| //===-- EmitAssembly.cpp - Emit Sparc Specific .s File ---------------------==// |
| // |
| // This file implements all of the stuff neccesary to output a .s file from |
| // LLVM. The code in this file assumes that the specified module has already |
| // been compiled into the internal data structures of the Module. |
| // |
| // This code largely consists of two LLVM Pass's: a FunctionPass and a Pass. |
| // The FunctionPass is pipelined together with all of the rest of the code |
| // generation stages, and the Pass runs at the end to emit code for global |
| // variables and such. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SparcInternals.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/SlotCalculator.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "Support/StringExtras.h" |
| using std::string; |
| |
| namespace { |
| |
| class GlobalIdTable: public Annotation { |
| static AnnotationID AnnotId; |
| friend class AsmPrinter; // give access to AnnotId |
| |
| typedef hash_map<const Value*, int> ValIdMap; |
| typedef ValIdMap::const_iterator ValIdMapConstIterator; |
| typedef ValIdMap:: iterator ValIdMapIterator; |
| public: |
| SlotCalculator Table; // map anonymous values to unique integer IDs |
| ValIdMap valToIdMap; // used for values not handled by SlotCalculator |
| |
| GlobalIdTable(Module* M) : Annotation(AnnotId), Table(M, true) {} |
| }; |
| |
| AnnotationID GlobalIdTable::AnnotId = |
| AnnotationManager::getID("ASM PRINTER GLOBAL TABLE ANNOT"); |
| |
| //===---------------------------------------------------------------------===// |
| // Code Shared By the two printer passes, as a mixin |
| //===---------------------------------------------------------------------===// |
| |
| class AsmPrinter { |
| GlobalIdTable* idTable; |
| public: |
| std::ostream &toAsm; |
| const TargetMachine &Target; |
| |
| enum Sections { |
| Unknown, |
| Text, |
| ReadOnlyData, |
| InitRWData, |
| ZeroInitRWData, |
| } CurSection; |
| |
| AsmPrinter(std::ostream &os, const TargetMachine &T) |
| : idTable(0), toAsm(os), Target(T), CurSection(Unknown) {} |
| |
| // (start|end)(Module|Function) - Callback methods to be invoked by subclasses |
| void startModule(Module &M) { |
| // Create the global id table if it does not already exist |
| idTable = (GlobalIdTable*)M.getAnnotation(GlobalIdTable::AnnotId); |
| if (idTable == NULL) { |
| idTable = new GlobalIdTable(&M); |
| M.addAnnotation(idTable); |
| } |
| } |
| void startFunction(Function &F) { |
| // Make sure the slot table has information about this function... |
| idTable->Table.incorporateFunction(&F); |
| } |
| void endFunction(Function &) { |
| idTable->Table.purgeFunction(); // Forget all about F |
| } |
| void endModule() { |
| } |
| |
| // Check if a value is external or accessible from external code. |
| bool isExternal(const Value* V) { |
| const GlobalValue *GV = dyn_cast<GlobalValue>(V); |
| return GV && GV->hasExternalLinkage(); |
| } |
| |
| // enterSection - Use this method to enter a different section of the output |
| // executable. This is used to only output neccesary section transitions. |
| // |
| void enterSection(enum Sections S) { |
| if (S == CurSection) return; // Only switch section if neccesary |
| CurSection = S; |
| |
| toAsm << "\n\t.section "; |
| switch (S) |
| { |
| default: assert(0 && "Bad section name!"); |
| case Text: toAsm << "\".text\""; break; |
| case ReadOnlyData: toAsm << "\".rodata\",#alloc"; break; |
| case InitRWData: toAsm << "\".data\",#alloc,#write"; break; |
| case ZeroInitRWData: toAsm << "\".bss\",#alloc,#write"; break; |
| } |
| toAsm << "\n"; |
| } |
| |
| static string getValidSymbolName(const string &S) { |
| string Result; |
| |
| // Symbol names in Sparc assembly language have these rules: |
| // (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }* |
| // (b) A name beginning in "." is treated as a local name. |
| // |
| if (isdigit(S[0])) |
| Result = "ll"; |
| |
| for (unsigned i = 0; i < S.size(); ++i) |
| { |
| char C = S[i]; |
| if (C == '_' || C == '.' || C == '$' || isalpha(C) || isdigit(C)) |
| Result += C; |
| else |
| { |
| Result += '_'; |
| Result += char('0' + ((unsigned char)C >> 4)); |
| Result += char('0' + (C & 0xF)); |
| } |
| } |
| return Result; |
| } |
| |
| // getID - Return a valid identifier for the specified value. Base it on |
| // the name of the identifier if possible (qualified by the type), and |
| // use a numbered value based on prefix otherwise. |
| // FPrefix is always prepended to the output identifier. |
| // |
| string getID(const Value *V, const char *Prefix, const char *FPrefix = 0) { |
| string Result = FPrefix ? FPrefix : ""; // "Forced prefix" |
| |
| Result += V->hasName() ? V->getName() : string(Prefix); |
| |
| // Qualify all internal names with a unique id. |
| if (!isExternal(V)) { |
| int valId = idTable->Table.getValSlot(V); |
| if (valId == -1) { |
| GlobalIdTable::ValIdMapConstIterator I = idTable->valToIdMap.find(V); |
| if (I == idTable->valToIdMap.end()) |
| valId = idTable->valToIdMap[V] = idTable->valToIdMap.size(); |
| else |
| valId = I->second; |
| } |
| Result = Result + "_" + itostr(valId); |
| |
| // Replace or prefix problem characters in the name |
| Result = getValidSymbolName(Result); |
| } |
| |
| return Result; |
| } |
| |
| // getID Wrappers - Ensure consistent usage... |
| string getID(const Function *F) { |
| return getID(F, "LLVMFunction_"); |
| } |
| string getID(const BasicBlock *BB) { |
| return getID(BB, "LL", (".L_"+getID(BB->getParent())+"_").c_str()); |
| } |
| string getID(const GlobalVariable *GV) { |
| return getID(GV, "LLVMGlobal_"); |
| } |
| string getID(const Constant *CV) { |
| return getID(CV, "LLVMConst_", ".C_"); |
| } |
| string getID(const GlobalValue *GV) { |
| if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) |
| return getID(V); |
| else if (const Function *F = dyn_cast<Function>(GV)) |
| return getID(F); |
| assert(0 && "Unexpected type of GlobalValue!"); |
| return ""; |
| } |
| |
| // ConstantExprToString() - Convert a ConstantExpr to an asm expression |
| // and return this as a string. |
| string ConstantExprToString(const ConstantExpr* CE, |
| const TargetMachine& target) { |
| string S; |
| switch(CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| { // generate a symbolic expression for the byte address |
| const Value* ptrVal = CE->getOperand(0); |
| std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end()); |
| const TargetData &TD = target.getTargetData(); |
| S += "(" + valToExprString(ptrVal, target) + ") + (" |
| + utostr(TD.getIndexedOffset(ptrVal->getType(),idxVec)) + ")"; |
| break; |
| } |
| |
| case Instruction::Cast: |
| // Support only non-converting casts for now, i.e., a no-op. |
| // This assertion is not a complete check. |
| assert(target.getTargetData().getTypeSize(CE->getType()) == |
| target.getTargetData().getTypeSize(CE->getOperand(0)->getType())); |
| S += "(" + valToExprString(CE->getOperand(0), target) + ")"; |
| break; |
| |
| case Instruction::Add: |
| S += "(" + valToExprString(CE->getOperand(0), target) + ") + (" |
| + valToExprString(CE->getOperand(1), target) + ")"; |
| break; |
| |
| default: |
| assert(0 && "Unsupported operator in ConstantExprToString()"); |
| break; |
| } |
| |
| return S; |
| } |
| |
| // valToExprString - Helper function for ConstantExprToString(). |
| // Appends result to argument string S. |
| // |
| string valToExprString(const Value* V, const TargetMachine& target) { |
| string S; |
| bool failed = false; |
| if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known |
| |
| if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) |
| S += string(CB == ConstantBool::True ? "1" : "0"); |
| else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) |
| S += itostr(CI->getValue()); |
| else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) |
| S += utostr(CI->getValue()); |
| else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) |
| S += ftostr(CFP->getValue()); |
| else if (isa<ConstantPointerNull>(CV)) |
| S += "0"; |
| else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV)) |
| S += valToExprString(CPR->getValue(), target); |
| else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) |
| S += ConstantExprToString(CE, target); |
| else |
| failed = true; |
| |
| } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) { |
| S += getID(GV); |
| } |
| else |
| failed = true; |
| |
| if (failed) { |
| assert(0 && "Cannot convert value to string"); |
| S += "<illegal-value>"; |
| } |
| return S; |
| } |
| |
| }; |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SparcFunctionAsmPrinter Code |
| //===----------------------------------------------------------------------===// |
| |
| struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter { |
| inline SparcFunctionAsmPrinter(std::ostream &os, const TargetMachine &t) |
| : AsmPrinter(os, t) {} |
| |
| const char *getPassName() const { |
| return "Output Sparc Assembly for Functions"; |
| } |
| |
| virtual bool doInitialization(Module &M) { |
| startModule(M); |
| return false; |
| } |
| |
| virtual bool runOnFunction(Function &F) { |
| startFunction(F); |
| emitFunction(F); |
| endFunction(F); |
| return false; |
| } |
| |
| virtual bool doFinalization(Module &M) { |
| endModule(); |
| return false; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| } |
| |
| void emitFunction(const Function &F); |
| private : |
| void emitBasicBlock(const MachineBasicBlock &MBB); |
| void emitMachineInst(const MachineInstr *MI); |
| |
| unsigned int printOperands(const MachineInstr *MI, unsigned int opNum); |
| void printOneOperand(const MachineOperand &Op, MachineOpCode opCode); |
| |
| bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum); |
| bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum); |
| |
| unsigned getOperandMask(unsigned Opcode) { |
| switch (Opcode) { |
| case V9::SUBccr: |
| case V9::SUBcci: return 1 << 3; // Remove CC argument |
| //case BA: return 1 << 0; // Remove Arg #0, which is always null or xcc |
| default: return 0; // By default, don't hack operands... |
| } |
| } |
| }; |
| |
| inline bool |
| SparcFunctionAsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI, |
| unsigned int opNum) { |
| switch (MI->getOpCode()) { |
| case V9::JMPLCALLr: |
| case V9::JMPLCALLi: |
| case V9::JMPLRETr: |
| case V9::JMPLRETi: |
| return (opNum == 0); |
| default: |
| return false; |
| } |
| } |
| |
| |
| inline bool |
| SparcFunctionAsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI, |
| unsigned int opNum) { |
| if (Target.getInstrInfo().isLoad(MI->getOpCode())) |
| return (opNum == 0); |
| else if (Target.getInstrInfo().isStore(MI->getOpCode())) |
| return (opNum == 1); |
| else |
| return false; |
| } |
| |
| |
| #define PrintOp1PlusOp2(mop1, mop2, opCode) \ |
| printOneOperand(mop1, opCode); \ |
| toAsm << "+"; \ |
| printOneOperand(mop2, opCode); |
| |
| unsigned int |
| SparcFunctionAsmPrinter::printOperands(const MachineInstr *MI, |
| unsigned int opNum) |
| { |
| const MachineOperand& mop = MI->getOperand(opNum); |
| |
| if (OpIsBranchTargetLabel(MI, opNum)) |
| { |
| PrintOp1PlusOp2(mop, MI->getOperand(opNum+1), MI->getOpCode()); |
| return 2; |
| } |
| else if (OpIsMemoryAddressBase(MI, opNum)) |
| { |
| toAsm << "["; |
| PrintOp1PlusOp2(mop, MI->getOperand(opNum+1), MI->getOpCode()); |
| toAsm << "]"; |
| return 2; |
| } |
| else |
| { |
| printOneOperand(mop, MI->getOpCode()); |
| return 1; |
| } |
| } |
| |
| void |
| SparcFunctionAsmPrinter::printOneOperand(const MachineOperand &mop, |
| MachineOpCode opCode) |
| { |
| bool needBitsFlag = true; |
| |
| if (mop.opHiBits32()) |
| toAsm << "%lm("; |
| else if (mop.opLoBits32()) |
| toAsm << "%lo("; |
| else if (mop.opHiBits64()) |
| toAsm << "%hh("; |
| else if (mop.opLoBits64()) |
| toAsm << "%hm("; |
| else |
| needBitsFlag = false; |
| |
| switch (mop.getType()) |
| { |
| case MachineOperand::MO_VirtualRegister: |
| case MachineOperand::MO_CCRegister: |
| case MachineOperand::MO_MachineRegister: |
| { |
| int regNum = (int)mop.getAllocatedRegNum(); |
| |
| if (regNum == Target.getRegInfo().getInvalidRegNum()) { |
| // better to print code with NULL registers than to die |
| toAsm << "<NULL VALUE>"; |
| } else { |
| toAsm << "%" << Target.getRegInfo().getUnifiedRegName(regNum); |
| } |
| break; |
| } |
| |
| case MachineOperand::MO_PCRelativeDisp: |
| { |
| const Value *Val = mop.getVRegValue(); |
| assert(Val && "\tNULL Value in SparcFunctionAsmPrinter"); |
| |
| if (const BasicBlock *BB = dyn_cast<const BasicBlock>(Val)) |
| toAsm << getID(BB); |
| else if (const Function *M = dyn_cast<Function>(Val)) |
| toAsm << getID(M); |
| else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val)) |
| toAsm << getID(GV); |
| else if (const Constant *CV = dyn_cast<Constant>(Val)) |
| toAsm << getID(CV); |
| else |
| assert(0 && "Unrecognized value in SparcFunctionAsmPrinter"); |
| break; |
| } |
| |
| case MachineOperand::MO_SignExtendedImmed: |
| toAsm << mop.getImmedValue(); |
| break; |
| |
| case MachineOperand::MO_UnextendedImmed: |
| toAsm << (uint64_t) mop.getImmedValue(); |
| break; |
| |
| default: |
| toAsm << mop; // use dump field |
| break; |
| } |
| |
| if (needBitsFlag) |
| toAsm << ")"; |
| } |
| |
| |
| void |
| SparcFunctionAsmPrinter::emitMachineInst(const MachineInstr *MI) |
| { |
| unsigned Opcode = MI->getOpCode(); |
| |
| if (Target.getInstrInfo().isDummyPhiInstr(Opcode)) |
| return; // IGNORE PHI NODES |
| |
| toAsm << "\t" << Target.getInstrInfo().getName(Opcode) << "\t"; |
| |
| unsigned Mask = getOperandMask(Opcode); |
| |
| bool NeedComma = false; |
| unsigned N = 1; |
| for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N) |
| if (! ((1 << OpNum) & Mask)) { // Ignore this operand? |
| if (NeedComma) toAsm << ", "; // Handle comma outputing |
| NeedComma = true; |
| N = printOperands(MI, OpNum); |
| } else |
| N = 1; |
| |
| toAsm << "\n"; |
| } |
| |
| void |
| SparcFunctionAsmPrinter::emitBasicBlock(const MachineBasicBlock &MBB) |
| { |
| // Emit a label for the basic block |
| toAsm << getID(MBB.getBasicBlock()) << ":\n"; |
| |
| // Loop over all of the instructions in the basic block... |
| for (MachineBasicBlock::const_iterator MII = MBB.begin(), MIE = MBB.end(); |
| MII != MIE; ++MII) |
| emitMachineInst(*MII); |
| toAsm << "\n"; // Seperate BB's with newlines |
| } |
| |
| void |
| SparcFunctionAsmPrinter::emitFunction(const Function &F) |
| { |
| string methName = getID(&F); |
| toAsm << "!****** Outputing Function: " << methName << " ******\n"; |
| enterSection(AsmPrinter::Text); |
| toAsm << "\t.align\t4\n\t.global\t" << methName << "\n"; |
| //toAsm << "\t.type\t" << methName << ",#function\n"; |
| toAsm << "\t.type\t" << methName << ", 2\n"; |
| toAsm << methName << ":\n"; |
| |
| // Output code for all of the basic blocks in the function... |
| MachineFunction &MF = MachineFunction::get(&F); |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E;++I) |
| emitBasicBlock(*I); |
| |
| // Output a .size directive so the debugger knows the extents of the function |
| toAsm << ".EndOf_" << methName << ":\n\t.size " |
| << methName << ", .EndOf_" |
| << methName << "-" << methName << "\n"; |
| |
| // Put some spaces between the functions |
| toAsm << "\n\n"; |
| } |
| |
| } // End anonymous namespace |
| |
| Pass *UltraSparc::getFunctionAsmPrinterPass(std::ostream &Out) { |
| return new SparcFunctionAsmPrinter(Out, *this); |
| } |
| |
| |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SparcFunctionAsmPrinter Code |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class SparcModuleAsmPrinter : public Pass, public AsmPrinter { |
| public: |
| SparcModuleAsmPrinter(std::ostream &os, TargetMachine &t) |
| : AsmPrinter(os, t) {} |
| |
| const char *getPassName() const { return "Output Sparc Assembly for Module"; } |
| |
| virtual bool run(Module &M) { |
| startModule(M); |
| emitGlobalsAndConstants(M); |
| endModule(); |
| return false; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| } |
| |
| private: |
| void emitGlobalsAndConstants (const Module &M); |
| |
| void printGlobalVariable (const GlobalVariable *GV); |
| void PrintZeroBytesToPad (int numBytes); |
| void printSingleConstantValue (const Constant* CV); |
| void printConstantValueOnly (const Constant* CV, int numPadBytesAfter = 0); |
| void printConstant (const Constant* CV, string valID = ""); |
| |
| static void FoldConstants (const Module &M, |
| hash_set<const Constant*> &moduleConstants); |
| }; |
| |
| |
| // Can we treat the specified array as a string? Only if it is an array of |
| // ubytes or non-negative sbytes. |
| // |
| static bool isStringCompatible(const ConstantArray *CVA) { |
| const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType(); |
| if (ETy == Type::UByteTy) return true; |
| if (ETy != Type::SByteTy) return false; |
| |
| for (unsigned i = 0; i < CVA->getNumOperands(); ++i) |
| if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0) |
| return false; |
| |
| return true; |
| } |
| |
| // toOctal - Convert the low order bits of X into an octal letter |
| static inline char toOctal(int X) { |
| return (X&7)+'0'; |
| } |
| |
| // getAsCString - Return the specified array as a C compatible string, only if |
| // the predicate isStringCompatible is true. |
| // |
| static string getAsCString(const ConstantArray *CVA) { |
| assert(isStringCompatible(CVA) && "Array is not string compatible!"); |
| |
| string Result; |
| const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType(); |
| Result = "\""; |
| for (unsigned i = 0; i < CVA->getNumOperands(); ++i) { |
| unsigned char C = (ETy == Type::SByteTy) ? |
| (unsigned char)cast<ConstantSInt>(CVA->getOperand(i))->getValue() : |
| (unsigned char)cast<ConstantUInt>(CVA->getOperand(i))->getValue(); |
| |
| if (C == '"') { |
| Result += "\\\""; |
| } else if (C == '\\') { |
| Result += "\\\\"; |
| } else if (isprint(C)) { |
| Result += C; |
| } else { |
| switch(C) { |
| case '\a': Result += "\\a"; break; |
| case '\b': Result += "\\b"; break; |
| case '\f': Result += "\\f"; break; |
| case '\n': Result += "\\n"; break; |
| case '\r': Result += "\\r"; break; |
| case '\t': Result += "\\t"; break; |
| case '\v': Result += "\\v"; break; |
| default: |
| Result += '\\'; |
| Result += toOctal(C >> 6); |
| Result += toOctal(C >> 3); |
| Result += toOctal(C >> 0); |
| break; |
| } |
| } |
| } |
| Result += "\""; |
| |
| return Result; |
| } |
| |
| inline bool |
| ArrayTypeIsString(const ArrayType* arrayType) |
| { |
| return (arrayType->getElementType() == Type::UByteTy || |
| arrayType->getElementType() == Type::SByteTy); |
| } |
| |
| |
| inline const string |
| TypeToDataDirective(const Type* type) |
| { |
| switch(type->getPrimitiveID()) |
| { |
| case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: |
| return ".byte"; |
| case Type::UShortTyID: case Type::ShortTyID: |
| return ".half"; |
| case Type::UIntTyID: case Type::IntTyID: |
| return ".word"; |
| case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID: |
| return ".xword"; |
| case Type::FloatTyID: |
| return ".word"; |
| case Type::DoubleTyID: |
| return ".xword"; |
| case Type::ArrayTyID: |
| if (ArrayTypeIsString((ArrayType*) type)) |
| return ".ascii"; |
| else |
| return "<InvaliDataTypeForPrinting>"; |
| default: |
| return "<InvaliDataTypeForPrinting>"; |
| } |
| } |
| |
| // Get the size of the type |
| // |
| inline unsigned int |
| TypeToSize(const Type* type, const TargetMachine& target) |
| { |
| return target.findOptimalStorageSize(type); |
| } |
| |
| // Get the size of the constant for the given target. |
| // If this is an unsized array, return 0. |
| // |
| inline unsigned int |
| ConstantToSize(const Constant* CV, const TargetMachine& target) |
| { |
| if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV)) |
| { |
| const ArrayType *aty = cast<ArrayType>(CVA->getType()); |
| if (ArrayTypeIsString(aty)) |
| return 1 + CVA->getNumOperands(); |
| } |
| |
| return TypeToSize(CV->getType(), target); |
| } |
| |
| // Align data larger than one L1 cache line on L1 cache line boundaries. |
| // Align all smaller data on the next higher 2^x boundary (4, 8, ...). |
| // |
| inline unsigned int |
| SizeToAlignment(unsigned int size, const TargetMachine& target) |
| { |
| unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1); |
| if (size > (unsigned) cacheLineSize / 2) |
| return cacheLineSize; |
| else |
| for (unsigned sz=1; /*no condition*/; sz *= 2) |
| if (sz >= size) |
| return sz; |
| } |
| |
| // Get the size of the type and then use SizeToAlignment. |
| // |
| inline unsigned int |
| TypeToAlignment(const Type* type, const TargetMachine& target) |
| { |
| return SizeToAlignment(TypeToSize(type, target), target); |
| } |
| |
| // Get the size of the constant and then use SizeToAlignment. |
| // Handles strings as a special case; |
| inline unsigned int |
| ConstantToAlignment(const Constant* CV, const TargetMachine& target) |
| { |
| if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV)) |
| if (ArrayTypeIsString(cast<ArrayType>(CVA->getType()))) |
| return SizeToAlignment(1 + CVA->getNumOperands(), target); |
| |
| return TypeToAlignment(CV->getType(), target); |
| } |
| |
| |
| // Print a single constant value. |
| void |
| SparcModuleAsmPrinter::printSingleConstantValue(const Constant* CV) |
| { |
| assert(CV->getType() != Type::VoidTy && |
| CV->getType() != Type::TypeTy && |
| CV->getType() != Type::LabelTy && |
| "Unexpected type for Constant"); |
| |
| assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV)) |
| && "Aggregate types should be handled outside this function"); |
| |
| toAsm << "\t" << TypeToDataDirective(CV->getType()) << "\t"; |
| |
| if (CV->getType()->isPrimitiveType()) |
| { |
| if (CV->getType()->isFloatingPoint()) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision... |
| double Val = cast<ConstantFP>(CV)->getValue(); |
| if (CV->getType() == Type::FloatTy) { |
| float FVal = (float)Val; |
| char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules |
| toAsm << *(unsigned int*)ProxyPtr; |
| } else if (CV->getType() == Type::DoubleTy) { |
| char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules |
| toAsm << *(uint64_t*)ProxyPtr; |
| } else { |
| assert(0 && "Unknown floating point type!"); |
| } |
| |
| toAsm << "\t! " << CV->getType()->getDescription() |
| << " value: " << Val << "\n"; |
| } else { |
| WriteAsOperand(toAsm, CV, false, false) << "\n"; |
| } |
| } |
| else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV)) |
| { // This is a constant address for a global variable or method. |
| // Use the name of the variable or method as the address value. |
| toAsm << getID(CPR->getValue()) << "\n"; |
| } |
| else if (isa<ConstantPointerNull>(CV)) |
| { // Null pointer value |
| toAsm << "0\n"; |
| } |
| else if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV)) |
| { // Constant expression built from operators, constants, and symbolic addrs |
| toAsm << ConstantExprToString(CE, Target) << "\n"; |
| } |
| else |
| { |
| assert(0 && "Unknown elementary type for constant"); |
| } |
| } |
| |
| void |
| SparcModuleAsmPrinter::PrintZeroBytesToPad(int numBytes) |
| { |
| for ( ; numBytes >= 8; numBytes -= 8) |
| printSingleConstantValue(Constant::getNullValue(Type::ULongTy)); |
| |
| if (numBytes >= 4) |
| { |
| printSingleConstantValue(Constant::getNullValue(Type::UIntTy)); |
| numBytes -= 4; |
| } |
| |
| while (numBytes--) |
| printSingleConstantValue(Constant::getNullValue(Type::UByteTy)); |
| } |
| |
| // Print a constant value or values (it may be an aggregate). |
| // Uses printSingleConstantValue() to print each individual value. |
| void |
| SparcModuleAsmPrinter::printConstantValueOnly(const Constant* CV, |
| int numPadBytesAfter /* = 0*/) |
| { |
| const ConstantArray *CVA = dyn_cast<ConstantArray>(CV); |
| |
| if (CVA && isStringCompatible(CVA)) |
| { // print the string alone and return |
| toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n"; |
| } |
| else if (CVA) |
| { // Not a string. Print the values in successive locations |
| const std::vector<Use> &constValues = CVA->getValues(); |
| for (unsigned i=0; i < constValues.size(); i++) |
| printConstantValueOnly(cast<Constant>(constValues[i].get())); |
| } |
| else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) |
| { // Print the fields in successive locations. Pad to align if needed! |
| const StructLayout *cvsLayout = |
| Target.getTargetData().getStructLayout(CVS->getType()); |
| const std::vector<Use>& constValues = CVS->getValues(); |
| unsigned sizeSoFar = 0; |
| for (unsigned i=0, N = constValues.size(); i < N; i++) |
| { |
| const Constant* field = cast<Constant>(constValues[i].get()); |
| |
| // Check if padding is needed and insert one or more 0s. |
| unsigned fieldSize = |
| Target.getTargetData().getTypeSize(field->getType()); |
| int padSize = ((i == N-1? cvsLayout->StructSize |
| : cvsLayout->MemberOffsets[i+1]) |
| - cvsLayout->MemberOffsets[i]) - fieldSize; |
| sizeSoFar += (fieldSize + padSize); |
| |
| // Now print the actual field value |
| printConstantValueOnly(field, padSize); |
| } |
| assert(sizeSoFar == cvsLayout->StructSize && |
| "Layout of constant struct may be incorrect!"); |
| } |
| else |
| printSingleConstantValue(CV); |
| |
| if (numPadBytesAfter) |
| PrintZeroBytesToPad(numPadBytesAfter); |
| } |
| |
| // Print a constant (which may be an aggregate) prefixed by all the |
| // appropriate directives. Uses printConstantValueOnly() to print the |
| // value or values. |
| void |
| SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID) |
| { |
| if (valID.length() == 0) |
| valID = getID(CV); |
| |
| toAsm << "\t.align\t" << ConstantToAlignment(CV, Target) << "\n"; |
| |
| // Print .size and .type only if it is not a string. |
| const ConstantArray *CVA = dyn_cast<ConstantArray>(CV); |
| if (CVA && isStringCompatible(CVA)) |
| { // print it as a string and return |
| toAsm << valID << ":\n"; |
| toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n"; |
| return; |
| } |
| |
| toAsm << "\t.type" << "\t" << valID << ",#object\n"; |
| |
| unsigned int constSize = ConstantToSize(CV, Target); |
| if (constSize) |
| toAsm << "\t.size" << "\t" << valID << "," << constSize << "\n"; |
| |
| toAsm << valID << ":\n"; |
| |
| printConstantValueOnly(CV); |
| } |
| |
| |
| void SparcModuleAsmPrinter::FoldConstants(const Module &M, |
| hash_set<const Constant*> &MC) { |
| for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) |
| if (!I->isExternal()) { |
| const hash_set<const Constant*> &pool = |
| MachineFunction::get(I).getInfo()->getConstantPoolValues(); |
| MC.insert(pool.begin(), pool.end()); |
| } |
| } |
| |
| void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV) |
| { |
| if (GV->hasExternalLinkage()) |
| toAsm << "\t.global\t" << getID(GV) << "\n"; |
| |
| if (GV->hasInitializer() && ! GV->getInitializer()->isNullValue()) |
| printConstant(GV->getInitializer(), getID(GV)); |
| else { |
| toAsm << "\t.align\t" << TypeToAlignment(GV->getType()->getElementType(), |
| Target) << "\n"; |
| toAsm << "\t.type\t" << getID(GV) << ",#object\n"; |
| toAsm << "\t.reserve\t" << getID(GV) << "," |
| << TypeToSize(GV->getType()->getElementType(), Target) |
| << "\n"; |
| } |
| } |
| |
| |
| void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module &M) { |
| // First, get the constants there were marked by the code generator for |
| // inclusion in the assembly code data area and fold them all into a |
| // single constant pool since there may be lots of duplicates. Also, |
| // lets force these constants into the slot table so that we can get |
| // unique names for unnamed constants also. |
| // |
| hash_set<const Constant*> moduleConstants; |
| FoldConstants(M, moduleConstants); |
| |
| // Output constants spilled to memory |
| enterSection(AsmPrinter::ReadOnlyData); |
| for (hash_set<const Constant*>::const_iterator I = moduleConstants.begin(), |
| E = moduleConstants.end(); I != E; ++I) |
| printConstant(*I); |
| |
| // Output global variables... |
| for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI) |
| if (! GI->isExternal()) { |
| assert(GI->hasInitializer()); |
| if (GI->isConstant()) |
| enterSection(AsmPrinter::ReadOnlyData); // read-only, initialized data |
| else if (GI->getInitializer()->isNullValue()) |
| enterSection(AsmPrinter::ZeroInitRWData); // read-write zero data |
| else |
| enterSection(AsmPrinter::InitRWData); // read-write non-zero data |
| |
| printGlobalVariable(GI); |
| } |
| |
| toAsm << "\n"; |
| } |
| |
| } // End anonymous namespace |
| |
| Pass *UltraSparc::getModuleAsmPrinterPass(std::ostream &Out) { |
| return new SparcModuleAsmPrinter(Out, *this); |
| } |