| //===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "virtregrewriter" | 
 | #include "VirtRegRewriter.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumDSE     , "Number of dead stores elided"); | 
 | STATISTIC(NumDSS     , "Number of dead spill slots removed"); | 
 | STATISTIC(NumCommutes, "Number of instructions commuted"); | 
 | STATISTIC(NumDRM     , "Number of re-materializable defs elided"); | 
 | STATISTIC(NumStores  , "Number of stores added"); | 
 | STATISTIC(NumPSpills , "Number of physical register spills"); | 
 | STATISTIC(NumOmitted , "Number of reloads omited"); | 
 | STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); | 
 | STATISTIC(NumCopified, "Number of available reloads turned into copies"); | 
 | STATISTIC(NumReMats  , "Number of re-materialization"); | 
 | STATISTIC(NumLoads   , "Number of loads added"); | 
 | STATISTIC(NumReused  , "Number of values reused"); | 
 | STATISTIC(NumDCE     , "Number of copies elided"); | 
 | STATISTIC(NumSUnfold , "Number of stores unfolded"); | 
 | STATISTIC(NumModRefUnfold, "Number of modref unfolded"); | 
 |  | 
 | namespace { | 
 |   enum RewriterName { local, trivial }; | 
 | } | 
 |  | 
 | static cl::opt<RewriterName> | 
 | RewriterOpt("rewriter", | 
 |             cl::desc("Rewriter to use: (default: local)"), | 
 |             cl::Prefix, | 
 |             cl::values(clEnumVal(local,   "local rewriter"), | 
 |                        clEnumVal(trivial, "trivial rewriter"), | 
 |                        clEnumValEnd), | 
 |             cl::init(local)); | 
 |  | 
 | static cl::opt<bool> | 
 | ScheduleSpills("schedule-spills", | 
 |                cl::desc("Schedule spill code"), | 
 |                cl::init(false)); | 
 |  | 
 | VirtRegRewriter::~VirtRegRewriter() {} | 
 |  | 
 | namespace { | 
 |  | 
 | /// This class is intended for use with the new spilling framework only. It | 
 | /// rewrites vreg def/uses to use the assigned preg, but does not insert any | 
 | /// spill code. | 
 | struct TrivialRewriter : public VirtRegRewriter { | 
 |  | 
 |   bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, | 
 |                             LiveIntervals* LIs) { | 
 |     DEBUG(errs() << "********** REWRITE MACHINE CODE **********\n"); | 
 |     DEBUG(errs() << "********** Function: "  | 
 |           << MF.getFunction()->getName() << '\n'); | 
 |     DEBUG(errs() << "**** Machine Instrs" | 
 |           << "(NOTE! Does not include spills and reloads!) ****\n"); | 
 |     DEBUG(MF.dump()); | 
 |  | 
 |     MachineRegisterInfo *mri = &MF.getRegInfo(); | 
 |  | 
 |     bool changed = false; | 
 |  | 
 |     for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end(); | 
 |          liItr != liEnd; ++liItr) { | 
 |  | 
 |       if (TargetRegisterInfo::isVirtualRegister(liItr->first)) { | 
 |         if (VRM.hasPhys(liItr->first)) { | 
 |           unsigned preg = VRM.getPhys(liItr->first); | 
 |           mri->replaceRegWith(liItr->first, preg); | 
 |           mri->setPhysRegUsed(preg); | 
 |           changed = true; | 
 |         } | 
 |       } | 
 |       else { | 
 |         if (!liItr->second->empty()) { | 
 |           mri->setPhysRegUsed(liItr->first); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |      | 
 |     DEBUG(errs() << "**** Post Machine Instrs ****\n"); | 
 |     DEBUG(MF.dump()); | 
 |      | 
 |     return changed; | 
 |   } | 
 |  | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | // ************************************************************************ // | 
 |  | 
 | namespace { | 
 |  | 
 | /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB | 
 | /// from top down, keep track of which spill slots or remat are available in | 
 | /// each register. | 
 | /// | 
 | /// Note that not all physregs are created equal here.  In particular, some | 
 | /// physregs are reloads that we are allowed to clobber or ignore at any time. | 
 | /// Other physregs are values that the register allocated program is using | 
 | /// that we cannot CHANGE, but we can read if we like.  We keep track of this | 
 | /// on a per-stack-slot / remat id basis as the low bit in the value of the | 
 | /// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks | 
 | /// this bit and addAvailable sets it if. | 
 | class AvailableSpills { | 
 |   const TargetRegisterInfo *TRI; | 
 |   const TargetInstrInfo *TII; | 
 |  | 
 |   // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled | 
 |   // or remat'ed virtual register values that are still available, due to | 
 |   // being loaded or stored to, but not invalidated yet. | 
 |   std::map<int, unsigned> SpillSlotsOrReMatsAvailable; | 
 |  | 
 |   // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, | 
 |   // indicating which stack slot values are currently held by a physreg.  This | 
 |   // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a | 
 |   // physreg is modified. | 
 |   std::multimap<unsigned, int> PhysRegsAvailable; | 
 |  | 
 |   void disallowClobberPhysRegOnly(unsigned PhysReg); | 
 |  | 
 |   void ClobberPhysRegOnly(unsigned PhysReg); | 
 | public: | 
 |   AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) | 
 |     : TRI(tri), TII(tii) { | 
 |   } | 
 |  | 
 |   /// clear - Reset the state. | 
 |   void clear() { | 
 |     SpillSlotsOrReMatsAvailable.clear(); | 
 |     PhysRegsAvailable.clear(); | 
 |   } | 
 |  | 
 |   const TargetRegisterInfo *getRegInfo() const { return TRI; } | 
 |  | 
 |   /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is | 
 |   /// available in a physical register, return that PhysReg, otherwise | 
 |   /// return 0. | 
 |   unsigned getSpillSlotOrReMatPhysReg(int Slot) const { | 
 |     std::map<int, unsigned>::const_iterator I = | 
 |       SpillSlotsOrReMatsAvailable.find(Slot); | 
 |     if (I != SpillSlotsOrReMatsAvailable.end()) { | 
 |       return I->second >> 1;  // Remove the CanClobber bit. | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /// addAvailable - Mark that the specified stack slot / remat is available | 
 |   /// in the specified physreg.  If CanClobber is true, the physreg can be | 
 |   /// modified at any time without changing the semantics of the program. | 
 |   void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { | 
 |     // If this stack slot is thought to be available in some other physreg,  | 
 |     // remove its record. | 
 |     ModifyStackSlotOrReMat(SlotOrReMat); | 
 |  | 
 |     PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); | 
 |     SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | | 
 |                                               (unsigned)CanClobber; | 
 |  | 
 |     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
 |       DEBUG(errs() << "Remembering RM#" | 
 |                    << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1); | 
 |     else | 
 |       DEBUG(errs() << "Remembering SS#" << SlotOrReMat); | 
 |     DEBUG(errs() << " in physreg " << TRI->getName(Reg) << "\n"); | 
 |   } | 
 |  | 
 |   /// canClobberPhysRegForSS - Return true if the spiller is allowed to change | 
 |   /// the value of the specified stackslot register if it desires. The | 
 |   /// specified stack slot must be available in a physreg for this query to | 
 |   /// make sense. | 
 |   bool canClobberPhysRegForSS(int SlotOrReMat) const { | 
 |     assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && | 
 |            "Value not available!"); | 
 |     return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; | 
 |   } | 
 |  | 
 |   /// canClobberPhysReg - Return true if the spiller is allowed to clobber the | 
 |   /// physical register where values for some stack slot(s) might be | 
 |   /// available. | 
 |   bool canClobberPhysReg(unsigned PhysReg) const { | 
 |     std::multimap<unsigned, int>::const_iterator I = | 
 |       PhysRegsAvailable.lower_bound(PhysReg); | 
 |     while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
 |       int SlotOrReMat = I->second; | 
 |       I++; | 
 |       if (!canClobberPhysRegForSS(SlotOrReMat)) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
 |   /// stackslot register. The register is still available but is no longer | 
 |   /// allowed to be modifed. | 
 |   void disallowClobberPhysReg(unsigned PhysReg); | 
 |  | 
 |   /// ClobberPhysReg - This is called when the specified physreg changes | 
 |   /// value.  We use this to invalidate any info about stuff that lives in | 
 |   /// it and any of its aliases. | 
 |   void ClobberPhysReg(unsigned PhysReg); | 
 |  | 
 |   /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
 |   /// slot changes.  This removes information about which register the | 
 |   /// previous value for this slot lives in (as the previous value is dead | 
 |   /// now). | 
 |   void ModifyStackSlotOrReMat(int SlotOrReMat); | 
 |  | 
 |   /// AddAvailableRegsToLiveIn - Availability information is being kept coming | 
 |   /// into the specified MBB. Add available physical registers as potential | 
 |   /// live-in's. If they are reused in the MBB, they will be added to the | 
 |   /// live-in set to make register scavenger and post-allocation scheduler. | 
 |   void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, | 
 |                                 std::vector<MachineOperand*> &KillOps); | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | // ************************************************************************ // | 
 |  | 
 | // Given a location where a reload of a spilled register or a remat of | 
 | // a constant is to be inserted, attempt to find a safe location to | 
 | // insert the load at an earlier point in the basic-block, to hide | 
 | // latency of the load and to avoid address-generation interlock | 
 | // issues. | 
 | static MachineBasicBlock::iterator | 
 | ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc, | 
 |                  MachineBasicBlock::iterator const Begin, | 
 |                  unsigned PhysReg, | 
 |                  const TargetRegisterInfo *TRI, | 
 |                  bool DoReMat, | 
 |                  int SSorRMId, | 
 |                  const TargetInstrInfo *TII, | 
 |                  const MachineFunction &MF) | 
 | { | 
 |   if (!ScheduleSpills) | 
 |     return InsertLoc; | 
 |  | 
 |   // Spill backscheduling is of primary interest to addresses, so | 
 |   // don't do anything if the register isn't in the register class | 
 |   // used for pointers. | 
 |  | 
 |   const TargetLowering *TL = MF.getTarget().getTargetLowering(); | 
 |  | 
 |   if (!TL->isTypeLegal(TL->getPointerTy())) | 
 |     // Believe it or not, this is true on PIC16. | 
 |     return InsertLoc; | 
 |  | 
 |   const TargetRegisterClass *ptrRegClass = | 
 |     TL->getRegClassFor(TL->getPointerTy()); | 
 |   if (!ptrRegClass->contains(PhysReg)) | 
 |     return InsertLoc; | 
 |  | 
 |   // Scan upwards through the preceding instructions. If an instruction doesn't | 
 |   // reference the stack slot or the register we're loading, we can | 
 |   // backschedule the reload up past it. | 
 |   MachineBasicBlock::iterator NewInsertLoc = InsertLoc; | 
 |   while (NewInsertLoc != Begin) { | 
 |     MachineBasicBlock::iterator Prev = prior(NewInsertLoc); | 
 |     for (unsigned i = 0; i < Prev->getNumOperands(); ++i) { | 
 |       MachineOperand &Op = Prev->getOperand(i); | 
 |       if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId) | 
 |         goto stop; | 
 |     } | 
 |     if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 || | 
 |         Prev->findRegisterDefOperand(PhysReg)) | 
 |       goto stop; | 
 |     for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias) | 
 |       if (Prev->findRegisterUseOperandIdx(*Alias) != -1 || | 
 |           Prev->findRegisterDefOperand(*Alias)) | 
 |         goto stop; | 
 |     NewInsertLoc = Prev; | 
 |   } | 
 | stop:; | 
 |  | 
 |   // If we made it to the beginning of the block, turn around and move back | 
 |   // down just past any existing reloads. They're likely to be reloads/remats | 
 |   // for instructions earlier than what our current reload/remat is for, so | 
 |   // they should be scheduled earlier. | 
 |   if (NewInsertLoc == Begin) { | 
 |     int FrameIdx; | 
 |     while (InsertLoc != NewInsertLoc && | 
 |            (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) || | 
 |             TII->isTriviallyReMaterializable(NewInsertLoc))) | 
 |       ++NewInsertLoc; | 
 |   } | 
 |  | 
 |   return NewInsertLoc; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // ReusedOp - For each reused operand, we keep track of a bit of information, | 
 | // in case we need to rollback upon processing a new operand.  See comments | 
 | // below. | 
 | struct ReusedOp { | 
 |   // The MachineInstr operand that reused an available value. | 
 |   unsigned Operand; | 
 |  | 
 |   // StackSlotOrReMat - The spill slot or remat id of the value being reused. | 
 |   unsigned StackSlotOrReMat; | 
 |  | 
 |   // PhysRegReused - The physical register the value was available in. | 
 |   unsigned PhysRegReused; | 
 |  | 
 |   // AssignedPhysReg - The physreg that was assigned for use by the reload. | 
 |   unsigned AssignedPhysReg; | 
 |    | 
 |   // VirtReg - The virtual register itself. | 
 |   unsigned VirtReg; | 
 |  | 
 |   ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, | 
 |            unsigned vreg) | 
 |     : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), | 
 |       AssignedPhysReg(apr), VirtReg(vreg) {} | 
 | }; | 
 |  | 
 | /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that | 
 | /// is reused instead of reloaded. | 
 | class ReuseInfo { | 
 |   MachineInstr &MI; | 
 |   std::vector<ReusedOp> Reuses; | 
 |   BitVector PhysRegsClobbered; | 
 | public: | 
 |   ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { | 
 |     PhysRegsClobbered.resize(tri->getNumRegs()); | 
 |   } | 
 |    | 
 |   bool hasReuses() const { | 
 |     return !Reuses.empty(); | 
 |   } | 
 |    | 
 |   /// addReuse - If we choose to reuse a virtual register that is already | 
 |   /// available instead of reloading it, remember that we did so. | 
 |   void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, | 
 |                 unsigned PhysRegReused, unsigned AssignedPhysReg, | 
 |                 unsigned VirtReg) { | 
 |     // If the reload is to the assigned register anyway, no undo will be | 
 |     // required. | 
 |     if (PhysRegReused == AssignedPhysReg) return; | 
 |      | 
 |     // Otherwise, remember this. | 
 |     Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,  | 
 |                               AssignedPhysReg, VirtReg)); | 
 |   } | 
 |  | 
 |   void markClobbered(unsigned PhysReg) { | 
 |     PhysRegsClobbered.set(PhysReg); | 
 |   } | 
 |  | 
 |   bool isClobbered(unsigned PhysReg) const { | 
 |     return PhysRegsClobbered.test(PhysReg); | 
 |   } | 
 |    | 
 |   /// GetRegForReload - We are about to emit a reload into PhysReg.  If there | 
 |   /// is some other operand that is using the specified register, either pick | 
 |   /// a new register to use, or evict the previous reload and use this reg.  | 
 |   unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg, | 
 |                            MachineFunction &MF, MachineInstr *MI, | 
 |                            AvailableSpills &Spills, | 
 |                            std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                            SmallSet<unsigned, 8> &Rejected, | 
 |                            BitVector &RegKills, | 
 |                            std::vector<MachineOperand*> &KillOps, | 
 |                            VirtRegMap &VRM); | 
 |  | 
 |   /// GetRegForReload - Helper for the above GetRegForReload(). Add a | 
 |   /// 'Rejected' set to remember which registers have been considered and | 
 |   /// rejected for the reload. This avoids infinite looping in case like | 
 |   /// this: | 
 |   /// t1 := op t2, t3 | 
 |   /// t2 <- assigned r0 for use by the reload but ended up reuse r1 | 
 |   /// t3 <- assigned r1 for use by the reload but ended up reuse r0 | 
 |   /// t1 <- desires r1 | 
 |   ///       sees r1 is taken by t2, tries t2's reload register r0 | 
 |   ///       sees r0 is taken by t3, tries t3's reload register r1 | 
 |   ///       sees r1 is taken by t2, tries t2's reload register r0 ... | 
 |   unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI, | 
 |                            AvailableSpills &Spills, | 
 |                            std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                            BitVector &RegKills, | 
 |                            std::vector<MachineOperand*> &KillOps, | 
 |                            VirtRegMap &VRM) { | 
 |     SmallSet<unsigned, 8> Rejected; | 
 |     MachineFunction &MF = *MI->getParent()->getParent(); | 
 |     const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); | 
 |     return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores, | 
 |                            Rejected, RegKills, KillOps, VRM); | 
 |   } | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | // ****************** // | 
 | // Utility Functions  // | 
 | // ****************** // | 
 |  | 
 | /// findSinglePredSuccessor - Return via reference a vector of machine basic | 
 | /// blocks each of which is a successor of the specified BB and has no other | 
 | /// predecessor. | 
 | static void findSinglePredSuccessor(MachineBasicBlock *MBB, | 
 |                                    SmallVectorImpl<MachineBasicBlock *> &Succs) { | 
 |   for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
 |          SE = MBB->succ_end(); SI != SE; ++SI) { | 
 |     MachineBasicBlock *SuccMBB = *SI; | 
 |     if (SuccMBB->pred_size() == 1) | 
 |       Succs.push_back(SuccMBB); | 
 |   } | 
 | } | 
 |  | 
 | /// InvalidateKill - Invalidate register kill information for a specific | 
 | /// register. This also unsets the kills marker on the last kill operand. | 
 | static void InvalidateKill(unsigned Reg, | 
 |                            const TargetRegisterInfo* TRI, | 
 |                            BitVector &RegKills, | 
 |                            std::vector<MachineOperand*> &KillOps) { | 
 |   if (RegKills[Reg]) { | 
 |     KillOps[Reg]->setIsKill(false); | 
 |     // KillOps[Reg] might be a def of a super-register. | 
 |     unsigned KReg = KillOps[Reg]->getReg(); | 
 |     KillOps[KReg] = NULL; | 
 |     RegKills.reset(KReg); | 
 |     for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { | 
 |       if (RegKills[*SR]) { | 
 |         KillOps[*SR]->setIsKill(false); | 
 |         KillOps[*SR] = NULL; | 
 |         RegKills.reset(*SR); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// InvalidateKills - MI is going to be deleted. If any of its operands are | 
 | /// marked kill, then invalidate the information. | 
 | static void InvalidateKills(MachineInstr &MI, | 
 |                             const TargetRegisterInfo* TRI, | 
 |                             BitVector &RegKills, | 
 |                             std::vector<MachineOperand*> &KillOps, | 
 |                             SmallVector<unsigned, 2> *KillRegs = NULL) { | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef()) | 
 |       continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |       continue; | 
 |     if (KillRegs) | 
 |       KillRegs->push_back(Reg); | 
 |     assert(Reg < KillOps.size()); | 
 |     if (KillOps[Reg] == &MO) { | 
 |       KillOps[Reg] = NULL; | 
 |       RegKills.reset(Reg); | 
 |       for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { | 
 |         if (RegKills[*SR]) { | 
 |           KillOps[*SR] = NULL; | 
 |           RegKills.reset(*SR); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// InvalidateRegDef - If the def operand of the specified def MI is now dead | 
 | /// (since it's spill instruction is removed), mark it isDead. Also checks if | 
 | /// the def MI has other definition operands that are not dead. Returns it by | 
 | /// reference. | 
 | static bool InvalidateRegDef(MachineBasicBlock::iterator I, | 
 |                              MachineInstr &NewDef, unsigned Reg, | 
 |                              bool &HasLiveDef) { | 
 |   // Due to remat, it's possible this reg isn't being reused. That is, | 
 |   // the def of this reg (by prev MI) is now dead. | 
 |   MachineInstr *DefMI = I; | 
 |   MachineOperand *DefOp = NULL; | 
 |   for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = DefMI->getOperand(i); | 
 |     if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef()) | 
 |       continue; | 
 |     if (MO.getReg() == Reg) | 
 |       DefOp = &MO; | 
 |     else if (!MO.isDead()) | 
 |       HasLiveDef = true; | 
 |   } | 
 |   if (!DefOp) | 
 |     return false; | 
 |  | 
 |   bool FoundUse = false, Done = false; | 
 |   MachineBasicBlock::iterator E = &NewDef; | 
 |   ++I; ++E; | 
 |   for (; !Done && I != E; ++I) { | 
 |     MachineInstr *NMI = I; | 
 |     for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { | 
 |       MachineOperand &MO = NMI->getOperand(j); | 
 |       if (!MO.isReg() || MO.getReg() != Reg) | 
 |         continue; | 
 |       if (MO.isUse()) | 
 |         FoundUse = true; | 
 |       Done = true; // Stop after scanning all the operands of this MI. | 
 |     } | 
 |   } | 
 |   if (!FoundUse) { | 
 |     // Def is dead! | 
 |     DefOp->setIsDead(); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// UpdateKills - Track and update kill info. If a MI reads a register that is | 
 | /// marked kill, then it must be due to register reuse. Transfer the kill info | 
 | /// over. | 
 | static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI, | 
 |                         BitVector &RegKills, | 
 |                         std::vector<MachineOperand*> &KillOps) { | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isReg() || !MO.isUse() || MO.isUndef()) | 
 |       continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (Reg == 0) | 
 |       continue; | 
 |      | 
 |     if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { | 
 |       // That can't be right. Register is killed but not re-defined and it's | 
 |       // being reused. Let's fix that. | 
 |       KillOps[Reg]->setIsKill(false); | 
 |       // KillOps[Reg] might be a def of a super-register. | 
 |       unsigned KReg = KillOps[Reg]->getReg(); | 
 |       KillOps[KReg] = NULL; | 
 |       RegKills.reset(KReg); | 
 |  | 
 |       // Must be a def of a super-register. Its other sub-regsters are no | 
 |       // longer killed as well. | 
 |       for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { | 
 |         KillOps[*SR] = NULL; | 
 |         RegKills.reset(*SR); | 
 |       } | 
 |  | 
 |       if (!MI.isRegTiedToDefOperand(i)) | 
 |         // Unless it's a two-address operand, this is the new kill. | 
 |         MO.setIsKill(); | 
 |     } | 
 |     if (MO.isKill()) { | 
 |       RegKills.set(Reg); | 
 |       KillOps[Reg] = &MO; | 
 |       for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { | 
 |         RegKills.set(*SR); | 
 |         KillOps[*SR] = &MO; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     const MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isReg() || !MO.isDef()) | 
 |       continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     RegKills.reset(Reg); | 
 |     KillOps[Reg] = NULL; | 
 |     // It also defines (or partially define) aliases. | 
 |     for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { | 
 |       RegKills.reset(*SR); | 
 |       KillOps[*SR] = NULL; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// ReMaterialize - Re-materialize definition for Reg targetting DestReg. | 
 | /// | 
 | static void ReMaterialize(MachineBasicBlock &MBB, | 
 |                           MachineBasicBlock::iterator &MII, | 
 |                           unsigned DestReg, unsigned Reg, | 
 |                           const TargetInstrInfo *TII, | 
 |                           const TargetRegisterInfo *TRI, | 
 |                           VirtRegMap &VRM) { | 
 |   MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg); | 
 | #ifndef NDEBUG | 
 |   const TargetInstrDesc &TID = ReMatDefMI->getDesc(); | 
 |   assert(TID.getNumDefs() == 1 && | 
 |          "Don't know how to remat instructions that define > 1 values!"); | 
 | #endif | 
 |   TII->reMaterialize(MBB, MII, DestReg, | 
 |                      ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI); | 
 |   MachineInstr *NewMI = prior(MII); | 
 |   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = NewMI->getOperand(i); | 
 |     if (!MO.isReg() || MO.getReg() == 0) | 
 |       continue; | 
 |     unsigned VirtReg = MO.getReg(); | 
 |     if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) | 
 |       continue; | 
 |     assert(MO.isUse()); | 
 |     unsigned SubIdx = MO.getSubReg(); | 
 |     unsigned Phys = VRM.getPhys(VirtReg); | 
 |     assert(Phys && "Virtual register is not assigned a register?"); | 
 |     unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; | 
 |     MO.setReg(RReg); | 
 |     MO.setSubReg(0); | 
 |   } | 
 |   ++NumReMats; | 
 | } | 
 |  | 
 | /// findSuperReg - Find the SubReg's super-register of given register class | 
 | /// where its SubIdx sub-register is SubReg. | 
 | static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, | 
 |                              unsigned SubIdx, const TargetRegisterInfo *TRI) { | 
 |   for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
 |        I != E; ++I) { | 
 |     unsigned Reg = *I; | 
 |     if (TRI->getSubReg(Reg, SubIdx) == SubReg) | 
 |       return Reg; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // ******************************** // | 
 | // Available Spills Implementation  // | 
 | // ******************************** // | 
 |  | 
 | /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified | 
 | /// stackslot register. The register is still available but is no longer | 
 | /// allowed to be modifed. | 
 | void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { | 
 |   std::multimap<unsigned, int>::iterator I = | 
 |     PhysRegsAvailable.lower_bound(PhysReg); | 
 |   while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
 |     int SlotOrReMat = I->second; | 
 |     I++; | 
 |     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
 |            "Bidirectional map mismatch!"); | 
 |     SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; | 
 |     DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg) | 
 |          << " copied, it is available for use but can no longer be modified\n"); | 
 |   } | 
 | } | 
 |  | 
 | /// disallowClobberPhysReg - Unset the CanClobber bit of the specified | 
 | /// stackslot register and its aliases. The register and its aliases may | 
 | /// still available but is no longer allowed to be modifed. | 
 | void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { | 
 |   for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) | 
 |     disallowClobberPhysRegOnly(*AS); | 
 |   disallowClobberPhysRegOnly(PhysReg); | 
 | } | 
 |  | 
 | /// ClobberPhysRegOnly - This is called when the specified physreg changes | 
 | /// value.  We use this to invalidate any info about stuff we thing lives in it. | 
 | void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { | 
 |   std::multimap<unsigned, int>::iterator I = | 
 |     PhysRegsAvailable.lower_bound(PhysReg); | 
 |   while (I != PhysRegsAvailable.end() && I->first == PhysReg) { | 
 |     int SlotOrReMat = I->second; | 
 |     PhysRegsAvailable.erase(I++); | 
 |     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && | 
 |            "Bidirectional map mismatch!"); | 
 |     SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); | 
 |     DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg) | 
 |           << " clobbered, invalidating "); | 
 |     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) | 
 |       DEBUG(errs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n"); | 
 |     else | 
 |       DEBUG(errs() << "SS#" << SlotOrReMat << "\n"); | 
 |   } | 
 | } | 
 |  | 
 | /// ClobberPhysReg - This is called when the specified physreg changes | 
 | /// value.  We use this to invalidate any info about stuff we thing lives in | 
 | /// it and any of its aliases. | 
 | void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { | 
 |   for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) | 
 |     ClobberPhysRegOnly(*AS); | 
 |   ClobberPhysRegOnly(PhysReg); | 
 | } | 
 |  | 
 | /// AddAvailableRegsToLiveIn - Availability information is being kept coming | 
 | /// into the specified MBB. Add available physical registers as potential | 
 | /// live-in's. If they are reused in the MBB, they will be added to the | 
 | /// live-in set to make register scavenger and post-allocation scheduler. | 
 | void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, | 
 |                                         BitVector &RegKills, | 
 |                                         std::vector<MachineOperand*> &KillOps) { | 
 |   std::set<unsigned> NotAvailable; | 
 |   for (std::multimap<unsigned, int>::iterator | 
 |          I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); | 
 |        I != E; ++I) { | 
 |     unsigned Reg = I->first; | 
 |     const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg); | 
 |     // FIXME: A temporary workaround. We can't reuse available value if it's | 
 |     // not safe to move the def of the virtual register's class. e.g. | 
 |     // X86::RFP* register classes. Do not add it as a live-in. | 
 |     if (!TII->isSafeToMoveRegClassDefs(RC)) | 
 |       // This is no longer available. | 
 |       NotAvailable.insert(Reg); | 
 |     else { | 
 |       MBB.addLiveIn(Reg); | 
 |       InvalidateKill(Reg, TRI, RegKills, KillOps); | 
 |     } | 
 |  | 
 |     // Skip over the same register. | 
 |     std::multimap<unsigned, int>::iterator NI = next(I); | 
 |     while (NI != E && NI->first == Reg) { | 
 |       ++I; | 
 |       ++NI; | 
 |     } | 
 |   } | 
 |  | 
 |   for (std::set<unsigned>::iterator I = NotAvailable.begin(), | 
 |          E = NotAvailable.end(); I != E; ++I) { | 
 |     ClobberPhysReg(*I); | 
 |     for (const unsigned *SubRegs = TRI->getSubRegisters(*I); | 
 |        *SubRegs; ++SubRegs) | 
 |       ClobberPhysReg(*SubRegs); | 
 |   } | 
 | } | 
 |  | 
 | /// ModifyStackSlotOrReMat - This method is called when the value in a stack | 
 | /// slot changes.  This removes information about which register the previous | 
 | /// value for this slot lives in (as the previous value is dead now). | 
 | void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { | 
 |   std::map<int, unsigned>::iterator It = | 
 |     SpillSlotsOrReMatsAvailable.find(SlotOrReMat); | 
 |   if (It == SpillSlotsOrReMatsAvailable.end()) return; | 
 |   unsigned Reg = It->second >> 1; | 
 |   SpillSlotsOrReMatsAvailable.erase(It); | 
 |    | 
 |   // This register may hold the value of multiple stack slots, only remove this | 
 |   // stack slot from the set of values the register contains. | 
 |   std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); | 
 |   for (; ; ++I) { | 
 |     assert(I != PhysRegsAvailable.end() && I->first == Reg && | 
 |            "Map inverse broken!"); | 
 |     if (I->second == SlotOrReMat) break; | 
 |   } | 
 |   PhysRegsAvailable.erase(I); | 
 | } | 
 |  | 
 | // ************************** // | 
 | // Reuse Info Implementation  // | 
 | // ************************** // | 
 |  | 
 | /// GetRegForReload - We are about to emit a reload into PhysReg.  If there | 
 | /// is some other operand that is using the specified register, either pick | 
 | /// a new register to use, or evict the previous reload and use this reg. | 
 | unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC, | 
 |                          unsigned PhysReg, | 
 |                          MachineFunction &MF, | 
 |                          MachineInstr *MI, AvailableSpills &Spills, | 
 |                          std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                          SmallSet<unsigned, 8> &Rejected, | 
 |                          BitVector &RegKills, | 
 |                          std::vector<MachineOperand*> &KillOps, | 
 |                          VirtRegMap &VRM) { | 
 |   const TargetInstrInfo* TII = MF.getTarget().getInstrInfo(); | 
 |   const TargetRegisterInfo *TRI = Spills.getRegInfo(); | 
 |    | 
 |   if (Reuses.empty()) return PhysReg;  // This is most often empty. | 
 |  | 
 |   for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { | 
 |     ReusedOp &Op = Reuses[ro]; | 
 |     // If we find some other reuse that was supposed to use this register | 
 |     // exactly for its reload, we can change this reload to use ITS reload | 
 |     // register. That is, unless its reload register has already been | 
 |     // considered and subsequently rejected because it has also been reused | 
 |     // by another operand. | 
 |     if (Op.PhysRegReused == PhysReg && | 
 |         Rejected.count(Op.AssignedPhysReg) == 0 && | 
 |         RC->contains(Op.AssignedPhysReg)) { | 
 |       // Yup, use the reload register that we didn't use before. | 
 |       unsigned NewReg = Op.AssignedPhysReg; | 
 |       Rejected.insert(PhysReg); | 
 |       return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected, | 
 |                              RegKills, KillOps, VRM); | 
 |     } else { | 
 |       // Otherwise, we might also have a problem if a previously reused | 
 |       // value aliases the new register. If so, codegen the previous reload | 
 |       // and use this one.           | 
 |       unsigned PRRU = Op.PhysRegReused; | 
 |       if (TRI->regsOverlap(PRRU, PhysReg)) { | 
 |         // Okay, we found out that an alias of a reused register | 
 |         // was used.  This isn't good because it means we have | 
 |         // to undo a previous reuse. | 
 |         MachineBasicBlock *MBB = MI->getParent(); | 
 |         const TargetRegisterClass *AliasRC = | 
 |           MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); | 
 |  | 
 |         // Copy Op out of the vector and remove it, we're going to insert an | 
 |         // explicit load for it. | 
 |         ReusedOp NewOp = Op; | 
 |         Reuses.erase(Reuses.begin()+ro); | 
 |  | 
 |         // MI may be using only a sub-register of PhysRegUsed. | 
 |         unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg(); | 
 |         unsigned SubIdx = 0; | 
 |         assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) && | 
 |                "A reuse cannot be a virtual register"); | 
 |         if (PRRU != RealPhysRegUsed) { | 
 |           // What was the sub-register index? | 
 |           unsigned SubReg; | 
 |           for (SubIdx = 1; (SubReg = TRI->getSubReg(PRRU, SubIdx)); SubIdx++) | 
 |             if (SubReg == RealPhysRegUsed) | 
 |               break; | 
 |           assert(SubReg == RealPhysRegUsed && | 
 |                  "Operand physreg is not a sub-register of PhysRegUsed"); | 
 |         } | 
 |  | 
 |         // Ok, we're going to try to reload the assigned physreg into the | 
 |         // slot that we were supposed to in the first place.  However, that | 
 |         // register could hold a reuse.  Check to see if it conflicts or | 
 |         // would prefer us to use a different register. | 
 |         unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg, | 
 |                                               MF, MI, Spills, MaybeDeadStores, | 
 |                                               Rejected, RegKills, KillOps, VRM); | 
 |  | 
 |         bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT; | 
 |         int SSorRMId = DoReMat | 
 |           ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat; | 
 |  | 
 |         // Back-schedule reloads and remats. | 
 |         MachineBasicBlock::iterator InsertLoc = | 
 |           ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, | 
 |                            DoReMat, SSorRMId, TII, MF); | 
 |  | 
 |         if (DoReMat) { | 
 |           ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII, | 
 |                         TRI, VRM); | 
 |         } else {  | 
 |           TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg, | 
 |                                     NewOp.StackSlotOrReMat, AliasRC); | 
 |           MachineInstr *LoadMI = prior(InsertLoc); | 
 |           VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); | 
 |           // Any stores to this stack slot are not dead anymore. | 
 |           MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;             | 
 |           ++NumLoads; | 
 |         } | 
 |         Spills.ClobberPhysReg(NewPhysReg); | 
 |         Spills.ClobberPhysReg(NewOp.PhysRegReused); | 
 |  | 
 |         unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg; | 
 |         MI->getOperand(NewOp.Operand).setReg(RReg); | 
 |         MI->getOperand(NewOp.Operand).setSubReg(0); | 
 |  | 
 |         Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); | 
 |         UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); | 
 |         DEBUG(errs() << '\t' << *prior(InsertLoc)); | 
 |          | 
 |         DEBUG(errs() << "Reuse undone!\n"); | 
 |         --NumReused; | 
 |          | 
 |         // Finally, PhysReg is now available, go ahead and use it. | 
 |         return PhysReg; | 
 |       } | 
 |     } | 
 |   } | 
 |   return PhysReg; | 
 | } | 
 |  | 
 | // ************************************************************************ // | 
 |  | 
 | /// FoldsStackSlotModRef - Return true if the specified MI folds the specified | 
 | /// stack slot mod/ref. It also checks if it's possible to unfold the | 
 | /// instruction by having it define a specified physical register instead. | 
 | static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, | 
 |                                  const TargetInstrInfo *TII, | 
 |                                  const TargetRegisterInfo *TRI, | 
 |                                  VirtRegMap &VRM) { | 
 |   if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) | 
 |     return false; | 
 |  | 
 |   bool Found = false; | 
 |   VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
 |   for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { | 
 |     unsigned VirtReg = I->second.first; | 
 |     VirtRegMap::ModRef MR = I->second.second; | 
 |     if (MR & VirtRegMap::isModRef) | 
 |       if (VRM.getStackSlot(VirtReg) == SS) { | 
 |         Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; | 
 |         break; | 
 |       } | 
 |   } | 
 |   if (!Found) | 
 |     return false; | 
 |  | 
 |   // Does the instruction uses a register that overlaps the scratch register? | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isReg() || MO.getReg() == 0) | 
 |       continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
 |       if (!VRM.hasPhys(Reg)) | 
 |         continue; | 
 |       Reg = VRM.getPhys(Reg); | 
 |     } | 
 |     if (TRI->regsOverlap(PhysReg, Reg)) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// FindFreeRegister - Find a free register of a given register class by looking | 
 | /// at (at most) the last two machine instructions. | 
 | static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, | 
 |                                  MachineBasicBlock &MBB, | 
 |                                  const TargetRegisterClass *RC, | 
 |                                  const TargetRegisterInfo *TRI, | 
 |                                  BitVector &AllocatableRegs) { | 
 |   BitVector Defs(TRI->getNumRegs()); | 
 |   BitVector Uses(TRI->getNumRegs()); | 
 |   SmallVector<unsigned, 4> LocalUses; | 
 |   SmallVector<unsigned, 4> Kills; | 
 |  | 
 |   // Take a look at 2 instructions at most. | 
 |   for (unsigned Count = 0; Count < 2; ++Count) { | 
 |     if (MII == MBB.begin()) | 
 |       break; | 
 |     MachineInstr *PrevMI = prior(MII); | 
 |     for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand &MO = PrevMI->getOperand(i); | 
 |       if (!MO.isReg() || MO.getReg() == 0) | 
 |         continue; | 
 |       unsigned Reg = MO.getReg(); | 
 |       if (MO.isDef()) { | 
 |         Defs.set(Reg); | 
 |         for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) | 
 |           Defs.set(*AS); | 
 |       } else  { | 
 |         LocalUses.push_back(Reg); | 
 |         if (MO.isKill() && AllocatableRegs[Reg]) | 
 |           Kills.push_back(Reg); | 
 |       } | 
 |     } | 
 |  | 
 |     for (unsigned i = 0, e = Kills.size(); i != e; ++i) { | 
 |       unsigned Kill = Kills[i]; | 
 |       if (!Defs[Kill] && !Uses[Kill] && | 
 |           TRI->getPhysicalRegisterRegClass(Kill) == RC) | 
 |         return Kill; | 
 |     } | 
 |     for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { | 
 |       unsigned Reg = LocalUses[i]; | 
 |       Uses.set(Reg); | 
 |       for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) | 
 |         Uses.set(*AS); | 
 |     } | 
 |  | 
 |     MII = PrevMI; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | static | 
 | void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) { | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (MO.isReg() && MO.getReg() == VirtReg) | 
 |       MO.setReg(PhysReg); | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |   struct RefSorter { | 
 |     bool operator()(const std::pair<MachineInstr*, int> &A, | 
 |                     const std::pair<MachineInstr*, int> &B) { | 
 |       return A.second < B.second; | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | // ***************************** // | 
 | // Local Spiller Implementation  // | 
 | // ***************************** // | 
 |  | 
 | namespace { | 
 |  | 
 | class LocalRewriter : public VirtRegRewriter { | 
 |   MachineRegisterInfo *RegInfo; | 
 |   const TargetRegisterInfo *TRI; | 
 |   const TargetInstrInfo *TII; | 
 |   BitVector AllocatableRegs; | 
 |   DenseMap<MachineInstr*, unsigned> DistanceMap; | 
 | public: | 
 |  | 
 |   bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, | 
 |                             LiveIntervals* LIs) { | 
 |     RegInfo = &MF.getRegInfo();  | 
 |     TRI = MF.getTarget().getRegisterInfo(); | 
 |     TII = MF.getTarget().getInstrInfo(); | 
 |     AllocatableRegs = TRI->getAllocatableSet(MF); | 
 |     DEBUG(errs() << "\n**** Local spiller rewriting function '" | 
 |           << MF.getFunction()->getName() << "':\n"); | 
 |     DEBUG(errs() << "**** Machine Instrs (NOTE! Does not include spills and" | 
 |                     " reloads!) ****\n"); | 
 |     DEBUG(MF.dump()); | 
 |  | 
 |     // Spills - Keep track of which spilled values are available in physregs | 
 |     // so that we can choose to reuse the physregs instead of emitting | 
 |     // reloads. This is usually refreshed per basic block. | 
 |     AvailableSpills Spills(TRI, TII); | 
 |  | 
 |     // Keep track of kill information. | 
 |     BitVector RegKills(TRI->getNumRegs()); | 
 |     std::vector<MachineOperand*> KillOps; | 
 |     KillOps.resize(TRI->getNumRegs(), NULL); | 
 |  | 
 |     // SingleEntrySuccs - Successor blocks which have a single predecessor. | 
 |     SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; | 
 |     SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; | 
 |  | 
 |     // Traverse the basic blocks depth first. | 
 |     MachineBasicBlock *Entry = MF.begin(); | 
 |     SmallPtrSet<MachineBasicBlock*,16> Visited; | 
 |     for (df_ext_iterator<MachineBasicBlock*, | 
 |            SmallPtrSet<MachineBasicBlock*,16> > | 
 |            DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); | 
 |          DFI != E; ++DFI) { | 
 |       MachineBasicBlock *MBB = *DFI; | 
 |       if (!EarlyVisited.count(MBB)) | 
 |         RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); | 
 |  | 
 |       // If this MBB is the only predecessor of a successor. Keep the | 
 |       // availability information and visit it next. | 
 |       do { | 
 |         // Keep visiting single predecessor successor as long as possible. | 
 |         SinglePredSuccs.clear(); | 
 |         findSinglePredSuccessor(MBB, SinglePredSuccs); | 
 |         if (SinglePredSuccs.empty()) | 
 |           MBB = 0; | 
 |         else { | 
 |           // FIXME: More than one successors, each of which has MBB has | 
 |           // the only predecessor. | 
 |           MBB = SinglePredSuccs[0]; | 
 |           if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { | 
 |             Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); | 
 |             RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); | 
 |           } | 
 |         } | 
 |       } while (MBB); | 
 |  | 
 |       // Clear the availability info. | 
 |       Spills.clear(); | 
 |     } | 
 |  | 
 |     DEBUG(errs() << "**** Post Machine Instrs ****\n"); | 
 |     DEBUG(MF.dump()); | 
 |  | 
 |     // Mark unused spill slots. | 
 |     MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |     int SS = VRM.getLowSpillSlot(); | 
 |     if (SS != VirtRegMap::NO_STACK_SLOT) | 
 |       for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS) | 
 |         if (!VRM.isSpillSlotUsed(SS)) { | 
 |           MFI->RemoveStackObject(SS); | 
 |           ++NumDSS; | 
 |         } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 | private: | 
 |  | 
 |   /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if | 
 |   /// a scratch register is available. | 
 |   ///     xorq  %r12<kill>, %r13 | 
 |   ///     addq  %rax, -184(%rbp) | 
 |   ///     addq  %r13, -184(%rbp) | 
 |   /// ==> | 
 |   ///     xorq  %r12<kill>, %r13 | 
 |   ///     movq  -184(%rbp), %r12 | 
 |   ///     addq  %rax, %r12 | 
 |   ///     addq  %r13, %r12 | 
 |   ///     movq  %r12, -184(%rbp) | 
 |   bool OptimizeByUnfold2(unsigned VirtReg, int SS, | 
 |                          MachineBasicBlock &MBB, | 
 |                          MachineBasicBlock::iterator &MII, | 
 |                          std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                          AvailableSpills &Spills, | 
 |                          BitVector &RegKills, | 
 |                          std::vector<MachineOperand*> &KillOps, | 
 |                          VirtRegMap &VRM) { | 
 |  | 
 |     MachineBasicBlock::iterator NextMII = next(MII); | 
 |     if (NextMII == MBB.end()) | 
 |       return false; | 
 |  | 
 |     if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) | 
 |       return false; | 
 |  | 
 |     // Now let's see if the last couple of instructions happens to have freed up | 
 |     // a register. | 
 |     const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
 |     unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs); | 
 |     if (!PhysReg) | 
 |       return false; | 
 |  | 
 |     MachineFunction &MF = *MBB.getParent(); | 
 |     TRI = MF.getTarget().getRegisterInfo(); | 
 |     MachineInstr &MI = *MII; | 
 |     if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM)) | 
 |       return false; | 
 |  | 
 |     // If the next instruction also folds the same SS modref and can be unfoled, | 
 |     // then it's worthwhile to issue a load from SS into the free register and | 
 |     // then unfold these instructions. | 
 |     if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)) | 
 |       return false; | 
 |  | 
 |     // Back-schedule reloads and remats. | 
 |     ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF); | 
 |  | 
 |     // Load from SS to the spare physical register. | 
 |     TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC); | 
 |     // This invalidates Phys. | 
 |     Spills.ClobberPhysReg(PhysReg); | 
 |     // Remember it's available. | 
 |     Spills.addAvailable(SS, PhysReg); | 
 |     MaybeDeadStores[SS] = NULL; | 
 |  | 
 |     // Unfold current MI. | 
 |     SmallVector<MachineInstr*, 4> NewMIs; | 
 |     if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) | 
 |       llvm_unreachable("Unable unfold the load / store folding instruction!"); | 
 |     assert(NewMIs.size() == 1); | 
 |     AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); | 
 |     VRM.transferRestorePts(&MI, NewMIs[0]); | 
 |     MII = MBB.insert(MII, NewMIs[0]); | 
 |     InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |     VRM.RemoveMachineInstrFromMaps(&MI); | 
 |     MBB.erase(&MI); | 
 |     ++NumModRefUnfold; | 
 |  | 
 |     // Unfold next instructions that fold the same SS. | 
 |     do { | 
 |       MachineInstr &NextMI = *NextMII; | 
 |       NextMII = next(NextMII); | 
 |       NewMIs.clear(); | 
 |       if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) | 
 |         llvm_unreachable("Unable unfold the load / store folding instruction!"); | 
 |       assert(NewMIs.size() == 1); | 
 |       AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); | 
 |       VRM.transferRestorePts(&NextMI, NewMIs[0]); | 
 |       MBB.insert(NextMII, NewMIs[0]); | 
 |       InvalidateKills(NextMI, TRI, RegKills, KillOps); | 
 |       VRM.RemoveMachineInstrFromMaps(&NextMI); | 
 |       MBB.erase(&NextMI); | 
 |       ++NumModRefUnfold; | 
 |       if (NextMII == MBB.end()) | 
 |         break; | 
 |     } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)); | 
 |  | 
 |     // Store the value back into SS. | 
 |     TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC); | 
 |     MachineInstr *StoreMI = prior(NextMII); | 
 |     VRM.addSpillSlotUse(SS, StoreMI); | 
 |     VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// OptimizeByUnfold - Turn a store folding instruction into a load folding | 
 |   /// instruction. e.g. | 
 |   ///     xorl  %edi, %eax | 
 |   ///     movl  %eax, -32(%ebp) | 
 |   ///     movl  -36(%ebp), %eax | 
 |   ///     orl   %eax, -32(%ebp) | 
 |   /// ==> | 
 |   ///     xorl  %edi, %eax | 
 |   ///     orl   -36(%ebp), %eax | 
 |   ///     mov   %eax, -32(%ebp) | 
 |   /// This enables unfolding optimization for a subsequent instruction which will | 
 |   /// also eliminate the newly introduced store instruction. | 
 |   bool OptimizeByUnfold(MachineBasicBlock &MBB, | 
 |                         MachineBasicBlock::iterator &MII, | 
 |                         std::vector<MachineInstr*> &MaybeDeadStores, | 
 |                         AvailableSpills &Spills, | 
 |                         BitVector &RegKills, | 
 |                         std::vector<MachineOperand*> &KillOps, | 
 |                         VirtRegMap &VRM) { | 
 |     MachineFunction &MF = *MBB.getParent(); | 
 |     MachineInstr &MI = *MII; | 
 |     unsigned UnfoldedOpc = 0; | 
 |     unsigned UnfoldPR = 0; | 
 |     unsigned UnfoldVR = 0; | 
 |     int FoldedSS = VirtRegMap::NO_STACK_SLOT; | 
 |     VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
 |     for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { | 
 |       // Only transform a MI that folds a single register. | 
 |       if (UnfoldedOpc) | 
 |         return false; | 
 |       UnfoldVR = I->second.first; | 
 |       VirtRegMap::ModRef MR = I->second.second; | 
 |       // MI2VirtMap be can updated which invalidate the iterator. | 
 |       // Increment the iterator first. | 
 |       ++I;  | 
 |       if (VRM.isAssignedReg(UnfoldVR)) | 
 |         continue; | 
 |       // If this reference is not a use, any previous store is now dead. | 
 |       // Otherwise, the store to this stack slot is not dead anymore. | 
 |       FoldedSS = VRM.getStackSlot(UnfoldVR); | 
 |       MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; | 
 |       if (DeadStore && (MR & VirtRegMap::isModRef)) { | 
 |         unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); | 
 |         if (!PhysReg || !DeadStore->readsRegister(PhysReg)) | 
 |           continue; | 
 |         UnfoldPR = PhysReg; | 
 |         UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), | 
 |                                                       false, true); | 
 |       } | 
 |     } | 
 |  | 
 |     if (!UnfoldedOpc) { | 
 |       if (!UnfoldVR) | 
 |         return false; | 
 |  | 
 |       // Look for other unfolding opportunities. | 
 |       return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII, | 
 |                                MaybeDeadStores, Spills, RegKills, KillOps, VRM); | 
 |     } | 
 |  | 
 |     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |       MachineOperand &MO = MI.getOperand(i); | 
 |       if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) | 
 |         continue; | 
 |       unsigned VirtReg = MO.getReg(); | 
 |       if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) | 
 |         continue; | 
 |       if (VRM.isAssignedReg(VirtReg)) { | 
 |         unsigned PhysReg = VRM.getPhys(VirtReg); | 
 |         if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) | 
 |           return false; | 
 |       } else if (VRM.isReMaterialized(VirtReg)) | 
 |         continue; | 
 |       int SS = VRM.getStackSlot(VirtReg); | 
 |       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
 |       if (PhysReg) { | 
 |         if (TRI->regsOverlap(PhysReg, UnfoldPR)) | 
 |           return false; | 
 |         continue; | 
 |       } | 
 |       if (VRM.hasPhys(VirtReg)) { | 
 |         PhysReg = VRM.getPhys(VirtReg); | 
 |         if (!TRI->regsOverlap(PhysReg, UnfoldPR)) | 
 |           continue; | 
 |       } | 
 |  | 
 |       // Ok, we'll need to reload the value into a register which makes | 
 |       // it impossible to perform the store unfolding optimization later. | 
 |       // Let's see if it is possible to fold the load if the store is | 
 |       // unfolded. This allows us to perform the store unfolding | 
 |       // optimization. | 
 |       SmallVector<MachineInstr*, 4> NewMIs; | 
 |       if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { | 
 |         assert(NewMIs.size() == 1); | 
 |         MachineInstr *NewMI = NewMIs.back(); | 
 |         NewMIs.clear(); | 
 |         int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); | 
 |         assert(Idx != -1); | 
 |         SmallVector<unsigned, 1> Ops; | 
 |         Ops.push_back(Idx); | 
 |         MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS); | 
 |         if (FoldedMI) { | 
 |           VRM.addSpillSlotUse(SS, FoldedMI); | 
 |           if (!VRM.hasPhys(UnfoldVR)) | 
 |             VRM.assignVirt2Phys(UnfoldVR, UnfoldPR); | 
 |           VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); | 
 |           MII = MBB.insert(MII, FoldedMI); | 
 |           InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |           VRM.RemoveMachineInstrFromMaps(&MI); | 
 |           MBB.erase(&MI); | 
 |           MF.DeleteMachineInstr(NewMI); | 
 |           return true; | 
 |         } | 
 |         MF.DeleteMachineInstr(NewMI); | 
 |       } | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and | 
 |   /// where SrcReg is r1 and it is tied to r0. Return true if after | 
 |   /// commuting this instruction it will be r0 = op r2, r1. | 
 |   static bool CommuteChangesDestination(MachineInstr *DefMI, | 
 |                                         const TargetInstrDesc &TID, | 
 |                                         unsigned SrcReg, | 
 |                                         const TargetInstrInfo *TII, | 
 |                                         unsigned &DstIdx) { | 
 |     if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3) | 
 |       return false; | 
 |     if (!DefMI->getOperand(1).isReg() || | 
 |         DefMI->getOperand(1).getReg() != SrcReg) | 
 |       return false; | 
 |     unsigned DefIdx; | 
 |     if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0) | 
 |       return false; | 
 |     unsigned SrcIdx1, SrcIdx2; | 
 |     if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2)) | 
 |       return false; | 
 |     if (SrcIdx1 == 1 && SrcIdx2 == 2) { | 
 |       DstIdx = 2; | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// CommuteToFoldReload - | 
 |   /// Look for | 
 |   /// r1 = load fi#1 | 
 |   /// r1 = op r1, r2<kill> | 
 |   /// store r1, fi#1 | 
 |   /// | 
 |   /// If op is commutable and r2 is killed, then we can xform these to | 
 |   /// r2 = op r2, fi#1 | 
 |   /// store r2, fi#1 | 
 |   bool CommuteToFoldReload(MachineBasicBlock &MBB, | 
 |                            MachineBasicBlock::iterator &MII, | 
 |                            unsigned VirtReg, unsigned SrcReg, int SS, | 
 |                            AvailableSpills &Spills, | 
 |                            BitVector &RegKills, | 
 |                            std::vector<MachineOperand*> &KillOps, | 
 |                            const TargetRegisterInfo *TRI, | 
 |                            VirtRegMap &VRM) { | 
 |     if (MII == MBB.begin() || !MII->killsRegister(SrcReg)) | 
 |       return false; | 
 |  | 
 |     MachineFunction &MF = *MBB.getParent(); | 
 |     MachineInstr &MI = *MII; | 
 |     MachineBasicBlock::iterator DefMII = prior(MII); | 
 |     MachineInstr *DefMI = DefMII; | 
 |     const TargetInstrDesc &TID = DefMI->getDesc(); | 
 |     unsigned NewDstIdx; | 
 |     if (DefMII != MBB.begin() && | 
 |         TID.isCommutable() && | 
 |         CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) { | 
 |       MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); | 
 |       unsigned NewReg = NewDstMO.getReg(); | 
 |       if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) | 
 |         return false; | 
 |       MachineInstr *ReloadMI = prior(DefMII); | 
 |       int FrameIdx; | 
 |       unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); | 
 |       if (DestReg != SrcReg || FrameIdx != SS) | 
 |         return false; | 
 |       int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); | 
 |       if (UseIdx == -1) | 
 |         return false; | 
 |       unsigned DefIdx; | 
 |       if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) | 
 |         return false; | 
 |       assert(DefMI->getOperand(DefIdx).isReg() && | 
 |              DefMI->getOperand(DefIdx).getReg() == SrcReg); | 
 |  | 
 |       // Now commute def instruction. | 
 |       MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); | 
 |       if (!CommutedMI) | 
 |         return false; | 
 |       SmallVector<unsigned, 1> Ops; | 
 |       Ops.push_back(NewDstIdx); | 
 |       MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS); | 
 |       // Not needed since foldMemoryOperand returns new MI. | 
 |       MF.DeleteMachineInstr(CommutedMI); | 
 |       if (!FoldedMI) | 
 |         return false; | 
 |  | 
 |       VRM.addSpillSlotUse(SS, FoldedMI); | 
 |       VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); | 
 |       // Insert new def MI and spill MI. | 
 |       const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
 |       TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC); | 
 |       MII = prior(MII); | 
 |       MachineInstr *StoreMI = MII; | 
 |       VRM.addSpillSlotUse(SS, StoreMI); | 
 |       VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); | 
 |       MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack. | 
 |  | 
 |       // Delete all 3 old instructions. | 
 |       InvalidateKills(*ReloadMI, TRI, RegKills, KillOps); | 
 |       VRM.RemoveMachineInstrFromMaps(ReloadMI); | 
 |       MBB.erase(ReloadMI); | 
 |       InvalidateKills(*DefMI, TRI, RegKills, KillOps); | 
 |       VRM.RemoveMachineInstrFromMaps(DefMI); | 
 |       MBB.erase(DefMI); | 
 |       InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |       VRM.RemoveMachineInstrFromMaps(&MI); | 
 |       MBB.erase(&MI); | 
 |  | 
 |       // If NewReg was previously holding value of some SS, it's now clobbered. | 
 |       // This has to be done now because it's a physical register. When this | 
 |       // instruction is re-visited, it's ignored. | 
 |       Spills.ClobberPhysReg(NewReg); | 
 |  | 
 |       ++NumCommutes; | 
 |       return true; | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if | 
 |   /// the last store to the same slot is now dead. If so, remove the last store. | 
 |   void SpillRegToStackSlot(MachineBasicBlock &MBB, | 
 |                            MachineBasicBlock::iterator &MII, | 
 |                            int Idx, unsigned PhysReg, int StackSlot, | 
 |                            const TargetRegisterClass *RC, | 
 |                            bool isAvailable, MachineInstr *&LastStore, | 
 |                            AvailableSpills &Spills, | 
 |                            SmallSet<MachineInstr*, 4> &ReMatDefs, | 
 |                            BitVector &RegKills, | 
 |                            std::vector<MachineOperand*> &KillOps, | 
 |                            VirtRegMap &VRM) { | 
 |  | 
 |     MachineBasicBlock::iterator oldNextMII = next(MII); | 
 |     TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC); | 
 |     MachineInstr *StoreMI = prior(oldNextMII); | 
 |     VRM.addSpillSlotUse(StackSlot, StoreMI); | 
 |     DEBUG(errs() << "Store:\t" << *StoreMI); | 
 |  | 
 |     // If there is a dead store to this stack slot, nuke it now. | 
 |     if (LastStore) { | 
 |       DEBUG(errs() << "Removed dead store:\t" << *LastStore); | 
 |       ++NumDSE; | 
 |       SmallVector<unsigned, 2> KillRegs; | 
 |       InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs); | 
 |       MachineBasicBlock::iterator PrevMII = LastStore; | 
 |       bool CheckDef = PrevMII != MBB.begin(); | 
 |       if (CheckDef) | 
 |         --PrevMII; | 
 |       VRM.RemoveMachineInstrFromMaps(LastStore); | 
 |       MBB.erase(LastStore); | 
 |       if (CheckDef) { | 
 |         // Look at defs of killed registers on the store. Mark the defs | 
 |         // as dead since the store has been deleted and they aren't | 
 |         // being reused. | 
 |         for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { | 
 |           bool HasOtherDef = false; | 
 |           if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) { | 
 |             MachineInstr *DeadDef = PrevMII; | 
 |             if (ReMatDefs.count(DeadDef) && !HasOtherDef) { | 
 |               // FIXME: This assumes a remat def does not have side effects. | 
 |               VRM.RemoveMachineInstrFromMaps(DeadDef); | 
 |               MBB.erase(DeadDef); | 
 |               ++NumDRM; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Allow for multi-instruction spill sequences, as on PPC Altivec.  Presume | 
 |     // the last of multiple instructions is the actual store. | 
 |     LastStore = prior(oldNextMII); | 
 |  | 
 |     // If the stack slot value was previously available in some other | 
 |     // register, change it now.  Otherwise, make the register available, | 
 |     // in PhysReg. | 
 |     Spills.ModifyStackSlotOrReMat(StackSlot); | 
 |     Spills.ClobberPhysReg(PhysReg); | 
 |     Spills.addAvailable(StackSlot, PhysReg, isAvailable); | 
 |     ++NumStores; | 
 |   } | 
 |  | 
 |   /// isSafeToDelete - Return true if this instruction doesn't produce any side | 
 |   /// effect and all of its defs are dead. | 
 |   static bool isSafeToDelete(MachineInstr &MI) { | 
 |     const TargetInstrDesc &TID = MI.getDesc(); | 
 |     if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() || | 
 |         TID.isCall() || TID.isBarrier() || TID.isReturn() || | 
 |         TID.hasUnmodeledSideEffects()) | 
 |       return false; | 
 |     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |       MachineOperand &MO = MI.getOperand(i); | 
 |       if (!MO.isReg() || !MO.getReg()) | 
 |         continue; | 
 |       if (MO.isDef() && !MO.isDead()) | 
 |         return false; | 
 |       if (MO.isUse() && MO.isKill()) | 
 |         // FIXME: We can't remove kill markers or else the scavenger will assert. | 
 |         // An alternative is to add a ADD pseudo instruction to replace kill | 
 |         // markers. | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// TransferDeadness - A identity copy definition is dead and it's being | 
 |   /// removed. Find the last def or use and mark it as dead / kill. | 
 |   void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist, | 
 |                         unsigned Reg, BitVector &RegKills, | 
 |                         std::vector<MachineOperand*> &KillOps, | 
 |                         VirtRegMap &VRM) { | 
 |     SmallPtrSet<MachineInstr*, 4> Seens; | 
 |     SmallVector<std::pair<MachineInstr*, int>,8> Refs; | 
 |     for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg), | 
 |            RE = RegInfo->reg_end(); RI != RE; ++RI) { | 
 |       MachineInstr *UDMI = &*RI; | 
 |       if (UDMI->getParent() != MBB) | 
 |         continue; | 
 |       DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); | 
 |       if (DI == DistanceMap.end() || DI->second > CurDist) | 
 |         continue; | 
 |       if (Seens.insert(UDMI)) | 
 |         Refs.push_back(std::make_pair(UDMI, DI->second)); | 
 |     } | 
 |  | 
 |     if (Refs.empty()) | 
 |       return; | 
 |     std::sort(Refs.begin(), Refs.end(), RefSorter()); | 
 |  | 
 |     while (!Refs.empty()) { | 
 |       MachineInstr *LastUDMI = Refs.back().first; | 
 |       Refs.pop_back(); | 
 |  | 
 |       MachineOperand *LastUD = NULL; | 
 |       for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { | 
 |         MachineOperand &MO = LastUDMI->getOperand(i); | 
 |         if (!MO.isReg() || MO.getReg() != Reg) | 
 |           continue; | 
 |         if (!LastUD || (LastUD->isUse() && MO.isDef())) | 
 |           LastUD = &MO; | 
 |         if (LastUDMI->isRegTiedToDefOperand(i)) | 
 |           break; | 
 |       } | 
 |       if (LastUD->isDef()) { | 
 |         // If the instruction has no side effect, delete it and propagate | 
 |         // backward further. Otherwise, mark is dead and we are done. | 
 |         if (!isSafeToDelete(*LastUDMI)) { | 
 |           LastUD->setIsDead(); | 
 |           break; | 
 |         } | 
 |         VRM.RemoveMachineInstrFromMaps(LastUDMI); | 
 |         MBB->erase(LastUDMI); | 
 |       } else { | 
 |         LastUD->setIsKill(); | 
 |         RegKills.set(Reg); | 
 |         KillOps[Reg] = LastUD; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /// rewriteMBB - Keep track of which spills are available even after the | 
 |   /// register allocator is done with them.  If possible, avid reloading vregs. | 
 |   void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM, | 
 |                   LiveIntervals *LIs, | 
 |                   AvailableSpills &Spills, BitVector &RegKills, | 
 |                   std::vector<MachineOperand*> &KillOps) { | 
 |  | 
 |     DEBUG(errs() << "\n**** Local spiller rewriting MBB '" | 
 |           << MBB.getBasicBlock()->getName() << "':\n"); | 
 |  | 
 |     MachineFunction &MF = *MBB.getParent(); | 
 |      | 
 |     // MaybeDeadStores - When we need to write a value back into a stack slot, | 
 |     // keep track of the inserted store.  If the stack slot value is never read | 
 |     // (because the value was used from some available register, for example), and | 
 |     // subsequently stored to, the original store is dead.  This map keeps track | 
 |     // of inserted stores that are not used.  If we see a subsequent store to the | 
 |     // same stack slot, the original store is deleted. | 
 |     std::vector<MachineInstr*> MaybeDeadStores; | 
 |     MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); | 
 |  | 
 |     // ReMatDefs - These are rematerializable def MIs which are not deleted. | 
 |     SmallSet<MachineInstr*, 4> ReMatDefs; | 
 |  | 
 |     // Clear kill info. | 
 |     SmallSet<unsigned, 2> KilledMIRegs; | 
 |     RegKills.reset(); | 
 |     KillOps.clear(); | 
 |     KillOps.resize(TRI->getNumRegs(), NULL); | 
 |  | 
 |     unsigned Dist = 0; | 
 |     DistanceMap.clear(); | 
 |     for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); | 
 |          MII != E; ) { | 
 |       MachineBasicBlock::iterator NextMII = next(MII); | 
 |  | 
 |       VirtRegMap::MI2VirtMapTy::const_iterator I, End; | 
 |       bool Erased = false; | 
 |       bool BackTracked = false; | 
 |       if (OptimizeByUnfold(MBB, MII, | 
 |                            MaybeDeadStores, Spills, RegKills, KillOps, VRM)) | 
 |         NextMII = next(MII); | 
 |  | 
 |       MachineInstr &MI = *MII; | 
 |  | 
 |       if (VRM.hasEmergencySpills(&MI)) { | 
 |         // Spill physical register(s) in the rare case the allocator has run out | 
 |         // of registers to allocate. | 
 |         SmallSet<int, 4> UsedSS; | 
 |         std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI); | 
 |         for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { | 
 |           unsigned PhysReg = EmSpills[i]; | 
 |           const TargetRegisterClass *RC = | 
 |             TRI->getPhysicalRegisterRegClass(PhysReg); | 
 |           assert(RC && "Unable to determine register class!"); | 
 |           int SS = VRM.getEmergencySpillSlot(RC); | 
 |           if (UsedSS.count(SS)) | 
 |             llvm_unreachable("Need to spill more than one physical registers!"); | 
 |           UsedSS.insert(SS); | 
 |           TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC); | 
 |           MachineInstr *StoreMI = prior(MII); | 
 |           VRM.addSpillSlotUse(SS, StoreMI); | 
 |  | 
 |           // Back-schedule reloads and remats. | 
 |           MachineBasicBlock::iterator InsertLoc = | 
 |             ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false, | 
 |                              SS, TII, MF); | 
 |  | 
 |           TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC); | 
 |  | 
 |           MachineInstr *LoadMI = prior(InsertLoc); | 
 |           VRM.addSpillSlotUse(SS, LoadMI); | 
 |           ++NumPSpills; | 
 |           DistanceMap.insert(std::make_pair(LoadMI, Dist++)); | 
 |         } | 
 |         NextMII = next(MII); | 
 |       } | 
 |  | 
 |       // Insert restores here if asked to. | 
 |       if (VRM.isRestorePt(&MI)) { | 
 |         std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI); | 
 |         for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { | 
 |           unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order. | 
 |           if (!VRM.getPreSplitReg(VirtReg)) | 
 |             continue; // Split interval spilled again. | 
 |           unsigned Phys = VRM.getPhys(VirtReg); | 
 |           RegInfo->setPhysRegUsed(Phys); | 
 |  | 
 |           // Check if the value being restored if available. If so, it must be | 
 |           // from a predecessor BB that fallthrough into this BB. We do not | 
 |           // expect: | 
 |           // BB1: | 
 |           // r1 = load fi#1 | 
 |           // ... | 
 |           //    = r1<kill> | 
 |           // ... # r1 not clobbered | 
 |           // ... | 
 |           //    = load fi#1 | 
 |           bool DoReMat = VRM.isReMaterialized(VirtReg); | 
 |           int SSorRMId = DoReMat | 
 |             ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); | 
 |           const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
 |           unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); | 
 |           if (InReg == Phys) { | 
 |             // If the value is already available in the expected register, save | 
 |             // a reload / remat. | 
 |             if (SSorRMId) | 
 |               DEBUG(errs() << "Reusing RM#" | 
 |                            << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); | 
 |             else | 
 |               DEBUG(errs() << "Reusing SS#" << SSorRMId); | 
 |             DEBUG(errs() << " from physreg " | 
 |                          << TRI->getName(InReg) << " for vreg" | 
 |                          << VirtReg <<" instead of reloading into physreg " | 
 |                          << TRI->getName(Phys) << '\n'); | 
 |             ++NumOmitted; | 
 |             continue; | 
 |           } else if (InReg && InReg != Phys) { | 
 |             if (SSorRMId) | 
 |               DEBUG(errs() << "Reusing RM#" | 
 |                            << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); | 
 |             else | 
 |               DEBUG(errs() << "Reusing SS#" << SSorRMId); | 
 |             DEBUG(errs() << " from physreg " | 
 |                          << TRI->getName(InReg) << " for vreg" | 
 |                          << VirtReg <<" by copying it into physreg " | 
 |                          << TRI->getName(Phys) << '\n'); | 
 |  | 
 |             // If the reloaded / remat value is available in another register, | 
 |             // copy it to the desired register. | 
 |  | 
 |             // Back-schedule reloads and remats. | 
 |             MachineBasicBlock::iterator InsertLoc = | 
 |               ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat, | 
 |                                SSorRMId, TII, MF); | 
 |  | 
 |             TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC); | 
 |  | 
 |             // This invalidates Phys. | 
 |             Spills.ClobberPhysReg(Phys); | 
 |             // Remember it's available. | 
 |             Spills.addAvailable(SSorRMId, Phys); | 
 |  | 
 |             // Mark is killed. | 
 |             MachineInstr *CopyMI = prior(InsertLoc); | 
 |             MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg); | 
 |             KillOpnd->setIsKill(); | 
 |             UpdateKills(*CopyMI, TRI, RegKills, KillOps); | 
 |  | 
 |             DEBUG(errs() << '\t' << *CopyMI); | 
 |             ++NumCopified; | 
 |             continue; | 
 |           } | 
 |  | 
 |           // Back-schedule reloads and remats. | 
 |           MachineBasicBlock::iterator InsertLoc = | 
 |             ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat, | 
 |                              SSorRMId, TII, MF); | 
 |  | 
 |           if (VRM.isReMaterialized(VirtReg)) { | 
 |             ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM); | 
 |           } else { | 
 |             const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
 |             TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC); | 
 |             MachineInstr *LoadMI = prior(InsertLoc); | 
 |             VRM.addSpillSlotUse(SSorRMId, LoadMI); | 
 |             ++NumLoads; | 
 |             DistanceMap.insert(std::make_pair(LoadMI, Dist++)); | 
 |           } | 
 |  | 
 |           // This invalidates Phys. | 
 |           Spills.ClobberPhysReg(Phys); | 
 |           // Remember it's available. | 
 |           Spills.addAvailable(SSorRMId, Phys); | 
 |  | 
 |           UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); | 
 |           DEBUG(errs() << '\t' << *prior(MII)); | 
 |         } | 
 |       } | 
 |  | 
 |       // Insert spills here if asked to. | 
 |       if (VRM.isSpillPt(&MI)) { | 
 |         std::vector<std::pair<unsigned,bool> > &SpillRegs = | 
 |           VRM.getSpillPtSpills(&MI); | 
 |         for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { | 
 |           unsigned VirtReg = SpillRegs[i].first; | 
 |           bool isKill = SpillRegs[i].second; | 
 |           if (!VRM.getPreSplitReg(VirtReg)) | 
 |             continue; // Split interval spilled again. | 
 |           const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); | 
 |           unsigned Phys = VRM.getPhys(VirtReg); | 
 |           int StackSlot = VRM.getStackSlot(VirtReg); | 
 |           MachineBasicBlock::iterator oldNextMII = next(MII); | 
 |           TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC); | 
 |           MachineInstr *StoreMI = prior(oldNextMII); | 
 |           VRM.addSpillSlotUse(StackSlot, StoreMI); | 
 |           DEBUG(errs() << "Store:\t" << *StoreMI); | 
 |           VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); | 
 |         } | 
 |         NextMII = next(MII); | 
 |       } | 
 |  | 
 |       /// ReusedOperands - Keep track of operand reuse in case we need to undo | 
 |       /// reuse. | 
 |       ReuseInfo ReusedOperands(MI, TRI); | 
 |       SmallVector<unsigned, 4> VirtUseOps; | 
 |       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |         MachineOperand &MO = MI.getOperand(i); | 
 |         if (!MO.isReg() || MO.getReg() == 0) | 
 |           continue;   // Ignore non-register operands. | 
 |          | 
 |         unsigned VirtReg = MO.getReg(); | 
 |         if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { | 
 |           // Ignore physregs for spilling, but remember that it is used by this | 
 |           // function. | 
 |           RegInfo->setPhysRegUsed(VirtReg); | 
 |           continue; | 
 |         } | 
 |  | 
 |         // We want to process implicit virtual register uses first. | 
 |         if (MO.isImplicit()) | 
 |           // If the virtual register is implicitly defined, emit a implicit_def | 
 |           // before so scavenger knows it's "defined". | 
 |           // FIXME: This is a horrible hack done the by register allocator to | 
 |           // remat a definition with virtual register operand. | 
 |           VirtUseOps.insert(VirtUseOps.begin(), i); | 
 |         else | 
 |           VirtUseOps.push_back(i); | 
 |       } | 
 |  | 
 |       // Process all of the spilled uses and all non spilled reg references. | 
 |       SmallVector<int, 2> PotentialDeadStoreSlots; | 
 |       KilledMIRegs.clear(); | 
 |       for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { | 
 |         unsigned i = VirtUseOps[j]; | 
 |         MachineOperand &MO = MI.getOperand(i); | 
 |         unsigned VirtReg = MO.getReg(); | 
 |         assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
 |                "Not a virtual register?"); | 
 |  | 
 |         unsigned SubIdx = MO.getSubReg(); | 
 |         if (VRM.isAssignedReg(VirtReg)) { | 
 |           // This virtual register was assigned a physreg! | 
 |           unsigned Phys = VRM.getPhys(VirtReg); | 
 |           RegInfo->setPhysRegUsed(Phys); | 
 |           if (MO.isDef()) | 
 |             ReusedOperands.markClobbered(Phys); | 
 |           unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; | 
 |           MI.getOperand(i).setReg(RReg); | 
 |           MI.getOperand(i).setSubReg(0); | 
 |           if (VRM.isImplicitlyDefined(VirtReg)) | 
 |             // FIXME: Is this needed? | 
 |             BuildMI(MBB, &MI, MI.getDebugLoc(), | 
 |                     TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg); | 
 |           continue; | 
 |         } | 
 |          | 
 |         // This virtual register is now known to be a spilled value. | 
 |         if (!MO.isUse()) | 
 |           continue;  // Handle defs in the loop below (handle use&def here though) | 
 |  | 
 |         bool AvoidReload = MO.isUndef(); | 
 |         // Check if it is defined by an implicit def. It should not be spilled. | 
 |         // Note, this is for correctness reason. e.g. | 
 |         // 8   %reg1024<def> = IMPLICIT_DEF | 
 |         // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 | 
 |         // The live range [12, 14) are not part of the r1024 live interval since | 
 |         // it's defined by an implicit def. It will not conflicts with live | 
 |         // interval of r1025. Now suppose both registers are spilled, you can | 
 |         // easily see a situation where both registers are reloaded before | 
 |         // the INSERT_SUBREG and both target registers that would overlap. | 
 |         bool DoReMat = VRM.isReMaterialized(VirtReg); | 
 |         int SSorRMId = DoReMat | 
 |           ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); | 
 |         int ReuseSlot = SSorRMId; | 
 |  | 
 |         // Check to see if this stack slot is available. | 
 |         unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); | 
 |  | 
 |         // If this is a sub-register use, make sure the reuse register is in the | 
 |         // right register class. For example, for x86 not all of the 32-bit | 
 |         // registers have accessible sub-registers. | 
 |         // Similarly so for EXTRACT_SUBREG. Consider this: | 
 |         // EDI = op | 
 |         // MOV32_mr fi#1, EDI | 
 |         // ... | 
 |         //       = EXTRACT_SUBREG fi#1 | 
 |         // fi#1 is available in EDI, but it cannot be reused because it's not in | 
 |         // the right register file. | 
 |         if (PhysReg && !AvoidReload && | 
 |             (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) { | 
 |           const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
 |           if (!RC->contains(PhysReg)) | 
 |             PhysReg = 0; | 
 |         } | 
 |  | 
 |         if (PhysReg && !AvoidReload) { | 
 |           // This spilled operand might be part of a two-address operand.  If this | 
 |           // is the case, then changing it will necessarily require changing the  | 
 |           // def part of the instruction as well.  However, in some cases, we | 
 |           // aren't allowed to modify the reused register.  If none of these cases | 
 |           // apply, reuse it. | 
 |           bool CanReuse = true; | 
 |           bool isTied = MI.isRegTiedToDefOperand(i); | 
 |           if (isTied) { | 
 |             // Okay, we have a two address operand.  We can reuse this physreg as | 
 |             // long as we are allowed to clobber the value and there isn't an | 
 |             // earlier def that has already clobbered the physreg. | 
 |             CanReuse = !ReusedOperands.isClobbered(PhysReg) && | 
 |               Spills.canClobberPhysReg(PhysReg); | 
 |           } | 
 |            | 
 |           if (CanReuse) { | 
 |             // If this stack slot value is already available, reuse it! | 
 |             if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
 |               DEBUG(errs() << "Reusing RM#" | 
 |                            << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); | 
 |             else | 
 |               DEBUG(errs() << "Reusing SS#" << ReuseSlot); | 
 |             DEBUG(errs() << " from physreg " | 
 |                          << TRI->getName(PhysReg) << " for vreg" | 
 |                          << VirtReg <<" instead of reloading into physreg " | 
 |                          << TRI->getName(VRM.getPhys(VirtReg)) << '\n'); | 
 |             unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |             MI.getOperand(i).setReg(RReg); | 
 |             MI.getOperand(i).setSubReg(0); | 
 |  | 
 |             // The only technical detail we have is that we don't know that | 
 |             // PhysReg won't be clobbered by a reloaded stack slot that occurs | 
 |             // later in the instruction.  In particular, consider 'op V1, V2'. | 
 |             // If V1 is available in physreg R0, we would choose to reuse it | 
 |             // here, instead of reloading it into the register the allocator | 
 |             // indicated (say R1).  However, V2 might have to be reloaded | 
 |             // later, and it might indicate that it needs to live in R0.  When | 
 |             // this occurs, we need to have information available that | 
 |             // indicates it is safe to use R1 for the reload instead of R0. | 
 |             // | 
 |             // To further complicate matters, we might conflict with an alias, | 
 |             // or R0 and R1 might not be compatible with each other.  In this | 
 |             // case, we actually insert a reload for V1 in R1, ensuring that | 
 |             // we can get at R0 or its alias. | 
 |             ReusedOperands.addReuse(i, ReuseSlot, PhysReg, | 
 |                                     VRM.getPhys(VirtReg), VirtReg); | 
 |             if (isTied) | 
 |               // Only mark it clobbered if this is a use&def operand. | 
 |               ReusedOperands.markClobbered(PhysReg); | 
 |             ++NumReused; | 
 |  | 
 |             if (MI.getOperand(i).isKill() && | 
 |                 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { | 
 |  | 
 |               // The store of this spilled value is potentially dead, but we | 
 |               // won't know for certain until we've confirmed that the re-use | 
 |               // above is valid, which means waiting until the other operands | 
 |               // are processed. For now we just track the spill slot, we'll | 
 |               // remove it after the other operands are processed if valid. | 
 |  | 
 |               PotentialDeadStoreSlots.push_back(ReuseSlot); | 
 |             } | 
 |  | 
 |             // Mark is isKill if it's there no other uses of the same virtual | 
 |             // register and it's not a two-address operand. IsKill will be | 
 |             // unset if reg is reused. | 
 |             if (!isTied && KilledMIRegs.count(VirtReg) == 0) { | 
 |               MI.getOperand(i).setIsKill(); | 
 |               KilledMIRegs.insert(VirtReg); | 
 |             } | 
 |  | 
 |             continue; | 
 |           }  // CanReuse | 
 |            | 
 |           // Otherwise we have a situation where we have a two-address instruction | 
 |           // whose mod/ref operand needs to be reloaded.  This reload is already | 
 |           // available in some register "PhysReg", but if we used PhysReg as the | 
 |           // operand to our 2-addr instruction, the instruction would modify | 
 |           // PhysReg.  This isn't cool if something later uses PhysReg and expects | 
 |           // to get its initial value. | 
 |           // | 
 |           // To avoid this problem, and to avoid doing a load right after a store, | 
 |           // we emit a copy from PhysReg into the designated register for this | 
 |           // operand. | 
 |           unsigned DesignatedReg = VRM.getPhys(VirtReg); | 
 |           assert(DesignatedReg && "Must map virtreg to physreg!"); | 
 |  | 
 |           // Note that, if we reused a register for a previous operand, the | 
 |           // register we want to reload into might not actually be | 
 |           // available.  If this occurs, use the register indicated by the | 
 |           // reuser. | 
 |           if (ReusedOperands.hasReuses()) | 
 |             DesignatedReg = ReusedOperands.GetRegForReload(VirtReg, | 
 |                                                            DesignatedReg, &MI,  | 
 |                                Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
 |            | 
 |           // If the mapped designated register is actually the physreg we have | 
 |           // incoming, we don't need to inserted a dead copy. | 
 |           if (DesignatedReg == PhysReg) { | 
 |             // If this stack slot value is already available, reuse it! | 
 |             if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) | 
 |               DEBUG(errs() << "Reusing RM#" | 
 |                     << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); | 
 |             else | 
 |               DEBUG(errs() << "Reusing SS#" << ReuseSlot); | 
 |             DEBUG(errs() << " from physreg " << TRI->getName(PhysReg) | 
 |                          << " for vreg" << VirtReg | 
 |                          << " instead of reloading into same physreg.\n"); | 
 |             unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |             MI.getOperand(i).setReg(RReg); | 
 |             MI.getOperand(i).setSubReg(0); | 
 |             ReusedOperands.markClobbered(RReg); | 
 |             ++NumReused; | 
 |             continue; | 
 |           } | 
 |            | 
 |           const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
 |           RegInfo->setPhysRegUsed(DesignatedReg); | 
 |           ReusedOperands.markClobbered(DesignatedReg); | 
 |  | 
 |           // Back-schedule reloads and remats. | 
 |           MachineBasicBlock::iterator InsertLoc = | 
 |             ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat, | 
 |                              SSorRMId, TII, MF); | 
 |  | 
 |           TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC); | 
 |  | 
 |           MachineInstr *CopyMI = prior(InsertLoc); | 
 |           UpdateKills(*CopyMI, TRI, RegKills, KillOps); | 
 |  | 
 |           // This invalidates DesignatedReg. | 
 |           Spills.ClobberPhysReg(DesignatedReg); | 
 |            | 
 |           Spills.addAvailable(ReuseSlot, DesignatedReg); | 
 |           unsigned RReg = | 
 |             SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; | 
 |           MI.getOperand(i).setReg(RReg); | 
 |           MI.getOperand(i).setSubReg(0); | 
 |           DEBUG(errs() << '\t' << *prior(MII)); | 
 |           ++NumReused; | 
 |           continue; | 
 |         } // if (PhysReg) | 
 |          | 
 |         // Otherwise, reload it and remember that we have it. | 
 |         PhysReg = VRM.getPhys(VirtReg); | 
 |         assert(PhysReg && "Must map virtreg to physreg!"); | 
 |  | 
 |         // Note that, if we reused a register for a previous operand, the | 
 |         // register we want to reload into might not actually be | 
 |         // available.  If this occurs, use the register indicated by the | 
 |         // reuser. | 
 |         if (ReusedOperands.hasReuses()) | 
 |           PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,  | 
 |                                Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
 |          | 
 |         RegInfo->setPhysRegUsed(PhysReg); | 
 |         ReusedOperands.markClobbered(PhysReg); | 
 |         if (AvoidReload) | 
 |           ++NumAvoided; | 
 |         else { | 
 |           // Back-schedule reloads and remats. | 
 |           MachineBasicBlock::iterator InsertLoc = | 
 |             ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat, | 
 |                              SSorRMId, TII, MF); | 
 |  | 
 |           if (DoReMat) { | 
 |             ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM); | 
 |           } else { | 
 |             const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); | 
 |             TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC); | 
 |             MachineInstr *LoadMI = prior(InsertLoc); | 
 |             VRM.addSpillSlotUse(SSorRMId, LoadMI); | 
 |             ++NumLoads; | 
 |             DistanceMap.insert(std::make_pair(LoadMI, Dist++)); | 
 |           } | 
 |           // This invalidates PhysReg. | 
 |           Spills.ClobberPhysReg(PhysReg); | 
 |  | 
 |           // Any stores to this stack slot are not dead anymore. | 
 |           if (!DoReMat) | 
 |             MaybeDeadStores[SSorRMId] = NULL; | 
 |           Spills.addAvailable(SSorRMId, PhysReg); | 
 |           // Assumes this is the last use. IsKill will be unset if reg is reused | 
 |           // unless it's a two-address operand. | 
 |           if (!MI.isRegTiedToDefOperand(i) && | 
 |               KilledMIRegs.count(VirtReg) == 0) { | 
 |             MI.getOperand(i).setIsKill(); | 
 |             KilledMIRegs.insert(VirtReg); | 
 |           } | 
 |  | 
 |           UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); | 
 |           DEBUG(errs() << '\t' << *prior(InsertLoc)); | 
 |         } | 
 |         unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |         MI.getOperand(i).setReg(RReg); | 
 |         MI.getOperand(i).setSubReg(0); | 
 |       } | 
 |  | 
 |       // Ok - now we can remove stores that have been confirmed dead. | 
 |       for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { | 
 |         // This was the last use and the spilled value is still available | 
 |         // for reuse. That means the spill was unnecessary! | 
 |         int PDSSlot = PotentialDeadStoreSlots[j]; | 
 |         MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; | 
 |         if (DeadStore) { | 
 |           DEBUG(errs() << "Removed dead store:\t" << *DeadStore); | 
 |           InvalidateKills(*DeadStore, TRI, RegKills, KillOps); | 
 |           VRM.RemoveMachineInstrFromMaps(DeadStore); | 
 |           MBB.erase(DeadStore); | 
 |           MaybeDeadStores[PDSSlot] = NULL; | 
 |           ++NumDSE; | 
 |         } | 
 |       } | 
 |  | 
 |  | 
 |       DEBUG(errs() << '\t' << MI); | 
 |  | 
 |  | 
 |       // If we have folded references to memory operands, make sure we clear all | 
 |       // physical registers that may contain the value of the spilled virtual | 
 |       // register | 
 |       SmallSet<int, 2> FoldedSS; | 
 |       for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { | 
 |         unsigned VirtReg = I->second.first; | 
 |         VirtRegMap::ModRef MR = I->second.second; | 
 |         DEBUG(errs() << "Folded vreg: " << VirtReg << "  MR: " << MR); | 
 |  | 
 |         // MI2VirtMap be can updated which invalidate the iterator. | 
 |         // Increment the iterator first. | 
 |         ++I; | 
 |         int SS = VRM.getStackSlot(VirtReg); | 
 |         if (SS == VirtRegMap::NO_STACK_SLOT) | 
 |           continue; | 
 |         FoldedSS.insert(SS); | 
 |         DEBUG(errs() << " - StackSlot: " << SS << "\n"); | 
 |          | 
 |         // If this folded instruction is just a use, check to see if it's a | 
 |         // straight load from the virt reg slot. | 
 |         if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { | 
 |           int FrameIdx; | 
 |           unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); | 
 |           if (DestReg && FrameIdx == SS) { | 
 |             // If this spill slot is available, turn it into a copy (or nothing) | 
 |             // instead of leaving it as a load! | 
 |             if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { | 
 |               DEBUG(errs() << "Promoted Load To Copy: " << MI); | 
 |               if (DestReg != InReg) { | 
 |                 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); | 
 |                 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC); | 
 |                 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); | 
 |                 unsigned SubIdx = DefMO->getSubReg(); | 
 |                 // Revisit the copy so we make sure to notice the effects of the | 
 |                 // operation on the destreg (either needing to RA it if it's  | 
 |                 // virtual or needing to clobber any values if it's physical). | 
 |                 NextMII = &MI; | 
 |                 --NextMII;  // backtrack to the copy. | 
 |                 // Propagate the sub-register index over. | 
 |                 if (SubIdx) { | 
 |                   DefMO = NextMII->findRegisterDefOperand(DestReg); | 
 |                   DefMO->setSubReg(SubIdx); | 
 |                 } | 
 |  | 
 |                 // Mark is killed. | 
 |                 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg); | 
 |                 KillOpnd->setIsKill(); | 
 |  | 
 |                 BackTracked = true; | 
 |               } else { | 
 |                 DEBUG(errs() << "Removing now-noop copy: " << MI); | 
 |                 // Unset last kill since it's being reused. | 
 |                 InvalidateKill(InReg, TRI, RegKills, KillOps); | 
 |                 Spills.disallowClobberPhysReg(InReg); | 
 |               } | 
 |  | 
 |               InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |               VRM.RemoveMachineInstrFromMaps(&MI); | 
 |               MBB.erase(&MI); | 
 |               Erased = true; | 
 |               goto ProcessNextInst; | 
 |             } | 
 |           } else { | 
 |             unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
 |             SmallVector<MachineInstr*, 4> NewMIs; | 
 |             if (PhysReg && | 
 |                 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { | 
 |               MBB.insert(MII, NewMIs[0]); | 
 |               InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |               VRM.RemoveMachineInstrFromMaps(&MI); | 
 |               MBB.erase(&MI); | 
 |               Erased = true; | 
 |               --NextMII;  // backtrack to the unfolded instruction. | 
 |               BackTracked = true; | 
 |               goto ProcessNextInst; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         // If this reference is not a use, any previous store is now dead. | 
 |         // Otherwise, the store to this stack slot is not dead anymore. | 
 |         MachineInstr* DeadStore = MaybeDeadStores[SS]; | 
 |         if (DeadStore) { | 
 |           bool isDead = !(MR & VirtRegMap::isRef); | 
 |           MachineInstr *NewStore = NULL; | 
 |           if (MR & VirtRegMap::isModRef) { | 
 |             unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); | 
 |             SmallVector<MachineInstr*, 4> NewMIs; | 
 |             // We can reuse this physreg as long as we are allowed to clobber | 
 |             // the value and there isn't an earlier def that has already clobbered | 
 |             // the physreg. | 
 |             if (PhysReg && | 
 |                 !ReusedOperands.isClobbered(PhysReg) && | 
 |                 Spills.canClobberPhysReg(PhysReg) && | 
 |                 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! | 
 |               MachineOperand *KillOpnd = | 
 |                 DeadStore->findRegisterUseOperand(PhysReg, true); | 
 |               // Note, if the store is storing a sub-register, it's possible the | 
 |               // super-register is needed below. | 
 |               if (KillOpnd && !KillOpnd->getSubReg() && | 
 |                   TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ | 
 |                 MBB.insert(MII, NewMIs[0]); | 
 |                 NewStore = NewMIs[1]; | 
 |                 MBB.insert(MII, NewStore); | 
 |                 VRM.addSpillSlotUse(SS, NewStore); | 
 |                 InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |                 VRM.RemoveMachineInstrFromMaps(&MI); | 
 |                 MBB.erase(&MI); | 
 |                 Erased = true; | 
 |                 --NextMII; | 
 |                 --NextMII;  // backtrack to the unfolded instruction. | 
 |                 BackTracked = true; | 
 |                 isDead = true; | 
 |                 ++NumSUnfold; | 
 |               } | 
 |             } | 
 |           } | 
 |  | 
 |           if (isDead) {  // Previous store is dead. | 
 |             // If we get here, the store is dead, nuke it now. | 
 |             DEBUG(errs() << "Removed dead store:\t" << *DeadStore); | 
 |             InvalidateKills(*DeadStore, TRI, RegKills, KillOps); | 
 |             VRM.RemoveMachineInstrFromMaps(DeadStore); | 
 |             MBB.erase(DeadStore); | 
 |             if (!NewStore) | 
 |               ++NumDSE; | 
 |           } | 
 |  | 
 |           MaybeDeadStores[SS] = NULL; | 
 |           if (NewStore) { | 
 |             // Treat this store as a spill merged into a copy. That makes the | 
 |             // stack slot value available. | 
 |             VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod); | 
 |             goto ProcessNextInst; | 
 |           } | 
 |         } | 
 |  | 
 |         // If the spill slot value is available, and this is a new definition of | 
 |         // the value, the value is not available anymore. | 
 |         if (MR & VirtRegMap::isMod) { | 
 |           // Notice that the value in this stack slot has been modified. | 
 |           Spills.ModifyStackSlotOrReMat(SS); | 
 |            | 
 |           // If this is *just* a mod of the value, check to see if this is just a | 
 |           // store to the spill slot (i.e. the spill got merged into the copy). If | 
 |           // so, realize that the vreg is available now, and add the store to the | 
 |           // MaybeDeadStore info. | 
 |           int StackSlot; | 
 |           if (!(MR & VirtRegMap::isRef)) { | 
 |             if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { | 
 |               assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && | 
 |                      "Src hasn't been allocated yet?"); | 
 |  | 
 |               if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot, | 
 |                                       Spills, RegKills, KillOps, TRI, VRM)) { | 
 |                 NextMII = next(MII); | 
 |                 BackTracked = true; | 
 |                 goto ProcessNextInst; | 
 |               } | 
 |  | 
 |               // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark | 
 |               // this as a potentially dead store in case there is a subsequent | 
 |               // store into the stack slot without a read from it. | 
 |               MaybeDeadStores[StackSlot] = &MI; | 
 |  | 
 |               // If the stack slot value was previously available in some other | 
 |               // register, change it now.  Otherwise, make the register | 
 |               // available in PhysReg. | 
 |               Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Process all of the spilled defs. | 
 |       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |         MachineOperand &MO = MI.getOperand(i); | 
 |         if (!(MO.isReg() && MO.getReg() && MO.isDef())) | 
 |           continue; | 
 |  | 
 |         unsigned VirtReg = MO.getReg(); | 
 |         if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { | 
 |           // Check to see if this is a noop copy.  If so, eliminate the | 
 |           // instruction before considering the dest reg to be changed. | 
 |           // Also check if it's copying from an "undef", if so, we can't | 
 |           // eliminate this or else the undef marker is lost and it will | 
 |           // confuses the scavenger. This is extremely rare. | 
 |           unsigned Src, Dst, SrcSR, DstSR; | 
 |           if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst && | 
 |               !MI.findRegisterUseOperand(Src)->isUndef()) { | 
 |             ++NumDCE; | 
 |             DEBUG(errs() << "Removing now-noop copy: " << MI); | 
 |             SmallVector<unsigned, 2> KillRegs; | 
 |             InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs); | 
 |             if (MO.isDead() && !KillRegs.empty()) { | 
 |               // Source register or an implicit super/sub-register use is killed. | 
 |               assert(KillRegs[0] == Dst || | 
 |                      TRI->isSubRegister(KillRegs[0], Dst) || | 
 |                      TRI->isSuperRegister(KillRegs[0], Dst)); | 
 |               // Last def is now dead. | 
 |               TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM); | 
 |             } | 
 |             VRM.RemoveMachineInstrFromMaps(&MI); | 
 |             MBB.erase(&MI); | 
 |             Erased = true; | 
 |             Spills.disallowClobberPhysReg(VirtReg); | 
 |             goto ProcessNextInst; | 
 |           } | 
 |  | 
 |           // If it's not a no-op copy, it clobbers the value in the destreg. | 
 |           Spills.ClobberPhysReg(VirtReg); | 
 |           ReusedOperands.markClobbered(VirtReg); | 
 |     | 
 |           // Check to see if this instruction is a load from a stack slot into | 
 |           // a register.  If so, this provides the stack slot value in the reg. | 
 |           int FrameIdx; | 
 |           if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { | 
 |             assert(DestReg == VirtReg && "Unknown load situation!"); | 
 |  | 
 |             // If it is a folded reference, then it's not safe to clobber. | 
 |             bool Folded = FoldedSS.count(FrameIdx); | 
 |             // Otherwise, if it wasn't available, remember that it is now! | 
 |             Spills.addAvailable(FrameIdx, DestReg, !Folded); | 
 |             goto ProcessNextInst; | 
 |           } | 
 |                | 
 |           continue; | 
 |         } | 
 |  | 
 |         unsigned SubIdx = MO.getSubReg(); | 
 |         bool DoReMat = VRM.isReMaterialized(VirtReg); | 
 |         if (DoReMat) | 
 |           ReMatDefs.insert(&MI); | 
 |  | 
 |         // The only vregs left are stack slot definitions. | 
 |         int StackSlot = VRM.getStackSlot(VirtReg); | 
 |         const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); | 
 |  | 
 |         // If this def is part of a two-address operand, make sure to execute | 
 |         // the store from the correct physical register. | 
 |         unsigned PhysReg; | 
 |         unsigned TiedOp; | 
 |         if (MI.isRegTiedToUseOperand(i, &TiedOp)) { | 
 |           PhysReg = MI.getOperand(TiedOp).getReg(); | 
 |           if (SubIdx) { | 
 |             unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); | 
 |             assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && | 
 |                    "Can't find corresponding super-register!"); | 
 |             PhysReg = SuperReg; | 
 |           } | 
 |         } else { | 
 |           PhysReg = VRM.getPhys(VirtReg); | 
 |           if (ReusedOperands.isClobbered(PhysReg)) { | 
 |             // Another def has taken the assigned physreg. It must have been a | 
 |             // use&def which got it due to reuse. Undo the reuse! | 
 |             PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,  | 
 |                                Spills, MaybeDeadStores, RegKills, KillOps, VRM); | 
 |           } | 
 |         } | 
 |  | 
 |         assert(PhysReg && "VR not assigned a physical register?"); | 
 |         RegInfo->setPhysRegUsed(PhysReg); | 
 |         unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; | 
 |         ReusedOperands.markClobbered(RReg); | 
 |         MI.getOperand(i).setReg(RReg); | 
 |         MI.getOperand(i).setSubReg(0); | 
 |  | 
 |         if (!MO.isDead()) { | 
 |           MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; | 
 |           SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true, | 
 |                             LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM); | 
 |           NextMII = next(MII); | 
 |  | 
 |           // Check to see if this is a noop copy.  If so, eliminate the | 
 |           // instruction before considering the dest reg to be changed. | 
 |           { | 
 |             unsigned Src, Dst, SrcSR, DstSR; | 
 |             if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { | 
 |               ++NumDCE; | 
 |               DEBUG(errs() << "Removing now-noop copy: " << MI); | 
 |               InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |               VRM.RemoveMachineInstrFromMaps(&MI); | 
 |               MBB.erase(&MI); | 
 |               Erased = true; | 
 |               UpdateKills(*LastStore, TRI, RegKills, KillOps); | 
 |               goto ProcessNextInst; | 
 |             } | 
 |           } | 
 |         }     | 
 |       } | 
 |     ProcessNextInst: | 
 |       // Delete dead instructions without side effects. | 
 |       if (!Erased && !BackTracked && isSafeToDelete(MI)) { | 
 |         InvalidateKills(MI, TRI, RegKills, KillOps); | 
 |         VRM.RemoveMachineInstrFromMaps(&MI); | 
 |         MBB.erase(&MI); | 
 |         Erased = true; | 
 |       } | 
 |       if (!Erased) | 
 |         DistanceMap.insert(std::make_pair(&MI, Dist++)); | 
 |       if (!Erased && !BackTracked) { | 
 |         for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) | 
 |           UpdateKills(*II, TRI, RegKills, KillOps); | 
 |       } | 
 |       MII = NextMII; | 
 |     } | 
 |  | 
 |   } | 
 |  | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { | 
 |   switch (RewriterOpt) { | 
 |   default: llvm_unreachable("Unreachable!"); | 
 |   case local: | 
 |     return new LocalRewriter(); | 
 |   case trivial: | 
 |     return new TrivialRewriter(); | 
 |   } | 
 | } |