| //===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===// |
| // |
| // This file contains a printer that converts from our internal |
| // representation of machine-dependent LLVM code to Intel-format |
| // assembly language. This printer is the output mechanism used |
| // by `llc' and `lli -printmachineinstrs' on X86. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/Function.h" |
| #include "llvm/Constant.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "Support/Statistic.h" |
| #include "Support/hash_map" |
| #include "llvm/Type.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/SlotCalculator.h" |
| #include "Support/StringExtras.h" |
| #include "llvm/Module.h" |
| |
| namespace { |
| /// This is properly part of the name mangler; it keeps track of |
| /// which global values have had their names mangled. It is cleared |
| /// at the end of every module by doFinalization(). |
| /// |
| std::set<const Value *> MangledGlobals; |
| |
| struct Printer : public MachineFunctionPass { |
| /// Output stream on which we're printing assembly code. |
| /// |
| std::ostream &O; |
| |
| /// Target machine description which we query for reg. names, data |
| /// layout, etc. |
| /// |
| TargetMachine &TM; |
| |
| Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } |
| |
| /// We name each basic block in a Function with a unique number, so |
| /// that we can consistently refer to them later. This is cleared |
| /// at the beginning of each call to runOnMachineFunction(). |
| /// |
| typedef std::map<const Value *, unsigned> ValueMapTy; |
| ValueMapTy NumberForBB; |
| |
| /// Cache of mangled name for current function. This is |
| /// recalculated at the beginning of each call to |
| /// runOnMachineFunction(). |
| /// |
| std::string CurrentFnName; |
| |
| virtual const char *getPassName() const { |
| return "X86 Assembly Printer"; |
| } |
| |
| void printMachineInstruction(const MachineInstr *MI) const; |
| void printOp(const MachineOperand &MO, |
| bool elideOffsetKeyword = false) const; |
| void printMemReference(const MachineInstr *MI, unsigned Op) const; |
| void printConstantPool(MachineConstantPool *MCP) const; |
| bool runOnMachineFunction(MachineFunction &F); |
| std::string ConstantExprToString(const ConstantExpr* CE) const; |
| std::string valToExprString(const Value* V) const; |
| bool doInitialization(Module &M); |
| bool doFinalization(Module &M); |
| void printConstantValueOnly(const Constant* CV, int numPadBytesAfter = 0) const; |
| void printSingleConstantValue(const Constant* CV) const; |
| }; |
| } // end of anonymous namespace |
| |
| /// createX86CodePrinterPass - Returns a pass that prints the X86 |
| /// assembly code for a MachineFunction to the given output stream, |
| /// using the given target machine description. This should work |
| /// regardless of whether the function is in SSA form. |
| /// |
| Pass *createX86CodePrinterPass(std::ostream &o, TargetMachine &tm) { |
| return new Printer(o, tm); |
| } |
| |
| /// makeNameProper - We don't want identifier names with ., space, or |
| /// - in them, so we mangle these characters into the strings "d_", |
| /// "s_", and "D_", respectively. |
| /// |
| static std::string makeNameProper(std::string x) { |
| std::string tmp; |
| for (std::string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++) |
| switch (*sI) { |
| case '.': tmp += "d_"; break; |
| case ' ': tmp += "s_"; break; |
| case '-': tmp += "D_"; break; |
| default: tmp += *sI; |
| } |
| return tmp; |
| } |
| |
| static std::string getValueName(const Value *V) { |
| if (V->hasName()) { // Print out the label if it exists... |
| // Name mangling occurs as follows: |
| // - If V is not a global, mangling always occurs. |
| // - Otherwise, mangling occurs when any of the following are true: |
| // 1) V has internal linkage |
| // 2) V's name would collide if it is not mangled. |
| // |
| if(const GlobalValue* gv = dyn_cast<GlobalValue>(V)) { |
| if(!gv->hasInternalLinkage() && !MangledGlobals.count(gv)) { |
| // No internal linkage, name will not collide -> no mangling. |
| return makeNameProper(gv->getName()); |
| } |
| } |
| // Non-global, or global with internal linkage / colliding name -> mangle. |
| return "l" + utostr(V->getType()->getUniqueID()) + "_" + |
| makeNameProper(V->getName()); |
| } |
| static int Count = 0; |
| Count++; |
| return "ltmp_" + itostr(Count) + "_" + utostr(V->getType()->getUniqueID()); |
| } |
| |
| /// valToExprString - Helper function for ConstantExprToString(). |
| /// Appends result to argument string S. |
| /// |
| std::string Printer::valToExprString(const Value* V) const { |
| std::string S; |
| bool failed = false; |
| if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known |
| if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) |
| S += std::string(CB == ConstantBool::True ? "1" : "0"); |
| else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) |
| S += itostr(CI->getValue()); |
| else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) |
| S += utostr(CI->getValue()); |
| else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) |
| S += ftostr(CFP->getValue()); |
| else if (isa<ConstantPointerNull>(CV)) |
| S += "0"; |
| else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV)) |
| S += valToExprString(CPR->getValue()); |
| else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) |
| S += ConstantExprToString(CE); |
| else |
| failed = true; |
| } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) { |
| S += getValueName(GV); |
| } |
| else |
| failed = true; |
| |
| if (failed) { |
| assert(0 && "Cannot convert value to string"); |
| S += "<illegal-value>"; |
| } |
| return S; |
| } |
| |
| /// ConstantExprToString - Convert a ConstantExpr to an asm expression |
| /// and return this as a string. |
| /// |
| std::string Printer::ConstantExprToString(const ConstantExpr* CE) const { |
| std::string S; |
| const TargetData &TD = TM.getTargetData(); |
| switch(CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| { // generate a symbolic expression for the byte address |
| const Value* ptrVal = CE->getOperand(0); |
| std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end()); |
| S += "(" + valToExprString(ptrVal) + ") + (" |
| + utostr(TD.getIndexedOffset(ptrVal->getType(),idxVec)) + ")"; |
| break; |
| } |
| |
| case Instruction::Cast: |
| // Support only non-converting or widening casts for now, that is, |
| // ones that do not involve a change in value. This assertion is |
| // not a complete check. |
| { |
| Constant *Op = CE->getOperand(0); |
| const Type *OpTy = Op->getType(), *Ty = CE->getType(); |
| assert(((isa<PointerType>(OpTy) |
| && (Ty == Type::LongTy || Ty == Type::ULongTy)) |
| || (isa<PointerType>(Ty) |
| && (OpTy == Type::LongTy || OpTy == Type::ULongTy))) |
| || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) |
| && (OpTy-> isLosslesslyConvertibleTo(Ty)))) |
| && "FIXME: Don't yet support this kind of constant cast expr"); |
| S += "(" + valToExprString(Op) + ")"; |
| } |
| break; |
| |
| case Instruction::Add: |
| S += "(" + valToExprString(CE->getOperand(0)) + ") + (" |
| + valToExprString(CE->getOperand(1)) + ")"; |
| break; |
| |
| default: |
| assert(0 && "Unsupported operator in ConstantExprToString()"); |
| break; |
| } |
| |
| return S; |
| } |
| |
| /// printSingleConstantValue - Print a single constant value. |
| /// |
| void |
| Printer::printSingleConstantValue(const Constant* CV) const |
| { |
| assert(CV->getType() != Type::VoidTy && |
| CV->getType() != Type::TypeTy && |
| CV->getType() != Type::LabelTy && |
| "Unexpected type for Constant"); |
| |
| assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV)) |
| && "Aggregate types should be handled outside this function"); |
| |
| const Type *type = CV->getType(); |
| O << "\t"; |
| switch(type->getPrimitiveID()) |
| { |
| case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: |
| O << ".byte"; |
| break; |
| case Type::UShortTyID: case Type::ShortTyID: |
| O << ".word"; |
| break; |
| case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID: |
| O << ".long"; |
| break; |
| case Type::ULongTyID: case Type::LongTyID: |
| O << ".quad"; |
| break; |
| case Type::FloatTyID: |
| O << ".long"; |
| break; |
| case Type::DoubleTyID: |
| O << ".quad"; |
| break; |
| case Type::ArrayTyID: |
| if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) || |
| (cast<ArrayType>(type)->getElementType() == Type::SByteTy)) |
| O << ".string"; |
| else |
| assert (0 && "Can't handle printing this type of array"); |
| break; |
| default: |
| assert (0 && "Can't handle printing this type of thing"); |
| break; |
| } |
| O << "\t"; |
| |
| if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV)) |
| { |
| // Constant expression built from operators, constants, and |
| // symbolic addrs |
| O << ConstantExprToString(CE) << "\n"; |
| } |
| else if (type->isPrimitiveType()) |
| { |
| if (type->isFloatingPoint()) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision... |
| double Val = cast<ConstantFP>(CV)->getValue(); |
| if (type == Type::FloatTy) { |
| float FVal = (float)Val; |
| char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules |
| O << *(unsigned int*)ProxyPtr; |
| } else if (type == Type::DoubleTy) { |
| char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules |
| O << *(uint64_t*)ProxyPtr; |
| } else { |
| assert(0 && "Unknown floating point type!"); |
| } |
| |
| O << "\t# " << type->getDescription() << " value: " << Val << "\n"; |
| } else { |
| WriteAsOperand(O, CV, false, false) << "\n"; |
| } |
| } |
| else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV)) |
| { |
| // This is a constant address for a global variable or method. |
| // Use the name of the variable or method as the address value. |
| O << getValueName(CPR->getValue()) << "\n"; |
| } |
| else if (isa<ConstantPointerNull>(CV)) |
| { |
| // Null pointer value |
| O << "0\n"; |
| } |
| else |
| { |
| assert(0 && "Unknown elementary type for constant"); |
| } |
| } |
| |
| /// isStringCompatible - Can we treat the specified array as a string? |
| /// Only if it is an array of ubytes or non-negative sbytes. |
| /// |
| static bool isStringCompatible(const ConstantArray *CVA) { |
| const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType(); |
| if (ETy == Type::UByteTy) return true; |
| if (ETy != Type::SByteTy) return false; |
| |
| for (unsigned i = 0; i < CVA->getNumOperands(); ++i) |
| if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0) |
| return false; |
| |
| return true; |
| } |
| |
| /// toOctal - Convert the low order bits of X into an octal digit. |
| /// |
| static inline char toOctal(int X) { |
| return (X&7)+'0'; |
| } |
| |
| /// getAsCString - Return the specified array as a C compatible |
| /// string, only if the predicate isStringCompatible is true. |
| /// |
| static std::string getAsCString(const ConstantArray *CVA) { |
| assert(isStringCompatible(CVA) && "Array is not string compatible!"); |
| |
| std::string Result; |
| const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType(); |
| Result = "\""; |
| for (unsigned i = 0; i < CVA->getNumOperands(); ++i) { |
| unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue(); |
| |
| if (C == '"') { |
| Result += "\\\""; |
| } else if (C == '\\') { |
| Result += "\\\\"; |
| } else if (isprint(C)) { |
| Result += C; |
| } else { |
| switch(C) { |
| case '\a': Result += "\\a"; break; |
| case '\b': Result += "\\b"; break; |
| case '\f': Result += "\\f"; break; |
| case '\n': Result += "\\n"; break; |
| case '\r': Result += "\\r"; break; |
| case '\t': Result += "\\t"; break; |
| case '\v': Result += "\\v"; break; |
| default: |
| Result += '\\'; |
| Result += toOctal(C >> 6); |
| Result += toOctal(C >> 3); |
| Result += toOctal(C >> 0); |
| break; |
| } |
| } |
| } |
| Result += "\""; |
| return Result; |
| } |
| |
| // Print a constant value or values (it may be an aggregate). |
| // Uses printSingleConstantValue() to print each individual value. |
| void |
| Printer::printConstantValueOnly(const Constant* CV, |
| int numPadBytesAfter /* = 0 */) const |
| { |
| const ConstantArray *CVA = dyn_cast<ConstantArray>(CV); |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CVA && isStringCompatible(CVA)) |
| { // print the string alone and return |
| O << "\t" << ".string" << "\t" << getAsCString(CVA) << "\n"; |
| } |
| else if (CVA) |
| { // Not a string. Print the values in successive locations |
| const std::vector<Use> &constValues = CVA->getValues(); |
| for (unsigned i=0; i < constValues.size(); i++) |
| printConstantValueOnly(cast<Constant>(constValues[i].get())); |
| } |
| else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) |
| { // Print the fields in successive locations. Pad to align if needed! |
| const StructLayout *cvsLayout = |
| TD.getStructLayout(CVS->getType()); |
| const std::vector<Use>& constValues = CVS->getValues(); |
| unsigned sizeSoFar = 0; |
| for (unsigned i=0, N = constValues.size(); i < N; i++) |
| { |
| const Constant* field = cast<Constant>(constValues[i].get()); |
| |
| // Check if padding is needed and insert one or more 0s. |
| unsigned fieldSize = TD.getTypeSize(field->getType()); |
| int padSize = ((i == N-1? cvsLayout->StructSize |
| : cvsLayout->MemberOffsets[i+1]) |
| - cvsLayout->MemberOffsets[i]) - fieldSize; |
| sizeSoFar += (fieldSize + padSize); |
| |
| // Now print the actual field value |
| printConstantValueOnly(field, padSize); |
| } |
| assert(sizeSoFar == cvsLayout->StructSize && |
| "Layout of constant struct may be incorrect!"); |
| } |
| else |
| printSingleConstantValue(CV); |
| |
| if (numPadBytesAfter) { |
| unsigned numBytes = numPadBytesAfter; |
| for ( ; numBytes >= 8; numBytes -= 8) |
| printSingleConstantValue(Constant::getNullValue(Type::ULongTy)); |
| if (numBytes >= 4) |
| { |
| printSingleConstantValue(Constant::getNullValue(Type::UIntTy)); |
| numBytes -= 4; |
| } |
| while (numBytes--) |
| printSingleConstantValue(Constant::getNullValue(Type::UByteTy)); |
| } |
| } |
| |
| /// printConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| /// |
| void Printer::printConstantPool(MachineConstantPool *MCP) const { |
| const std::vector<Constant*> &CP = MCP->getConstants(); |
| const TargetData &TD = TM.getTargetData(); |
| |
| if (CP.empty()) return; |
| |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| O << "\t.section .rodata\n"; |
| O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) |
| << "\n"; |
| O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" |
| << *CP[i] << "\n"; |
| printConstantValueOnly (CP[i]); |
| } |
| } |
| |
| /// runOnMachineFunction - This uses the printMachineInstruction() |
| /// method to print assembly for each instruction. |
| /// |
| bool Printer::runOnMachineFunction(MachineFunction &MF) { |
| // BBNumber is used here so that a given Printer will never give two |
| // BBs the same name. (If you have a better way, please let me know!) |
| static unsigned BBNumber = 0; |
| |
| // What's my mangled name? |
| CurrentFnName = getValueName(MF.getFunction()); |
| |
| // Print out constants referenced by the function |
| printConstantPool(MF.getConstantPool()); |
| |
| // Print out labels for the function. |
| O << "\t.text\n"; |
| O << "\t.align 16\n"; |
| O << "\t.globl\t" << CurrentFnName << "\n"; |
| O << "\t.type\t" << CurrentFnName << ", @function\n"; |
| O << CurrentFnName << ":\n"; |
| |
| // Number each basic block so that we can consistently refer to them |
| // in PC-relative references. |
| NumberForBB.clear(); |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) { |
| NumberForBB[I->getBasicBlock()] = BBNumber++; |
| } |
| |
| // Print out code for the function. |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) { |
| // Print a label for the basic block. |
| O << ".BB" << NumberForBB[I->getBasicBlock()] << ":\t# " |
| << I->getBasicBlock()->getName() << "\n"; |
| for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); |
| II != E; ++II) { |
| // Print the assembly for the instruction. |
| O << "\t"; |
| printMachineInstruction(*II); |
| } |
| } |
| |
| // We didn't modify anything. |
| return false; |
| } |
| |
| static bool isScale(const MachineOperand &MO) { |
| return MO.isImmediate() && |
| (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || |
| MO.getImmedValue() == 4 || MO.getImmedValue() == 8); |
| } |
| |
| static bool isMem(const MachineInstr *MI, unsigned Op) { |
| if (MI->getOperand(Op).isFrameIndex()) return true; |
| if (MI->getOperand(Op).isConstantPoolIndex()) return true; |
| return Op+4 <= MI->getNumOperands() && |
| MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) && |
| MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate(); |
| } |
| |
| void Printer::printOp(const MachineOperand &MO, |
| bool elideOffsetKeyword /* = false */) const { |
| const MRegisterInfo &RI = *TM.getRegisterInfo(); |
| switch (MO.getType()) { |
| case MachineOperand::MO_VirtualRegister: |
| if (Value *V = MO.getVRegValueOrNull()) { |
| O << "<" << V->getName() << ">"; |
| return; |
| } |
| // FALLTHROUGH |
| case MachineOperand::MO_MachineRegister: |
| if (MO.getReg() < MRegisterInfo::FirstVirtualRegister) |
| O << RI.get(MO.getReg()).Name; |
| else |
| O << "%reg" << MO.getReg(); |
| return; |
| |
| case MachineOperand::MO_SignExtendedImmed: |
| case MachineOperand::MO_UnextendedImmed: |
| O << (int)MO.getImmedValue(); |
| return; |
| case MachineOperand::MO_PCRelativeDisp: |
| { |
| ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue()); |
| assert (i != NumberForBB.end() |
| && "Could not find a BB I previously put in the NumberForBB map!"); |
| O << ".BB" << i->second << " # PC rel: " << MO.getVRegValue()->getName(); |
| } |
| return; |
| case MachineOperand::MO_GlobalAddress: |
| if (!elideOffsetKeyword) O << "OFFSET "; O << getValueName(MO.getGlobal()); |
| return; |
| case MachineOperand::MO_ExternalSymbol: |
| O << MO.getSymbolName(); |
| return; |
| default: |
| O << "<unknown operand type>"; return; |
| } |
| } |
| |
| static const std::string sizePtr(const TargetInstrDescriptor &Desc) { |
| switch (Desc.TSFlags & X86II::ArgMask) { |
| default: assert(0 && "Unknown arg size!"); |
| case X86II::Arg8: return "BYTE PTR"; |
| case X86II::Arg16: return "WORD PTR"; |
| case X86II::Arg32: return "DWORD PTR"; |
| case X86II::Arg64: return "QWORD PTR"; |
| case X86II::ArgF32: return "DWORD PTR"; |
| case X86II::ArgF64: return "QWORD PTR"; |
| case X86II::ArgF80: return "XWORD PTR"; |
| } |
| } |
| |
| void Printer::printMemReference(const MachineInstr *MI, unsigned Op) const { |
| const MRegisterInfo &RI = *TM.getRegisterInfo(); |
| assert(isMem(MI, Op) && "Invalid memory reference!"); |
| |
| if (MI->getOperand(Op).isFrameIndex()) { |
| O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); |
| if (MI->getOperand(Op+3).getImmedValue()) |
| O << " + " << MI->getOperand(Op+3).getImmedValue(); |
| O << "]"; |
| return; |
| } else if (MI->getOperand(Op).isConstantPoolIndex()) { |
| O << "[.CPI" << CurrentFnName << "_" |
| << MI->getOperand(Op).getConstantPoolIndex(); |
| if (MI->getOperand(Op+3).getImmedValue()) |
| O << " + " << MI->getOperand(Op+3).getImmedValue(); |
| O << "]"; |
| return; |
| } |
| |
| const MachineOperand &BaseReg = MI->getOperand(Op); |
| int ScaleVal = MI->getOperand(Op+1).getImmedValue(); |
| const MachineOperand &IndexReg = MI->getOperand(Op+2); |
| int DispVal = MI->getOperand(Op+3).getImmedValue(); |
| |
| O << "["; |
| bool NeedPlus = false; |
| if (BaseReg.getReg()) { |
| printOp(BaseReg); |
| NeedPlus = true; |
| } |
| |
| if (IndexReg.getReg()) { |
| if (NeedPlus) O << " + "; |
| if (ScaleVal != 1) |
| O << ScaleVal << "*"; |
| printOp(IndexReg); |
| NeedPlus = true; |
| } |
| |
| if (DispVal) { |
| if (NeedPlus) |
| if (DispVal > 0) |
| O << " + "; |
| else { |
| O << " - "; |
| DispVal = -DispVal; |
| } |
| O << DispVal; |
| } |
| O << "]"; |
| } |
| |
| /// printMachineInstruction -- Print out a single X86 LLVM instruction |
| /// MI in Intel syntax to the current output stream. |
| /// |
| void Printer::printMachineInstruction(const MachineInstr *MI) const { |
| unsigned Opcode = MI->getOpcode(); |
| const TargetInstrInfo &TII = TM.getInstrInfo(); |
| const TargetInstrDescriptor &Desc = TII.get(Opcode); |
| const MRegisterInfo &RI = *TM.getRegisterInfo(); |
| |
| switch (Desc.TSFlags & X86II::FormMask) { |
| case X86II::Pseudo: |
| // Print pseudo-instructions as comments; either they should have been |
| // turned into real instructions by now, or they don't need to be |
| // seen by the assembler (e.g., IMPLICIT_USEs.) |
| O << "# "; |
| if (Opcode == X86::PHI) { |
| printOp(MI->getOperand(0)); |
| O << " = phi "; |
| for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { |
| if (i != 1) O << ", "; |
| O << "["; |
| printOp(MI->getOperand(i)); |
| O << ", "; |
| printOp(MI->getOperand(i+1)); |
| O << "]"; |
| } |
| } else { |
| unsigned i = 0; |
| if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() || |
| MI->getOperand(0).opIsDefAndUse())) { |
| printOp(MI->getOperand(0)); |
| O << " = "; |
| ++i; |
| } |
| O << TII.getName(MI->getOpcode()); |
| |
| for (unsigned e = MI->getNumOperands(); i != e; ++i) { |
| O << " "; |
| if (MI->getOperand(i).opIsDefOnly() || |
| MI->getOperand(i).opIsDefAndUse()) O << "*"; |
| printOp(MI->getOperand(i)); |
| if (MI->getOperand(i).opIsDefOnly() || |
| MI->getOperand(i).opIsDefAndUse()) O << "*"; |
| } |
| } |
| O << "\n"; |
| return; |
| |
| case X86II::RawFrm: |
| // The accepted forms of Raw instructions are: |
| // 1. nop - No operand required |
| // 2. jmp foo - PC relative displacement operand |
| // 3. call bar - GlobalAddress Operand or External Symbol Operand |
| // |
| assert(MI->getNumOperands() == 0 || |
| (MI->getNumOperands() == 1 && |
| (MI->getOperand(0).isPCRelativeDisp() || |
| MI->getOperand(0).isGlobalAddress() || |
| MI->getOperand(0).isExternalSymbol())) && |
| "Illegal raw instruction!"); |
| O << TII.getName(MI->getOpcode()) << " "; |
| |
| if (MI->getNumOperands() == 1) { |
| printOp(MI->getOperand(0), true); // Don't print "OFFSET"... |
| } |
| O << "\n"; |
| return; |
| |
| case X86II::AddRegFrm: { |
| // There are currently two forms of acceptable AddRegFrm instructions. |
| // Either the instruction JUST takes a single register (like inc, dec, etc), |
| // or it takes a register and an immediate of the same size as the register |
| // (move immediate f.e.). Note that this immediate value might be stored as |
| // an LLVM value, to represent, for example, loading the address of a global |
| // into a register. The initial register might be duplicated if this is a |
| // M_2_ADDR_REG instruction |
| // |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 1 || |
| (MI->getNumOperands() == 2 && |
| (MI->getOperand(1).getVRegValueOrNull() || |
| MI->getOperand(1).isImmediate() || |
| MI->getOperand(1).isRegister() || |
| MI->getOperand(1).isGlobalAddress() || |
| MI->getOperand(1).isExternalSymbol()))) && |
| "Illegal form for AddRegFrm instruction!"); |
| |
| unsigned Reg = MI->getOperand(0).getReg(); |
| |
| O << TII.getName(MI->getOpCode()) << " "; |
| printOp(MI->getOperand(0)); |
| if (MI->getNumOperands() == 2 && |
| (!MI->getOperand(1).isRegister() || |
| MI->getOperand(1).getVRegValueOrNull() || |
| MI->getOperand(1).isGlobalAddress() || |
| MI->getOperand(1).isExternalSymbol())) { |
| O << ", "; |
| printOp(MI->getOperand(1)); |
| } |
| if (Desc.TSFlags & X86II::PrintImplUses) { |
| for (const unsigned *p = Desc.ImplicitUses; *p; ++p) { |
| O << ", " << RI.get(*p).Name; |
| } |
| } |
| O << "\n"; |
| return; |
| } |
| case X86II::MRMDestReg: { |
| // There are two acceptable forms of MRMDestReg instructions, those with 2, |
| // 3 and 4 operands: |
| // |
| // 2 Operands: this is for things like mov that do not read a second input |
| // |
| // 3 Operands: in this form, the first two registers (the destination, and |
| // the first operand) should be the same, post register allocation. The 3rd |
| // operand is an additional input. This should be for things like add |
| // instructions. |
| // |
| // 4 Operands: This form is for instructions which are 3 operands forms, but |
| // have a constant argument as well. |
| // |
| bool isTwoAddr = TII.isTwoAddrInstr(Opcode); |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 2 || |
| (isTwoAddr && MI->getOperand(1).isRegister() && |
| MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && |
| (MI->getNumOperands() == 3 || |
| (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate())))) |
| && "Bad format for MRMDestReg!"); |
| |
| O << TII.getName(MI->getOpCode()) << " "; |
| printOp(MI->getOperand(0)); |
| O << ", "; |
| printOp(MI->getOperand(1+isTwoAddr)); |
| if (MI->getNumOperands() == 4) { |
| O << ", "; |
| printOp(MI->getOperand(3)); |
| } |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMDestMem: { |
| // These instructions are the same as MRMDestReg, but instead of having a |
| // register reference for the mod/rm field, it's a memory reference. |
| // |
| assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 && |
| MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!"); |
| |
| O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " "; |
| printMemReference(MI, 0); |
| O << ", "; |
| printOp(MI->getOperand(4)); |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMSrcReg: { |
| // There is a two forms that are acceptable for MRMSrcReg instructions, |
| // those with 3 and 2 operands: |
| // |
| // 3 Operands: in this form, the last register (the second input) is the |
| // ModR/M input. The first two operands should be the same, post register |
| // allocation. This is for things like: add r32, r/m32 |
| // |
| // 2 Operands: this is for things like mov that do not read a second input |
| // |
| assert(MI->getOperand(0).isRegister() && |
| MI->getOperand(1).isRegister() && |
| (MI->getNumOperands() == 2 || |
| (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister())) |
| && "Bad format for MRMSrcReg!"); |
| if (MI->getNumOperands() == 3 && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << TII.getName(MI->getOpCode()) << " "; |
| printOp(MI->getOperand(0)); |
| O << ", "; |
| printOp(MI->getOperand(MI->getNumOperands()-1)); |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMSrcMem: { |
| // These instructions are the same as MRMSrcReg, but instead of having a |
| // register reference for the mod/rm field, it's a memory reference. |
| // |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || |
| (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && |
| isMem(MI, 2)) |
| && "Bad format for MRMDestReg!"); |
| if (MI->getNumOperands() == 2+4 && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << TII.getName(MI->getOpCode()) << " "; |
| printOp(MI->getOperand(0)); |
| O << ", " << sizePtr(Desc) << " "; |
| printMemReference(MI, MI->getNumOperands()-4); |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMS0r: case X86II::MRMS1r: |
| case X86II::MRMS2r: case X86II::MRMS3r: |
| case X86II::MRMS4r: case X86II::MRMS5r: |
| case X86II::MRMS6r: case X86II::MRMS7r: { |
| // In this form, the following are valid formats: |
| // 1. sete r |
| // 2. cmp reg, immediate |
| // 2. shl rdest, rinput <implicit CL or 1> |
| // 3. sbb rdest, rinput, immediate [rdest = rinput] |
| // |
| assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && |
| MI->getOperand(0).isRegister() && "Bad MRMSxR format!"); |
| assert((MI->getNumOperands() != 2 || |
| MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&& |
| "Bad MRMSxR format!"); |
| assert((MI->getNumOperands() < 3 || |
| (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) && |
| "Bad MRMSxR format!"); |
| |
| if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << TII.getName(MI->getOpCode()) << " "; |
| printOp(MI->getOperand(0)); |
| if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) { |
| O << ", "; |
| printOp(MI->getOperand(MI->getNumOperands()-1)); |
| } |
| if (Desc.TSFlags & X86II::PrintImplUses) { |
| for (const unsigned *p = Desc.ImplicitUses; *p; ++p) { |
| O << ", " << RI.get(*p).Name; |
| } |
| } |
| O << "\n"; |
| |
| return; |
| } |
| |
| case X86II::MRMS0m: case X86II::MRMS1m: |
| case X86II::MRMS2m: case X86II::MRMS3m: |
| case X86II::MRMS4m: case X86II::MRMS5m: |
| case X86II::MRMS6m: case X86II::MRMS7m: { |
| // In this form, the following are valid formats: |
| // 1. sete [m] |
| // 2. cmp [m], immediate |
| // 2. shl [m], rinput <implicit CL or 1> |
| // 3. sbb [m], immediate |
| // |
| assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 && |
| isMem(MI, 0) && "Bad MRMSxM format!"); |
| assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) && |
| "Bad MRMSxM format!"); |
| // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" |
| // is misassembled by gas in intel_syntax mode as its 32-bit |
| // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw |
| // opcode bytes instead of the instruction. |
| if (MI->getOpCode() == X86::FSTPr80) { |
| if ((MI->getOperand(0).getReg() == X86::ESP) |
| && (MI->getOperand(1).getImmedValue() == 1)) { |
| int DispVal = MI->getOperand(3).getImmedValue(); |
| if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp. |
| unsigned int val = (unsigned int) DispVal; |
| O << ".byte 0xdb, 0xbc, 0x24\n\t"; |
| O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# "; |
| } else { // 1 byte disp. |
| unsigned char val = (unsigned char) DispVal; |
| O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val |
| << std::dec << "\t# "; |
| } |
| } |
| } |
| // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is |
| // misassembled by gas in intel_syntax mode as its 32-bit |
| // equivalent "fld DWORD PTR [...]". Workaround: Output the raw |
| // opcode bytes instead of the instruction. |
| if (MI->getOpCode() == X86::FLDr80) { |
| if ((MI->getOperand(0).getReg() == X86::ESP) |
| && (MI->getOperand(1).getImmedValue() == 1)) { |
| int DispVal = MI->getOperand(3).getImmedValue(); |
| if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp. |
| unsigned int val = (unsigned int) DispVal; |
| O << ".byte 0xdb, 0xac, 0x24\n\t"; |
| O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# "; |
| } else { // 1 byte disp. |
| unsigned char val = (unsigned char) DispVal; |
| O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val |
| << std::dec << "\t# "; |
| } |
| } |
| } |
| // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an |
| // invalid opcode, saying "64 bit operations are only supported in |
| // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR |
| // [...]", which is wrong. Workaround: Output the raw opcode bytes |
| // instead of the instruction. |
| if (MI->getOpCode() == X86::FILDr64) { |
| if ((MI->getOperand(0).getReg() == X86::ESP) |
| && (MI->getOperand(1).getImmedValue() == 1)) { |
| int DispVal = MI->getOperand(3).getImmedValue(); |
| if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp. |
| unsigned int val = (unsigned int) DispVal; |
| O << ".byte 0xdf, 0xac, 0x24\n\t"; |
| O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# "; |
| } else { // 1 byte disp. |
| unsigned char val = (unsigned char) DispVal; |
| O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val |
| << std::dec << "\t# "; |
| } |
| } |
| } |
| // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as |
| // an invalid opcode, saying "64 bit operations are only |
| // supported in 64 bit modes." libopcodes disassembles it as |
| // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output |
| // "fistpll DWORD PTR " instead, which is what libopcodes is |
| // expecting to see. |
| if (MI->getOpCode() == X86::FISTPr64) { |
| O << "fistpll DWORD PTR "; |
| printMemReference(MI, 0); |
| if (MI->getNumOperands() == 5) { |
| O << ", "; |
| printOp(MI->getOperand(4)); |
| } |
| O << "\t# "; |
| } |
| |
| O << TII.getName(MI->getOpCode()) << " "; |
| O << sizePtr(Desc) << " "; |
| printMemReference(MI, 0); |
| if (MI->getNumOperands() == 5) { |
| O << ", "; |
| printOp(MI->getOperand(4)); |
| } |
| O << "\n"; |
| return; |
| } |
| |
| default: |
| O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break; |
| } |
| } |
| |
| bool Printer::doInitialization(Module &M) |
| { |
| // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly, |
| // with no % decorations on register names. |
| O << "\t.intel_syntax noprefix\n"; |
| |
| // Ripped from CWriter: |
| // Calculate which global values have names that will collide when we throw |
| // away type information. |
| { // Scope to delete the FoundNames set when we are done with it... |
| std::set<std::string> FoundNames; |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| if (I->hasName()) // If the global has a name... |
| if (FoundNames.count(I->getName())) // And the name is already used |
| MangledGlobals.insert(I); // Mangle the name |
| else |
| FoundNames.insert(I->getName()); // Otherwise, keep track of name |
| |
| for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| if (I->hasName()) // If the global has a name... |
| if (FoundNames.count(I->getName())) // And the name is already used |
| MangledGlobals.insert(I); // Mangle the name |
| else |
| FoundNames.insert(I->getName()); // Otherwise, keep track of name |
| } |
| |
| return false; // success |
| } |
| |
| static const Function *isConstantFunctionPointerRef(const Constant *C) { |
| if (const ConstantPointerRef *R = dyn_cast<ConstantPointerRef>(C)) |
| if (const Function *F = dyn_cast<Function>(R->getValue())) |
| return F; |
| return 0; |
| } |
| |
| bool Printer::doFinalization(Module &M) |
| { |
| const TargetData &TD = TM.getTargetData(); |
| // Print out module-level global variables here. |
| for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) { |
| std::string name(getValueName(I)); |
| if (I->hasInitializer()) { |
| Constant *C = I->getInitializer(); |
| O << "\t.data\n"; |
| O << "\t.globl " << name << "\n"; |
| O << "\t.type " << name << ",@object\n"; |
| O << "\t.size " << name << "," |
| << (unsigned)TD.getTypeSize(I->getType()) << "\n"; |
| O << "\t.align " << (unsigned)TD.getTypeAlignment(C->getType()) << "\n"; |
| O << name << ":\t\t\t\t\t#"; |
| // If this is a constant function pointer, we only print out the |
| // name of the function in the comment (because printing the |
| // function means calling AsmWriter to print the whole LLVM |
| // assembly, which would corrupt the X86 assembly output.) |
| // Otherwise we print out the whole llvm value as a comment. |
| if (const Function *F = isConstantFunctionPointerRef (C)) { |
| O << " %" << F->getName() << "()\n"; |
| } else { |
| O << *C << "\n"; |
| } |
| printConstantValueOnly (C); |
| } else { |
| O << "\t.globl " << name << "\n"; |
| O << "\t.comm " << name << ", " |
| << (unsigned)TD.getTypeSize(I->getType()) << ", " |
| << (unsigned)TD.getTypeAlignment(I->getType()) << "\n"; |
| } |
| } |
| MangledGlobals.clear(); |
| return false; // success |
| } |