| //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the machine instruction level pre-register allocation | 
 | // live interval splitting pass. It finds live interval barriers, i.e. | 
 | // instructions which will kill all physical registers in certain register | 
 | // classes, and split all live intervals which cross the barrier. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "pre-alloc-split" | 
 | #include "VirtRegMap.h" | 
 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
 | #include "llvm/CodeGen/LiveStackAnalysis.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/RegisterCoalescer.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden); | 
 | static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden); | 
 | static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden); | 
 |  | 
 | STATISTIC(NumSplits, "Number of intervals split"); | 
 | STATISTIC(NumRemats, "Number of intervals split by rematerialization"); | 
 | STATISTIC(NumFolds, "Number of intervals split with spill folding"); | 
 | STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding"); | 
 | STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers"); | 
 | STATISTIC(NumDeadSpills, "Number of dead spills removed"); | 
 |  | 
 | namespace { | 
 |   class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass { | 
 |     MachineFunction       *CurrMF; | 
 |     const TargetMachine   *TM; | 
 |     const TargetInstrInfo *TII; | 
 |     const TargetRegisterInfo* TRI; | 
 |     MachineFrameInfo      *MFI; | 
 |     MachineRegisterInfo   *MRI; | 
 |     LiveIntervals         *LIs; | 
 |     LiveStacks            *LSs; | 
 |     VirtRegMap            *VRM; | 
 |  | 
 |     // Barrier - Current barrier being processed. | 
 |     MachineInstr          *Barrier; | 
 |  | 
 |     // BarrierMBB - Basic block where the barrier resides in. | 
 |     MachineBasicBlock     *BarrierMBB; | 
 |  | 
 |     // Barrier - Current barrier index. | 
 |     LiveIndex     BarrierIdx; | 
 |  | 
 |     // CurrLI - Current live interval being split. | 
 |     LiveInterval          *CurrLI; | 
 |  | 
 |     // CurrSLI - Current stack slot live interval. | 
 |     LiveInterval          *CurrSLI; | 
 |  | 
 |     // CurrSValNo - Current val# for the stack slot live interval. | 
 |     VNInfo                *CurrSValNo; | 
 |  | 
 |     // IntervalSSMap - A map from live interval to spill slots. | 
 |     DenseMap<unsigned, int> IntervalSSMap; | 
 |  | 
 |     // Def2SpillMap - A map from a def instruction index to spill index. | 
 |     DenseMap<LiveIndex, LiveIndex> Def2SpillMap; | 
 |  | 
 |   public: | 
 |     static char ID; | 
 |     PreAllocSplitting() : MachineFunctionPass(&ID) {} | 
 |  | 
 |     virtual bool runOnMachineFunction(MachineFunction &MF); | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesCFG(); | 
 |       AU.addRequired<LiveIntervals>(); | 
 |       AU.addPreserved<LiveIntervals>(); | 
 |       AU.addRequired<LiveStacks>(); | 
 |       AU.addPreserved<LiveStacks>(); | 
 |       AU.addPreserved<RegisterCoalescer>(); | 
 |       if (StrongPHIElim) | 
 |         AU.addPreservedID(StrongPHIEliminationID); | 
 |       else | 
 |         AU.addPreservedID(PHIEliminationID); | 
 |       AU.addRequired<MachineDominatorTree>(); | 
 |       AU.addRequired<MachineLoopInfo>(); | 
 |       AU.addRequired<VirtRegMap>(); | 
 |       AU.addPreserved<MachineDominatorTree>(); | 
 |       AU.addPreserved<MachineLoopInfo>(); | 
 |       AU.addPreserved<VirtRegMap>(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |      | 
 |     virtual void releaseMemory() { | 
 |       IntervalSSMap.clear(); | 
 |       Def2SpillMap.clear(); | 
 |     } | 
 |  | 
 |     virtual const char *getPassName() const { | 
 |       return "Pre-Register Allocaton Live Interval Splitting"; | 
 |     } | 
 |  | 
 |     /// print - Implement the dump method. | 
 |     virtual void print(raw_ostream &O, const Module* M = 0) const { | 
 |       LIs->print(O, M); | 
 |     } | 
 |  | 
 |  | 
 |   private: | 
 |     MachineBasicBlock::iterator | 
 |       findNextEmptySlot(MachineBasicBlock*, MachineInstr*, | 
 |                         LiveIndex&); | 
 |  | 
 |     MachineBasicBlock::iterator | 
 |       findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*, | 
 |                      SmallPtrSet<MachineInstr*, 4>&, LiveIndex&); | 
 |  | 
 |     MachineBasicBlock::iterator | 
 |       findRestorePoint(MachineBasicBlock*, MachineInstr*, LiveIndex, | 
 |                      SmallPtrSet<MachineInstr*, 4>&, LiveIndex&); | 
 |  | 
 |     int CreateSpillStackSlot(unsigned, const TargetRegisterClass *); | 
 |  | 
 |     bool IsAvailableInStack(MachineBasicBlock*, unsigned, | 
 |                             LiveIndex, LiveIndex, | 
 |                             LiveIndex&, int&) const; | 
 |  | 
 |     void UpdateSpillSlotInterval(VNInfo*, LiveIndex, LiveIndex); | 
 |  | 
 |     bool SplitRegLiveInterval(LiveInterval*); | 
 |  | 
 |     bool SplitRegLiveIntervals(const TargetRegisterClass **, | 
 |                                SmallPtrSet<LiveInterval*, 8>&); | 
 |      | 
 |     bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, | 
 |                         MachineBasicBlock* BarrierMBB); | 
 |     bool Rematerialize(unsigned vreg, VNInfo* ValNo, | 
 |                        MachineInstr* DefMI, | 
 |                        MachineBasicBlock::iterator RestorePt, | 
 |                        LiveIndex RestoreIdx, | 
 |                        SmallPtrSet<MachineInstr*, 4>& RefsInMBB); | 
 |     MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC, | 
 |                             MachineInstr* DefMI, | 
 |                             MachineInstr* Barrier, | 
 |                             MachineBasicBlock* MBB, | 
 |                             int& SS, | 
 |                             SmallPtrSet<MachineInstr*, 4>& RefsInMBB); | 
 |     MachineInstr* FoldRestore(unsigned vreg,  | 
 |                               const TargetRegisterClass* RC, | 
 |                               MachineInstr* Barrier, | 
 |                               MachineBasicBlock* MBB, | 
 |                               int SS, | 
 |                               SmallPtrSet<MachineInstr*, 4>& RefsInMBB); | 
 |     void RenumberValno(VNInfo* VN); | 
 |     void ReconstructLiveInterval(LiveInterval* LI); | 
 |     bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split); | 
 |     unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs, | 
 |                                unsigned Reg, int FrameIndex, bool& TwoAddr); | 
 |     VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use, | 
 |                                    MachineBasicBlock* MBB, LiveInterval* LI, | 
 |                                    SmallPtrSet<MachineInstr*, 4>& Visited, | 
 |             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
 |             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
 |                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
 |                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
 |                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
 |                                         bool IsTopLevel, bool IsIntraBlock); | 
 |     VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use, | 
 |                                    MachineBasicBlock* MBB, LiveInterval* LI, | 
 |                                    SmallPtrSet<MachineInstr*, 4>& Visited, | 
 |             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
 |             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
 |                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
 |                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
 |                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
 |                                         bool IsTopLevel, bool IsIntraBlock); | 
 | }; | 
 | } // end anonymous namespace | 
 |  | 
 | char PreAllocSplitting::ID = 0; | 
 |  | 
 | static RegisterPass<PreAllocSplitting> | 
 | X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting"); | 
 |  | 
 | const PassInfo *const llvm::PreAllocSplittingID = &X; | 
 |  | 
 |  | 
 | /// findNextEmptySlot - Find a gap after the given machine instruction in the | 
 | /// instruction index map. If there isn't one, return end(). | 
 | MachineBasicBlock::iterator | 
 | PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI, | 
 |                                      LiveIndex &SpotIndex) { | 
 |   MachineBasicBlock::iterator MII = MI; | 
 |   if (++MII != MBB->end()) { | 
 |     LiveIndex Index = | 
 |       LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII)); | 
 |     if (Index != LiveIndex()) { | 
 |       SpotIndex = Index; | 
 |       return MII; | 
 |     } | 
 |   } | 
 |   return MBB->end(); | 
 | } | 
 |  | 
 | /// findSpillPoint - Find a gap as far away from the given MI that's suitable | 
 | /// for spilling the current live interval. The index must be before any | 
 | /// defs and uses of the live interval register in the mbb. Return begin() if | 
 | /// none is found. | 
 | MachineBasicBlock::iterator | 
 | PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI, | 
 |                                   MachineInstr *DefMI, | 
 |                                   SmallPtrSet<MachineInstr*, 4> &RefsInMBB, | 
 |                                   LiveIndex &SpillIndex) { | 
 |   MachineBasicBlock::iterator Pt = MBB->begin(); | 
 |  | 
 |   MachineBasicBlock::iterator MII = MI; | 
 |   MachineBasicBlock::iterator EndPt = DefMI | 
 |     ? MachineBasicBlock::iterator(DefMI) : MBB->begin(); | 
 |      | 
 |   while (MII != EndPt && !RefsInMBB.count(MII) && | 
 |          MII->getOpcode() != TRI->getCallFrameSetupOpcode()) | 
 |     --MII; | 
 |   if (MII == EndPt || RefsInMBB.count(MII)) return Pt; | 
 |      | 
 |   while (MII != EndPt && !RefsInMBB.count(MII)) { | 
 |     LiveIndex Index = LIs->getInstructionIndex(MII); | 
 |      | 
 |     // We can't insert the spill between the barrier (a call), and its | 
 |     // corresponding call frame setup. | 
 |     if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) { | 
 |       while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) { | 
 |         --MII; | 
 |         if (MII == EndPt) { | 
 |           return Pt; | 
 |         } | 
 |       } | 
 |       continue; | 
 |     } else if (LIs->hasGapBeforeInstr(Index)) { | 
 |       Pt = MII; | 
 |       SpillIndex = LIs->findGapBeforeInstr(Index, true); | 
 |     } | 
 |      | 
 |     if (RefsInMBB.count(MII)) | 
 |       return Pt; | 
 |      | 
 |      | 
 |     --MII; | 
 |   } | 
 |  | 
 |   return Pt; | 
 | } | 
 |  | 
 | /// findRestorePoint - Find a gap in the instruction index map that's suitable | 
 | /// for restoring the current live interval value. The index must be before any | 
 | /// uses of the live interval register in the mbb. Return end() if none is | 
 | /// found. | 
 | MachineBasicBlock::iterator | 
 | PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI, | 
 |                                     LiveIndex LastIdx, | 
 |                                     SmallPtrSet<MachineInstr*, 4> &RefsInMBB, | 
 |                                     LiveIndex &RestoreIndex) { | 
 |   // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb | 
 |   // begin index accordingly. | 
 |   MachineBasicBlock::iterator Pt = MBB->end(); | 
 |   MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator(); | 
 |  | 
 |   // We start at the call, so walk forward until we find the call frame teardown | 
 |   // since we can't insert restores before that.  Bail if we encounter a use | 
 |   // during this time. | 
 |   MachineBasicBlock::iterator MII = MI; | 
 |   if (MII == EndPt) return Pt; | 
 |    | 
 |   while (MII != EndPt && !RefsInMBB.count(MII) && | 
 |          MII->getOpcode() != TRI->getCallFrameDestroyOpcode()) | 
 |     ++MII; | 
 |   if (MII == EndPt || RefsInMBB.count(MII)) return Pt; | 
 |   ++MII; | 
 |    | 
 |   // FIXME: Limit the number of instructions to examine to reduce | 
 |   // compile time? | 
 |   while (MII != EndPt) { | 
 |     LiveIndex Index = LIs->getInstructionIndex(MII); | 
 |     if (Index > LastIdx) | 
 |       break; | 
 |     LiveIndex Gap = LIs->findGapBeforeInstr(Index); | 
 |        | 
 |     // We can't insert a restore between the barrier (a call) and its  | 
 |     // corresponding call frame teardown. | 
 |     if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) { | 
 |       do { | 
 |         if (MII == EndPt || RefsInMBB.count(MII)) return Pt; | 
 |         ++MII; | 
 |       } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode()); | 
 |     } else if (Gap != LiveIndex()) { | 
 |       Pt = MII; | 
 |       RestoreIndex = Gap; | 
 |     } | 
 |      | 
 |     if (RefsInMBB.count(MII)) | 
 |       return Pt; | 
 |      | 
 |     ++MII; | 
 |   } | 
 |  | 
 |   return Pt; | 
 | } | 
 |  | 
 | /// CreateSpillStackSlot - Create a stack slot for the live interval being | 
 | /// split. If the live interval was previously split, just reuse the same | 
 | /// slot. | 
 | int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg, | 
 |                                             const TargetRegisterClass *RC) { | 
 |   int SS; | 
 |   DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg); | 
 |   if (I != IntervalSSMap.end()) { | 
 |     SS = I->second; | 
 |   } else { | 
 |     SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment()); | 
 |     IntervalSSMap[Reg] = SS; | 
 |   } | 
 |  | 
 |   // Create live interval for stack slot. | 
 |   CurrSLI = &LSs->getOrCreateInterval(SS, RC); | 
 |   if (CurrSLI->hasAtLeastOneValue()) | 
 |     CurrSValNo = CurrSLI->getValNumInfo(0); | 
 |   else | 
 |     CurrSValNo = CurrSLI->getNextValue(LiveIndex(), 0, false, | 
 |                                        LSs->getVNInfoAllocator()); | 
 |   return SS; | 
 | } | 
 |  | 
 | /// IsAvailableInStack - Return true if register is available in a split stack | 
 | /// slot at the specified index. | 
 | bool | 
 | PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB, | 
 |                                     unsigned Reg, LiveIndex DefIndex, | 
 |                                     LiveIndex RestoreIndex, | 
 |                                     LiveIndex &SpillIndex, | 
 |                                     int& SS) const { | 
 |   if (!DefMBB) | 
 |     return false; | 
 |  | 
 |   DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg); | 
 |   if (I == IntervalSSMap.end()) | 
 |     return false; | 
 |   DenseMap<LiveIndex, LiveIndex>::iterator | 
 |     II = Def2SpillMap.find(DefIndex); | 
 |   if (II == Def2SpillMap.end()) | 
 |     return false; | 
 |  | 
 |   // If last spill of def is in the same mbb as barrier mbb (where restore will | 
 |   // be), make sure it's not below the intended restore index. | 
 |   // FIXME: Undo the previous spill? | 
 |   assert(LIs->getMBBFromIndex(II->second) == DefMBB); | 
 |   if (DefMBB == BarrierMBB && II->second >= RestoreIndex) | 
 |     return false; | 
 |  | 
 |   SS = I->second; | 
 |   SpillIndex = II->second; | 
 |   return true; | 
 | } | 
 |  | 
 | /// UpdateSpillSlotInterval - Given the specified val# of the register live | 
 | /// interval being split, and the spill and restore indicies, update the live | 
 | /// interval of the spill stack slot. | 
 | void | 
 | PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, LiveIndex SpillIndex, | 
 |                                            LiveIndex RestoreIndex) { | 
 |   assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB && | 
 |          "Expect restore in the barrier mbb"); | 
 |  | 
 |   MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex); | 
 |   if (MBB == BarrierMBB) { | 
 |     // Intra-block spill + restore. We are done. | 
 |     LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo); | 
 |     CurrSLI->addRange(SLR); | 
 |     return; | 
 |   } | 
 |  | 
 |   SmallPtrSet<MachineBasicBlock*, 4> Processed; | 
 |   LiveIndex EndIdx = LIs->getMBBEndIdx(MBB); | 
 |   LiveRange SLR(SpillIndex, LIs->getNextSlot(EndIdx), CurrSValNo); | 
 |   CurrSLI->addRange(SLR); | 
 |   Processed.insert(MBB); | 
 |  | 
 |   // Start from the spill mbb, figure out the extend of the spill slot's | 
 |   // live interval. | 
 |   SmallVector<MachineBasicBlock*, 4> WorkList; | 
 |   const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex); | 
 |   if (LR->end > EndIdx) | 
 |     // If live range extend beyond end of mbb, add successors to work list. | 
 |     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
 |            SE = MBB->succ_end(); SI != SE; ++SI) | 
 |       WorkList.push_back(*SI); | 
 |  | 
 |   while (!WorkList.empty()) { | 
 |     MachineBasicBlock *MBB = WorkList.back(); | 
 |     WorkList.pop_back(); | 
 |     if (Processed.count(MBB)) | 
 |       continue; | 
 |     LiveIndex Idx = LIs->getMBBStartIdx(MBB); | 
 |     LR = CurrLI->getLiveRangeContaining(Idx); | 
 |     if (LR && LR->valno == ValNo) { | 
 |       EndIdx = LIs->getMBBEndIdx(MBB); | 
 |       if (Idx <= RestoreIndex && RestoreIndex < EndIdx) { | 
 |         // Spill slot live interval stops at the restore. | 
 |         LiveRange SLR(Idx, RestoreIndex, CurrSValNo); | 
 |         CurrSLI->addRange(SLR); | 
 |       } else if (LR->end > EndIdx) { | 
 |         // Live range extends beyond end of mbb, process successors. | 
 |         LiveRange SLR(Idx, LIs->getNextIndex(EndIdx), CurrSValNo); | 
 |         CurrSLI->addRange(SLR); | 
 |         for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
 |                SE = MBB->succ_end(); SI != SE; ++SI) | 
 |           WorkList.push_back(*SI); | 
 |       } else { | 
 |         LiveRange SLR(Idx, LR->end, CurrSValNo); | 
 |         CurrSLI->addRange(SLR); | 
 |       } | 
 |       Processed.insert(MBB); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// PerformPHIConstruction - From properly set up use and def lists, use a PHI | 
 | /// construction algorithm to compute the ranges and valnos for an interval. | 
 | VNInfo* | 
 | PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI, | 
 |                                        MachineBasicBlock* MBB, LiveInterval* LI, | 
 |                                        SmallPtrSet<MachineInstr*, 4>& Visited, | 
 |              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
 |              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
 |                                        DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
 |                                  DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
 |                                  DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
 |                                            bool IsTopLevel, bool IsIntraBlock) { | 
 |   // Return memoized result if it's available. | 
 |   if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI)) | 
 |     return NewVNs[UseI]; | 
 |   else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI)) | 
 |     return NewVNs[UseI]; | 
 |   else if (!IsIntraBlock && LiveOut.count(MBB)) | 
 |     return LiveOut[MBB]; | 
 |    | 
 |   // Check if our block contains any uses or defs. | 
 |   bool ContainsDefs = Defs.count(MBB); | 
 |   bool ContainsUses = Uses.count(MBB); | 
 |    | 
 |   VNInfo* RetVNI = 0; | 
 |    | 
 |   // Enumerate the cases of use/def contaning blocks. | 
 |   if (!ContainsDefs && !ContainsUses) { | 
 |     return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, | 
 |                                           NewVNs, LiveOut, Phis, | 
 |                                           IsTopLevel, IsIntraBlock); | 
 |   } else if (ContainsDefs && !ContainsUses) { | 
 |     SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; | 
 |  | 
 |     // Search for the def in this block.  If we don't find it before the | 
 |     // instruction we care about, go to the fallback case.  Note that that | 
 |     // should never happen: this cannot be intrablock, so use should | 
 |     // always be an end() iterator. | 
 |     assert(UseI == MBB->end() && "No use marked in intrablock"); | 
 |      | 
 |     MachineBasicBlock::iterator Walker = UseI; | 
 |     --Walker; | 
 |     while (Walker != MBB->begin()) { | 
 |       if (BlockDefs.count(Walker)) | 
 |         break; | 
 |       --Walker; | 
 |     } | 
 |      | 
 |     // Once we've found it, extend its VNInfo to our instruction. | 
 |     LiveIndex DefIndex = LIs->getInstructionIndex(Walker); | 
 |     DefIndex = LIs->getDefIndex(DefIndex); | 
 |     LiveIndex EndIndex = LIs->getMBBEndIdx(MBB); | 
 |      | 
 |     RetVNI = NewVNs[Walker]; | 
 |     LI->addRange(LiveRange(DefIndex, LIs->getNextSlot(EndIndex), RetVNI)); | 
 |   } else if (!ContainsDefs && ContainsUses) { | 
 |     SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; | 
 |      | 
 |     // Search for the use in this block that precedes the instruction we care  | 
 |     // about, going to the fallback case if we don't find it.     | 
 |     if (UseI == MBB->begin()) | 
 |       return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, | 
 |                                             Uses, NewVNs, LiveOut, Phis, | 
 |                                             IsTopLevel, IsIntraBlock); | 
 |      | 
 |     MachineBasicBlock::iterator Walker = UseI; | 
 |     --Walker; | 
 |     bool found = false; | 
 |     while (Walker != MBB->begin()) { | 
 |       if (BlockUses.count(Walker)) { | 
 |         found = true; | 
 |         break; | 
 |       } | 
 |       --Walker; | 
 |     } | 
 |          | 
 |     // Must check begin() too. | 
 |     if (!found) { | 
 |       if (BlockUses.count(Walker)) | 
 |         found = true; | 
 |       else | 
 |         return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, | 
 |                                               Uses, NewVNs, LiveOut, Phis, | 
 |                                               IsTopLevel, IsIntraBlock); | 
 |     } | 
 |  | 
 |     LiveIndex UseIndex = LIs->getInstructionIndex(Walker); | 
 |     UseIndex = LIs->getUseIndex(UseIndex); | 
 |     LiveIndex EndIndex; | 
 |     if (IsIntraBlock) { | 
 |       EndIndex = LIs->getInstructionIndex(UseI); | 
 |       EndIndex = LIs->getUseIndex(EndIndex); | 
 |     } else | 
 |       EndIndex = LIs->getMBBEndIdx(MBB); | 
 |  | 
 |     // Now, recursively phi construct the VNInfo for the use we found, | 
 |     // and then extend it to include the instruction we care about | 
 |     RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, | 
 |                                     NewVNs, LiveOut, Phis, false, true); | 
 |      | 
 |     LI->addRange(LiveRange(UseIndex, LIs->getNextSlot(EndIndex), RetVNI)); | 
 |      | 
 |     // FIXME: Need to set kills properly for inter-block stuff. | 
 |     if (RetVNI->isKill(UseIndex)) RetVNI->removeKill(UseIndex); | 
 |     if (IsIntraBlock) | 
 |       RetVNI->addKill(EndIndex); | 
 |   } else if (ContainsDefs && ContainsUses) { | 
 |     SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; | 
 |     SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; | 
 |      | 
 |     // This case is basically a merging of the two preceding case, with the | 
 |     // special note that checking for defs must take precedence over checking | 
 |     // for uses, because of two-address instructions. | 
 |      | 
 |     if (UseI == MBB->begin()) | 
 |       return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, | 
 |                                             NewVNs, LiveOut, Phis, | 
 |                                             IsTopLevel, IsIntraBlock); | 
 |      | 
 |     MachineBasicBlock::iterator Walker = UseI; | 
 |     --Walker; | 
 |     bool foundDef = false; | 
 |     bool foundUse = false; | 
 |     while (Walker != MBB->begin()) { | 
 |       if (BlockDefs.count(Walker)) { | 
 |         foundDef = true; | 
 |         break; | 
 |       } else if (BlockUses.count(Walker)) { | 
 |         foundUse = true; | 
 |         break; | 
 |       } | 
 |       --Walker; | 
 |     } | 
 |          | 
 |     // Must check begin() too. | 
 |     if (!foundDef && !foundUse) { | 
 |       if (BlockDefs.count(Walker)) | 
 |         foundDef = true; | 
 |       else if (BlockUses.count(Walker)) | 
 |         foundUse = true; | 
 |       else | 
 |         return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, | 
 |                                               Uses, NewVNs, LiveOut, Phis, | 
 |                                               IsTopLevel, IsIntraBlock); | 
 |     } | 
 |  | 
 |     LiveIndex StartIndex = LIs->getInstructionIndex(Walker); | 
 |     StartIndex = foundDef ? LIs->getDefIndex(StartIndex) : | 
 |                             LIs->getUseIndex(StartIndex); | 
 |     LiveIndex EndIndex; | 
 |     if (IsIntraBlock) { | 
 |       EndIndex = LIs->getInstructionIndex(UseI); | 
 |       EndIndex = LIs->getUseIndex(EndIndex); | 
 |     } else | 
 |       EndIndex = LIs->getMBBEndIdx(MBB); | 
 |  | 
 |     if (foundDef) | 
 |       RetVNI = NewVNs[Walker]; | 
 |     else | 
 |       RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, | 
 |                                       NewVNs, LiveOut, Phis, false, true); | 
 |  | 
 |     LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI)); | 
 |      | 
 |     if (foundUse && RetVNI->isKill(StartIndex)) | 
 |       RetVNI->removeKill(StartIndex); | 
 |     if (IsIntraBlock) { | 
 |       RetVNI->addKill(EndIndex); | 
 |     } | 
 |   } | 
 |    | 
 |   // Memoize results so we don't have to recompute them. | 
 |   if (!IsIntraBlock) LiveOut[MBB] = RetVNI; | 
 |   else { | 
 |     if (!NewVNs.count(UseI)) | 
 |       NewVNs[UseI] = RetVNI; | 
 |     Visited.insert(UseI); | 
 |   } | 
 |  | 
 |   return RetVNI; | 
 | } | 
 |  | 
 | /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path. | 
 | /// | 
 | VNInfo* | 
 | PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI, | 
 |                                        MachineBasicBlock* MBB, LiveInterval* LI, | 
 |                                        SmallPtrSet<MachineInstr*, 4>& Visited, | 
 |              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, | 
 |              DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, | 
 |                                        DenseMap<MachineInstr*, VNInfo*>& NewVNs, | 
 |                                  DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, | 
 |                                  DenseMap<MachineBasicBlock*, VNInfo*>& Phis, | 
 |                                            bool IsTopLevel, bool IsIntraBlock) { | 
 |   // NOTE: Because this is the fallback case from other cases, we do NOT | 
 |   // assume that we are not intrablock here. | 
 |   if (Phis.count(MBB)) return Phis[MBB];  | 
 |  | 
 |   LiveIndex StartIndex = LIs->getMBBStartIdx(MBB); | 
 |   VNInfo *RetVNI = Phis[MBB] = | 
 |     LI->getNextValue(LiveIndex(), /*FIXME*/ 0, false, | 
 |                      LIs->getVNInfoAllocator()); | 
 |  | 
 |   if (!IsIntraBlock) LiveOut[MBB] = RetVNI; | 
 |      | 
 |   // If there are no uses or defs between our starting point and the | 
 |   // beginning of the block, then recursive perform phi construction | 
 |   // on our predecessors. | 
 |   DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs; | 
 |   for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
 |          PE = MBB->pred_end(); PI != PE; ++PI) { | 
 |     VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,  | 
 |                                               Visited, Defs, Uses, NewVNs, | 
 |                                               LiveOut, Phis, false, false); | 
 |     if (Incoming != 0) | 
 |       IncomingVNs[*PI] = Incoming; | 
 |   } | 
 |      | 
 |   if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) { | 
 |     VNInfo* OldVN = RetVNI; | 
 |     VNInfo* NewVN = IncomingVNs.begin()->second; | 
 |     VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN); | 
 |     if (MergedVN == OldVN) std::swap(OldVN, NewVN); | 
 |      | 
 |     for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(), | 
 |          LOE = LiveOut.end(); LOI != LOE; ++LOI) | 
 |       if (LOI->second == OldVN) | 
 |         LOI->second = MergedVN; | 
 |     for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(), | 
 |          NVE = NewVNs.end(); NVI != NVE; ++NVI) | 
 |       if (NVI->second == OldVN) | 
 |         NVI->second = MergedVN; | 
 |     for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(), | 
 |          PE = Phis.end(); PI != PE; ++PI) | 
 |       if (PI->second == OldVN) | 
 |         PI->second = MergedVN; | 
 |     RetVNI = MergedVN; | 
 |   } else { | 
 |     // Otherwise, merge the incoming VNInfos with a phi join.  Create a new | 
 |     // VNInfo to represent the joined value. | 
 |     for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I = | 
 |            IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) { | 
 |       I->second->setHasPHIKill(true); | 
 |       LiveIndex KillIndex = LIs->getMBBEndIdx(I->first); | 
 |       if (!I->second->isKill(KillIndex)) | 
 |         I->second->addKill(KillIndex); | 
 |     } | 
 |   } | 
 |        | 
 |   LiveIndex EndIndex; | 
 |   if (IsIntraBlock) { | 
 |     EndIndex = LIs->getInstructionIndex(UseI); | 
 |     EndIndex = LIs->getUseIndex(EndIndex); | 
 |   } else | 
 |     EndIndex = LIs->getMBBEndIdx(MBB); | 
 |   LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI)); | 
 |   if (IsIntraBlock) | 
 |     RetVNI->addKill(EndIndex); | 
 |  | 
 |   // Memoize results so we don't have to recompute them. | 
 |   if (!IsIntraBlock) | 
 |     LiveOut[MBB] = RetVNI; | 
 |   else { | 
 |     if (!NewVNs.count(UseI)) | 
 |       NewVNs[UseI] = RetVNI; | 
 |     Visited.insert(UseI); | 
 |   } | 
 |  | 
 |   return RetVNI; | 
 | } | 
 |  | 
 | /// ReconstructLiveInterval - Recompute a live interval from scratch. | 
 | void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) { | 
 |   BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator(); | 
 |    | 
 |   // Clear the old ranges and valnos; | 
 |   LI->clear(); | 
 |    | 
 |   // Cache the uses and defs of the register | 
 |   typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap; | 
 |   RegMap Defs, Uses; | 
 |    | 
 |   // Keep track of the new VNs we're creating. | 
 |   DenseMap<MachineInstr*, VNInfo*> NewVNs; | 
 |   SmallPtrSet<VNInfo*, 2> PhiVNs; | 
 |    | 
 |   // Cache defs, and create a new VNInfo for each def. | 
 |   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), | 
 |        DE = MRI->def_end(); DI != DE; ++DI) { | 
 |     Defs[(*DI).getParent()].insert(&*DI); | 
 |      | 
 |     LiveIndex DefIdx = LIs->getInstructionIndex(&*DI); | 
 |     DefIdx = LIs->getDefIndex(DefIdx); | 
 |      | 
 |     assert(DI->getOpcode() != TargetInstrInfo::PHI && | 
 |            "Following NewVN isPHIDef flag incorrect. Fix me!"); | 
 |     VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc); | 
 |      | 
 |     // If the def is a move, set the copy field. | 
 |     unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; | 
 |     if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) | 
 |       if (DstReg == LI->reg) | 
 |         NewVN->setCopy(&*DI); | 
 |      | 
 |     NewVNs[&*DI] = NewVN; | 
 |   } | 
 |    | 
 |   // Cache uses as a separate pass from actually processing them. | 
 |   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), | 
 |        UE = MRI->use_end(); UI != UE; ++UI) | 
 |     Uses[(*UI).getParent()].insert(&*UI); | 
 |      | 
 |   // Now, actually process every use and use a phi construction algorithm | 
 |   // to walk from it to its reaching definitions, building VNInfos along | 
 |   // the way. | 
 |   DenseMap<MachineBasicBlock*, VNInfo*> LiveOut; | 
 |   DenseMap<MachineBasicBlock*, VNInfo*> Phis; | 
 |   SmallPtrSet<MachineInstr*, 4> Visited; | 
 |   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), | 
 |        UE = MRI->use_end(); UI != UE; ++UI) { | 
 |     PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs, | 
 |                            Uses, NewVNs, LiveOut, Phis, true, true);  | 
 |   } | 
 |    | 
 |   // Add ranges for dead defs | 
 |   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), | 
 |        DE = MRI->def_end(); DI != DE; ++DI) { | 
 |     LiveIndex DefIdx = LIs->getInstructionIndex(&*DI); | 
 |     DefIdx = LIs->getDefIndex(DefIdx); | 
 |      | 
 |     if (LI->liveAt(DefIdx)) continue; | 
 |      | 
 |     VNInfo* DeadVN = NewVNs[&*DI]; | 
 |     LI->addRange(LiveRange(DefIdx, LIs->getNextSlot(DefIdx), DeadVN)); | 
 |     DeadVN->addKill(DefIdx); | 
 |   } | 
 |  | 
 |   // Update kill markers. | 
 |   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); | 
 |        VI != VE; ++VI) { | 
 |     VNInfo* VNI = *VI; | 
 |     for (unsigned i = 0, e = VNI->kills.size(); i != e; ++i) { | 
 |       LiveIndex KillIdx = VNI->kills[i]; | 
 |       if (KillIdx.isPHIIndex()) | 
 |         continue; | 
 |       MachineInstr *KillMI = LIs->getInstructionFromIndex(KillIdx); | 
 |       if (KillMI) { | 
 |         MachineOperand *KillMO = KillMI->findRegisterUseOperand(CurrLI->reg); | 
 |         if (KillMO) | 
 |           // It could be a dead def. | 
 |           KillMO->setIsKill(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// RenumberValno - Split the given valno out into a new vreg, allowing it to | 
 | /// be allocated to a different register.  This function creates a new vreg, | 
 | /// copies the valno and its live ranges over to the new vreg's interval, | 
 | /// removes them from the old interval, and rewrites all uses and defs of | 
 | /// the original reg to the new vreg within those ranges. | 
 | void PreAllocSplitting::RenumberValno(VNInfo* VN) { | 
 |   SmallVector<VNInfo*, 4> Stack; | 
 |   SmallVector<VNInfo*, 4> VNsToCopy; | 
 |   Stack.push_back(VN); | 
 |  | 
 |   // Walk through and copy the valno we care about, and any other valnos | 
 |   // that are two-address redefinitions of the one we care about.  These | 
 |   // will need to be rewritten as well.  We also check for safety of the  | 
 |   // renumbering here, by making sure that none of the valno involved has | 
 |   // phi kills. | 
 |   while (!Stack.empty()) { | 
 |     VNInfo* OldVN = Stack.back(); | 
 |     Stack.pop_back(); | 
 |      | 
 |     // Bail out if we ever encounter a valno that has a PHI kill.  We can't | 
 |     // renumber these. | 
 |     if (OldVN->hasPHIKill()) return; | 
 |      | 
 |     VNsToCopy.push_back(OldVN); | 
 |      | 
 |     // Locate two-address redefinitions | 
 |     for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(), | 
 |          KE = OldVN->kills.end(); KI != KE; ++KI) { | 
 |       assert(!KI->isPHIIndex() && | 
 |              "VN previously reported having no PHI kills."); | 
 |       MachineInstr* MI = LIs->getInstructionFromIndex(*KI); | 
 |       unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg); | 
 |       if (DefIdx == ~0U) continue; | 
 |       if (MI->isRegTiedToUseOperand(DefIdx)) { | 
 |         VNInfo* NextVN = | 
 |           CurrLI->findDefinedVNInfoForRegInt(LIs->getDefIndex(*KI)); | 
 |         if (NextVN == OldVN) continue; | 
 |         Stack.push_back(NextVN); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Create the new vreg | 
 |   unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg)); | 
 |    | 
 |   // Create the new live interval | 
 |   LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg); | 
 |    | 
 |   for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =  | 
 |        VNsToCopy.end(); OI != OE; ++OI) { | 
 |     VNInfo* OldVN = *OI; | 
 |      | 
 |     // Copy the valno over | 
 |     VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator()); | 
 |     NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN); | 
 |  | 
 |     // Remove the valno from the old interval | 
 |     CurrLI->removeValNo(OldVN); | 
 |   } | 
 |    | 
 |   // Rewrite defs and uses.  This is done in two stages to avoid invalidating | 
 |   // the reg_iterator. | 
 |   SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange; | 
 |    | 
 |   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), | 
 |          E = MRI->reg_end(); I != E; ++I) { | 
 |     MachineOperand& MO = I.getOperand(); | 
 |     LiveIndex InstrIdx = LIs->getInstructionIndex(&*I); | 
 |      | 
 |     if ((MO.isUse() && NewLI.liveAt(LIs->getUseIndex(InstrIdx))) || | 
 |         (MO.isDef() && NewLI.liveAt(LIs->getDefIndex(InstrIdx)))) | 
 |       OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo())); | 
 |   } | 
 |    | 
 |   for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I = | 
 |        OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) { | 
 |     MachineInstr* Inst = I->first; | 
 |     unsigned OpIdx = I->second; | 
 |     MachineOperand& MO = Inst->getOperand(OpIdx); | 
 |     MO.setReg(NewVReg); | 
 |   } | 
 |    | 
 |   // Grow the VirtRegMap, since we've created a new vreg. | 
 |   VRM->grow(); | 
 |    | 
 |   // The renumbered vreg shares a stack slot with the old register. | 
 |   if (IntervalSSMap.count(CurrLI->reg)) | 
 |     IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg]; | 
 |    | 
 |   NumRenumbers++; | 
 | } | 
 |  | 
 | bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo, | 
 |                                       MachineInstr* DefMI, | 
 |                                       MachineBasicBlock::iterator RestorePt, | 
 |                                       LiveIndex RestoreIdx, | 
 |                                     SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { | 
 |   MachineBasicBlock& MBB = *RestorePt->getParent(); | 
 |    | 
 |   MachineBasicBlock::iterator KillPt = BarrierMBB->end(); | 
 |   LiveIndex KillIdx; | 
 |   if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB) | 
 |     KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx); | 
 |   else | 
 |     KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx); | 
 |    | 
 |   if (KillPt == DefMI->getParent()->end()) | 
 |     return false; | 
 |    | 
 |   TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI); | 
 |   LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx); | 
 |    | 
 |   ReconstructLiveInterval(CurrLI); | 
 |   LiveIndex RematIdx = LIs->getInstructionIndex(prior(RestorePt)); | 
 |   RematIdx = LIs->getDefIndex(RematIdx); | 
 |   RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx)); | 
 |    | 
 |   ++NumSplits; | 
 |   ++NumRemats; | 
 |   return true;   | 
 | } | 
 |  | 
 | MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,  | 
 |                                            const TargetRegisterClass* RC, | 
 |                                            MachineInstr* DefMI, | 
 |                                            MachineInstr* Barrier, | 
 |                                            MachineBasicBlock* MBB, | 
 |                                            int& SS, | 
 |                                     SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { | 
 |   MachineBasicBlock::iterator Pt = MBB->begin(); | 
 |  | 
 |   // Go top down if RefsInMBB is empty. | 
 |   if (RefsInMBB.empty()) | 
 |     return 0; | 
 |    | 
 |   MachineBasicBlock::iterator FoldPt = Barrier; | 
 |   while (&*FoldPt != DefMI && FoldPt != MBB->begin() && | 
 |          !RefsInMBB.count(FoldPt)) | 
 |     --FoldPt; | 
 |    | 
 |   int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false); | 
 |   if (OpIdx == -1) | 
 |     return 0; | 
 |    | 
 |   SmallVector<unsigned, 1> Ops; | 
 |   Ops.push_back(OpIdx); | 
 |    | 
 |   if (!TII->canFoldMemoryOperand(FoldPt, Ops)) | 
 |     return 0; | 
 |    | 
 |   DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg); | 
 |   if (I != IntervalSSMap.end()) { | 
 |     SS = I->second; | 
 |   } else { | 
 |     SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());     | 
 |   } | 
 |    | 
 |   MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(), | 
 |                                              FoldPt, Ops, SS); | 
 |    | 
 |   if (FMI) { | 
 |     LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); | 
 |     FMI = MBB->insert(MBB->erase(FoldPt), FMI); | 
 |     ++NumFolds; | 
 |      | 
 |     IntervalSSMap[vreg] = SS; | 
 |     CurrSLI = &LSs->getOrCreateInterval(SS, RC); | 
 |     if (CurrSLI->hasAtLeastOneValue()) | 
 |       CurrSValNo = CurrSLI->getValNumInfo(0); | 
 |     else | 
 |       CurrSValNo = CurrSLI->getNextValue(LiveIndex(), 0, false, | 
 |                                          LSs->getVNInfoAllocator()); | 
 |   } | 
 |    | 
 |   return FMI; | 
 | } | 
 |  | 
 | MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,  | 
 |                                              const TargetRegisterClass* RC, | 
 |                                              MachineInstr* Barrier, | 
 |                                              MachineBasicBlock* MBB, | 
 |                                              int SS, | 
 |                                      SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { | 
 |   if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds) | 
 |     return 0; | 
 |                                         | 
 |   // Go top down if RefsInMBB is empty. | 
 |   if (RefsInMBB.empty()) | 
 |     return 0; | 
 |    | 
 |   // Can't fold a restore between a call stack setup and teardown. | 
 |   MachineBasicBlock::iterator FoldPt = Barrier; | 
 |    | 
 |   // Advance from barrier to call frame teardown. | 
 |   while (FoldPt != MBB->getFirstTerminator() && | 
 |          FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { | 
 |     if (RefsInMBB.count(FoldPt)) | 
 |       return 0; | 
 |      | 
 |     ++FoldPt; | 
 |   } | 
 |    | 
 |   if (FoldPt == MBB->getFirstTerminator()) | 
 |     return 0; | 
 |   else | 
 |     ++FoldPt; | 
 |    | 
 |   // Now find the restore point. | 
 |   while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) { | 
 |     if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) { | 
 |       while (FoldPt != MBB->getFirstTerminator() && | 
 |              FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { | 
 |         if (RefsInMBB.count(FoldPt)) | 
 |           return 0; | 
 |          | 
 |         ++FoldPt; | 
 |       } | 
 |        | 
 |       if (FoldPt == MBB->getFirstTerminator()) | 
 |         return 0; | 
 |     }  | 
 |      | 
 |     ++FoldPt; | 
 |   } | 
 |    | 
 |   if (FoldPt == MBB->getFirstTerminator()) | 
 |     return 0; | 
 |    | 
 |   int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true); | 
 |   if (OpIdx == -1) | 
 |     return 0; | 
 |    | 
 |   SmallVector<unsigned, 1> Ops; | 
 |   Ops.push_back(OpIdx); | 
 |    | 
 |   if (!TII->canFoldMemoryOperand(FoldPt, Ops)) | 
 |     return 0; | 
 |    | 
 |   MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(), | 
 |                                              FoldPt, Ops, SS); | 
 |    | 
 |   if (FMI) { | 
 |     LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); | 
 |     FMI = MBB->insert(MBB->erase(FoldPt), FMI); | 
 |     ++NumRestoreFolds; | 
 |   } | 
 |    | 
 |   return FMI; | 
 | } | 
 |  | 
 | /// SplitRegLiveInterval - Split (spill and restore) the given live interval | 
 | /// so it would not cross the barrier that's being processed. Shrink wrap | 
 | /// (minimize) the live interval to the last uses. | 
 | bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) { | 
 |   CurrLI = LI; | 
 |  | 
 |   // Find live range where current interval cross the barrier. | 
 |   LiveInterval::iterator LR = | 
 |     CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx)); | 
 |   VNInfo *ValNo = LR->valno; | 
 |  | 
 |   assert(!ValNo->isUnused() && "Val# is defined by a dead def?"); | 
 |  | 
 |   MachineInstr *DefMI = ValNo->isDefAccurate() | 
 |     ? LIs->getInstructionFromIndex(ValNo->def) : NULL; | 
 |  | 
 |   // If this would create a new join point, do not split. | 
 |   if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) | 
 |     return false; | 
 |  | 
 |   // Find all references in the barrier mbb. | 
 |   SmallPtrSet<MachineInstr*, 4> RefsInMBB; | 
 |   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), | 
 |          E = MRI->reg_end(); I != E; ++I) { | 
 |     MachineInstr *RefMI = &*I; | 
 |     if (RefMI->getParent() == BarrierMBB) | 
 |       RefsInMBB.insert(RefMI); | 
 |   } | 
 |  | 
 |   // Find a point to restore the value after the barrier. | 
 |   LiveIndex RestoreIndex; | 
 |   MachineBasicBlock::iterator RestorePt = | 
 |     findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex); | 
 |   if (RestorePt == BarrierMBB->end()) | 
 |     return false; | 
 |  | 
 |   if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI)) | 
 |     if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, | 
 |                       RestoreIndex, RefsInMBB)) | 
 |     return true; | 
 |  | 
 |   // Add a spill either before the barrier or after the definition. | 
 |   MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL; | 
 |   const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg); | 
 |   LiveIndex SpillIndex; | 
 |   MachineInstr *SpillMI = NULL; | 
 |   int SS = -1; | 
 |   if (!ValNo->isDefAccurate()) { | 
 |     // If we don't know where the def is we must split just before the barrier. | 
 |     if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier, | 
 |                             BarrierMBB, SS, RefsInMBB))) { | 
 |       SpillIndex = LIs->getInstructionIndex(SpillMI); | 
 |     } else { | 
 |       MachineBasicBlock::iterator SpillPt =  | 
 |         findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex); | 
 |       if (SpillPt == BarrierMBB->begin()) | 
 |         return false; // No gap to insert spill. | 
 |       // Add spill. | 
 |      | 
 |       SS = CreateSpillStackSlot(CurrLI->reg, RC); | 
 |       TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC); | 
 |       SpillMI = prior(SpillPt); | 
 |       LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex); | 
 |     } | 
 |   } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def, | 
 |                                  RestoreIndex, SpillIndex, SS)) { | 
 |     // If it's already split, just restore the value. There is no need to spill | 
 |     // the def again. | 
 |     if (!DefMI) | 
 |       return false; // Def is dead. Do nothing. | 
 |      | 
 |     if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier, | 
 |                              BarrierMBB, SS, RefsInMBB))) { | 
 |       SpillIndex = LIs->getInstructionIndex(SpillMI); | 
 |     } else { | 
 |       // Check if it's possible to insert a spill after the def MI. | 
 |       MachineBasicBlock::iterator SpillPt; | 
 |       if (DefMBB == BarrierMBB) { | 
 |         // Add spill after the def and the last use before the barrier. | 
 |         SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, | 
 |                                  RefsInMBB, SpillIndex); | 
 |         if (SpillPt == DefMBB->begin()) | 
 |           return false; // No gap to insert spill. | 
 |       } else { | 
 |         SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex); | 
 |         if (SpillPt == DefMBB->end()) | 
 |           return false; // No gap to insert spill. | 
 |       } | 
 |       // Add spill.  | 
 |       SS = CreateSpillStackSlot(CurrLI->reg, RC); | 
 |       TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC); | 
 |       SpillMI = prior(SpillPt); | 
 |       LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex); | 
 |     } | 
 |   } | 
 |  | 
 |   // Remember def instruction index to spill index mapping. | 
 |   if (DefMI && SpillMI) | 
 |     Def2SpillMap[ValNo->def] = SpillIndex; | 
 |  | 
 |   // Add restore. | 
 |   bool FoldedRestore = false; | 
 |   if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier, | 
 |                                       BarrierMBB, SS, RefsInMBB)) { | 
 |     RestorePt = LMI; | 
 |     RestoreIndex = LIs->getInstructionIndex(RestorePt); | 
 |     FoldedRestore = true; | 
 |   } else { | 
 |     TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC); | 
 |     MachineInstr *LoadMI = prior(RestorePt); | 
 |     LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex); | 
 |   } | 
 |  | 
 |   // Update spill stack slot live interval. | 
 |   UpdateSpillSlotInterval(ValNo, LIs->getNextSlot(LIs->getUseIndex(SpillIndex)), | 
 |                           LIs->getDefIndex(RestoreIndex)); | 
 |  | 
 |   ReconstructLiveInterval(CurrLI); | 
 |  | 
 |   if (!FoldedRestore) { | 
 |     LiveIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt)); | 
 |     RestoreIdx = LIs->getDefIndex(RestoreIdx); | 
 |     RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx)); | 
 |   } | 
 |    | 
 |   ++NumSplits; | 
 |   return true; | 
 | } | 
 |  | 
 | /// SplitRegLiveIntervals - Split all register live intervals that cross the | 
 | /// barrier that's being processed. | 
 | bool | 
 | PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs, | 
 |                                          SmallPtrSet<LiveInterval*, 8>& Split) { | 
 |   // First find all the virtual registers whose live intervals are intercepted | 
 |   // by the current barrier. | 
 |   SmallVector<LiveInterval*, 8> Intervals; | 
 |   for (const TargetRegisterClass **RC = RCs; *RC; ++RC) { | 
 |     // FIXME: If it's not safe to move any instruction that defines the barrier | 
 |     // register class, then it means there are some special dependencies which | 
 |     // codegen is not modelling. Ignore these barriers for now. | 
 |     if (!TII->isSafeToMoveRegClassDefs(*RC)) | 
 |       continue; | 
 |     std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC); | 
 |     for (unsigned i = 0, e = VRs.size(); i != e; ++i) { | 
 |       unsigned Reg = VRs[i]; | 
 |       if (!LIs->hasInterval(Reg)) | 
 |         continue; | 
 |       LiveInterval *LI = &LIs->getInterval(Reg); | 
 |       if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg)) | 
 |         // Virtual register live interval is intercepted by the barrier. We | 
 |         // should split and shrink wrap its interval if possible. | 
 |         Intervals.push_back(LI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Process the affected live intervals. | 
 |   bool Change = false; | 
 |   while (!Intervals.empty()) { | 
 |     if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit) | 
 |       break; | 
 |     LiveInterval *LI = Intervals.back(); | 
 |     Intervals.pop_back(); | 
 |     bool result = SplitRegLiveInterval(LI); | 
 |     if (result) Split.insert(LI); | 
 |     Change |= result; | 
 |   } | 
 |  | 
 |   return Change; | 
 | } | 
 |  | 
 | unsigned PreAllocSplitting::getNumberOfNonSpills( | 
 |                                   SmallPtrSet<MachineInstr*, 4>& MIs, | 
 |                                   unsigned Reg, int FrameIndex, | 
 |                                   bool& FeedsTwoAddr) { | 
 |   unsigned NonSpills = 0; | 
 |   for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end(); | 
 |        UI != UE; ++UI) { | 
 |     int StoreFrameIndex; | 
 |     unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); | 
 |     if (StoreVReg != Reg || StoreFrameIndex != FrameIndex) | 
 |       NonSpills++; | 
 |      | 
 |     int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg); | 
 |     if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx)) | 
 |       FeedsTwoAddr = true; | 
 |   } | 
 |    | 
 |   return NonSpills; | 
 | } | 
 |  | 
 | /// removeDeadSpills - After doing splitting, filter through all intervals we've | 
 | /// split, and see if any of the spills are unnecessary.  If so, remove them. | 
 | bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) { | 
 |   bool changed = false; | 
 |    | 
 |   // Walk over all of the live intervals that were touched by the splitter, | 
 |   // and see if we can do any DCE and/or folding. | 
 |   for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(), | 
 |        LE = split.end(); LI != LE; ++LI) { | 
 |     DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount; | 
 |      | 
 |     // First, collect all the uses of the vreg, and sort them by their | 
 |     // reaching definition (VNInfo). | 
 |     for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg), | 
 |          UE = MRI->use_end(); UI != UE; ++UI) { | 
 |       LiveIndex index = LIs->getInstructionIndex(&*UI); | 
 |       index = LIs->getUseIndex(index); | 
 |        | 
 |       const LiveRange* LR = (*LI)->getLiveRangeContaining(index); | 
 |       VNUseCount[LR->valno].insert(&*UI); | 
 |     } | 
 |      | 
 |     // Now, take the definitions (VNInfo's) one at a time and try to DCE  | 
 |     // and/or fold them away. | 
 |     for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(), | 
 |          VE = (*LI)->vni_end(); VI != VE; ++VI) { | 
 |        | 
 |       if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)  | 
 |         return changed; | 
 |        | 
 |       VNInfo* CurrVN = *VI; | 
 |        | 
 |       // We don't currently try to handle definitions with PHI kills, because | 
 |       // it would involve processing more than one VNInfo at once. | 
 |       if (CurrVN->hasPHIKill()) continue; | 
 |        | 
 |       // We also don't try to handle the results of PHI joins, since there's | 
 |       // no defining instruction to analyze. | 
 |       if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue; | 
 |      | 
 |       // We're only interested in eliminating cruft introduced by the splitter, | 
 |       // is of the form load-use or load-use-store.  First, check that the | 
 |       // definition is a load, and remember what stack slot we loaded it from. | 
 |       MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def); | 
 |       int FrameIndex; | 
 |       if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue; | 
 |        | 
 |       // If the definition has no uses at all, just DCE it. | 
 |       if (VNUseCount[CurrVN].size() == 0) { | 
 |         LIs->RemoveMachineInstrFromMaps(DefMI); | 
 |         (*LI)->removeValNo(CurrVN); | 
 |         DefMI->eraseFromParent(); | 
 |         VNUseCount.erase(CurrVN); | 
 |         NumDeadSpills++; | 
 |         changed = true; | 
 |         continue; | 
 |       } | 
 |        | 
 |       // Second, get the number of non-store uses of the definition, as well as | 
 |       // a flag indicating whether it feeds into a later two-address definition. | 
 |       bool FeedsTwoAddr = false; | 
 |       unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN], | 
 |                                                     (*LI)->reg, FrameIndex, | 
 |                                                     FeedsTwoAddr); | 
 |        | 
 |       // If there's one non-store use and it doesn't feed a two-addr, then | 
 |       // this is a load-use-store case that we can try to fold. | 
 |       if (NonSpillCount == 1 && !FeedsTwoAddr) { | 
 |         // Start by finding the non-store use MachineInstr. | 
 |         SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin(); | 
 |         int StoreFrameIndex; | 
 |         unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); | 
 |         while (UI != VNUseCount[CurrVN].end() && | 
 |                (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) { | 
 |           ++UI; | 
 |           if (UI != VNUseCount[CurrVN].end()) | 
 |             StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); | 
 |         } | 
 |         if (UI == VNUseCount[CurrVN].end()) continue; | 
 |          | 
 |         MachineInstr* use = *UI; | 
 |          | 
 |         // Attempt to fold it away! | 
 |         int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false); | 
 |         if (OpIdx == -1) continue; | 
 |         SmallVector<unsigned, 1> Ops; | 
 |         Ops.push_back(OpIdx); | 
 |         if (!TII->canFoldMemoryOperand(use, Ops)) continue; | 
 |  | 
 |         MachineInstr* NewMI = | 
 |                           TII->foldMemoryOperand(*use->getParent()->getParent(),   | 
 |                                                  use, Ops, FrameIndex); | 
 |  | 
 |         if (!NewMI) continue; | 
 |  | 
 |         // Update relevant analyses. | 
 |         LIs->RemoveMachineInstrFromMaps(DefMI); | 
 |         LIs->ReplaceMachineInstrInMaps(use, NewMI); | 
 |         (*LI)->removeValNo(CurrVN); | 
 |  | 
 |         DefMI->eraseFromParent(); | 
 |         MachineBasicBlock* MBB = use->getParent(); | 
 |         NewMI = MBB->insert(MBB->erase(use), NewMI); | 
 |         VNUseCount[CurrVN].erase(use); | 
 |          | 
 |         // Remove deleted instructions.  Note that we need to remove them from  | 
 |         // the VNInfo->use map as well, just to be safe. | 
 |         for (SmallPtrSet<MachineInstr*, 4>::iterator II =  | 
 |              VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end(); | 
 |              II != IE; ++II) { | 
 |           for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator | 
 |                VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;  | 
 |                ++VNI) | 
 |             if (VNI->first != CurrVN) | 
 |               VNI->second.erase(*II); | 
 |           LIs->RemoveMachineInstrFromMaps(*II); | 
 |           (*II)->eraseFromParent(); | 
 |         } | 
 |          | 
 |         VNUseCount.erase(CurrVN); | 
 |  | 
 |         for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator | 
 |              VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI) | 
 |           if (VI->second.erase(use)) | 
 |             VI->second.insert(NewMI); | 
 |  | 
 |         NumDeadSpills++; | 
 |         changed = true; | 
 |         continue; | 
 |       } | 
 |        | 
 |       // If there's more than one non-store instruction, we can't profitably | 
 |       // fold it, so bail. | 
 |       if (NonSpillCount) continue; | 
 |          | 
 |       // Otherwise, this is a load-store case, so DCE them. | 
 |       for (SmallPtrSet<MachineInstr*, 4>::iterator UI =  | 
 |            VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end(); | 
 |            UI != UI; ++UI) { | 
 |         LIs->RemoveMachineInstrFromMaps(*UI); | 
 |         (*UI)->eraseFromParent(); | 
 |       } | 
 |          | 
 |       VNUseCount.erase(CurrVN); | 
 |          | 
 |       LIs->RemoveMachineInstrFromMaps(DefMI); | 
 |       (*LI)->removeValNo(CurrVN); | 
 |       DefMI->eraseFromParent(); | 
 |       NumDeadSpills++; | 
 |       changed = true; | 
 |     } | 
 |   } | 
 |    | 
 |   return changed; | 
 | } | 
 |  | 
 | bool PreAllocSplitting::createsNewJoin(LiveRange* LR, | 
 |                                        MachineBasicBlock* DefMBB, | 
 |                                        MachineBasicBlock* BarrierMBB) { | 
 |   if (DefMBB == BarrierMBB) | 
 |     return false; | 
 |    | 
 |   if (LR->valno->hasPHIKill()) | 
 |     return false; | 
 |    | 
 |   LiveIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB); | 
 |   if (LR->end < MBBEnd) | 
 |     return false; | 
 |    | 
 |   MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>(); | 
 |   if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB)) | 
 |     return true; | 
 |    | 
 |   MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); | 
 |   SmallPtrSet<MachineBasicBlock*, 4> Visited; | 
 |   typedef std::pair<MachineBasicBlock*, | 
 |                     MachineBasicBlock::succ_iterator> ItPair; | 
 |   SmallVector<ItPair, 4> Stack; | 
 |   Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin())); | 
 |    | 
 |   while (!Stack.empty()) { | 
 |     ItPair P = Stack.back(); | 
 |     Stack.pop_back(); | 
 |      | 
 |     MachineBasicBlock* PredMBB = P.first; | 
 |     MachineBasicBlock::succ_iterator S = P.second; | 
 |      | 
 |     if (S == PredMBB->succ_end()) | 
 |       continue; | 
 |     else if (Visited.count(*S)) { | 
 |       Stack.push_back(std::make_pair(PredMBB, ++S)); | 
 |       continue; | 
 |     } else | 
 |       Stack.push_back(std::make_pair(PredMBB, S+1)); | 
 |      | 
 |     MachineBasicBlock* MBB = *S; | 
 |     Visited.insert(MBB); | 
 |      | 
 |     if (MBB == BarrierMBB) | 
 |       return true; | 
 |      | 
 |     MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB); | 
 |     MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB); | 
 |     MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom(); | 
 |     while (MDTN) { | 
 |       if (MDTN == DefMDTN) | 
 |         return true; | 
 |       else if (MDTN == BarrierMDTN) | 
 |         break; | 
 |       MDTN = MDTN->getIDom(); | 
 |     } | 
 |      | 
 |     MBBEnd = LIs->getMBBEndIdx(MBB); | 
 |     if (LR->end > MBBEnd) | 
 |       Stack.push_back(std::make_pair(MBB, MBB->succ_begin())); | 
 |   } | 
 |    | 
 |   return false; | 
 | }  | 
 |    | 
 |  | 
 | bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) { | 
 |   CurrMF = &MF; | 
 |   TM     = &MF.getTarget(); | 
 |   TRI    = TM->getRegisterInfo(); | 
 |   TII    = TM->getInstrInfo(); | 
 |   MFI    = MF.getFrameInfo(); | 
 |   MRI    = &MF.getRegInfo(); | 
 |   LIs    = &getAnalysis<LiveIntervals>(); | 
 |   LSs    = &getAnalysis<LiveStacks>(); | 
 |   VRM    = &getAnalysis<VirtRegMap>(); | 
 |  | 
 |   bool MadeChange = false; | 
 |  | 
 |   // Make sure blocks are numbered in order. | 
 |   MF.RenumberBlocks(); | 
 |  | 
 |   MachineBasicBlock *Entry = MF.begin(); | 
 |   SmallPtrSet<MachineBasicBlock*,16> Visited; | 
 |  | 
 |   SmallPtrSet<LiveInterval*, 8> Split; | 
 |  | 
 |   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > | 
 |          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); | 
 |        DFI != E; ++DFI) { | 
 |     BarrierMBB = *DFI; | 
 |     for (MachineBasicBlock::iterator I = BarrierMBB->begin(), | 
 |            E = BarrierMBB->end(); I != E; ++I) { | 
 |       Barrier = &*I; | 
 |       const TargetRegisterClass **BarrierRCs = | 
 |         Barrier->getDesc().getRegClassBarriers(); | 
 |       if (!BarrierRCs) | 
 |         continue; | 
 |       BarrierIdx = LIs->getInstructionIndex(Barrier); | 
 |       MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split); | 
 |     } | 
 |   } | 
 |  | 
 |   MadeChange |= removeDeadSpills(Split); | 
 |  | 
 |   return MadeChange; | 
 | } |