| //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the LoopInfo class that is used to identify natural loops |
| // and determine the loop depth of various nodes of the CFG. Note that natural |
| // loops may actually be several loops that share the same header node. |
| // |
| // This analysis calculates the nesting structure of loops in a function. For |
| // each natural loop identified, this analysis identifies natural loops |
| // contained entirely within the loop and the basic blocks the make up the loop. |
| // |
| // It can calculate on the fly various bits of information, for example: |
| // |
| // * whether there is a preheader for the loop |
| // * the number of back edges to the header |
| // * whether or not a particular block branches out of the loop |
| // * the successor blocks of the loop |
| // * the loop depth |
| // * the trip count |
| // * etc... |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_LOOP_INFO_H |
| #define LLVM_ANALYSIS_LOOP_INFO_H |
| |
| #include "llvm/Pass.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Streams.h" |
| #include <algorithm> |
| #include <ostream> |
| |
| template<typename T> |
| static void RemoveFromVector(std::vector<T*> &V, T *N) { |
| typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N); |
| assert(I != V.end() && "N is not in this list!"); |
| V.erase(I); |
| } |
| |
| namespace llvm { |
| |
| class DominatorTree; |
| class LoopInfo; |
| class PHINode; |
| class Instruction; |
| template<class N> class LoopInfoBase; |
| |
| //===----------------------------------------------------------------------===// |
| /// LoopBase class - Instances of this class are used to represent loops that are |
| /// detected in the flow graph |
| /// |
| template<class BlockT> |
| class LoopBase { |
| LoopBase<BlockT> *ParentLoop; |
| std::vector<LoopBase<BlockT>*> SubLoops; // Loops contained entirely within this one |
| std::vector<BlockT*> Blocks; // First entry is the header node |
| |
| LoopBase(const LoopBase<BlockT> &); // DO NOT IMPLEMENT |
| const LoopBase<BlockT> &operator=(const LoopBase<BlockT> &); // DO NOT IMPLEMENT |
| public: |
| /// Loop ctor - This creates an empty loop. |
| LoopBase() : ParentLoop(0) {} |
| ~LoopBase() { |
| for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) |
| delete SubLoops[i]; |
| } |
| |
| unsigned getLoopDepth() const { |
| unsigned D = 0; |
| for (const LoopBase<BlockT> *CurLoop = this; CurLoop; |
| CurLoop = CurLoop->ParentLoop) |
| ++D; |
| return D; |
| } |
| BlockT *getHeader() const { return Blocks.front(); } |
| LoopBase<BlockT> *getParentLoop() const { return ParentLoop; } |
| |
| /// contains - Return true of the specified basic block is in this loop |
| /// |
| bool contains(const BlockT *BB) const { |
| return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); |
| } |
| |
| /// iterator/begin/end - Return the loops contained entirely within this loop. |
| /// |
| const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; } |
| typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator; |
| iterator begin() const { return SubLoops.begin(); } |
| iterator end() const { return SubLoops.end(); } |
| bool empty() const { return SubLoops.empty(); } |
| |
| /// getBlocks - Get a list of the basic blocks which make up this loop. |
| /// |
| const std::vector<BlockT*> &getBlocks() const { return Blocks; } |
| typedef typename std::vector<BlockT*>::const_iterator block_iterator; |
| block_iterator block_begin() const { return Blocks.begin(); } |
| block_iterator block_end() const { return Blocks.end(); } |
| |
| /// isLoopExit - True if terminator in the block can branch to another block |
| /// that is outside of the current loop. |
| /// |
| bool isLoopExit(const BlockT *BB) const { |
| for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| SI != SE; ++SI) { |
| if (!contains(*SI)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// getNumBackEdges - Calculate the number of back edges to the loop header |
| /// |
| unsigned getNumBackEdges() const { |
| unsigned NumBackEdges = 0; |
| BlockT *H = getHeader(); |
| |
| for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I) |
| if (contains(*I)) |
| ++NumBackEdges; |
| |
| return NumBackEdges; |
| } |
| |
| /// isLoopInvariant - Return true if the specified value is loop invariant |
| /// |
| bool isLoopInvariant(Value *V) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return !contains(I->getParent()); |
| return true; // All non-instructions are loop invariant |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // APIs for simple analysis of the loop. |
| // |
| // Note that all of these methods can fail on general loops (ie, there may not |
| // be a preheader, etc). For best success, the loop simplification and |
| // induction variable canonicalization pass should be used to normalize loops |
| // for easy analysis. These methods assume canonical loops. |
| |
| /// getExitingBlocks - Return all blocks inside the loop that have successors |
| /// outside of the loop. These are the blocks _inside of the current loop_ |
| /// which branch out. The returned list is always unique. |
| /// |
| void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); |
| std::sort(LoopBBs.begin(), LoopBBs.end()); |
| |
| for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(), |
| BE = Blocks.end(); BI != BE; ++BI) |
| for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) |
| if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) { |
| // Not in current loop? It must be an exit block. |
| ExitingBlocks.push_back(*BI); |
| break; |
| } |
| } |
| |
| /// getExitBlocks - Return all of the successor blocks of this loop. These |
| /// are the blocks _outside of the current loop_ which are branched to. |
| /// |
| void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); |
| std::sort(LoopBBs.begin(), LoopBBs.end()); |
| |
| for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(), |
| BE = Blocks.end(); BI != BE; ++BI) |
| for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) |
| if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) |
| // Not in current loop? It must be an exit block. |
| ExitBlocks.push_back(*I); |
| } |
| |
| /// getUniqueExitBlocks - Return all unique successor blocks of this loop. |
| /// These are the blocks _outside of the current loop_ which are branched to. |
| /// This assumes that loop is in canonical form. |
| /// |
| void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); |
| std::sort(LoopBBs.begin(), LoopBBs.end()); |
| |
| std::vector<BlockT*> switchExitBlocks; |
| |
| for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(), |
| BE = Blocks.end(); BI != BE; ++BI) { |
| |
| BlockT *current = *BI; |
| switchExitBlocks.clear(); |
| |
| for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { |
| if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) |
| // If block is inside the loop then it is not a exit block. |
| continue; |
| |
| pred_iterator PI = pred_begin(*I); |
| BlockT *firstPred = *PI; |
| |
| // If current basic block is this exit block's first predecessor |
| // then only insert exit block in to the output ExitBlocks vector. |
| // This ensures that same exit block is not inserted twice into |
| // ExitBlocks vector. |
| if (current != firstPred) |
| continue; |
| |
| // If a terminator has more then two successors, for example SwitchInst, |
| // then it is possible that there are multiple edges from current block |
| // to one exit block. |
| if (current->getTerminator()->getNumSuccessors() <= 2) { |
| ExitBlocks.push_back(*I); |
| continue; |
| } |
| |
| // In case of multiple edges from current block to exit block, collect |
| // only one edge in ExitBlocks. Use switchExitBlocks to keep track of |
| // duplicate edges. |
| if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) |
| == switchExitBlocks.end()) { |
| switchExitBlocks.push_back(*I); |
| ExitBlocks.push_back(*I); |
| } |
| } |
| } |
| } |
| |
| /// getLoopPreheader - If there is a preheader for this loop, return it. A |
| /// loop has a preheader if there is only one edge to the header of the loop |
| /// from outside of the loop. If this is the case, the block branching to the |
| /// header of the loop is the preheader node. |
| /// |
| /// This method returns null if there is no preheader for the loop. |
| /// |
| BlockT *getLoopPreheader() const { |
| // Keep track of nodes outside the loop branching to the header... |
| BlockT *Out = 0; |
| |
| // Loop over the predecessors of the header node... |
| BlockT *Header = getHeader(); |
| for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| PI != PE; ++PI) |
| if (!contains(*PI)) { // If the block is not in the loop... |
| if (Out && Out != *PI) |
| return 0; // Multiple predecessors outside the loop |
| Out = *PI; |
| } |
| |
| // Make sure there is only one exit out of the preheader. |
| assert(Out && "Header of loop has no predecessors from outside loop?"); |
| succ_iterator SI = succ_begin(Out); |
| ++SI; |
| if (SI != succ_end(Out)) |
| return 0; // Multiple exits from the block, must not be a preheader. |
| |
| // If there is exactly one preheader, return it. If there was zero, then Out |
| // is still null. |
| return Out; |
| } |
| |
| /// getLoopLatch - If there is a latch block for this loop, return it. A |
| /// latch block is the canonical backedge for a loop. A loop header in normal |
| /// form has two edges into it: one from a preheader and one from a latch |
| /// block. |
| BlockT *getLoopLatch() const { |
| BlockT *Header = getHeader(); |
| pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| if (PI == PE) return 0; // no preds? |
| |
| BlockT *Latch = 0; |
| if (contains(*PI)) |
| Latch = *PI; |
| ++PI; |
| if (PI == PE) return 0; // only one pred? |
| |
| if (contains(*PI)) { |
| if (Latch) return 0; // multiple backedges |
| Latch = *PI; |
| } |
| ++PI; |
| if (PI != PE) return 0; // more than two preds |
| |
| return Latch; |
| } |
| |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| /// induction variable: an integer recurrence that starts at 0 and increments |
| /// by one each time through the loop. If so, return the phi node that |
| /// corresponds to it. |
| /// |
| PHINode *getCanonicalInductionVariable() const { |
| BlockT *H = getHeader(); |
| |
| BlockT *Incoming = 0, *Backedge = 0; |
| pred_iterator PI = pred_begin(H); |
| assert(PI != pred_end(H) && "Loop must have at least one backedge!"); |
| Backedge = *PI++; |
| if (PI == pred_end(H)) return 0; // dead loop |
| Incoming = *PI++; |
| if (PI != pred_end(H)) return 0; // multiple backedges? |
| |
| if (contains(Incoming)) { |
| if (contains(Backedge)) |
| return 0; |
| std::swap(Incoming, Backedge); |
| } else if (!contains(Backedge)) |
| return 0; |
| |
| // Loop over all of the PHI nodes, looking for a canonical indvar. |
| for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (Instruction *Inc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) |
| if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| if (CI->equalsInt(1)) |
| return PN; |
| } |
| return 0; |
| } |
| |
| /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds |
| /// the canonical induction variable value for the "next" iteration of the |
| /// loop. This always succeeds if getCanonicalInductionVariable succeeds. |
| /// |
| Instruction *getCanonicalInductionVariableIncrement() const { |
| if (PHINode *PN = getCanonicalInductionVariable()) { |
| bool P1InLoop = contains(PN->getIncomingBlock(1)); |
| return cast<Instruction>(PN->getIncomingValue(P1InLoop)); |
| } |
| return 0; |
| } |
| |
| /// getTripCount - Return a loop-invariant LLVM value indicating the number of |
| /// times the loop will be executed. Note that this means that the backedge |
| /// of the loop executes N-1 times. If the trip-count cannot be determined, |
| /// this returns null. |
| /// |
| Value *getTripCount() const { |
| // Canonical loops will end with a 'cmp ne I, V', where I is the incremented |
| // canonical induction variable and V is the trip count of the loop. |
| Instruction *Inc = getCanonicalInductionVariableIncrement(); |
| if (Inc == 0) return 0; |
| PHINode *IV = cast<PHINode>(Inc->getOperand(0)); |
| |
| BlockT *BackedgeBlock = |
| IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) |
| if (BI->isConditional()) { |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { |
| if (ICI->getOperand(0) == Inc) |
| if (BI->getSuccessor(0) == getHeader()) { |
| if (ICI->getPredicate() == ICmpInst::ICMP_NE) |
| return ICI->getOperand(1); |
| } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { |
| return ICI->getOperand(1); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// isLCSSAForm - Return true if the Loop is in LCSSA form |
| bool isLCSSAForm() const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end()); |
| |
| for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { |
| BlockT *BB = *BI; |
| for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| BlockT *UserBB = cast<Instruction>(*UI)->getParent(); |
| if (PHINode *P = dyn_cast<PHINode>(*UI)) { |
| unsigned OperandNo = UI.getOperandNo(); |
| UserBB = P->getIncomingBlock(OperandNo/2); |
| } |
| |
| // Check the current block, as a fast-path. Most values are used in the |
| // same block they are defined in. |
| if (UserBB != BB && !LoopBBs.count(UserBB)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // APIs for updating loop information after changing the CFG |
| // |
| |
| /// addBasicBlockToLoop - This method is used by other analyses to update loop |
| /// information. NewBB is set to be a new member of the current loop. |
| /// Because of this, it is added as a member of all parent loops, and is added |
| /// to the specified LoopInfo object as being in the current basic block. It |
| /// is not valid to replace the loop header with this method. |
| /// |
| void addBasicBlockToLoop(BlockT *NewBB, LoopInfo &LI); |
| |
| /// replaceChildLoopWith - This is used when splitting loops up. It replaces |
| /// the OldChild entry in our children list with NewChild, and updates the |
| /// parent pointer of OldChild to be null and the NewChild to be this loop. |
| /// This updates the loop depth of the new child. |
| void replaceChildLoopWith(LoopBase<BlockT> *OldChild, |
| LoopBase<BlockT> *NewChild) { |
| assert(OldChild->ParentLoop == this && "This loop is already broken!"); |
| assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); |
| typename std::vector<LoopBase<BlockT>*>::iterator I = |
| std::find(SubLoops.begin(), SubLoops.end(), OldChild); |
| assert(I != SubLoops.end() && "OldChild not in loop!"); |
| *I = NewChild; |
| OldChild->ParentLoop = 0; |
| NewChild->ParentLoop = this; |
| } |
| |
| /// addChildLoop - Add the specified loop to be a child of this loop. This |
| /// updates the loop depth of the new child. |
| /// |
| void addChildLoop(LoopBase<BlockT> *NewChild) { |
| assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); |
| NewChild->ParentLoop = this; |
| SubLoops.push_back(NewChild); |
| } |
| |
| /// removeChildLoop - This removes the specified child from being a subloop of |
| /// this loop. The loop is not deleted, as it will presumably be inserted |
| /// into another loop. |
| LoopBase<BlockT> *removeChildLoop(iterator I) { |
| assert(I != SubLoops.end() && "Cannot remove end iterator!"); |
| LoopBase<BlockT> *Child = *I; |
| assert(Child->ParentLoop == this && "Child is not a child of this loop!"); |
| SubLoops.erase(SubLoops.begin()+(I-begin())); |
| Child->ParentLoop = 0; |
| return Child; |
| } |
| |
| /// addBlockEntry - This adds a basic block directly to the basic block list. |
| /// This should only be used by transformations that create new loops. Other |
| /// transformations should use addBasicBlockToLoop. |
| void addBlockEntry(BlockT *BB) { |
| Blocks.push_back(BB); |
| } |
| |
| /// moveToHeader - This method is used to move BB (which must be part of this |
| /// loop) to be the loop header of the loop (the block that dominates all |
| /// others). |
| void moveToHeader(BlockT *BB) { |
| if (Blocks[0] == BB) return; |
| for (unsigned i = 0; ; ++i) { |
| assert(i != Blocks.size() && "Loop does not contain BB!"); |
| if (Blocks[i] == BB) { |
| Blocks[i] = Blocks[0]; |
| Blocks[0] = BB; |
| return; |
| } |
| } |
| } |
| |
| /// removeBlockFromLoop - This removes the specified basic block from the |
| /// current loop, updating the Blocks as appropriate. This does not update |
| /// the mapping in the LoopInfo class. |
| void removeBlockFromLoop(BlockT *BB) { |
| RemoveFromVector(Blocks, BB); |
| } |
| |
| /// verifyLoop - Verify loop structure |
| void verifyLoop() const { |
| #ifndef NDEBUG |
| assert (getHeader() && "Loop header is missing"); |
| assert (getLoopPreheader() && "Loop preheader is missing"); |
| assert (getLoopLatch() && "Loop latch is missing"); |
| for (typename std::vector<LoopBase<BlockT>*>::const_iterator I = |
| SubLoops.begin(), E = SubLoops.end(); I != E; ++I) |
| (*I)->verifyLoop(); |
| #endif |
| } |
| |
| void print(std::ostream &OS, unsigned Depth = 0) const { |
| OS << std::string(Depth*2, ' ') << "Loop Containing: "; |
| |
| for (unsigned i = 0; i < getBlocks().size(); ++i) { |
| if (i) OS << ","; |
| WriteAsOperand(OS, getBlocks()[i], false); |
| } |
| OS << "\n"; |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| (*I)->print(OS, Depth+2); |
| } |
| |
| void print(std::ostream *O, unsigned Depth = 0) const { |
| if (O) print(*O, Depth); |
| } |
| |
| void dump() const { |
| print(cerr); |
| } |
| |
| private: |
| friend class LoopInfoBase<BlockT>; |
| LoopBase(BlockT *BB) : ParentLoop(0) { |
| Blocks.push_back(BB); |
| } |
| }; |
| |
| typedef LoopBase<BasicBlock> Loop; |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// LoopInfo - This class builds and contains all of the top level loop |
| /// structures in the specified function. |
| /// |
| |
| template<class BlockT> |
| class LoopInfoBase { |
| // BBMap - Mapping of basic blocks to the inner most loop they occur in |
| std::map<BlockT*, Loop*> BBMap; |
| std::vector<LoopBase<BlockT>*> TopLevelLoops; |
| friend class LoopBase<BlockT>; |
| |
| public: |
| LoopInfoBase() { } |
| ~LoopInfoBase() { releaseMemory(); } |
| |
| void releaseMemory() { |
| for (typename std::vector<LoopBase<BlockT>* >::iterator I = |
| TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I) |
| delete *I; // Delete all of the loops... |
| |
| BBMap.clear(); // Reset internal state of analysis |
| TopLevelLoops.clear(); |
| } |
| |
| /// iterator/begin/end - The interface to the top-level loops in the current |
| /// function. |
| /// |
| typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator; |
| iterator begin() const { return TopLevelLoops.begin(); } |
| iterator end() const { return TopLevelLoops.end(); } |
| |
| /// getLoopFor - Return the inner most loop that BB lives in. If a basic |
| /// block is in no loop (for example the entry node), null is returned. |
| /// |
| LoopBase<BlockT> *getLoopFor(const BlockT *BB) const { |
| typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I= |
| BBMap.find(const_cast<BasicBlock*>(BB)); |
| return I != BBMap.end() ? I->second : 0; |
| } |
| |
| /// operator[] - same as getLoopFor... |
| /// |
| const LoopBase<BlockT> *operator[](const BlockT *BB) const { |
| return getLoopFor(BB); |
| } |
| |
| /// getLoopDepth - Return the loop nesting level of the specified block... |
| /// |
| unsigned getLoopDepth(const BlockT *BB) const { |
| const Loop *L = getLoopFor(BB); |
| return L ? L->getLoopDepth() : 0; |
| } |
| |
| // isLoopHeader - True if the block is a loop header node |
| bool isLoopHeader(BlockT *BB) const { |
| const Loop *L = getLoopFor(BB); |
| return L && L->getHeader() == BB; |
| } |
| |
| /// removeLoop - This removes the specified top-level loop from this loop info |
| /// object. The loop is not deleted, as it will presumably be inserted into |
| /// another loop. |
| LoopBase<BlockT> *removeLoop(iterator I) { |
| assert(I != end() && "Cannot remove end iterator!"); |
| LoopBase<BlockT> *L = *I; |
| assert(L->getParentLoop() == 0 && "Not a top-level loop!"); |
| TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); |
| return L; |
| } |
| |
| /// changeLoopFor - Change the top-level loop that contains BB to the |
| /// specified loop. This should be used by transformations that restructure |
| /// the loop hierarchy tree. |
| void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) { |
| LoopBase<BlockT> *&OldLoop = BBMap[BB]; |
| assert(OldLoop && "Block not in a loop yet!"); |
| OldLoop = L; |
| } |
| |
| /// changeTopLevelLoop - Replace the specified loop in the top-level loops |
| /// list with the indicated loop. |
| void changeTopLevelLoop(LoopBase<BlockT> *OldLoop, |
| LoopBase<BlockT> *NewLoop) { |
| typename std::vector<LoopBase<BlockT>*>::iterator I = |
| std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); |
| assert(I != TopLevelLoops.end() && "Old loop not at top level!"); |
| *I = NewLoop; |
| assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && |
| "Loops already embedded into a subloop!"); |
| } |
| |
| /// addTopLevelLoop - This adds the specified loop to the collection of |
| /// top-level loops. |
| void addTopLevelLoop(LoopBase<BlockT> *New) { |
| assert(New->getParentLoop() == 0 && "Loop already in subloop!"); |
| TopLevelLoops.push_back(New); |
| } |
| |
| /// removeBlock - This method completely removes BB from all data structures, |
| /// including all of the Loop objects it is nested in and our mapping from |
| /// BasicBlocks to loops. |
| void removeBlock(BlockT *BB) { |
| typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB); |
| if (I != BBMap.end()) { |
| for (Loop *L = I->second; L; L = L->getParentLoop()) |
| L->removeBlockFromLoop(BB); |
| |
| BBMap.erase(I); |
| } |
| } |
| |
| // Internals |
| |
| static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { |
| if (SubLoop == 0) return true; |
| if (SubLoop == ParentLoop) return false; |
| return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); |
| } |
| |
| void Calculate(DominatorTree &DT) { |
| BlockT *RootNode = DT.getRootNode()->getBlock(); |
| |
| for (df_iterator<BlockT*> NI = df_begin(RootNode), |
| NE = df_end(RootNode); NI != NE; ++NI) |
| if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT)) |
| TopLevelLoops.push_back(L); |
| } |
| |
| LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTree &DT) { |
| if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node? |
| |
| std::vector<BlockT *> TodoStack; |
| |
| // Scan the predecessors of BB, checking to see if BB dominates any of |
| // them. This identifies backedges which target this node... |
| for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) |
| if (DT.dominates(BB, *I)) // If BB dominates it's predecessor... |
| TodoStack.push_back(*I); |
| |
| if (TodoStack.empty()) return 0; // No backedges to this block... |
| |
| // Create a new loop to represent this basic block... |
| LoopBase<BlockT> *L = new LoopBase<BlockT>(BB); |
| BBMap[BB] = L; |
| |
| BlockT *EntryBlock = &BB->getParent()->getEntryBlock(); |
| |
| while (!TodoStack.empty()) { // Process all the nodes in the loop |
| BlockT *X = TodoStack.back(); |
| TodoStack.pop_back(); |
| |
| if (!L->contains(X) && // As of yet unprocessed?? |
| DT.dominates(EntryBlock, X)) { // X is reachable from entry block? |
| // Check to see if this block already belongs to a loop. If this occurs |
| // then we have a case where a loop that is supposed to be a child of the |
| // current loop was processed before the current loop. When this occurs, |
| // this child loop gets added to a part of the current loop, making it a |
| // sibling to the current loop. We have to reparent this loop. |
| if (LoopBase<BlockT> *SubLoop = |
| const_cast<LoopBase<BlockT>*>(getLoopFor(X))) |
| if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { |
| // Remove the subloop from it's current parent... |
| assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); |
| LoopBase<BlockT> *SLP = SubLoop->ParentLoop; // SubLoopParent |
| typename std::vector<LoopBase<BlockT>*>::iterator I = |
| std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); |
| assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); |
| SLP->SubLoops.erase(I); // Remove from parent... |
| |
| // Add the subloop to THIS loop... |
| SubLoop->ParentLoop = L; |
| L->SubLoops.push_back(SubLoop); |
| } |
| |
| // Normal case, add the block to our loop... |
| L->Blocks.push_back(X); |
| |
| // Add all of the predecessors of X to the end of the work stack... |
| TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); |
| } |
| } |
| |
| // If there are any loops nested within this loop, create them now! |
| for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(), |
| E = L->Blocks.end(); I != E; ++I) |
| if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) { |
| L->SubLoops.push_back(NewLoop); |
| NewLoop->ParentLoop = L; |
| } |
| |
| // Add the basic blocks that comprise this loop to the BBMap so that this |
| // loop can be found for them. |
| // |
| for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(), |
| E = L->Blocks.end(); I != E; ++I) { |
| typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI = |
| BBMap.lower_bound(*I); |
| if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet... |
| BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level |
| } |
| |
| // Now that we have a list of all of the child loops of this loop, check to |
| // see if any of them should actually be nested inside of each other. We can |
| // accidentally pull loops our of their parents, so we must make sure to |
| // organize the loop nests correctly now. |
| { |
| std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops; |
| for (unsigned i = 0; i != L->SubLoops.size(); ++i) { |
| LoopBase<BlockT> *Child = L->SubLoops[i]; |
| assert(Child->getParentLoop() == L && "Not proper child loop?"); |
| |
| if (LoopBase<BlockT> *ContainingLoop = |
| ContainingLoops[Child->getHeader()]) { |
| // If there is already a loop which contains this loop, move this loop |
| // into the containing loop. |
| MoveSiblingLoopInto(Child, ContainingLoop); |
| --i; // The loop got removed from the SubLoops list. |
| } else { |
| // This is currently considered to be a top-level loop. Check to see if |
| // any of the contained blocks are loop headers for subloops we have |
| // already processed. |
| for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { |
| LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]]; |
| if (BlockLoop == 0) { // Child block not processed yet... |
| BlockLoop = Child; |
| } else if (BlockLoop != Child) { |
| LoopBase<BlockT> *SubLoop = BlockLoop; |
| // Reparent all of the blocks which used to belong to BlockLoops |
| for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) |
| ContainingLoops[SubLoop->Blocks[j]] = Child; |
| |
| // There is already a loop which contains this block, that means |
| // that we should reparent the loop which the block is currently |
| // considered to belong to to be a child of this loop. |
| MoveSiblingLoopInto(SubLoop, Child); |
| --i; // We just shrunk the SubLoops list. |
| } |
| } |
| } |
| } |
| } |
| |
| return L; |
| } |
| |
| /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of |
| /// the NewParent Loop, instead of being a sibling of it. |
| void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild, |
| LoopBase<BlockT> *NewParent) { |
| LoopBase<BlockT> *OldParent = NewChild->getParentLoop(); |
| assert(OldParent && OldParent == NewParent->getParentLoop() && |
| NewChild != NewParent && "Not sibling loops!"); |
| |
| // Remove NewChild from being a child of OldParent |
| typename std::vector<LoopBase<BlockT>*>::iterator I = |
| std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); |
| assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); |
| OldParent->SubLoops.erase(I); // Remove from parent's subloops list |
| NewChild->ParentLoop = 0; |
| |
| InsertLoopInto(NewChild, NewParent); |
| } |
| |
| /// InsertLoopInto - This inserts loop L into the specified parent loop. If the |
| /// parent loop contains a loop which should contain L, the loop gets inserted |
| /// into L instead. |
| void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) { |
| BlockT *LHeader = L->getHeader(); |
| assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); |
| |
| // Check to see if it belongs in a child loop... |
| for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) |
| if (Parent->SubLoops[i]->contains(LHeader)) { |
| InsertLoopInto(L, Parent->SubLoops[i]); |
| return; |
| } |
| |
| // If not, insert it here! |
| Parent->SubLoops.push_back(L); |
| L->ParentLoop = Parent; |
| } |
| |
| // Debugging |
| |
| void print(std::ostream &OS, const Module* ) const { |
| for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
| TopLevelLoops[i]->print(OS); |
| #if 0 |
| for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(), |
| E = BBMap.end(); I != E; ++I) |
| OS << "BB '" << I->first->getName() << "' level = " |
| << I->second->getLoopDepth() << "\n"; |
| #endif |
| } |
| }; |
| |
| class LoopInfo : public FunctionPass { |
| LoopInfoBase<BasicBlock>* LI; |
| friend class LoopBase<BasicBlock>; |
| |
| LoopInfoBase<BasicBlock>& getBase() { return *LI; } |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| |
| LoopInfo() : FunctionPass(intptr_t(&ID)) { |
| LI = new LoopInfoBase<BasicBlock>(); |
| } |
| |
| ~LoopInfo() { delete LI; } |
| |
| /// iterator/begin/end - The interface to the top-level loops in the current |
| /// function. |
| /// |
| typedef std::vector<Loop*>::const_iterator iterator; |
| inline iterator begin() const { return LI->begin(); } |
| inline iterator end() const { return LI->end(); } |
| |
| /// getLoopFor - Return the inner most loop that BB lives in. If a basic |
| /// block is in no loop (for example the entry node), null is returned. |
| /// |
| inline Loop *getLoopFor(const BasicBlock *BB) const { |
| return LI->getLoopFor(BB); |
| } |
| |
| /// operator[] - same as getLoopFor... |
| /// |
| inline const Loop *operator[](const BasicBlock *BB) const { |
| return LI->getLoopFor(BB); |
| } |
| |
| /// getLoopDepth - Return the loop nesting level of the specified block... |
| /// |
| inline unsigned getLoopDepth(const BasicBlock *BB) const { |
| return LI->getLoopDepth(BB); |
| } |
| |
| // isLoopHeader - True if the block is a loop header node |
| inline bool isLoopHeader(BasicBlock *BB) const { |
| return LI->isLoopHeader(BB); |
| } |
| |
| /// runOnFunction - Calculate the natural loop information. |
| /// |
| virtual bool runOnFunction(Function &F); |
| |
| virtual void releaseMemory() { LI->releaseMemory(); } |
| |
| virtual void print(std::ostream &O, const Module* M = 0) const { |
| if (O) LI->print(O, M); |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| /// removeLoop - This removes the specified top-level loop from this loop info |
| /// object. The loop is not deleted, as it will presumably be inserted into |
| /// another loop. |
| inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); } |
| |
| /// changeLoopFor - Change the top-level loop that contains BB to the |
| /// specified loop. This should be used by transformations that restructure |
| /// the loop hierarchy tree. |
| inline void changeLoopFor(BasicBlock *BB, Loop *L) { |
| LI->changeLoopFor(BB, L); |
| } |
| |
| /// changeTopLevelLoop - Replace the specified loop in the top-level loops |
| /// list with the indicated loop. |
| inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { |
| LI->changeTopLevelLoop(OldLoop, NewLoop); |
| } |
| |
| /// addTopLevelLoop - This adds the specified loop to the collection of |
| /// top-level loops. |
| inline void addTopLevelLoop(Loop *New) { |
| LI->addTopLevelLoop(New); |
| } |
| |
| /// removeBlock - This method completely removes BB from all data structures, |
| /// including all of the Loop objects it is nested in and our mapping from |
| /// BasicBlocks to loops. |
| void removeBlock(BasicBlock *BB) { |
| LI->removeBlock(BB); |
| } |
| }; |
| |
| |
| // Allow clients to walk the list of nested loops... |
| template <> struct GraphTraits<const Loop*> { |
| typedef const Loop NodeType; |
| typedef std::vector<Loop*>::const_iterator ChildIteratorType; |
| |
| static NodeType *getEntryNode(const Loop *L) { return L; } |
| static inline ChildIteratorType child_begin(NodeType *N) { |
| return N->begin(); |
| } |
| static inline ChildIteratorType child_end(NodeType *N) { |
| return N->end(); |
| } |
| }; |
| |
| template <> struct GraphTraits<Loop*> { |
| typedef Loop NodeType; |
| typedef std::vector<Loop*>::const_iterator ChildIteratorType; |
| |
| static NodeType *getEntryNode(Loop *L) { return L; } |
| static inline ChildIteratorType child_begin(NodeType *N) { |
| return N->begin(); |
| } |
| static inline ChildIteratorType child_end(NodeType *N) { |
| return N->end(); |
| } |
| }; |
| |
| template<class BlockT> |
| void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB, |
| LoopInfo &LI) { |
| assert((Blocks.empty() || LI[getHeader()] == this) && |
| "Incorrect LI specified for this loop!"); |
| assert(NewBB && "Cannot add a null basic block to the loop!"); |
| assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); |
| |
| LoopInfoBase<BasicBlock>& LIB = LI.getBase(); |
| |
| // Add the loop mapping to the LoopInfo object... |
| LIB.BBMap[NewBB] = this; |
| |
| // Add the basic block to this loop and all parent loops... |
| LoopBase<BlockT> *L = this; |
| while (L) { |
| L->Blocks.push_back(NewBB); |
| L = L->getParentLoop(); |
| } |
| } |
| |
| } // End llvm namespace |
| |
| // Make sure that any clients of this file link in LoopInfo.cpp |
| FORCE_DEFINING_FILE_TO_BE_LINKED(LoopInfo) |
| |
| #endif |