| |
| void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); |
| if (FnStub) { |
| // Return the function stub if it's already created. We do this first so |
| // that we're returning the same address for the function as any previous |
| // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be |
| // close enough to call. |
| AddStubToCurrentFunction(FnStub); |
| return FnStub; |
| } |
| |
| // If we know the target can handle arbitrary-distance calls, try to |
| // return a direct pointer. |
| if (!MayNeedFarStub) { |
| // If we have code, go ahead and return that. |
| void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); |
| if (ResultPtr) return ResultPtr; |
| |
| // TODO: Delete this when PR5737 is fixed. |
| std::string ErrorMsg; |
| if (TheJIT->materializeFunction(F, &ErrorMsg)) { |
| llvm_report_error("Error reading function '" + F->getName()+ |
| "' from bitcode file: " + ErrorMsg); |
| } |
| |
| // If this is an external function pointer, we can force the JIT to |
| // 'compile' it, which really just adds it to the map. |
| if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) |
| return TheJIT->getPointerToFunction(F); |
| } |
| |
| // Otherwise, we may need a to emit a stub, and, conservatively, we |
| // always do so. |
| void *StubAddr = Resolver.getLazyFunctionStub(F); |
| |
| // Add the stub to the current function's list of referenced stubs, so we can |
| // deallocate them if the current function is ever freed. It's possible to |
| // return null from getLazyFunctionStub in the case of a weak extern that |
| // fails to resolve. |
| if (StubAddr) |
| AddStubToCurrentFunction(StubAddr); |
| |
| return StubAddr; |
| } |
| |
| void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { |
| // Make sure GV is emitted first, and create a stub containing the fully |
| // resolved address. |
| void *GVAddress = getPointerToGlobal(V, Reference, false); |
| void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); |
| |
| // Add the stub to the current function's list of referenced stubs, so we can |
| // deallocate them if the current function is ever freed. |
| AddStubToCurrentFunction(StubAddr); |
| |
| return StubAddr; |
| } |
| |
| void JITEmitter::AddStubToCurrentFunction(void *StubAddr) { |
| assert(CurFn && "Stub added to current function, but current function is 0!"); |
| |
| SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn]; |
| StubsUsed.push_back(StubAddr); |
| |
| SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr]; |
| FnRefs.insert(CurFn); |
| } |
| |
| void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { |
| if (!DL.isUnknown()) { |
| DebugLocTuple CurDLT = EmissionDetails.MF->getDebugLocTuple(DL); |
| |
| if (BeforePrintingInsn) { |
| if (CurDLT.Scope != 0 && PrevDLT != CurDLT) { |
| JITEvent_EmittedFunctionDetails::LineStart NextLine; |
| NextLine.Address = getCurrentPCValue(); |
| NextLine.Loc = DL; |
| EmissionDetails.LineStarts.push_back(NextLine); |
| } |
| |
| PrevDLT = CurDLT; |
| } |
| } |
| } |
| |
| static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, |
| const TargetData *TD) { |
| const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return 0; |
| |
| unsigned Size = 0; |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| MachineConstantPoolEntry CPE = Constants[i]; |
| unsigned AlignMask = CPE.getAlignment() - 1; |
| Size = (Size + AlignMask) & ~AlignMask; |
| const Type *Ty = CPE.getType(); |
| Size += TD->getTypeAllocSize(Ty); |
| } |
| return Size; |
| } |
| |
| static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return 0; |
| |
| unsigned NumEntries = 0; |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| NumEntries += JT[i].MBBs.size(); |
| |
| unsigned EntrySize = MJTI->getEntrySize(); |
| |
| return NumEntries * EntrySize; |
| } |
| |
| static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) { |
| if (Alignment == 0) Alignment = 1; |
| // Since we do not know where the buffer will be allocated, be pessimistic. |
| return Size + Alignment; |
| } |
| |
| /// addSizeOfGlobal - add the size of the global (plus any alignment padding) |
| /// into the running total Size. |
| |
| unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) { |
| const Type *ElTy = GV->getType()->getElementType(); |
| size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy); |
| size_t GVAlign = |
| (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV); |
| DEBUG(errs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign); |
| DEBUG(GV->dump()); |
| // Assume code section ends with worst possible alignment, so first |
| // variable needs maximal padding. |
| if (Size==0) |
| Size = 1; |
| Size = ((Size+GVAlign-1)/GVAlign)*GVAlign; |
| Size += GVSize; |
| return Size; |
| } |
| |
| /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet |
| /// but are referenced from the constant; put them in GVSet and add their |
| /// size into the running total Size. |
| |
| unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C, |
| unsigned Size) { |
| // If its undefined, return the garbage. |
| if (isa<UndefValue>(C)) |
| return Size; |
| |
| // If the value is a ConstantExpr |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| Constant *Op0 = CE->getOperand(0); |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: { |
| Size = addSizeOfGlobalsInConstantVal(Op0, Size); |
| break; |
| } |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| Size = addSizeOfGlobalsInConstantVal(Op0, Size); |
| Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size); |
| break; |
| } |
| default: { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "ConstantExpr not handled: " << *CE; |
| llvm_report_error(Msg.str()); |
| } |
| } |
| } |
| |
| if (C->getType()->getTypeID() == Type::PointerTyID) |
| if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) |
| if (GVSet.insert(GV)) |
| Size = addSizeOfGlobal(GV, Size); |
| |
| return Size; |
| } |
| |
| /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet |
| /// but are referenced from the given initializer. |
| |
| unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init, |
| unsigned Size) { |
| if (!isa<UndefValue>(Init) && |
| !isa<ConstantVector>(Init) && |
| !isa<ConstantAggregateZero>(Init) && |
| !isa<ConstantArray>(Init) && |
| !isa<ConstantStruct>(Init) && |
| Init->getType()->isFirstClassType()) |
| Size = addSizeOfGlobalsInConstantVal(Init, Size); |
| return Size; |
| } |
| |
| /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for |
| /// globals; then walk the initializers of those globals looking for more. |
| /// If their size has not been considered yet, add it into the running total |
| /// Size. |
| |
| unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) { |
| unsigned Size = 0; |
| GVSet.clear(); |
| |
| for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); |
| MBB != E; ++MBB) { |
| for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| const TargetInstrDesc &Desc = I->getDesc(); |
| const MachineInstr &MI = *I; |
| unsigned NumOps = Desc.getNumOperands(); |
| for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) { |
| const MachineOperand &MO = MI.getOperand(CurOp); |
| if (MO.isGlobal()) { |
| GlobalValue* V = MO.getGlobal(); |
| const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V); |
| if (!GV) |
| continue; |
| // If seen in previous function, it will have an entry here. |
| if (TheJIT->getPointerToGlobalIfAvailable(GV)) |
| continue; |
| // If seen earlier in this function, it will have an entry here. |
| // FIXME: it should be possible to combine these tables, by |
| // assuming the addresses of the new globals in this module |
| // start at 0 (or something) and adjusting them after codegen |
| // complete. Another possibility is to grab a marker bit in GV. |
| if (GVSet.insert(GV)) |
| // A variable as yet unseen. Add in its size. |
| Size = addSizeOfGlobal(GV, Size); |
| } |
| } |
| } |
| } |
| DEBUG(errs() << "JIT: About to look through initializers\n"); |
| // Look for more globals that are referenced only from initializers. |
| // GVSet.end is computed each time because the set can grow as we go. |
| for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin(); |
| I != GVSet.end(); I++) { |
| const GlobalVariable* GV = *I; |
| if (GV->hasInitializer()) |
| Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size); |
| } |
| |
| return Size; |
| } |
| |
| void JITEmitter::startFunction(MachineFunction &F) { |
| DEBUG(errs() << "JIT: Starting CodeGen of Function " |
| << F.getFunction()->getName() << "\n"); |
| |
| uintptr_t ActualSize = 0; |
| // Set the memory writable, if it's not already |
| MemMgr->setMemoryWritable(); |
| if (MemMgr->NeedsExactSize()) { |
| DEBUG(errs() << "JIT: ExactSize\n"); |
| const TargetInstrInfo* TII = F.getTarget().getInstrInfo(); |
| MachineJumpTableInfo *MJTI = F.getJumpTableInfo(); |
| MachineConstantPool *MCP = F.getConstantPool(); |
| |
| // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| ActualSize = RoundUpToAlign(ActualSize, 16); |
| |
| // Add the alignment of the constant pool |
| ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment()); |
| |
| // Add the constant pool size |
| ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); |
| |
| // Add the aligment of the jump table info |
| ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment()); |
| |
| // Add the jump table size |
| ActualSize += GetJumpTableSizeInBytes(MJTI); |
| |
| // Add the alignment for the function |
| ActualSize = RoundUpToAlign(ActualSize, |
| std::max(F.getFunction()->getAlignment(), 8U)); |
| |
| // Add the function size |
| ActualSize += TII->GetFunctionSizeInBytes(F); |
| |
| DEBUG(errs() << "JIT: ActualSize before globals " << ActualSize << "\n"); |
| // Add the size of the globals that will be allocated after this function. |
| // These are all the ones referenced from this function that were not |
| // previously allocated. |
| ActualSize += GetSizeOfGlobalsInBytes(F); |
| DEBUG(errs() << "JIT: ActualSize after globals " << ActualSize << "\n"); |
| } else if (SizeEstimate > 0) { |
| // SizeEstimate will be non-zero on reallocation attempts. |
| ActualSize = SizeEstimate; |
| } |
| |
| BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), |
| ActualSize); |
| BufferEnd = BufferBegin+ActualSize; |
| EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; |
| |
| // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| emitAlignment(16); |
| |
| emitConstantPool(F.getConstantPool()); |
| initJumpTableInfo(F.getJumpTableInfo()); |
| |
| // About to start emitting the machine code for the function. |
| emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); |
| TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); |
| EmittedFunctions[F.getFunction()].Code = CurBufferPtr; |
| |
| MBBLocations.clear(); |
| |
| EmissionDetails.MF = &F; |
| EmissionDetails.LineStarts.clear(); |
| } |
| |
| bool JITEmitter::finishFunction(MachineFunction &F) { |
| if (CurBufferPtr == BufferEnd) { |
| // We must call endFunctionBody before retrying, because |
| // deallocateMemForFunction requires it. |
| MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); |
| retryWithMoreMemory(F); |
| return true; |
| } |
| |
| emitJumpTableInfo(F.getJumpTableInfo()); |
| |
| // FnStart is the start of the text, not the start of the constant pool and |
| // other per-function data. |
| uint8_t *FnStart = |
| (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); |
| |
| // FnEnd is the end of the function's machine code. |
| uint8_t *FnEnd = CurBufferPtr; |
| |
| if (!Relocations.empty()) { |
| CurFn = F.getFunction(); |
| NumRelos += Relocations.size(); |
| |
| // Resolve the relocations to concrete pointers. |
| for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| MachineRelocation &MR = Relocations[i]; |
| void *ResultPtr = 0; |
| if (!MR.letTargetResolve()) { |
| if (MR.isExternalSymbol()) { |
| ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), |
| false); |
| DEBUG(errs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" |
| << ResultPtr << "]\n"); |
| |
| // If the target REALLY wants a stub for this function, emit it now. |
| if (MR.mayNeedFarStub()) { |
| ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); |
| } |
| } else if (MR.isGlobalValue()) { |
| ResultPtr = getPointerToGlobal(MR.getGlobalValue(), |
| BufferBegin+MR.getMachineCodeOffset(), |
| MR.mayNeedFarStub()); |
| } else if (MR.isIndirectSymbol()) { |
| ResultPtr = getPointerToGVIndirectSym( |
| MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); |
| } else if (MR.isBasicBlock()) { |
| ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); |
| } else if (MR.isConstantPoolIndex()) { |
| ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); |
| } else { |
| assert(MR.isJumpTableIndex()); |
| ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); |
| } |
| |
| MR.setResultPointer(ResultPtr); |
| } |
| |
| // if we are managing the GOT and the relocation wants an index, |
| // give it one |
| if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { |
| unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); |
| MR.setGOTIndex(idx); |
| if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { |
| DEBUG(errs() << "JIT: GOT was out of date for " << ResultPtr |
| << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] |
| << "\n"); |
| ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; |
| } |
| } |
| } |
| |
| CurFn = 0; |
| TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], |
| Relocations.size(), MemMgr->getGOTBase()); |
| } |
| |
| // Update the GOT entry for F to point to the new code. |
| if (MemMgr->isManagingGOT()) { |
| unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); |
| if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { |
| DEBUG(errs() << "JIT: GOT was out of date for " << (void*)BufferBegin |
| << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] |
| << "\n"); |
| ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; |
| } |
| } |
| |
| // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for |
| // global variables that were referenced in the relocations. |
| MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); |
| |
| if (CurBufferPtr == BufferEnd) { |
| retryWithMoreMemory(F); |
| return true; |
| } else { |
| // Now that we've succeeded in emitting the function, reset the |
| // SizeEstimate back down to zero. |
| SizeEstimate = 0; |
| } |
| |
| BufferBegin = CurBufferPtr = 0; |
| NumBytes += FnEnd-FnStart; |
| |
| // Invalidate the icache if necessary. |
| sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); |
| |
| TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, |
| EmissionDetails); |
| |
| DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart |
| << "] Function: " << F.getFunction()->getName() |
| << ": " << (FnEnd-FnStart) << " bytes of text, " |
| << Relocations.size() << " relocations\n"); |
| |
| Relocations.clear(); |
| ConstPoolAddresses.clear(); |
| |
| // Mark code region readable and executable if it's not so already. |
| MemMgr->setMemoryExecutable(); |
| |
| DEBUG( |
| if (sys::hasDisassembler()) { |
| errs() << "JIT: Disassembled code:\n"; |
| errs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, |
| (uintptr_t)FnStart); |
| } else { |
| errs() << "JIT: Binary code:\n"; |
| uint8_t* q = FnStart; |
| for (int i = 0; q < FnEnd; q += 4, ++i) { |
| if (i == 4) |
| i = 0; |
| if (i == 0) |
| errs() << "JIT: " << (long)(q - FnStart) << ": "; |
| bool Done = false; |
| for (int j = 3; j >= 0; --j) { |
| if (q + j >= FnEnd) |
| Done = true; |
| else |
| errs() << (unsigned short)q[j]; |
| } |
| if (Done) |
| break; |
| errs() << ' '; |
| if (i == 3) |
| errs() << '\n'; |
| } |
| errs()<< '\n'; |
| } |
| ); |
| |
| if (DwarfExceptionHandling || JITEmitDebugInfo) { |
| uintptr_t ActualSize = 0; |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| if (MemMgr->NeedsExactSize()) { |
| ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd); |
| } |
| |
| BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), |
| ActualSize); |
| BufferEnd = BufferBegin+ActualSize; |
| EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; |
| uint8_t *EhStart; |
| uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, |
| EhStart); |
| MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, |
| FrameRegister); |
| uint8_t *EhEnd = CurBufferPtr; |
| BufferBegin = SavedBufferBegin; |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| |
| if (DwarfExceptionHandling) { |
| TheJIT->RegisterTable(FrameRegister); |
| } |
| |
| if (JITEmitDebugInfo) { |
| DebugInfo I; |
| I.FnStart = FnStart; |
| I.FnEnd = FnEnd; |
| I.EhStart = EhStart; |
| I.EhEnd = EhEnd; |
| DR->RegisterFunction(F.getFunction(), I); |
| } |
| } |
| |
| if (MMI) |
| MMI->EndFunction(); |
| |
| return false; |
| } |
| |
| void JITEmitter::retryWithMoreMemory(MachineFunction &F) { |
| DEBUG(errs() << "JIT: Ran out of space for native code. Reattempting.\n"); |
| Relocations.clear(); // Clear the old relocations or we'll reapply them. |
| ConstPoolAddresses.clear(); |
| ++NumRetries; |
| deallocateMemForFunction(F.getFunction()); |
| // Try again with at least twice as much free space. |
| SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); |
| } |
| |
| /// deallocateMemForFunction - Deallocate all memory for the specified |
| /// function body. Also drop any references the function has to stubs. |
| /// May be called while the Function is being destroyed inside ~Value(). |
| void JITEmitter::deallocateMemForFunction(const Function *F) { |
| ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator |
| Emitted = EmittedFunctions.find(F); |
| if (Emitted != EmittedFunctions.end()) { |
| MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); |
| MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); |
| TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); |
| |
| EmittedFunctions.erase(Emitted); |
| } |
| |
| // TODO: Do we need to unregister exception handling information from libgcc |
| // here? |
| |
| if (JITEmitDebugInfo) { |
| DR->UnregisterFunction(F); |
| } |
| |
| // If the function did not reference any stubs, return. |
| if (CurFnStubUses.find(F) == CurFnStubUses.end()) |
| return; |
| |
| // For each referenced stub, erase the reference to this function, and then |
| // erase the list of referenced stubs. |
| SmallVectorImpl<void *> &StubList = CurFnStubUses[F]; |
| for (unsigned i = 0, e = StubList.size(); i != e; ++i) { |
| void *Stub = StubList[i]; |
| |
| // If we already invalidated this stub for this function, continue. |
| if (StubFnRefs.count(Stub) == 0) |
| continue; |
| |
| SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub]; |
| FnRefs.erase(F); |
| |
| // If this function was the last reference to the stub, invalidate the stub |
| // in the JITResolver. Were there a memory manager deallocateStub routine, |
| // we could call that at this point too. |
| if (FnRefs.empty()) { |
| DEBUG(errs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n"); |
| StubFnRefs.erase(Stub); |
| |
| // Invalidate the stub. If it is a GV stub, update the JIT's global |
| // mapping for that GV to zero. |
| GlobalValue *GV = Resolver.invalidateStub(Stub); |
| if (GV) { |
| TheJIT->updateGlobalMapping(GV, 0); |
| } |
| } |
| } |
| CurFnStubUses.erase(F); |
| } |
| |
| |
| void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { |
| if (BufferBegin) |
| return JITCodeEmitter::allocateSpace(Size, Alignment); |
| |
| // create a new memory block if there is no active one. |
| // care must be taken so that BufferBegin is invalidated when a |
| // block is trimmed |
| BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); |
| BufferEnd = BufferBegin+Size; |
| return CurBufferPtr; |
| } |
| |
| void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { |
| // Delegate this call through the memory manager. |
| return MemMgr->allocateGlobal(Size, Alignment); |
| } |
| |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { |
| if (TheJIT->getJITInfo().hasCustomConstantPool()) |
| return; |
| |
| const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return; |
| |
| unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); |
| unsigned Align = MCP->getConstantPoolAlignment(); |
| ConstantPoolBase = allocateSpace(Size, Align); |
| ConstantPool = MCP; |
| |
| if (ConstantPoolBase == 0) return; // Buffer overflow. |
| |
| DEBUG(errs() << "JIT: Emitted constant pool at [" << ConstantPoolBase |
| << "] (size: " << Size << ", alignment: " << Align << ")\n"); |
| |
| // Initialize the memory for all of the constant pool entries. |
| unsigned Offset = 0; |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| MachineConstantPoolEntry CPE = Constants[i]; |
| unsigned AlignMask = CPE.getAlignment() - 1; |
| Offset = (Offset + AlignMask) & ~AlignMask; |
| |
| uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; |
| ConstPoolAddresses.push_back(CAddr); |
| if (CPE.isMachineConstantPoolEntry()) { |
| // FIXME: add support to lower machine constant pool values into bytes! |
| llvm_report_error("Initialize memory with machine specific constant pool" |
| "entry has not been implemented!"); |
| } |
| TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); |
| DEBUG(errs() << "JIT: CP" << i << " at [0x"; |
| errs().write_hex(CAddr) << "]\n"); |
| |
| const Type *Ty = CPE.Val.ConstVal->getType(); |
| Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty); |
| } |
| } |
| |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| if (TheJIT->getJITInfo().hasCustomJumpTables()) |
| return; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| unsigned NumEntries = 0; |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| NumEntries += JT[i].MBBs.size(); |
| |
| unsigned EntrySize = MJTI->getEntrySize(); |
| |
| // Just allocate space for all the jump tables now. We will fix up the actual |
| // MBB entries in the tables after we emit the code for each block, since then |
| // we will know the final locations of the MBBs in memory. |
| JumpTable = MJTI; |
| JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment()); |
| } |
| |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| if (TheJIT->getJITInfo().hasCustomJumpTables()) |
| return; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty() || JumpTableBase == 0) return; |
| |
| if (TargetMachine::getRelocationModel() == Reloc::PIC_) { |
| assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?"); |
| // For each jump table, place the offset from the beginning of the table |
| // to the target address. |
| int *SlotPtr = (int*)JumpTableBase; |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| // Store the offset of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| uintptr_t Base = (uintptr_t)SlotPtr; |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { |
| uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); |
| *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); |
| } |
| } |
| } else { |
| assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?"); |
| |
| // For each jump table, map each target in the jump table to the address of |
| // an emitted MachineBasicBlock. |
| intptr_t *SlotPtr = (intptr_t*)JumpTableBase; |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| // Store the address of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) |
| *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); |
| } |
| } |
| } |
| |
| void JITEmitter::startGVStub(const GlobalValue* GV, |
| unsigned StubSize, unsigned Alignment) { |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); |
| BufferEnd = BufferBegin+StubSize+1; |
| } |
| |
| void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = (uint8_t *)Buffer; |
| BufferEnd = BufferBegin+StubSize+1; |
| } |
| |
| void JITEmitter::finishGVStub() { |
| assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); |
| NumBytes += getCurrentPCOffset(); |
| BufferBegin = SavedBufferBegin; |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| } |
| |
| void *JITEmitter::allocIndirectGV(const GlobalValue *GV, |
| const uint8_t *Buffer, size_t Size, |
| unsigned Alignment) { |
| uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); |
| memcpy(IndGV, Buffer, Size); |
| return IndGV; |
| } |
| |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry |
| // in the constant pool that was last emitted with the 'emitConstantPool' |
| // method. |
| // |
| uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { |
| assert(ConstantNum < ConstantPool->getConstants().size() && |
| "Invalid ConstantPoolIndex!"); |
| return ConstPoolAddresses[ConstantNum]; |
| } |
| |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' |
| // |
| uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { |
| const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); |
| assert(Index < JT.size() && "Invalid jump table index!"); |
| |
| unsigned Offset = 0; |
| unsigned EntrySize = JumpTable->getEntrySize(); |
| |
| for (unsigned i = 0; i < Index; ++i) |
| Offset += JT[i].MBBs.size(); |
| |
| Offset *= EntrySize; |
| |
| return (uintptr_t)((char *)JumpTableBase + Offset); |
| } |
| |
| void JITEmitter::EmittedFunctionConfig::onDelete( |
| JITEmitter *Emitter, const Function *F) { |
| Emitter->deallocateMemForFunction(F); |
| } |
| void JITEmitter::EmittedFunctionConfig::onRAUW( |
| JITEmitter *, const Function*, const Function*) { |
| llvm_unreachable("The JIT doesn't know how to handle a" |
| " RAUW on a value it has emitted."); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Public interface to this file |
| //===----------------------------------------------------------------------===// |
| |
| JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, |
| TargetMachine &tm) { |
| return new JITEmitter(jit, JMM, tm); |
| } |
| |
| // getPointerToNamedFunction - This function is used as a global wrapper to |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| // need to resolve function(s) that are being mis-codegenerated, so we need to |
| // resolve their addresses at runtime, and this is the way to do it. |
| extern "C" { |
| void *getPointerToNamedFunction(const char *Name) { |
| if (Function *F = TheJIT->FindFunctionNamed(Name)) |
| return TheJIT->getPointerToFunction(F); |
| return TheJIT->getPointerToNamedFunction(Name); |
| } |
| } |
| |
| // getPointerToFunctionOrStub - If the specified function has been |
| // code-gen'd, return a pointer to the function. If not, compile it, or use |
| // a stub to implement lazy compilation if available. |
| // |
| void *JIT::getPointerToFunctionOrStub(Function *F) { |
| // If we have already code generated the function, just return the address. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| |
| // Get a stub if the target supports it. |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| return JE->getJITResolver().getLazyFunctionStub(F); |
| } |
| |
| void JIT::updateFunctionStub(Function *F) { |
| // Get the empty stub we generated earlier. |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| void *Stub = JE->getJITResolver().getLazyFunctionStub(F); |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| assert(Addr != Stub && "Function must have non-stub address to be updated."); |
| |
| // Tell the target jit info to rewrite the stub at the specified address, |
| // rather than creating a new one. |
| TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); |
| JE->startGVStub(Stub, layout.Size); |
| getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); |
| JE->finishGVStub(); |
| } |
| |
| /// freeMachineCodeForFunction - release machine code memory for given Function. |
| /// |
| void JIT::freeMachineCodeForFunction(Function *F) { |
| // Delete translation for this from the ExecutionEngine, so it will get |
| // retranslated next time it is used. |
| updateGlobalMapping(F, 0); |
| |
| // Free the actual memory for the function body and related stuff. |
| assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| cast<JITEmitter>(JCE)->deallocateMemForFunction(F); |
| } |