| //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the target-independent interfaces which should be |
| // implemented by each target which is using a TableGen based code generator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Include all information about LLVM intrinsics. |
| include "llvm/Intrinsics.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Register file description - These classes are used to fill in the target |
| // description classes. |
| |
| class RegisterClass; // Forward def |
| |
| // Register - You should define one instance of this class for each register |
| // in the target machine. String n will become the "name" of the register. |
| class Register<string n> { |
| string Namespace = ""; |
| string Name = n; |
| |
| // SpillSize - If this value is set to a non-zero value, it is the size in |
| // bits of the spill slot required to hold this register. If this value is |
| // set to zero, the information is inferred from any register classes the |
| // register belongs to. |
| int SpillSize = 0; |
| |
| // SpillAlignment - This value is used to specify the alignment required for |
| // spilling the register. Like SpillSize, this should only be explicitly |
| // specified if the register is not in a register class. |
| int SpillAlignment = 0; |
| |
| // Aliases - A list of registers that this register overlaps with. A read or |
| // modification of this register can potentially read or modify the aliased |
| // registers. |
| list<Register> Aliases = []; |
| |
| // SubRegs - A list of registers that are parts of this register. Note these |
| // are "immediate" sub-registers and the registers within the list do not |
| // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], |
| // not [AX, AH, AL]. |
| list<Register> SubRegs = []; |
| |
| // DwarfNumber - Number used internally by gcc/gdb to identify the register. |
| // These values can be determined by locating the <target>.h file in the |
| // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
| // order of these names correspond to the enumeration used by gcc. A value of |
| // -1 indicates that the gcc number is undefined. |
| int DwarfNumber = -1; |
| } |
| |
| // RegisterWithSubRegs - This can be used to define instances of Register which |
| // need to specify sub-registers. |
| // List "subregs" specifies which registers are sub-registers to this one. This |
| // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. |
| // This allows the code generator to be careful not to put two values with |
| // overlapping live ranges into registers which alias. |
| class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { |
| let SubRegs = subregs; |
| } |
| |
| // SubRegSet - This can be used to define a specific mapping of registers to |
| // indices, for use as named subregs of a particular physical register. Each |
| // register in 'subregs' becomes an addressable subregister at index 'n' of the |
| // corresponding register in 'regs'. |
| class SubRegSet<int n, list<Register> regs, list<Register> subregs> { |
| int index = n; |
| |
| list<Register> From = regs; |
| list<Register> To = subregs; |
| } |
| |
| // RegisterClass - Now that all of the registers are defined, and aliases |
| // between registers are defined, specify which registers belong to which |
| // register classes. This also defines the default allocation order of |
| // registers by register allocators. |
| // |
| class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, |
| list<Register> regList> { |
| string Namespace = namespace; |
| |
| // RegType - Specify the list ValueType of the registers in this register |
| // class. Note that all registers in a register class must have the same |
| // ValueTypes. This is a list because some targets permit storing different |
| // types in same register, for example vector values with 128-bit total size, |
| // but different count/size of items, like SSE on x86. |
| // |
| list<ValueType> RegTypes = regTypes; |
| |
| // Size - Specify the spill size in bits of the registers. A default value of |
| // zero lets tablgen pick an appropriate size. |
| int Size = 0; |
| |
| // Alignment - Specify the alignment required of the registers when they are |
| // stored or loaded to memory. |
| // |
| int Alignment = alignment; |
| |
| // MemberList - Specify which registers are in this class. If the |
| // allocation_order_* method are not specified, this also defines the order of |
| // allocation used by the register allocator. |
| // |
| list<Register> MemberList = regList; |
| |
| // SubClassList - Specify which register classes correspond to subregisters |
| // of this class. The order should be by subregister set index. |
| list<RegisterClass> SubRegClassList = []; |
| |
| // MethodProtos/MethodBodies - These members can be used to insert arbitrary |
| // code into a generated register class. The normal usage of this is to |
| // overload virtual methods. |
| code MethodProtos = [{}]; |
| code MethodBodies = [{}]; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DwarfRegNum - This class provides a mapping of the llvm register enumeration |
| // to the register numbering used by gcc and gdb. These values are used by a |
| // debug information writer (ex. DwarfWriter) to describe where values may be |
| // located during execution. |
| class DwarfRegNum<int N> { |
| // DwarfNumber - Number used internally by gcc/gdb to identify the register. |
| // These values can be determined by locating the <target>.h file in the |
| // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
| // order of these names correspond to the enumeration used by gcc. A value of |
| // -1 indicates that the gcc number is undefined. |
| int DwarfNumber = N; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pull in the common support for scheduling |
| // |
| include "TargetSchedule.td" |
| |
| class Predicate; // Forward def |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction set description - These classes correspond to the C++ classes in |
| // the Target/TargetInstrInfo.h file. |
| // |
| class Instruction { |
| string Name = ""; // The opcode string for this instruction |
| string Namespace = ""; |
| |
| dag OutOperandList; // An dag containing the MI def operand list. |
| dag InOperandList; // An dag containing the MI use operand list. |
| string AsmString = ""; // The .s format to print the instruction with. |
| |
| // Pattern - Set to the DAG pattern for this instruction, if we know of one, |
| // otherwise, uninitialized. |
| list<dag> Pattern; |
| |
| // The follow state will eventually be inferred automatically from the |
| // instruction pattern. |
| |
| list<Register> Uses = []; // Default to using no non-operand registers |
| list<Register> Defs = []; // Default to modifying no non-operand registers |
| |
| // Predicates - List of predicates which will be turned into isel matching |
| // code. |
| list<Predicate> Predicates = []; |
| |
| // Code size. |
| int CodeSize = 0; |
| |
| // Added complexity passed onto matching pattern. |
| int AddedComplexity = 0; |
| |
| // These bits capture information about the high-level semantics of the |
| // instruction. |
| bit isReturn = 0; // Is this instruction a return instruction? |
| bit isBranch = 0; // Is this instruction a branch instruction? |
| bit isBarrier = 0; // Can control flow fall through this instruction? |
| bit isCall = 0; // Is this instruction a call instruction? |
| bit isLoad = 0; // Is this instruction a load instruction? |
| bit isStore = 0; // Is this instruction a store instruction? |
| bit isTwoAddress = 0; // Is this a two address instruction? |
| bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote? |
| bit isCommutable = 0; // Is this 3 operand instruction commutable? |
| bit isTerminator = 0; // Is this part of the terminator for a basic block? |
| bit isReMaterializable = 0; // Is this instruction re-materializable? |
| bit isPredicable = 0; // Is this instruction predicable? |
| bit hasDelaySlot = 0; // Does this instruction have an delay slot? |
| bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help. |
| bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains? |
| bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction? |
| |
| InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. |
| |
| string Constraints = ""; // OperandConstraint, e.g. $src = $dst. |
| |
| /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not |
| /// be encoded into the output machineinstr. |
| string DisableEncoding = ""; |
| } |
| |
| /// Imp - Helper class for specifying the implicit uses/defs set for an |
| /// instruction. |
| class Imp<list<Register> uses, list<Register> defs> { |
| list<Register> Uses = uses; |
| list<Register> Defs = defs; |
| } |
| |
| /// Predicates - These are extra conditionals which are turned into instruction |
| /// selector matching code. Currently each predicate is just a string. |
| class Predicate<string cond> { |
| string CondString = cond; |
| } |
| |
| /// NoHonorSignDependentRounding - This predicate is true if support for |
| /// sign-dependent-rounding is not enabled. |
| def NoHonorSignDependentRounding |
| : Predicate<"!HonorSignDependentRoundingFPMath()">; |
| |
| class Requires<list<Predicate> preds> { |
| list<Predicate> Predicates = preds; |
| } |
| |
| /// ops definition - This is just a simple marker used to identify the operands |
| /// list for an instruction. outs and ins are identical both syntatically and |
| /// semantically, they are used to define def operands and use operands to |
| /// improve readibility. This should be used like this: |
| /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. |
| def ops; |
| def outs; |
| def ins; |
| |
| /// variable_ops definition - Mark this instruction as taking a variable number |
| /// of operands. |
| def variable_ops; |
| |
| /// ptr_rc definition - Mark this operand as being a pointer value whose |
| /// register class is resolved dynamically via a callback to TargetInstrInfo. |
| /// FIXME: We should probably change this to a class which contain a list of |
| /// flags. But currently we have but one flag. |
| def ptr_rc; |
| |
| /// Operand Types - These provide the built-in operand types that may be used |
| /// by a target. Targets can optionally provide their own operand types as |
| /// needed, though this should not be needed for RISC targets. |
| class Operand<ValueType ty> { |
| ValueType Type = ty; |
| string PrintMethod = "printOperand"; |
| dag MIOperandInfo = (ops); |
| } |
| |
| def i1imm : Operand<i1>; |
| def i8imm : Operand<i8>; |
| def i16imm : Operand<i16>; |
| def i32imm : Operand<i32>; |
| def i64imm : Operand<i64>; |
| |
| /// zero_reg definition - Special node to stand for the zero register. |
| /// |
| def zero_reg; |
| |
| /// PredicateOperand - This can be used to define a predicate operand for an |
| /// instruction. OpTypes specifies the MIOperandInfo for the operand, and |
| /// AlwaysVal specifies the value of this predicate when set to "always |
| /// execute". |
| class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> |
| : Operand<ty> { |
| let MIOperandInfo = OpTypes; |
| dag DefaultOps = AlwaysVal; |
| } |
| |
| /// OptionalDefOperand - This is used to define a optional definition operand |
| /// for an instruction. DefaultOps is the register the operand represents if none |
| /// is supplied, e.g. zero_reg. |
| class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> |
| : Operand<ty> { |
| let MIOperandInfo = OpTypes; |
| dag DefaultOps = defaultops; |
| } |
| |
| |
| // InstrInfo - This class should only be instantiated once to provide parameters |
| // which are global to the the target machine. |
| // |
| class InstrInfo { |
| // If the target wants to associate some target-specific information with each |
| // instruction, it should provide these two lists to indicate how to assemble |
| // the target specific information into the 32 bits available. |
| // |
| list<string> TSFlagsFields = []; |
| list<int> TSFlagsShifts = []; |
| |
| // Target can specify its instructions in either big or little-endian formats. |
| // For instance, while both Sparc and PowerPC are big-endian platforms, the |
| // Sparc manual specifies its instructions in the format [31..0] (big), while |
| // PowerPC specifies them using the format [0..31] (little). |
| bit isLittleEndianEncoding = 0; |
| } |
| |
| // Standard Instructions. |
| def PHI : Instruction { |
| let OutOperandList = (ops); |
| let InOperandList = (ops variable_ops); |
| let AsmString = "PHINODE"; |
| let Namespace = "TargetInstrInfo"; |
| } |
| def INLINEASM : Instruction { |
| let OutOperandList = (ops); |
| let InOperandList = (ops variable_ops); |
| let AsmString = ""; |
| let Namespace = "TargetInstrInfo"; |
| } |
| def LABEL : Instruction { |
| let OutOperandList = (ops); |
| let InOperandList = (ops i32imm:$id); |
| let AsmString = ""; |
| let Namespace = "TargetInstrInfo"; |
| let hasCtrlDep = 1; |
| } |
| def EXTRACT_SUBREG : Instruction { |
| let OutOperandList = (ops variable_ops); |
| let InOperandList = (ops variable_ops); |
| let AsmString = ""; |
| let Namespace = "TargetInstrInfo"; |
| } |
| def INSERT_SUBREG : Instruction { |
| let OutOperandList = (ops variable_ops); |
| let InOperandList = (ops variable_ops); |
| let AsmString = ""; |
| let Namespace = "TargetInstrInfo"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AsmWriter - This class can be implemented by targets that need to customize |
| // the format of the .s file writer. |
| // |
| // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax |
| // on X86 for example). |
| // |
| class AsmWriter { |
| // AsmWriterClassName - This specifies the suffix to use for the asmwriter |
| // class. Generated AsmWriter classes are always prefixed with the target |
| // name. |
| string AsmWriterClassName = "AsmPrinter"; |
| |
| // InstFormatName - AsmWriters can specify the name of the format string to |
| // print instructions with. |
| string InstFormatName = "AsmString"; |
| |
| // Variant - AsmWriters can be of multiple different variants. Variants are |
| // used to support targets that need to emit assembly code in ways that are |
| // mostly the same for different targets, but have minor differences in |
| // syntax. If the asmstring contains {|} characters in them, this integer |
| // will specify which alternative to use. For example "{x|y|z}" with Variant |
| // == 1, will expand to "y". |
| int Variant = 0; |
| } |
| def DefaultAsmWriter : AsmWriter; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Target - This class contains the "global" target information |
| // |
| class Target { |
| // InstructionSet - Instruction set description for this target. |
| InstrInfo InstructionSet; |
| |
| // AssemblyWriters - The AsmWriter instances available for this target. |
| list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SubtargetFeature - A characteristic of the chip set. |
| // |
| class SubtargetFeature<string n, string a, string v, string d, |
| list<SubtargetFeature> i = []> { |
| // Name - Feature name. Used by command line (-mattr=) to determine the |
| // appropriate target chip. |
| // |
| string Name = n; |
| |
| // Attribute - Attribute to be set by feature. |
| // |
| string Attribute = a; |
| |
| // Value - Value the attribute to be set to by feature. |
| // |
| string Value = v; |
| |
| // Desc - Feature description. Used by command line (-mattr=) to display help |
| // information. |
| // |
| string Desc = d; |
| |
| // Implies - Features that this feature implies are present. If one of those |
| // features isn't set, then this one shouldn't be set either. |
| // |
| list<SubtargetFeature> Implies = i; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Processor chip sets - These values represent each of the chip sets supported |
| // by the scheduler. Each Processor definition requires corresponding |
| // instruction itineraries. |
| // |
| class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> { |
| // Name - Chip set name. Used by command line (-mcpu=) to determine the |
| // appropriate target chip. |
| // |
| string Name = n; |
| |
| // ProcItin - The scheduling information for the target processor. |
| // |
| ProcessorItineraries ProcItin = pi; |
| |
| // Features - list of |
| list<SubtargetFeature> Features = f; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pull in the common support for calling conventions. |
| // |
| include "TargetCallingConv.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Pull in the common support for DAG isel generation. |
| // |
| include "TargetSelectionDAG.td" |