| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveInterval analysis pass which is used |
| // by the Linear Scan Register allocator. This pass linearizes the |
| // basic blocks of the function in DFS order and uses the |
| // LiveVariables pass to conservatively compute live intervals for |
| // each virtual and physical register. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "liveintervals" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "VirtRegMap.h" |
| #include "llvm/Value.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| namespace { |
| // Hidden options for help debugging. |
| cl::opt<bool> DisableReMat("disable-rematerialization", |
| cl::init(false), cl::Hidden); |
| |
| cl::opt<bool> SplitAtBB("split-intervals-at-bb", |
| cl::init(false), cl::Hidden); |
| cl::opt<int> SplitLimit("split-limit", |
| cl::init(-1), cl::Hidden); |
| } |
| |
| STATISTIC(numIntervals, "Number of original intervals"); |
| STATISTIC(numIntervalsAfter, "Number of intervals after coalescing"); |
| STATISTIC(numFolds , "Number of loads/stores folded into instructions"); |
| STATISTIC(numSplits , "Number of intervals split"); |
| |
| char LiveIntervals::ID = 0; |
| namespace { |
| RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis"); |
| } |
| |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreserved<LiveVariables>(); |
| AU.addRequired<LiveVariables>(); |
| AU.addPreservedID(PHIEliminationID); |
| AU.addRequiredID(PHIEliminationID); |
| AU.addRequiredID(TwoAddressInstructionPassID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| void LiveIntervals::releaseMemory() { |
| Idx2MBBMap.clear(); |
| mi2iMap_.clear(); |
| i2miMap_.clear(); |
| r2iMap_.clear(); |
| // Release VNInfo memroy regions after all VNInfo objects are dtor'd. |
| VNInfoAllocator.Reset(); |
| for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i) |
| delete ClonedMIs[i]; |
| } |
| |
| namespace llvm { |
| inline bool operator<(unsigned V, const IdxMBBPair &IM) { |
| return V < IM.first; |
| } |
| |
| inline bool operator<(const IdxMBBPair &IM, unsigned V) { |
| return IM.first < V; |
| } |
| |
| struct Idx2MBBCompare { |
| bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const { |
| return LHS.first < RHS.first; |
| } |
| }; |
| } |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { |
| mf_ = &fn; |
| tm_ = &fn.getTarget(); |
| mri_ = tm_->getRegisterInfo(); |
| tii_ = tm_->getInstrInfo(); |
| lv_ = &getAnalysis<LiveVariables>(); |
| allocatableRegs_ = mri_->getAllocatableSet(fn); |
| |
| // Number MachineInstrs and MachineBasicBlocks. |
| // Initialize MBB indexes to a sentinal. |
| MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U)); |
| |
| unsigned MIIndex = 0; |
| for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end(); |
| MBB != E; ++MBB) { |
| unsigned StartIdx = MIIndex; |
| |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second; |
| assert(inserted && "multiple MachineInstr -> index mappings"); |
| i2miMap_.push_back(I); |
| MIIndex += InstrSlots::NUM; |
| } |
| |
| // Set the MBB2IdxMap entry for this MBB. |
| MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1); |
| Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB)); |
| } |
| std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare()); |
| |
| computeIntervals(); |
| |
| numIntervals += getNumIntervals(); |
| |
| DOUT << "********** INTERVALS **********\n"; |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| I->second.print(DOUT, mri_); |
| DOUT << "\n"; |
| } |
| |
| numIntervalsAfter += getNumIntervals(); |
| DEBUG(dump()); |
| return true; |
| } |
| |
| /// print - Implement the dump method. |
| void LiveIntervals::print(std::ostream &O, const Module* ) const { |
| O << "********** INTERVALS **********\n"; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| I->second.print(DOUT, mri_); |
| DOUT << "\n"; |
| } |
| |
| O << "********** MACHINEINSTRS **********\n"; |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; |
| for (MachineBasicBlock::iterator mii = mbbi->begin(), |
| mie = mbbi->end(); mii != mie; ++mii) { |
| O << getInstructionIndex(mii) << '\t' << *mii; |
| } |
| } |
| } |
| |
| /// conflictsWithPhysRegDef - Returns true if the specified register |
| /// is defined during the duration of the specified interval. |
| bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li, |
| VirtRegMap &vrm, unsigned reg) { |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| for (unsigned index = getBaseIndex(I->start), |
| end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end; |
| index += InstrSlots::NUM) { |
| // skip deleted instructions |
| while (index != end && !getInstructionFromIndex(index)) |
| index += InstrSlots::NUM; |
| if (index == end) break; |
| |
| MachineInstr *MI = getInstructionFromIndex(index); |
| unsigned SrcReg, DstReg; |
| if (tii_->isMoveInstr(*MI, SrcReg, DstReg)) |
| if (SrcReg == li.reg || DstReg == li.reg) |
| continue; |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (!mop.isRegister()) |
| continue; |
| unsigned PhysReg = mop.getReg(); |
| if (PhysReg == 0 || PhysReg == li.reg) |
| continue; |
| if (MRegisterInfo::isVirtualRegister(PhysReg)) { |
| if (!vrm.hasPhys(PhysReg)) |
| continue; |
| PhysReg = vrm.getPhys(PhysReg); |
| } |
| if (PhysReg && mri_->regsOverlap(PhysReg, reg)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| void LiveIntervals::printRegName(unsigned reg) const { |
| if (MRegisterInfo::isPhysicalRegister(reg)) |
| cerr << mri_->getName(reg); |
| else |
| cerr << "%reg" << reg; |
| } |
| |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, |
| MachineBasicBlock::iterator mi, |
| unsigned MIIdx, |
| LiveInterval &interval) { |
| DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); |
| LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); |
| |
| // Virtual registers may be defined multiple times (due to phi |
| // elimination and 2-addr elimination). Much of what we do only has to be |
| // done once for the vreg. We use an empty interval to detect the first |
| // time we see a vreg. |
| if (interval.empty()) { |
| // Get the Idx of the defining instructions. |
| unsigned defIndex = getDefIndex(MIIdx); |
| VNInfo *ValNo; |
| unsigned SrcReg, DstReg; |
| if (tii_->isMoveInstr(*mi, SrcReg, DstReg)) |
| ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator); |
| else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) |
| ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(), |
| VNInfoAllocator); |
| else |
| ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator); |
| |
| assert(ValNo->id == 0 && "First value in interval is not 0?"); |
| |
| // Loop over all of the blocks that the vreg is defined in. There are |
| // two cases we have to handle here. The most common case is a vreg |
| // whose lifetime is contained within a basic block. In this case there |
| // will be a single kill, in MBB, which comes after the definition. |
| if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { |
| // FIXME: what about dead vars? |
| unsigned killIdx; |
| if (vi.Kills[0] != mi) |
| killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; |
| else |
| killIdx = defIndex+1; |
| |
| // If the kill happens after the definition, we have an intra-block |
| // live range. |
| if (killIdx > defIndex) { |
| assert(vi.AliveBlocks.none() && |
| "Shouldn't be alive across any blocks!"); |
| LiveRange LR(defIndex, killIdx, ValNo); |
| interval.addRange(LR); |
| DOUT << " +" << LR << "\n"; |
| interval.addKill(ValNo, killIdx); |
| return; |
| } |
| } |
| |
| // The other case we handle is when a virtual register lives to the end |
| // of the defining block, potentially live across some blocks, then is |
| // live into some number of blocks, but gets killed. Start by adding a |
| // range that goes from this definition to the end of the defining block. |
| LiveRange NewLR(defIndex, |
| getInstructionIndex(&mbb->back()) + InstrSlots::NUM, |
| ValNo); |
| DOUT << " +" << NewLR; |
| interval.addRange(NewLR); |
| |
| // Iterate over all of the blocks that the variable is completely |
| // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the |
| // live interval. |
| for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { |
| if (vi.AliveBlocks[i]) { |
| MachineBasicBlock *MBB = mf_->getBlockNumbered(i); |
| if (!MBB->empty()) { |
| LiveRange LR(getMBBStartIdx(i), |
| getInstructionIndex(&MBB->back()) + InstrSlots::NUM, |
| ValNo); |
| interval.addRange(LR); |
| DOUT << " +" << LR; |
| } |
| } |
| } |
| |
| // Finally, this virtual register is live from the start of any killing |
| // block to the 'use' slot of the killing instruction. |
| for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { |
| MachineInstr *Kill = vi.Kills[i]; |
| unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1; |
| LiveRange LR(getMBBStartIdx(Kill->getParent()), |
| killIdx, ValNo); |
| interval.addRange(LR); |
| interval.addKill(ValNo, killIdx); |
| DOUT << " +" << LR; |
| } |
| |
| } else { |
| // If this is the second time we see a virtual register definition, it |
| // must be due to phi elimination or two addr elimination. If this is |
| // the result of two address elimination, then the vreg is one of the |
| // def-and-use register operand. |
| if (mi->isRegReDefinedByTwoAddr(interval.reg)) { |
| // If this is a two-address definition, then we have already processed |
| // the live range. The only problem is that we didn't realize there |
| // are actually two values in the live interval. Because of this we |
| // need to take the LiveRegion that defines this register and split it |
| // into two values. |
| unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst)); |
| unsigned RedefIndex = getDefIndex(MIIdx); |
| |
| const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1); |
| VNInfo *OldValNo = OldLR->valno; |
| unsigned OldEnd = OldLR->end; |
| |
| // Delete the initial value, which should be short and continuous, |
| // because the 2-addr copy must be in the same MBB as the redef. |
| interval.removeRange(DefIndex, RedefIndex); |
| |
| // Two-address vregs should always only be redefined once. This means |
| // that at this point, there should be exactly one value number in it. |
| assert(interval.containsOneValue() && "Unexpected 2-addr liveint!"); |
| |
| // The new value number (#1) is defined by the instruction we claimed |
| // defined value #0. |
| VNInfo *ValNo = interval.getNextValue(0, 0, VNInfoAllocator); |
| interval.copyValNumInfo(ValNo, OldValNo); |
| |
| // Value#0 is now defined by the 2-addr instruction. |
| OldValNo->def = RedefIndex; |
| OldValNo->reg = 0; |
| |
| // Add the new live interval which replaces the range for the input copy. |
| LiveRange LR(DefIndex, RedefIndex, ValNo); |
| DOUT << " replace range with " << LR; |
| interval.addRange(LR); |
| interval.addKill(ValNo, RedefIndex); |
| interval.removeKills(ValNo, RedefIndex, OldEnd); |
| |
| // If this redefinition is dead, we need to add a dummy unit live |
| // range covering the def slot. |
| if (lv_->RegisterDefIsDead(mi, interval.reg)) |
| interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo)); |
| |
| DOUT << " RESULT: "; |
| interval.print(DOUT, mri_); |
| |
| } else { |
| // Otherwise, this must be because of phi elimination. If this is the |
| // first redefinition of the vreg that we have seen, go back and change |
| // the live range in the PHI block to be a different value number. |
| if (interval.containsOneValue()) { |
| assert(vi.Kills.size() == 1 && |
| "PHI elimination vreg should have one kill, the PHI itself!"); |
| |
| // Remove the old range that we now know has an incorrect number. |
| VNInfo *VNI = interval.getValNumInfo(0); |
| MachineInstr *Killer = vi.Kills[0]; |
| unsigned Start = getMBBStartIdx(Killer->getParent()); |
| unsigned End = getUseIndex(getInstructionIndex(Killer))+1; |
| DOUT << " Removing [" << Start << "," << End << "] from: "; |
| interval.print(DOUT, mri_); DOUT << "\n"; |
| interval.removeRange(Start, End); |
| interval.addKill(VNI, Start); |
| VNI->hasPHIKill = true; |
| DOUT << " RESULT: "; interval.print(DOUT, mri_); |
| |
| // Replace the interval with one of a NEW value number. Note that this |
| // value number isn't actually defined by an instruction, weird huh? :) |
| LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator)); |
| DOUT << " replace range with " << LR; |
| interval.addRange(LR); |
| interval.addKill(LR.valno, End); |
| DOUT << " RESULT: "; interval.print(DOUT, mri_); |
| } |
| |
| // In the case of PHI elimination, each variable definition is only |
| // live until the end of the block. We've already taken care of the |
| // rest of the live range. |
| unsigned defIndex = getDefIndex(MIIdx); |
| |
| VNInfo *ValNo; |
| unsigned SrcReg, DstReg; |
| if (tii_->isMoveInstr(*mi, SrcReg, DstReg)) |
| ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator); |
| else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) |
| ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(), |
| VNInfoAllocator); |
| else |
| ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator); |
| |
| unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM; |
| LiveRange LR(defIndex, killIndex, ValNo); |
| interval.addRange(LR); |
| interval.addKill(ValNo, killIndex); |
| ValNo->hasPHIKill = true; |
| DOUT << " +" << LR; |
| } |
| } |
| |
| DOUT << '\n'; |
| } |
| |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator mi, |
| unsigned MIIdx, |
| LiveInterval &interval, |
| unsigned SrcReg) { |
| // A physical register cannot be live across basic block, so its |
| // lifetime must end somewhere in its defining basic block. |
| DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); |
| |
| unsigned baseIndex = MIIdx; |
| unsigned start = getDefIndex(baseIndex); |
| unsigned end = start; |
| |
| // If it is not used after definition, it is considered dead at |
| // the instruction defining it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| if (lv_->RegisterDefIsDead(mi, interval.reg)) { |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| goto exit; |
| } |
| |
| // If it is not dead on definition, it must be killed by a |
| // subsequent instruction. Hence its interval is: |
| // [defSlot(def), useSlot(kill)+1) |
| while (++mi != MBB->end()) { |
| baseIndex += InstrSlots::NUM; |
| if (lv_->KillsRegister(mi, interval.reg)) { |
| DOUT << " killed"; |
| end = getUseIndex(baseIndex) + 1; |
| goto exit; |
| } else if (lv_->ModifiesRegister(mi, interval.reg)) { |
| // Another instruction redefines the register before it is ever read. |
| // Then the register is essentially dead at the instruction that defines |
| // it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| goto exit; |
| } |
| } |
| |
| // The only case we should have a dead physreg here without a killing or |
| // instruction where we know it's dead is if it is live-in to the function |
| // and never used. |
| assert(!SrcReg && "physreg was not killed in defining block!"); |
| end = getDefIndex(start) + 1; // It's dead. |
| |
| exit: |
| assert(start < end && "did not find end of interval?"); |
| |
| // Already exists? Extend old live interval. |
| LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start); |
| VNInfo *ValNo = (OldLR != interval.end()) |
| ? OldLR->valno : interval.getNextValue(start, SrcReg, VNInfoAllocator); |
| LiveRange LR(start, end, ValNo); |
| interval.addRange(LR); |
| interval.addKill(LR.valno, end); |
| DOUT << " +" << LR << '\n'; |
| } |
| |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned MIIdx, |
| unsigned reg) { |
| if (MRegisterInfo::isVirtualRegister(reg)) |
| handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg)); |
| else if (allocatableRegs_[reg]) { |
| unsigned SrcReg, DstReg; |
| if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) |
| SrcReg = MI->getOperand(1).getReg(); |
| else if (!tii_->isMoveInstr(*MI, SrcReg, DstReg)) |
| SrcReg = 0; |
| handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg); |
| // Def of a register also defines its sub-registers. |
| for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS) |
| // Avoid processing some defs more than once. |
| if (!MI->findRegisterDefOperand(*AS)) |
| handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0); |
| } |
| } |
| |
| void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, |
| unsigned MIIdx, |
| LiveInterval &interval, bool isAlias) { |
| DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg)); |
| |
| // Look for kills, if it reaches a def before it's killed, then it shouldn't |
| // be considered a livein. |
| MachineBasicBlock::iterator mi = MBB->begin(); |
| unsigned baseIndex = MIIdx; |
| unsigned start = baseIndex; |
| unsigned end = start; |
| while (mi != MBB->end()) { |
| if (lv_->KillsRegister(mi, interval.reg)) { |
| DOUT << " killed"; |
| end = getUseIndex(baseIndex) + 1; |
| goto exit; |
| } else if (lv_->ModifiesRegister(mi, interval.reg)) { |
| // Another instruction redefines the register before it is ever read. |
| // Then the register is essentially dead at the instruction that defines |
| // it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| DOUT << " dead"; |
| end = getDefIndex(start) + 1; |
| goto exit; |
| } |
| |
| baseIndex += InstrSlots::NUM; |
| ++mi; |
| } |
| |
| exit: |
| // Live-in register might not be used at all. |
| if (end == MIIdx) { |
| if (isAlias) { |
| DOUT << " dead"; |
| end = getDefIndex(MIIdx) + 1; |
| } else { |
| DOUT << " live through"; |
| end = baseIndex; |
| } |
| } |
| |
| LiveRange LR(start, end, interval.getNextValue(start, 0, VNInfoAllocator)); |
| interval.addRange(LR); |
| interval.addKill(LR.valno, end); |
| DOUT << " +" << LR << '\n'; |
| } |
| |
| /// computeIntervals - computes the live intervals for virtual |
| /// registers. for some ordering of the machine instructions [1,N] a |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for |
| /// which a variable is live |
| void LiveIntervals::computeIntervals() { |
| DOUT << "********** COMPUTING LIVE INTERVALS **********\n" |
| << "********** Function: " |
| << ((Value*)mf_->getFunction())->getName() << '\n'; |
| // Track the index of the current machine instr. |
| unsigned MIIndex = 0; |
| for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; |
| |
| MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); |
| |
| // Create intervals for live-ins to this BB first. |
| for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(), |
| LE = MBB->livein_end(); LI != LE; ++LI) { |
| handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); |
| // Multiple live-ins can alias the same register. |
| for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS) |
| if (!hasInterval(*AS)) |
| handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS), |
| true); |
| } |
| |
| for (; MI != miEnd; ++MI) { |
| DOUT << MIIndex << "\t" << *MI; |
| |
| // Handle defs. |
| for (int i = MI->getNumOperands() - 1; i >= 0; --i) { |
| MachineOperand &MO = MI->getOperand(i); |
| // handle register defs - build intervals |
| if (MO.isRegister() && MO.getReg() && MO.isDef()) |
| handleRegisterDef(MBB, MI, MIIndex, MO.getReg()); |
| } |
| |
| MIIndex += InstrSlots::NUM; |
| } |
| } |
| } |
| |
| bool LiveIntervals::findLiveInMBBs(const LiveRange &LR, |
| SmallVectorImpl<MachineBasicBlock*> &MBBs) const { |
| std::vector<IdxMBBPair>::const_iterator I = |
| std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), LR.start); |
| |
| bool ResVal = false; |
| while (I != Idx2MBBMap.end()) { |
| if (LR.end <= I->first) |
| break; |
| MBBs.push_back(I->second); |
| ResVal = true; |
| ++I; |
| } |
| return ResVal; |
| } |
| |
| |
| LiveInterval LiveIntervals::createInterval(unsigned reg) { |
| float Weight = MRegisterInfo::isPhysicalRegister(reg) ? |
| HUGE_VALF : 0.0F; |
| return LiveInterval(reg, Weight); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Register allocator hooks. |
| // |
| |
| /// isReMaterializable - Returns true if the definition MI of the specified |
| /// val# of the specified interval is re-materializable. |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li, |
| const VNInfo *ValNo, MachineInstr *MI) { |
| if (DisableReMat) |
| return false; |
| |
| if (tii_->isTriviallyReMaterializable(MI)) |
| return true; |
| |
| int FrameIdx = 0; |
| if (!tii_->isLoadFromStackSlot(MI, FrameIdx) || |
| !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx)) |
| return false; |
| |
| // This is a load from fixed stack slot. It can be rematerialized unless it's |
| // re-defined by a two-address instruction. |
| for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); |
| i != e; ++i) { |
| const VNInfo *VNI = *i; |
| if (VNI == ValNo) |
| continue; |
| unsigned DefIdx = VNI->def; |
| if (DefIdx == ~1U) |
| continue; // Dead val#. |
| MachineInstr *DefMI = (DefIdx == ~0u) |
| ? NULL : getInstructionFromIndex(DefIdx); |
| if (DefMI && DefMI->isRegReDefinedByTwoAddr(li.reg)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// tryFoldMemoryOperand - Attempts to fold either a spill / restore from |
| /// slot / to reg or any rematerialized load into ith operand of specified |
| /// MI. If it is successul, MI is updated with the newly created MI and |
| /// returns true. |
| bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, |
| VirtRegMap &vrm, MachineInstr *DefMI, |
| unsigned InstrIdx, |
| SmallVector<unsigned, 2> &Ops, |
| bool isSS, int Slot, unsigned Reg) { |
| unsigned MRInfo = 0; |
| const TargetInstrDescriptor *TID = MI->getInstrDescriptor(); |
| SmallVector<unsigned, 2> FoldOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| unsigned OpIdx = Ops[i]; |
| // FIXME: fold subreg use. |
| if (MI->getOperand(OpIdx).getSubReg()) |
| return false; |
| if (MI->getOperand(OpIdx).isDef()) |
| MRInfo |= (unsigned)VirtRegMap::isMod; |
| else { |
| // Filter out two-address use operand(s). |
| if (TID->getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) { |
| MRInfo = VirtRegMap::isModRef; |
| continue; |
| } |
| MRInfo |= (unsigned)VirtRegMap::isRef; |
| } |
| FoldOps.push_back(OpIdx); |
| } |
| |
| MachineInstr *fmi = isSS ? mri_->foldMemoryOperand(MI, FoldOps, Slot) |
| : mri_->foldMemoryOperand(MI, FoldOps, DefMI); |
| if (fmi) { |
| // Attempt to fold the memory reference into the instruction. If |
| // we can do this, we don't need to insert spill code. |
| if (lv_) |
| lv_->instructionChanged(MI, fmi); |
| else |
| LiveVariables::transferKillDeadInfo(MI, fmi, mri_); |
| MachineBasicBlock &MBB = *MI->getParent(); |
| if (isSS && !mf_->getFrameInfo()->isFixedObjectIndex(Slot)) |
| vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo); |
| vrm.transferSpillPts(MI, fmi); |
| vrm.transferRestorePts(MI, fmi); |
| mi2iMap_.erase(MI); |
| i2miMap_[InstrIdx /InstrSlots::NUM] = fmi; |
| mi2iMap_[fmi] = InstrIdx; |
| MI = MBB.insert(MBB.erase(MI), fmi); |
| ++numFolds; |
| return true; |
| } |
| return false; |
| } |
| |
| /// canFoldMemoryOperand - Returns true if the specified load / store |
| /// folding is possible. |
| bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI, |
| SmallVector<unsigned, 2> &Ops) const { |
| SmallVector<unsigned, 2> FoldOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| unsigned OpIdx = Ops[i]; |
| // FIXME: fold subreg use. |
| if (MI->getOperand(OpIdx).getSubReg()) |
| return false; |
| FoldOps.push_back(OpIdx); |
| } |
| |
| return mri_->canFoldMemoryOperand(MI, FoldOps); |
| } |
| |
| bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const { |
| SmallPtrSet<MachineBasicBlock*, 4> MBBs; |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| std::vector<IdxMBBPair>::const_iterator II = |
| std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), I->start); |
| if (II == Idx2MBBMap.end()) |
| continue; |
| if (I->end > II->first) // crossing a MBB. |
| return false; |
| MBBs.insert(II->second); |
| if (MBBs.size() > 1) |
| return false; |
| } |
| return true; |
| } |
| |
| /// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions |
| /// for addIntervalsForSpills to rewrite uses / defs for the given live range. |
| bool LiveIntervals:: |
| rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit, |
| unsigned id, unsigned index, unsigned end, MachineInstr *MI, |
| MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI, |
| unsigned Slot, int LdSlot, |
| bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, |
| VirtRegMap &vrm, SSARegMap *RegMap, |
| const TargetRegisterClass* rc, |
| SmallVector<int, 4> &ReMatIds, |
| unsigned &NewVReg, bool &HasDef, bool &HasUse, |
| const LoopInfo *loopInfo, |
| std::map<unsigned,unsigned> &MBBVRegsMap, |
| std::vector<LiveInterval*> &NewLIs) { |
| bool CanFold = false; |
| RestartInstruction: |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (!mop.isRegister()) |
| continue; |
| unsigned Reg = mop.getReg(); |
| unsigned RegI = Reg; |
| if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg)) |
| continue; |
| if (Reg != li.reg) |
| continue; |
| |
| bool TryFold = !DefIsReMat; |
| bool FoldSS = true; // Default behavior unless it's a remat. |
| int FoldSlot = Slot; |
| if (DefIsReMat) { |
| // If this is the rematerializable definition MI itself and |
| // all of its uses are rematerialized, simply delete it. |
| if (MI == ReMatOrigDefMI && CanDelete) { |
| DOUT << "\t\t\t\tErasing re-materlizable def: "; |
| DOUT << MI << '\n'; |
| RemoveMachineInstrFromMaps(MI); |
| vrm.RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| break; |
| } |
| |
| // If def for this use can't be rematerialized, then try folding. |
| // If def is rematerializable and it's a load, also try folding. |
| TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad)); |
| if (isLoad) { |
| // Try fold loads (from stack slot, constant pool, etc.) into uses. |
| FoldSS = isLoadSS; |
| FoldSlot = LdSlot; |
| } |
| } |
| |
| // Scan all of the operands of this instruction rewriting operands |
| // to use NewVReg instead of li.reg as appropriate. We do this for |
| // two reasons: |
| // |
| // 1. If the instr reads the same spilled vreg multiple times, we |
| // want to reuse the NewVReg. |
| // 2. If the instr is a two-addr instruction, we are required to |
| // keep the src/dst regs pinned. |
| // |
| // Keep track of whether we replace a use and/or def so that we can |
| // create the spill interval with the appropriate range. |
| |
| HasUse = mop.isUse(); |
| HasDef = mop.isDef(); |
| SmallVector<unsigned, 2> Ops; |
| Ops.push_back(i); |
| for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) { |
| const MachineOperand &MOj = MI->getOperand(j); |
| if (!MOj.isRegister()) |
| continue; |
| unsigned RegJ = MOj.getReg(); |
| if (RegJ == 0 || MRegisterInfo::isPhysicalRegister(RegJ)) |
| continue; |
| if (RegJ == RegI) { |
| Ops.push_back(j); |
| HasUse |= MOj.isUse(); |
| HasDef |= MOj.isDef(); |
| } |
| } |
| |
| if (TryFold) { |
| // Do not fold load / store here if we are splitting. We'll find an |
| // optimal point to insert a load / store later. |
| if (!TrySplit) { |
| if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, |
| Ops, FoldSS, FoldSlot, Reg)) { |
| // Folding the load/store can completely change the instruction in |
| // unpredictable ways, rescan it from the beginning. |
| HasUse = false; |
| HasDef = false; |
| CanFold = false; |
| goto RestartInstruction; |
| } |
| } else { |
| CanFold = canFoldMemoryOperand(MI, Ops); |
| } |
| } else CanFold = false; |
| |
| // Create a new virtual register for the spill interval. |
| bool CreatedNewVReg = false; |
| if (NewVReg == 0) { |
| NewVReg = RegMap->createVirtualRegister(rc); |
| vrm.grow(); |
| CreatedNewVReg = true; |
| } |
| mop.setReg(NewVReg); |
| |
| // Reuse NewVReg for other reads. |
| for (unsigned j = 0, e = Ops.size(); j != e; ++j) |
| MI->getOperand(Ops[j]).setReg(NewVReg); |
| |
| if (CreatedNewVReg) { |
| if (DefIsReMat) { |
| vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/); |
| if (ReMatIds[id] == VirtRegMap::MAX_STACK_SLOT) { |
| // Each valnum may have its own remat id. |
| ReMatIds[id] = vrm.assignVirtReMatId(NewVReg); |
| } else { |
| vrm.assignVirtReMatId(NewVReg, ReMatIds[id]); |
| } |
| if (!CanDelete || (HasUse && HasDef)) { |
| // If this is a two-addr instruction then its use operands are |
| // rematerializable but its def is not. It should be assigned a |
| // stack slot. |
| vrm.assignVirt2StackSlot(NewVReg, Slot); |
| } |
| } else { |
| vrm.assignVirt2StackSlot(NewVReg, Slot); |
| } |
| } else if (HasUse && HasDef && |
| vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) { |
| // If this interval hasn't been assigned a stack slot (because earlier |
| // def is a deleted remat def), do it now. |
| assert(Slot != VirtRegMap::NO_STACK_SLOT); |
| vrm.assignVirt2StackSlot(NewVReg, Slot); |
| } |
| |
| // create a new register interval for this spill / remat. |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| if (CreatedNewVReg) { |
| NewLIs.push_back(&nI); |
| MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg)); |
| if (TrySplit) |
| vrm.setIsSplitFromReg(NewVReg, li.reg); |
| } |
| |
| if (HasUse) { |
| if (CreatedNewVReg) { |
| LiveRange LR(getLoadIndex(index), getUseIndex(index)+1, |
| nI.getNextValue(~0U, 0, VNInfoAllocator)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } else { |
| // Extend the split live interval to this def / use. |
| unsigned End = getUseIndex(index)+1; |
| LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End, |
| nI.getValNumInfo(nI.getNumValNums()-1)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } |
| } |
| if (HasDef) { |
| LiveRange LR(getDefIndex(index), getStoreIndex(index), |
| nI.getNextValue(~0U, 0, VNInfoAllocator)); |
| DOUT << " +" << LR; |
| nI.addRange(LR); |
| } |
| |
| DOUT << "\t\t\t\tAdded new interval: "; |
| nI.print(DOUT, mri_); |
| DOUT << '\n'; |
| } |
| return CanFold; |
| } |
| bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li, |
| const VNInfo *VNI, |
| MachineBasicBlock *MBB, unsigned Idx) const { |
| unsigned End = getMBBEndIdx(MBB); |
| for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) { |
| unsigned KillIdx = VNI->kills[j]; |
| if (KillIdx > Idx && KillIdx < End) |
| return true; |
| } |
| return false; |
| } |
| |
| static const VNInfo *findDefinedVNInfo(const LiveInterval &li, unsigned DefIdx) { |
| const VNInfo *VNI = NULL; |
| for (LiveInterval::const_vni_iterator i = li.vni_begin(), |
| e = li.vni_end(); i != e; ++i) |
| if ((*i)->def == DefIdx) { |
| VNI = *i; |
| break; |
| } |
| return VNI; |
| } |
| |
| void LiveIntervals:: |
| rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit, |
| LiveInterval::Ranges::const_iterator &I, |
| MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI, |
| unsigned Slot, int LdSlot, |
| bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, |
| VirtRegMap &vrm, SSARegMap *RegMap, |
| const TargetRegisterClass* rc, |
| SmallVector<int, 4> &ReMatIds, |
| const LoopInfo *loopInfo, |
| BitVector &SpillMBBs, |
| std::map<unsigned, std::vector<SRInfo> > &SpillIdxes, |
| BitVector &RestoreMBBs, |
| std::map<unsigned, std::vector<SRInfo> > &RestoreIdxes, |
| std::map<unsigned,unsigned> &MBBVRegsMap, |
| std::vector<LiveInterval*> &NewLIs) { |
| bool AllCanFold = true; |
| unsigned NewVReg = 0; |
| unsigned index = getBaseIndex(I->start); |
| unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM; |
| for (; index != end; index += InstrSlots::NUM) { |
| // skip deleted instructions |
| while (index != end && !getInstructionFromIndex(index)) |
| index += InstrSlots::NUM; |
| if (index == end) break; |
| |
| MachineInstr *MI = getInstructionFromIndex(index); |
| MachineBasicBlock *MBB = MI->getParent(); |
| unsigned ThisVReg = 0; |
| if (TrySplit) { |
| std::map<unsigned,unsigned>::const_iterator NVI = |
| MBBVRegsMap.find(MBB->getNumber()); |
| if (NVI != MBBVRegsMap.end()) { |
| ThisVReg = NVI->second; |
| // One common case: |
| // x = use |
| // ... |
| // ... |
| // def = ... |
| // = use |
| // It's better to start a new interval to avoid artifically |
| // extend the new interval. |
| // FIXME: Too slow? Can we fix it after rewriteInstructionsForSpills? |
| bool MIHasUse = false; |
| bool MIHasDef = false; |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (!mop.isRegister() || mop.getReg() != li.reg) |
| continue; |
| if (mop.isUse()) |
| MIHasUse = true; |
| else |
| MIHasDef = true; |
| } |
| if (MIHasDef && !MIHasUse) { |
| MBBVRegsMap.erase(MBB->getNumber()); |
| ThisVReg = 0; |
| } |
| } |
| } |
| |
| bool IsNew = ThisVReg == 0; |
| if (IsNew) { |
| // This ends the previous live interval. If all of its def / use |
| // can be folded, give it a low spill weight. |
| if (NewVReg && TrySplit && AllCanFold) { |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| nI.weight /= 10.0F; |
| } |
| AllCanFold = true; |
| } |
| NewVReg = ThisVReg; |
| |
| bool HasDef = false; |
| bool HasUse = false; |
| bool CanFold = rewriteInstructionForSpills(li, TrySplit, I->valno->id, |
| index, end, MI, ReMatOrigDefMI, ReMatDefMI, |
| Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, |
| CanDelete, vrm, RegMap, rc, ReMatIds, NewVReg, |
| HasDef, HasUse, loopInfo, MBBVRegsMap, NewLIs); |
| if (!HasDef && !HasUse) |
| continue; |
| |
| AllCanFold &= CanFold; |
| |
| // Update weight of spill interval. |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| if (!TrySplit) { |
| // The spill weight is now infinity as it cannot be spilled again. |
| nI.weight = HUGE_VALF; |
| continue; |
| } |
| |
| // Keep track of the last def and first use in each MBB. |
| unsigned MBBId = MBB->getNumber(); |
| if (HasDef) { |
| if (MI != ReMatOrigDefMI || !CanDelete) { |
| bool HasKill = false; |
| if (!HasUse) |
| HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index)); |
| else { |
| // If this is a two-address code, then this index starts a new VNInfo. |
| const VNInfo *VNI = findDefinedVNInfo(li, getDefIndex(index)); |
| if (VNI) |
| HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index)); |
| } |
| std::map<unsigned, std::vector<SRInfo> >::iterator SII = |
| SpillIdxes.find(MBBId); |
| if (!HasKill) { |
| if (SII == SpillIdxes.end()) { |
| std::vector<SRInfo> S; |
| S.push_back(SRInfo(index, NewVReg, true)); |
| SpillIdxes.insert(std::make_pair(MBBId, S)); |
| } else if (SII->second.back().vreg != NewVReg) { |
| SII->second.push_back(SRInfo(index, NewVReg, true)); |
| } else if ((int)index > SII->second.back().index) { |
| // If there is an earlier def and this is a two-address |
| // instruction, then it's not possible to fold the store (which |
| // would also fold the load). |
| SRInfo &Info = SII->second.back(); |
| Info.index = index; |
| Info.canFold = !HasUse; |
| } |
| SpillMBBs.set(MBBId); |
| } else if (SII != SpillIdxes.end() && |
| SII->second.back().vreg == NewVReg && |
| (int)index > SII->second.back().index) { |
| // There is an earlier def that's not killed (must be two-address). |
| // The spill is no longer needed. |
| SII->second.pop_back(); |
| if (SII->second.empty()) { |
| SpillIdxes.erase(MBBId); |
| SpillMBBs.reset(MBBId); |
| } |
| } |
| } |
| } |
| |
| if (HasUse) { |
| std::map<unsigned, std::vector<SRInfo> >::iterator SII = |
| SpillIdxes.find(MBBId); |
| if (SII != SpillIdxes.end() && |
| SII->second.back().vreg == NewVReg && |
| (int)index > SII->second.back().index) |
| // Use(s) following the last def, it's not safe to fold the spill. |
| SII->second.back().canFold = false; |
| std::map<unsigned, std::vector<SRInfo> >::iterator RII = |
| RestoreIdxes.find(MBBId); |
| if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg) |
| // If we are splitting live intervals, only fold if it's the first |
| // use and there isn't another use later in the MBB. |
| RII->second.back().canFold = false; |
| else if (IsNew) { |
| // Only need a reload if there isn't an earlier def / use. |
| if (RII == RestoreIdxes.end()) { |
| std::vector<SRInfo> Infos; |
| Infos.push_back(SRInfo(index, NewVReg, true)); |
| RestoreIdxes.insert(std::make_pair(MBBId, Infos)); |
| } else { |
| RII->second.push_back(SRInfo(index, NewVReg, true)); |
| } |
| RestoreMBBs.set(MBBId); |
| } |
| } |
| |
| // Update spill weight. |
| unsigned loopDepth = loopInfo->getLoopDepth(MBB->getBasicBlock()); |
| nI.weight += getSpillWeight(HasDef, HasUse, loopDepth); |
| } |
| |
| if (NewVReg && TrySplit && AllCanFold) { |
| // If all of its def / use can be folded, give it a low spill weight. |
| LiveInterval &nI = getOrCreateInterval(NewVReg); |
| nI.weight /= 10.0F; |
| } |
| } |
| |
| bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr, |
| BitVector &RestoreMBBs, |
| std::map<unsigned,std::vector<SRInfo> > &RestoreIdxes) { |
| if (!RestoreMBBs[Id]) |
| return false; |
| std::vector<SRInfo> &Restores = RestoreIdxes[Id]; |
| for (unsigned i = 0, e = Restores.size(); i != e; ++i) |
| if (Restores[i].index == index && |
| Restores[i].vreg == vr && |
| Restores[i].canFold) |
| return true; |
| return false; |
| } |
| |
| void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr, |
| BitVector &RestoreMBBs, |
| std::map<unsigned,std::vector<SRInfo> > &RestoreIdxes) { |
| if (!RestoreMBBs[Id]) |
| return; |
| std::vector<SRInfo> &Restores = RestoreIdxes[Id]; |
| for (unsigned i = 0, e = Restores.size(); i != e; ++i) |
| if (Restores[i].index == index && Restores[i].vreg) |
| Restores[i].index = -1; |
| } |
| |
| |
| std::vector<LiveInterval*> LiveIntervals:: |
| addIntervalsForSpills(const LiveInterval &li, |
| const LoopInfo *loopInfo, VirtRegMap &vrm) { |
| // Since this is called after the analysis is done we don't know if |
| // LiveVariables is available |
| lv_ = getAnalysisToUpdate<LiveVariables>(); |
| |
| assert(li.weight != HUGE_VALF && |
| "attempt to spill already spilled interval!"); |
| |
| DOUT << "\t\t\t\tadding intervals for spills for interval: "; |
| li.print(DOUT, mri_); |
| DOUT << '\n'; |
| |
| // Each bit specify whether it a spill is required in the MBB. |
| BitVector SpillMBBs(mf_->getNumBlockIDs()); |
| std::map<unsigned, std::vector<SRInfo> > SpillIdxes; |
| BitVector RestoreMBBs(mf_->getNumBlockIDs()); |
| std::map<unsigned, std::vector<SRInfo> > RestoreIdxes; |
| std::map<unsigned,unsigned> MBBVRegsMap; |
| std::vector<LiveInterval*> NewLIs; |
| SSARegMap *RegMap = mf_->getSSARegMap(); |
| const TargetRegisterClass* rc = RegMap->getRegClass(li.reg); |
| |
| unsigned NumValNums = li.getNumValNums(); |
| SmallVector<MachineInstr*, 4> ReMatDefs; |
| ReMatDefs.resize(NumValNums, NULL); |
| SmallVector<MachineInstr*, 4> ReMatOrigDefs; |
| ReMatOrigDefs.resize(NumValNums, NULL); |
| SmallVector<int, 4> ReMatIds; |
| ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT); |
| BitVector ReMatDelete(NumValNums); |
| unsigned Slot = VirtRegMap::MAX_STACK_SLOT; |
| |
| // Spilling a split live interval. It cannot be split any further. Also, |
| // it's also guaranteed to be a single val# / range interval. |
| if (vrm.getPreSplitReg(li.reg)) { |
| vrm.setIsSplitFromReg(li.reg, 0); |
| vrm.removeKillPoint(li.reg); |
| bool DefIsReMat = vrm.isReMaterialized(li.reg); |
| Slot = vrm.getStackSlot(li.reg); |
| assert(Slot != VirtRegMap::MAX_STACK_SLOT); |
| MachineInstr *ReMatDefMI = DefIsReMat ? |
| vrm.getReMaterializedMI(li.reg) : NULL; |
| int LdSlot = 0; |
| bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); |
| bool isLoad = isLoadSS || |
| (DefIsReMat && (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG)); |
| bool IsFirstRange = true; |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| // If this is a split live interval with multiple ranges, it means there |
| // are two-address instructions that re-defined the value. Only the |
| // first def can be rematerialized! |
| if (IsFirstRange) { |
| // Note ReMatOrigDefMI has already been deleted. |
| rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI, |
| Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, |
| false, vrm, RegMap, rc, ReMatIds, loopInfo, |
| SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, |
| MBBVRegsMap, NewLIs); |
| } else { |
| rewriteInstructionsForSpills(li, false, I, NULL, 0, |
| Slot, 0, false, false, false, |
| false, vrm, RegMap, rc, ReMatIds, loopInfo, |
| SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, |
| MBBVRegsMap, NewLIs); |
| } |
| IsFirstRange = false; |
| } |
| return NewLIs; |
| } |
| |
| bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li); |
| if (SplitLimit != -1 && (int)numSplits >= SplitLimit) |
| TrySplit = false; |
| if (TrySplit) |
| ++numSplits; |
| bool NeedStackSlot = false; |
| for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); |
| i != e; ++i) { |
| const VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| unsigned DefIdx = VNI->def; |
| if (DefIdx == ~1U) |
| continue; // Dead val#. |
| // Is the def for the val# rematerializable? |
| MachineInstr *ReMatDefMI = (DefIdx == ~0u) |
| ? 0 : getInstructionFromIndex(DefIdx); |
| if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI)) { |
| // Remember how to remat the def of this val#. |
| ReMatOrigDefs[VN] = ReMatDefMI; |
| // Original def may be modified so we have to make a copy here. vrm must |
| // delete these! |
| ReMatDefs[VN] = ReMatDefMI = ReMatDefMI->clone(); |
| |
| bool CanDelete = true; |
| if (VNI->hasPHIKill) { |
| // A kill is a phi node, not all of its uses can be rematerialized. |
| // It must not be deleted. |
| CanDelete = false; |
| // Need a stack slot if there is any live range where uses cannot be |
| // rematerialized. |
| NeedStackSlot = true; |
| } |
| if (CanDelete) |
| ReMatDelete.set(VN); |
| } else { |
| // Need a stack slot if there is any live range where uses cannot be |
| // rematerialized. |
| NeedStackSlot = true; |
| } |
| } |
| |
| // One stack slot per live interval. |
| if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) |
| Slot = vrm.assignVirt2StackSlot(li.reg); |
| |
| // Create new intervals and rewrite defs and uses. |
| for (LiveInterval::Ranges::const_iterator |
| I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) { |
| MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id]; |
| MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id]; |
| bool DefIsReMat = ReMatDefMI != NULL; |
| bool CanDelete = ReMatDelete[I->valno->id]; |
| int LdSlot = 0; |
| bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); |
| bool isLoad = isLoadSS || |
| (DefIsReMat && (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG)); |
| rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI, |
| Slot, LdSlot, isLoad, isLoadSS, DefIsReMat, |
| CanDelete, vrm, RegMap, rc, ReMatIds, loopInfo, |
| SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes, |
| MBBVRegsMap, NewLIs); |
| } |
| |
| // Insert spills / restores if we are splitting. |
| if (!TrySplit) |
| return NewLIs; |
| |
| SmallPtrSet<LiveInterval*, 4> AddedKill; |
| SmallVector<unsigned, 2> Ops; |
| if (NeedStackSlot) { |
| int Id = SpillMBBs.find_first(); |
| while (Id != -1) { |
| std::vector<SRInfo> &spills = SpillIdxes[Id]; |
| for (unsigned i = 0, e = spills.size(); i != e; ++i) { |
| int index = spills[i].index; |
| unsigned VReg = spills[i].vreg; |
| LiveInterval &nI = getOrCreateInterval(VReg); |
| bool isReMat = vrm.isReMaterialized(VReg); |
| MachineInstr *MI = getInstructionFromIndex(index); |
| bool CanFold = false; |
| bool FoundUse = false; |
| Ops.clear(); |
| if (spills[i].canFold) { |
| CanFold = true; |
| for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { |
| MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isRegister() || MO.getReg() != VReg) |
| continue; |
| |
| Ops.push_back(j); |
| if (MO.isDef()) |
| continue; |
| if (isReMat || |
| (!FoundUse && !alsoFoldARestore(Id, index, VReg, |
| RestoreMBBs, RestoreIdxes))) { |
| // MI has two-address uses of the same register. If the use |
| // isn't the first and only use in the BB, then we can't fold |
| // it. FIXME: Move this to rewriteInstructionsForSpills. |
| CanFold = false; |
| break; |
| } |
| FoundUse = true; |
| } |
| } |
| // Fold the store into the def if possible. |
| bool Folded = false; |
| if (CanFold && !Ops.empty()) { |
| if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){ |
| Folded = true; |
| if (FoundUse > 0) { |
| // Also folded uses, do not issue a load. |
| eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes); |
| nI.removeRange(getLoadIndex(index), getUseIndex(index)+1); |
| } |
| nI.removeRange(getDefIndex(index), getStoreIndex(index)); |
| } |
| } |
| |
| // Else tell the spiller to issue a spill. |
| if (!Folded) { |
| LiveRange *LR = &nI.ranges[nI.ranges.size()-1]; |
| bool isKill = LR->end == getStoreIndex(index); |
| vrm.addSpillPoint(VReg, isKill, MI); |
| if (isKill) |
| AddedKill.insert(&nI); |
| } |
| } |
| Id = SpillMBBs.find_next(Id); |
| } |
| } |
| |
| int Id = RestoreMBBs.find_first(); |
| while (Id != -1) { |
| std::vector<SRInfo> &restores = RestoreIdxes[Id]; |
| for (unsigned i = 0, e = restores.size(); i != e; ++i) { |
| int index = restores[i].index; |
| if (index == -1) |
| continue; |
| unsigned VReg = restores[i].vreg; |
| LiveInterval &nI = getOrCreateInterval(VReg); |
| MachineInstr *MI = getInstructionFromIndex(index); |
| bool CanFold = false; |
| Ops.clear(); |
| if (restores[i].canFold) { |
| CanFold = true; |
| for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { |
| MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isRegister() || MO.getReg() != VReg) |
| continue; |
| |
| if (MO.isDef()) { |
| // If this restore were to be folded, it would have been folded |
| // already. |
| CanFold = false; |
| break; |
| } |
| Ops.push_back(j); |
| } |
| } |
| |
| // Fold the load into the use if possible. |
| bool Folded = false; |
| if (CanFold && !Ops.empty()) { |
| if (!vrm.isReMaterialized(VReg)) |
| Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg); |
| else { |
| MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg); |
| int LdSlot = 0; |
| bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot); |
| // If the rematerializable def is a load, also try to fold it. |
| if (isLoadSS || |
| (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG)) |
| Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, |
| Ops, isLoadSS, LdSlot, VReg); |
| } |
| } |
| // If folding is not possible / failed, then tell the spiller to issue a |
| // load / rematerialization for us. |
| if (Folded) |
| nI.removeRange(getLoadIndex(index), getUseIndex(index)+1); |
| else |
| vrm.addRestorePoint(VReg, MI); |
| } |
| Id = RestoreMBBs.find_next(Id); |
| } |
| |
| // Finalize intervals: add kills, finalize spill weights, and filter out |
| // dead intervals. |
| std::vector<LiveInterval*> RetNewLIs; |
| for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) { |
| LiveInterval *LI = NewLIs[i]; |
| if (!LI->empty()) { |
| LI->weight /= LI->getSize(); |
| if (!AddedKill.count(LI)) { |
| LiveRange *LR = &LI->ranges[LI->ranges.size()-1]; |
| MachineInstr *LastUse = getInstructionFromIndex(getBaseIndex(LR->end)); |
| int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg); |
| assert(UseIdx != -1); |
| if (LastUse->getInstrDescriptor()-> |
| getOperandConstraint(UseIdx, TOI::TIED_TO) == -1) { |
| LastUse->getOperand(UseIdx).setIsKill(); |
| vrm.addKillPoint(LI->reg, &LastUse->getOperand(UseIdx)); |
| } |
| } |
| RetNewLIs.push_back(LI); |
| } |
| } |
| |
| return RetNewLIs; |
| } |