| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 | <html> | 
 | <head> | 
 |   <meta http-equiv="Content-Type" Content="text/html; charset=UTF-8" > | 
 |   <title>Accurate Garbage Collection with LLVM</title> | 
 |   <link rel="stylesheet" href="llvm.css" type="text/css"> | 
 |   <style type="text/css"> | 
 |     .rowhead { text-align: left; background: inherit; } | 
 |     .indent { padding-left: 1em; } | 
 |     .optl { color: #BFBFBF; } | 
 |   </style> | 
 | </head> | 
 | <body> | 
 |  | 
 | <div class="doc_title"> | 
 |   Accurate Garbage Collection with LLVM | 
 | </div> | 
 |  | 
 | <ol> | 
 |   <li><a href="#introduction">Introduction</a> | 
 |     <ul> | 
 |     <li><a href="#feature">GC features provided and algorithms | 
 |       supported</a></li> | 
 |     </ul> | 
 |   </li> | 
 |  | 
 |   <li><a href="#usage">Using the collectors</a> | 
 |     <ul> | 
 |     <li><a href="#shadow-stack">ShadowStack - | 
 |       A highly portable collector</a></li> | 
 |     <li><a href="#semispace">SemiSpace - | 
 |       A simple copying collector runtime</a></li> | 
 |     <li><a href="#ocaml">Ocaml - | 
 |       An Objective Caml-compatible collector</a></li> | 
 |     </ul> | 
 |   </li> | 
 |  | 
 |   <li><a href="#core">Core support</a> | 
 |     <ul> | 
 |     <li><a href="#gcattr">Specifying GC code generation: | 
 |       <tt>gc "..."</tt></a></li> | 
 |     <li><a href="#gcroot">Identifying GC roots on the stack: | 
 |       <tt>llvm.gcroot</tt></a></li> | 
 |     <li><a href="#barriers">Reading and writing references in the heap</a> | 
 |       <ul> | 
 |       <li><a href="#gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a></li> | 
 |       <li><a href="#gcread">Read barrier: <tt>llvm.gcread</tt></a></li> | 
 |       </ul> | 
 |     </li> | 
 |     </ul> | 
 |   </li> | 
 |    | 
 |   <li><a href="#runtime">Recommended runtime interface</a> | 
 |     <ul> | 
 |     <li><a href="#initialize">Garbage collector startup and | 
 |     initialization</a></li> | 
 |     <li><a href="#allocate">Allocating memory from the GC</a></li> | 
 |     <li><a href="#explicit">Explicit invocation of the garbage | 
 |     collector</a></li> | 
 |     <li><a href="#traceroots">Tracing GC pointers from the program | 
 |     stack</a></li> | 
 |     <li><a href="#staticroots">Tracing GC pointers from static roots</a></li> | 
 |     </ul> | 
 |   </li> | 
 |  | 
 |   <li><a href="#plugin">Implementing a collector plugin</a> | 
 |     <ul> | 
 |     <li><a href="#collector-algos">Overview of available features</a></li> | 
 |     <li><a href="#stack-map">Computing stack maps</a></li> | 
 |     <li><a href="#init-roots">Initializing roots to null: | 
 |       <tt>InitRoots</tt></a></li> | 
 |     <li><a href="#custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>,  | 
 |       <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a></li> | 
 |     <li><a href="#safe-points">Generating safe points: | 
 |       <tt>NeededSafePoints</tt></a></li> | 
 |     <li><a href="#assembly">Emitting assembly code: | 
 |       <tt>beginAssembly</tt> and <tt>finishAssembly</tt></a></li> | 
 |     </ul> | 
 |   </li> | 
 |  | 
 |   <li><a href="#runtime-impl">Implementing a collector runtime</a> | 
 |     <ul> | 
 |       <li><a href="#gcdescriptors">Tracing GC pointers from heap | 
 |       objects</a></li> | 
 |     </ul> | 
 |   </li> | 
 |    | 
 |   <li><a href="#references">References</a></li> | 
 |    | 
 | </ol> | 
 |  | 
 | <div class="doc_author"> | 
 |   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and | 
 |      Gordon Henriksen</p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="introduction">Introduction</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Garbage collection is a widely used technique that frees the programmer from | 
 | having to know the lifetimes of heap objects, making software easier to produce | 
 | and maintain. Many programming languages rely on garbage collection for | 
 | automatic memory management. There are two primary forms of garbage collection: | 
 | conservative and accurate.</p> | 
 |  | 
 | <p>Conservative garbage collection often does not require any special support | 
 | from either the language or the compiler: it can handle non-type-safe | 
 | programming languages (such as C/C++) and does not require any special | 
 | information from the compiler. The | 
 | <a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">Boehm collector</a> is | 
 | an example of a state-of-the-art conservative collector.</p> | 
 |  | 
 | <p>Accurate garbage collection requires the ability to identify all pointers in | 
 | the program at run-time (which requires that the source-language be type-safe in | 
 | most cases). Identifying pointers at run-time requires compiler support to | 
 | locate all places that hold live pointer variables at run-time, including the | 
 | <a href="#gcroot">processor stack and registers</a>.</p> | 
 |  | 
 | <p>Conservative garbage collection is attractive because it does not require any | 
 | special compiler support, but it does have problems. In particular, because the | 
 | conservative garbage collector cannot <i>know</i> that a particular word in the | 
 | machine is a pointer, it cannot move live objects in the heap (preventing the | 
 | use of compacting and generational GC algorithms) and it can occasionally suffer | 
 | from memory leaks due to integer values that happen to point to objects in the | 
 | program. In addition, some aggressive compiler transformations can break | 
 | conservative garbage collectors (though these seem rare in practice).</p> | 
 |  | 
 | <p>Accurate garbage collectors do not suffer from any of these problems, but | 
 | they can suffer from degraded scalar optimization of the program. In particular, | 
 | because the runtime must be able to identify and update all pointers active in | 
 | the program, some optimizations are less effective. In practice, however, the | 
 | locality and performance benefits of using aggressive garbage allocation | 
 | techniques dominates any low-level losses.</p> | 
 |  | 
 | <p>This document describes the mechanisms and interfaces provided by LLVM to | 
 | support accurate garbage collection.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="feature">GC features provided and algorithms supported</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM's intermediate representation provides <a href="#intrinsics">garbage | 
 | collection intrinsics</a> which offer support for a broad class of | 
 | collector models. For instance, the intrinsics permit:</p> | 
 |  | 
 | <ul> | 
 |   <li>semi-space collectors</li> | 
 |   <li>mark-sweep collectors</li> | 
 |   <li>generational collectors</li> | 
 |   <li>reference counting</li> | 
 |   <li>incremental collectors</li> | 
 |   <li>concurrent collectors</li> | 
 |   <li>cooperative collectors</li> | 
 | </ul> | 
 |  | 
 | <p>We hope that the primitive support built into the LLVM IR is sufficient to | 
 | support a broad class of garbage collected languages including Scheme, ML, Java, | 
 | C#, Perl, Python, Lua, Ruby, other scripting languages, and more.</p> | 
 |  | 
 | <p>However, LLVM does not itself implement a garbage collector. This is because | 
 | collectors are tightly coupled to object models, and LLVM is agnostic to object | 
 | models. Since LLVM is agnostic to object models, it would be inappropriate for | 
 | LLVM to dictate any particular collector. Instead, LLVM provides a framework for | 
 | garbage collector implementations in two manners:</p> | 
 |  | 
 | <ul> | 
 |   <li><b>At compile time</b> with <a href="#plugin">collector plugins</a> for | 
 |   the compiler. Collector plugins have ready access to important garbage | 
 |   collector algorithms. Leveraging these tools, it is straightforward to | 
 |   emit type-accurate stack maps for your runtime in as little as ~100 lines of | 
 |   C++ code.</li> | 
 |  | 
 |   <li><b>At runtime</b> with <a href="#runtime">suggested runtime | 
 |   interfaces</a>, which allow front-end compilers to support a range of | 
 |   collection runtimes.</li> | 
 | </ul> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="usage">Using the collectors</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>In general, using a collector implies:</p> | 
 |  | 
 | <ul> | 
 |   <li>Emitting compatible code, including initialization in the main | 
 |       program if necessary.</li> | 
 |   <li>Loading a compiler plugin if the collector is not statically linked with | 
 |       your compiler. For <tt>llc</tt>, use the <tt>-load</tt> option.</li> | 
 |   <li>Selecting the collection algorithm by applying the <tt>gc "..."</tt>  | 
 |       attribute to your garbage collected functions, or equivalently with | 
 |       the <tt>setCollector</tt> method.</li> | 
 |   <li>Linking your final executable with the garbage collector runtime.</li> | 
 | </ul> | 
 |  | 
 | <p>This table summarizes the available runtimes.</p> | 
 |  | 
 | <table> | 
 |   <tr> | 
 |     <th>Collector</th> | 
 |     <th><tt>gc</tt> attribute</th> | 
 |     <th>Linkage</th> | 
 |     <th><tt>gcroot</tt></th> | 
 |     <th><tt>gcread</tt></th> | 
 |     <th><tt>gcwrite</tt></th> | 
 |   </tr> | 
 |   <tr valign="baseline"> | 
 |     <td><a href="#semispace">SemiSpace</a></td> | 
 |     <td><tt>gc "shadow-stack"</tt></td> | 
 |     <td>TODO FIXME</td> | 
 |     <td>required</td> | 
 |     <td>optional</td> | 
 |     <td>optional</td> | 
 |   </tr> | 
 |   <tr valign="baseline"> | 
 |     <td><a href="#ocaml">Ocaml</a></td> | 
 |     <td><tt>gc "ocaml"</tt></td> | 
 |     <td><i>provided by ocamlopt</i></td> | 
 |     <td>required</td> | 
 |     <td>optional</td> | 
 |     <td>optional</td> | 
 |   </tr> | 
 | </table> | 
 |  | 
 | <p>The sections for <a href="#intrinsics">Collection intrinsics</a> and | 
 | <a href="#runtime">Recommended runtime interface</a> detail the interfaces that | 
 | collectors may require user programs to utilize.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="shadow-stack">ShadowStack - A highly portable collector</a> | 
 | </div> | 
 |  | 
 | <div class="doc_code"><tt> | 
 |   Collector *llvm::createShadowStackCollector(); | 
 | </tt></div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The ShadowStack backend is invoked with the <tt>gc "shadow-stack"</tt> | 
 | function attribute. | 
 | Unlike many collectors which rely on a cooperative code generator to generate | 
 | stack maps, this algorithm carefully maintains a linked list of stack root | 
 | descriptors [<a href="#henderson02">Henderson2002</a>]. This so-called "shadow | 
 | stack" mirrors the machine stack. Maintaining this data structure is slower | 
 | than using stack maps, but has a significant portability advantage because it | 
 | requires no special support from the target code generator.</p> | 
 |  | 
 | <p>The ShadowStack collector does not use read or write barriers, so the user | 
 | program may use <tt>load</tt> and <tt>store</tt> instead of <tt>llvm.gcread</tt> | 
 | and <tt>llvm.gcwrite</tt>.</p> | 
 |  | 
 | <p>ShadowStack is a code generator plugin only. It must be paired with a | 
 | compatible runtime.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="semispace">SemiSpace - A simple copying collector runtime</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The SemiSpace runtime implements with the <a href="runtime">suggested | 
 | runtime interface</a> and is compatible the ShadowStack backend.</p> | 
 |  | 
 | <p>SemiSpace is a very simple copying collector. When it starts up, it | 
 | allocates two blocks of memory for the heap. It uses a simple bump-pointer | 
 | allocator to allocate memory from the first block until it runs out of space. | 
 | When it runs out of space, it traces through all of the roots of the program, | 
 | copying blocks to the other half of the memory space.</p> | 
 |  | 
 | <p>This runtime is highly experimental and has not been used in a real project. | 
 | Enhancements would be welcomed.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="ocaml">Ocaml - An Objective Caml-compatible collector</a> | 
 | </div> | 
 |  | 
 | <div class="doc_code"><tt> | 
 |   Collector *llvm::createOcamlCollector(); | 
 | </tt></div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The ocaml backend is invoked with the <tt>gc "ocaml"</tt> function attribute. | 
 | It supports the | 
 | <a href="http://caml.inria.fr/">Objective Caml</a> language runtime by emitting | 
 | a type-accurate stack map in the form of an ocaml 3.10.0-compatible frametable. | 
 | The linkage requirements are satisfied automatically by the <tt>ocamlopt</tt> | 
 | compiler when linking an executable.</p> | 
 |  | 
 | <p>The ocaml collector does not use read or write barriers, so the user program | 
 | may use <tt>load</tt> and <tt>store</tt> instead of <tt>llvm.gcread</tt> and | 
 | <tt>llvm.gcwrite</tt>.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="core">Core support</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>This section describes the garbage collection facilities provided by the | 
 | <a href="LangRef.html">LLVM intermediate representation</a>.</p> | 
 |  | 
 | <p>These facilities are limited to those strictly necessary for compilation. | 
 | They are not intended to be a complete interface to any garbage collector. | 
 | Notably, heap allocation is not among the supplied primitives. A user program | 
 | will also need to interface with the runtime, using either the | 
 | <a href="#runtime">suggested runtime interface</a> or another interface | 
 | specified by the runtime.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="gcattr">Specifying GC code generation: <tt>gc "..."</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_code"><tt> | 
 |   define <i>ty</i> @<i>name</i>(...) <u>gc "<i>collector</i>"</u> { ... | 
 | </tt></div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The <tt>gc</tt> function attribute is used to specify the desired collector | 
 | algorithm to the compiler. It is equivalent to specify the collector name | 
 | programmatically using the <tt>setCollector</tt> method of | 
 | <tt>Function</tt>.</p> | 
 |  | 
 | <p>Specifying the collector on a per-function basis allows LLVM to link together | 
 | programs which use different garbage collection algorithms.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="gcroot">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_code"><tt> | 
 |   void %llvm.gcroot(i8** %ptrloc, i8* %metadata) | 
 | </tt></div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM of a pointer | 
 | variable on the stack. The first argument <b>must</b> be an alloca instruction | 
 | or a bitcast of an alloca. The second contains a pointer to metadata that | 
 | should be associated with the pointer, and <b>must</b> be a constant or global | 
 | value address. If your target collector uses tags, use a null pointer for | 
 | metadata.</p> | 
 |  | 
 | <p>Consider the following fragment of Java code:</p> | 
 |  | 
 | <pre> | 
 |        { | 
 |          Object X;   // A null-initialized reference to an object | 
 |          ... | 
 |        } | 
 | </pre> | 
 |  | 
 | <p>This block (which may be located in the middle of a function or in a loop | 
 | nest), could be compiled to this LLVM code:</p> | 
 |  | 
 | <pre> | 
 | Entry: | 
 |    ;; In the entry block for the function, allocate the | 
 |    ;; stack space for X, which is an LLVM pointer. | 
 |    %X = alloca %Object* | 
 |     | 
 |    ;; Tell LLVM that the stack space is a stack root. | 
 |    ;; Java has type-tags on objects, so we pass null as metadata. | 
 |    %tmp = bitcast %Object** %X to i8** | 
 |    call void %llvm.gcroot(%i8** %X, i8* null) | 
 |    ... | 
 |  | 
 |    ;; "CodeBlock" is the block corresponding to the start | 
 |    ;;  of the scope above. | 
 | CodeBlock: | 
 |    ;; Java null-initializes pointers. | 
 |    store %Object* null, %Object** %X | 
 |  | 
 |    ... | 
 |  | 
 |    ;; As the pointer goes out of scope, store a null value into | 
 |    ;; it, to indicate that the value is no longer live. | 
 |    store %Object* null, %Object** %X | 
 |    ... | 
 | </pre> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="barriers">Reading and writing references in the heap</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Some collectors need to be informed when the mutator (the program that needs | 
 | garbage collection) either reads a pointer from or writes a pointer to a field | 
 | of a heap object. The code fragments inserted at these points are called | 
 | <em>read barriers</em> and <em>write barriers</em>, respectively. The amount of | 
 | code that needs to be executed is usually quite small and not on the critical | 
 | path of any computation, so the overall performance impact of the barrier is | 
 | tolerable.</p> | 
 |  | 
 | <p>Barriers often require access to the <em>object pointer</em> rather than the | 
 | <em>derived pointer</em> (which is a pointer to the field within the | 
 | object). Accordingly, these intrinsics take both pointers as separate arguments | 
 | for completeness. In this snippet, <tt>%object</tt> is the object pointer, and  | 
 | <tt>%derived</tt> is the derived pointer:</p> | 
 |  | 
 | <blockquote><pre | 
 | >    ;; An array type. | 
 |     %class.Array = type { %class.Object, i32, [0 x %class.Object*] } | 
 | ... | 
 |  | 
 |     ;; Load the object pointer from a gcroot. | 
 |     %object = load %class.Array** %object_addr | 
 |  | 
 |     ;; Compute the derived pointer. | 
 |     %derived = getelementptr %obj, i32 0, i32 2, i32 %n</pre></blockquote> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_code"><tt> | 
 | void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived) | 
 | </tt></div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>For write barriers, LLVM provides the <tt>llvm.gcwrite</tt> intrinsic | 
 | function. It has exactly the same semantics as a non-volatile <tt>store</tt> to | 
 | the derived pointer (the third argument).</p> | 
 |  | 
 | <p>Many important algorithms require write barriers, including generational | 
 | and concurrent collectors. Additionally, write barriers could be used to | 
 | implement reference counting.</p> | 
 |  | 
 | <p>The use of this intrinsic is optional if the target collector does use | 
 | write barriers. If so, the collector will replace it with the corresponding | 
 | <tt>store</tt>.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="gcread">Read barrier: <tt>llvm.gcread</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_code"><tt> | 
 | i8* @llvm.gcread(i8* %object, i8** %derived)<br> | 
 | </tt></div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>For read barriers, LLVM provides the <tt>llvm.gcread</tt> intrinsic function. | 
 | It has exactly the same semantics as a non-volatile <tt>load</tt> from the | 
 | derived pointer (the second argument).</p> | 
 |  | 
 | <p>Read barriers are needed by fewer algorithms than write barriers, and may | 
 | have a greater performance impact since pointer reads are more frequent than | 
 | writes.</p> | 
 |  | 
 | <p>As with <tt>llvm.gcwrite</tt>, a target collector might not require the use | 
 | of this intrinsic.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="runtime">Recommended runtime interface</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM specifies the following recommended runtime interface to the garbage | 
 | collection at runtime. A program should use these interfaces to accomplish the | 
 | tasks not supported by the intrinsics.</p> | 
 |  | 
 | <p>Unlike the intrinsics, which are integral to LLVM's code generator, there is | 
 | nothing unique about these interfaces; a front-end compiler and runtime are free | 
 | to agree to a different specification.</p> | 
 |  | 
 | <p class="doc_warning">Note: This interface is a work in progress.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="initialize">Garbage collector startup and initialization</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <div class="doc_code"><tt> | 
 |   void llvm_gc_initialize(unsigned InitialHeapSize); | 
 | </tt></div> | 
 |  | 
 | <p> | 
 | The <tt>llvm_gc_initialize</tt> function should be called once before any other | 
 | garbage collection functions are called. This gives the garbage collector the | 
 | chance to initialize itself and allocate the heap. The initial heap size to | 
 | allocate should be specified as an argument. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="allocate">Allocating memory from the GC</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <div class="doc_code"><tt> | 
 |   void *llvm_gc_allocate(unsigned Size); | 
 | </tt></div> | 
 |  | 
 | <p>The <tt>llvm_gc_allocate</tt> function is a global function defined by the | 
 | garbage collector implementation to allocate memory. It returns a | 
 | zeroed-out block of memory of the specified size, sufficiently aligned to store | 
 | any object.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="explicit">Explicit invocation of the garbage collector</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <div class="doc_code"><tt> | 
 |   void llvm_gc_collect(); | 
 | </tt></div> | 
 |  | 
 | <p> | 
 | The <tt>llvm_gc_collect</tt> function is exported by the garbage collector | 
 | implementations to provide a full collection, even when the heap is not | 
 | exhausted. This can be used by end-user code as a hint, and may be ignored by | 
 | the garbage collector. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="traceroots">Tracing GC pointers from the program stack</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <div class="doc_code"><tt> | 
 |      void llvm_cg_walk_gcroots(void (*FP)(void **Root, void *Meta)); | 
 |   </tt></div> | 
 |  | 
 | <p> | 
 | The <tt>llvm_cg_walk_gcroots</tt> function is a function provided by the code | 
 | generator that iterates through all of the GC roots on the stack, calling the | 
 | specified function pointer with each record. For each GC root, the address of | 
 | the pointer and the meta-data (from the <a | 
 | href="#roots"><tt>llvm.gcroot</tt></a> intrinsic) are provided. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="staticroots">Tracing GC pointers from static roots</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | TODO | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="plugin">Implementing a collector plugin</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>User code specifies which collector plugin to use with the <tt>gc</tt> | 
 | function attribute or, equivalently, with the <tt>setCollector</tt> method of | 
 | <tt>Function</tt>.</p> | 
 |  | 
 | <p>To implement a collector plugin, it is necessary to subclass | 
 | <tt>llvm::Collector</tt>, which can be accomplished in a few lines of | 
 | boilerplate code. LLVM's infrastructure provides access to several important | 
 | algorithms. For an uncontroversial collector, all that remains may be to emit | 
 | the assembly code for the collector's unique stack map data structure, which | 
 | might be accomplished in as few as 100 LOC.</p> | 
 |  | 
 | <p>To subclass <tt>llvm::Collector</tt> and register a collector:</p> | 
 |  | 
 | <blockquote><pre>// lib/MyGC/MyGC.cpp - Example LLVM collector plugin | 
 |  | 
 | #include "llvm/CodeGen/Collector.h" | 
 | #include "llvm/CodeGen/Collectors.h" | 
 | #include "llvm/CodeGen/CollectorMetadata.h" | 
 | #include "llvm/Support/Compiler.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   class VISIBILITY_HIDDEN MyCollector : public Collector { | 
 |   public: | 
 |     MyCollector() {} | 
 |   }; | 
 |    | 
 |   CollectorRegistry::Add<MyCollector> | 
 |   X("mygc", "My bespoke garbage collector."); | 
 | }</pre></blockquote> | 
 |  | 
 | <p>Using the LLVM makefiles (like the <a | 
 | href="http://llvm.org/viewvc/llvm-project/llvm/trunk/projects/sample/">sample | 
 | project</a>), this can be built into a plugin using a simple makefile:</p> | 
 |  | 
 | <blockquote><pre | 
 | ># lib/MyGC/Makefile | 
 |  | 
 | LEVEL := ../.. | 
 | LIBRARYNAME = <var>MyGC</var> | 
 | LOADABLE_MODULE = 1 | 
 |  | 
 | include $(LEVEL)/Makefile.common</pre></blockquote> | 
 |  | 
 | <p>Once the plugin is compiled, code using it may be compiled using <tt>llc | 
 | -load=<var>MyGC.so</var></tt> (though <var>MyGC.so</var> may have some other | 
 | platform-specific extension):</p> | 
 |  | 
 | <blockquote><pre | 
 | >$ cat sample.ll | 
 | define void @f() gc "mygc" { | 
 | entry: | 
 |         ret void | 
 | } | 
 | $ llvm-as < sample.ll | llc -load=MyGC.so</pre></blockquote> | 
 |  | 
 | <p>It is also possible to statically link the collector plugin into tools, such | 
 | as a language-specific compiler front-end.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="collector-algos">Overview of available features</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The boilerplate collector above does nothing. More specifically:</p> | 
 |  | 
 | <ul> | 
 |   <li><tt>llvm.gcread</tt> calls are replaced with the corresponding | 
 |       <tt>load</tt> instruction.</li> | 
 |   <li><tt>llvm.gcwrite</tt> calls are replaced with the corresponding | 
 |       <tt>store</tt> instruction.</li> | 
 |   <li>No stack map is emitted, and no safe points are added.</li> | 
 | </ul> | 
 |  | 
 | <p><tt>Collector</tt> provides a range of features through which a plugin | 
 | collector may do useful work. This matrix summarizes the supported (and planned) | 
 | features and correlates them with the collection techniques which typically | 
 | require them.</p> | 
 |  | 
 | <table> | 
 |   <tr> | 
 |     <th>Algorithm</th> | 
 |     <th>Done</th> | 
 |     <th>shadow stack</th> | 
 |     <th>refcount</th> | 
 |     <th>mark-sweep</th> | 
 |     <th>copying</th> | 
 |     <th>incremental</th> | 
 |     <th>threaded</th> | 
 |     <th>concurrent</th> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead"><a href="#stack-map">stack map</a></th> | 
 |     <td>✔</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead"><a href="#init-roots">initialize roots</a></th> | 
 |     <td>✔</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr class="doc_warning"> | 
 |     <th class="rowhead">derived pointers</th> | 
 |     <td>NO</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘*</td> | 
 |     <td>✘*</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead"><em><a href="#custom">custom lowering</a></em></th> | 
 |     <td>✔</td> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead indent">gcroot</th> | 
 |     <td>✔</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead indent">gcwrite</th> | 
 |     <td>✔</td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead indent">gcread</th> | 
 |     <td>✔</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead"><em><a href="#safe-points">safe points</a></em></th> | 
 |     <td></td> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead indent">in calls</th> | 
 |     <td>✔</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead indent">before calls</th> | 
 |     <td>✔</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr class="doc_warning"> | 
 |     <th class="rowhead indent">for loops</th> | 
 |     <td>NO</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead indent">before escape</th> | 
 |     <td>✔</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr class="doc_warning"> | 
 |     <th class="rowhead">emit code at safe points</th> | 
 |     <td>NO</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead"><em>output</em></th> | 
 |     <td></td> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |     <th></th> | 
 |   </tr> | 
 |   <tr> | 
 |     <th class="rowhead indent"><a href="#assembly">assembly</a></th> | 
 |     <td>✔</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |     <td>✘</td> | 
 |   </tr> | 
 |   <tr class="doc_warning"> | 
 |     <th class="rowhead indent">JIT</th> | 
 |     <td>NO</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |   </tr> | 
 |   <tr class="doc_warning"> | 
 |     <th class="rowhead indent">obj</th> | 
 |     <td>NO</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |   </tr> | 
 |   <tr class="doc_warning"> | 
 |     <th class="rowhead">live analysis</th> | 
 |     <td>NO</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |   </tr> | 
 |   <tr class="doc_warning"> | 
 |     <th class="rowhead">register map</th> | 
 |     <td>NO</td> | 
 |     <td></td> | 
 |     <td></td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |     <td class="optl">✘</td> | 
 |   </tr> | 
 |   <tr> | 
 |     <td colspan="10"> | 
 |       <div><span class="doc_warning">*</span> Derived pointers only pose a | 
 |            hazard to copying collectors.</div> | 
 |       <div><span class="optl">✘</span> in gray denotes a feature which | 
 |            could be utilized if available.</div> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 |  | 
 | <p>To be clear, the collection techniques above are defined as:</p> | 
 |  | 
 | <dl> | 
 |   <dt>Shadow Stack</dt> | 
 |   <dd>The mutator carefully maintains a linked list of stack root | 
 |       descriptors.</dd> | 
 |   <dt>Reference Counting</dt> | 
 |   <dd>The mutator maintains a reference count for each object and frees an | 
 |       object when its count falls to zero.</dd> | 
 |   <dt>Mark-Sweep</dt> | 
 |   <dd>When the heap is exhausted, the collector marks reachable objects starting | 
 |       from the roots, then deallocates unreachable objects in a sweep | 
 |       phase.</dd> | 
 |   <dt>Copying</dt> | 
 |   <dd>As reachability analysis proceeds, the collector copies objects from one | 
 |       heap area to another, compacting them in the process. Copying collectors | 
 |       enable highly efficient "bump pointer" allocation and can improve locality | 
 |       of reference.</dd> | 
 |   <dt>Incremental</dt> | 
 |   <dd>(Including generational collectors.) Incremental collectors generally have | 
 |       all the properties of a copying collector (regardless of whether the | 
 |       mature heap is compacting), but bring the added complexity of requiring | 
 |       write barriers.</dd> | 
 |   <dt>Threaded</dt> | 
 |   <dd>Denotes a multithreaded mutator; the collector must still stop the mutator | 
 |       ("stop the world") before beginning reachability analysis. Stopping a | 
 |       multithreaded mutator is a complicated problem. It generally requires | 
 |       highly platform specific code in the runtime, and the production of | 
 |       carefully designed machine code at safe points.</dd> | 
 |   <dt>Concurrent</dt> | 
 |   <dd>In this technique, the mutator and the collector run concurrently, with | 
 |       the goal of eliminating pause times. In a <em>cooperative</em> collector, | 
 |       the mutator further aids with collection should a pause occur, allowing | 
 |       collection to take advantage of multiprocessor hosts. The "stop the world" | 
 |       problem of threaded collectors is generally still present to a limited | 
 |       extent. Sophisticated marking algorithms are necessary. Read barriers may | 
 |       be necessary.</dd> | 
 | </dl> | 
 |  | 
 | <p>As the matrix indicates, LLVM's garbage collection infrastructure is already | 
 | suitable for a wide variety of collectors, but does not currently extend to | 
 | multithreaded programs. This will be added in the future as there is | 
 | interest.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="stack-map">Computing stack maps</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <blockquote><pre | 
 | >for (iterator I = begin(), E = end(); I != E; ++I) { | 
 |   CollectorMetadata *MD = *I; | 
 |   unsigned FrameSize = MD->getFrameSize(); | 
 |   size_t RootCount = MD->roots_size(); | 
 |  | 
 |   for (CollectorMetadata::roots_iterator RI = MD->roots_begin(), | 
 |                                          RE = MD->roots_end(); | 
 |                                          RI != RE; ++RI) { | 
 |     int RootNum = RI->Num; | 
 |     int RootStackOffset = RI->StackOffset; | 
 |     Constant *RootMetadata = RI->Metadata; | 
 |   } | 
 | }</pre></blockquote> | 
 |  | 
 | <p>LLVM automatically computes a stack map. All a <tt>Collector</tt> needs to do | 
 | is access it using <tt>CollectorMetadata::roots_begin()</tt> and | 
 | -<tt>end()</tt>. If the <tt>llvm.gcroot</tt> intrinsic is eliminated before code | 
 | generation by a custom lowering pass, LLVM's stack map will be empty.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="init-roots">Initializing roots to null: <tt>InitRoots</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <blockquote><pre | 
 | >MyCollector::MyCollector() { | 
 |   InitRoots = true; | 
 | }</pre></blockquote> | 
 |  | 
 | <p>When set, LLVM will automatically initialize each root to <tt>null</tt> upon | 
 | entry to the function. This prevents the reachability analysis from finding | 
 | uninitialized values in stack roots at runtime, which will almost certainly | 
 | cause it to segfault. This initialization occurs before custom lowering, so the | 
 | two may be used together.</p> | 
 |  | 
 | <p>Since LLVM does not yet compute liveness information, this feature should be | 
 | used by all collectors which do not custom lower <tt>llvm.gcroot</tt>, and even | 
 | some that do.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>,  | 
 |     <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>For collectors with barriers or unusual treatment of stack roots, these | 
 | flags allow the collector to perform any required transformation on the LLVM | 
 | IR:</p> | 
 |  | 
 | <blockquote><pre | 
 | >class MyCollector : public Collector { | 
 | public: | 
 |   MyCollector() { | 
 |     CustomRoots = true; | 
 |     CustomReadBarriers = true; | 
 |     CustomWriteBarriers = true; | 
 |   } | 
 |    | 
 |   virtual bool initializeCustomLowering(Module &M); | 
 |   virtual bool performCustomLowering(Function &F); | 
 | };</pre></blockquote> | 
 |  | 
 | <p>If any of these flags are set, then LLVM suppresses its default lowering for | 
 | the corresponding intrinsics and instead passes them on to a custom lowering | 
 | pass specified by the collector.</p> | 
 |  | 
 | <p>LLVM's default action for each intrinsic is as follows:</p> | 
 |  | 
 | <ul> | 
 |   <li><tt>llvm.gcroot</tt>: Pass through to the code generator to generate a | 
 |                             stack map.</li> | 
 |   <li><tt>llvm.gcread</tt>: Substitute a <tt>load</tt> instruction.</li> | 
 |   <li><tt>llvm.gcwrite</tt>: Substitute a <tt>store</tt> instruction.</li> | 
 | </ul> | 
 |  | 
 | <p>If <tt>CustomReadBarriers</tt> or <tt>CustomWriteBarriers</tt> are specified, | 
 | then <tt>performCustomLowering</tt> <strong>must</strong> eliminate the | 
 | corresponding barriers.</p> | 
 |  | 
 | <p><tt>performCustomLowering</tt>, must comply with the same restrictions as <a | 
 | href="WritingAnLLVMPass.html#runOnFunction"><tt>runOnFunction</tt></a>, and | 
 | that <tt>initializeCustomLowering</tt> has the same semantics as <a | 
 | href="WritingAnLLVMPass.html#doInitialization_mod"><tt>doInitialization(Module | 
 | &)</tt></a>.</p> | 
 |  | 
 | <p>The following can be used as a template:</p> | 
 |  | 
 | <blockquote><pre | 
 | >#include "llvm/Module.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 |  | 
 | bool MyCollector::initializeCustomLowering(Module &M) { | 
 |   return false; | 
 | } | 
 |  | 
 | bool MyCollector::performCustomLowering(Function &F) { | 
 |   bool MadeChange = false; | 
 |    | 
 |   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
 |     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) | 
 |       if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) | 
 |         if (Function *F = CI->getCalledFunction()) | 
 |           switch (F->getIntrinsicID()) { | 
 |           case Intrinsic::gcwrite: | 
 |             // Handle llvm.gcwrite. | 
 |             CI->eraseFromParent(); | 
 |             MadeChange = true; | 
 |             break; | 
 |           case Intrinsic::gcread: | 
 |             // Handle llvm.gcread. | 
 |             CI->eraseFromParent(); | 
 |             MadeChange = true; | 
 |             break; | 
 |           case Intrinsic::gcroot: | 
 |             // Handle llvm.gcroot. | 
 |             CI->eraseFromParent(); | 
 |             MadeChange = true; | 
 |             break; | 
 |           } | 
 |    | 
 |   return MadeChange; | 
 | }</pre></blockquote> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="safe-points">Generating safe points: <tt>NeededSafePoints</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM can compute four kinds of safe points:</p> | 
 |  | 
 | <blockquote><pre | 
 | >namespace GC { | 
 |   /// PointKind - The type of a collector-safe point. | 
 |   ///  | 
 |   enum PointKind { | 
 |     Loop,    //< Instr is a loop (backwards branch). | 
 |     Return,  //< Instr is a return instruction. | 
 |     PreCall, //< Instr is a call instruction. | 
 |     PostCall //< Instr is the return address of a call. | 
 |   }; | 
 | }</pre></blockquote> | 
 |  | 
 | <p>A collector can request any combination of the four by setting the  | 
 | <tt>NeededSafePoints</tt> mask:</p> | 
 |  | 
 | <blockquote><pre | 
 | >MyCollector::MyCollector() { | 
 |   NeededSafePoints = 1 << GC::Loop | 
 |                    | 1 << GC::Return | 
 |                    | 1 << GC::PreCall | 
 |                    | 1 << GC::PostCall; | 
 | }</pre></blockquote> | 
 |  | 
 | <p>It can then use the following routines to access safe points.</p> | 
 |  | 
 | <blockquote><pre | 
 | >for (iterator I = begin(), E = end(); I != E; ++I) { | 
 |   CollectorMetadata *MD = *I; | 
 |   size_t PointCount = MD->size(); | 
 |  | 
 |   for (CollectorMetadata::iterator PI = MD->begin(), | 
 |                                    PE = MD->end(); PI != PE; ++PI) { | 
 |     GC::PointKind PointKind = PI->Kind; | 
 |     unsigned PointNum = PI->Num; | 
 |   } | 
 | } | 
 | </pre></blockquote> | 
 |  | 
 | <p>Almost every collector requires <tt>PostCall</tt> safe points, since these | 
 | correspond to the moments when the function is suspended during a call to a | 
 | subroutine.</p> | 
 |  | 
 | <p>Threaded programs generally require <tt>Loop</tt> safe points to guarantee | 
 | that the application will reach a safe point within a bounded amount of time, | 
 | even if it is executing a long-running loop which contains no function | 
 | calls.</p> | 
 |  | 
 | <p>Threaded collectors may also require <tt>Return</tt> and <tt>PreCall</tt> | 
 | safe points to implement "stop the world" techniques using self-modifying code, | 
 | where it is important that the program not exit the function without reaching a | 
 | safe point (because only the topmost function has been patched).</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="assembly">Emitting assembly code: | 
 |     <tt>beginAssembly</tt> and <tt>finishAssembly</tt></a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM allows a collector to print arbitrary assembly code before and after | 
 | the rest of a module's assembly code. From the latter callback, the collector | 
 | can print stack maps built by the code generator.</p> | 
 |  | 
 | <p>Note that LLVM does not currently have analogous APIs to support code | 
 | generation in the JIT, nor using the object writers.</p> | 
 |  | 
 | <blockquote><pre | 
 | >class MyCollector : public Collector { | 
 | public: | 
 |   virtual void beginAssembly(std::ostream &OS, AsmPrinter &AP, | 
 |                              const TargetAsmInfo &TAI); | 
 |  | 
 |   virtual void finishAssembly(std::ostream &OS, AsmPrinter &AP, | 
 |                               const TargetAsmInfo &TAI); | 
 | }</pre></blockquote> | 
 |  | 
 | <p>The collector should use <tt>AsmPrinter</tt> and <tt>TargetAsmInfo</tt> to | 
 | print portable assembly code to the <tt>std::ostream</tt>. The collector itself | 
 | contains the stack map for the entire module, and may access the | 
 | <tt>CollectorMetadata</tt> using its own <tt>begin()</tt> and <tt>end()</tt> | 
 | methods. Here's a realistic example:</p> | 
 |  | 
 | <blockquote><pre | 
 | >#include "llvm/CodeGen/AsmPrinter.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Target/TargetAsmInfo.h" | 
 |  | 
 | void MyCollector::beginAssembly(std::ostream &OS, AsmPrinter &AP, | 
 |                                 const TargetAsmInfo &TAI) { | 
 |   // Nothing to do. | 
 | } | 
 |  | 
 | void MyCollector::finishAssembly(std::ostream &OS, AsmPrinter &AP, | 
 |                                  const TargetAsmInfo &TAI) { | 
 |   // Set up for emitting addresses. | 
 |   const char *AddressDirective; | 
 |   int AddressAlignLog; | 
 |   if (AP.TM.getTargetData()->getPointerSize() == sizeof(int32_t)) { | 
 |     AddressDirective = TAI.getData32bitsDirective(); | 
 |     AddressAlignLog = 2; | 
 |   } else { | 
 |     AddressDirective = TAI.getData64bitsDirective(); | 
 |     AddressAlignLog = 3; | 
 |   } | 
 |    | 
 |   // Put this in the data section. | 
 |   AP.SwitchToDataSection(TAI.getDataSection()); | 
 |    | 
 |   // For each function... | 
 |   for (iterator FI = begin(), FE = end(); FI != FE; ++FI) { | 
 |     CollectorMetadata &MD = **FI; | 
 |      | 
 |     // Emit this data structure: | 
 |     //  | 
 |     // struct { | 
 |     //   int32_t PointCount; | 
 |     //   struct { | 
 |     //     void *SafePointAddress; | 
 |     //     int32_t LiveCount; | 
 |     //     int32_t LiveOffsets[LiveCount]; | 
 |     //   } Points[PointCount]; | 
 |     // } __gcmap_<FUNCTIONNAME>; | 
 |      | 
 |     // Align to address width. | 
 |     AP.EmitAlignment(AddressAlignLog); | 
 |      | 
 |     // Emit the symbol by which the stack map can be found. | 
 |     std::string Symbol; | 
 |     Symbol += TAI.getGlobalPrefix(); | 
 |     Symbol += "__gcmap_"; | 
 |     Symbol += MD.getFunction().getName(); | 
 |     if (const char *GlobalDirective = TAI.getGlobalDirective()) | 
 |       OS << GlobalDirective << Symbol << "\n"; | 
 |     OS << TAI.getGlobalPrefix() << Symbol << ":\n"; | 
 |      | 
 |     // Emit PointCount. | 
 |     AP.EmitInt32(MD.size()); | 
 |     AP.EOL("safe point count"); | 
 |      | 
 |     // And each safe point... | 
 |     for (CollectorMetadata::iterator PI = MD.begin(), | 
 |                                      PE = MD.end(); PI != PE; ++PI) { | 
 |       // Align to address width. | 
 |       AP.EmitAlignment(AddressAlignLog); | 
 |        | 
 |       // Emit the address of the safe point. | 
 |       OS << AddressDirective | 
 |          << TAI.getPrivateGlobalPrefix() << "label" << PI->Num; | 
 |       AP.EOL("safe point address"); | 
 |        | 
 |       // Emit the stack frame size. | 
 |       AP.EmitInt32(MD.getFrameSize()); | 
 |       AP.EOL("stack frame size"); | 
 |        | 
 |       // Emit the number of live roots in the function. | 
 |       AP.EmitInt32(MD.live_size(PI)); | 
 |       AP.EOL("live root count"); | 
 |        | 
 |       // And for each live root... | 
 |       for (CollectorMetadata::live_iterator LI = MD.live_begin(PI), | 
 |                                             LE = MD.live_end(PI); | 
 |                                             LI != LE; ++LI) { | 
 |         // Print its offset within the stack frame. | 
 |         AP.EmitInt32(LI->StackOffset); | 
 |         AP.EOL("stack offset"); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 | </pre></blockquote> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="runtime-impl">Implementing a collector runtime</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Implementing a garbage collector for LLVM is fairly straightforward. The | 
 | LLVM garbage collectors are provided in a form that makes them easy to link into | 
 | the language-specific runtime that a language front-end would use. They require | 
 | functionality from the language-specific runtime to get information about <a | 
 | href="#gcdescriptors">where pointers are located in heap objects</a>.</p> | 
 |  | 
 | <p>The implementation must include the | 
 | <a href="#allocate"><tt>llvm_gc_allocate</tt></a> and | 
 | <a href="#explicit"><tt>llvm_gc_collect</tt></a> functions. To do this, it will | 
 | probably have to <a href="#traceroots">trace through the roots | 
 | from the stack</a> and understand the <a href="#gcdescriptors">GC descriptors | 
 | for heap objects</a>. Luckily, there are some <a href="#gcimpls">example | 
 | implementations</a> available. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="gcdescriptors">Tracing GC pointers from heap objects</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | The three most common ways to keep track of where pointers live in heap objects | 
 | are (listed in order of space overhead required):</p> | 
 |  | 
 | <ol> | 
 | <li>In languages with polymorphic objects, pointers from an object header are | 
 | usually used to identify the GC pointers in the heap object. This is common for | 
 | object-oriented languages like Self, Smalltalk, Java, or C#.</li> | 
 |  | 
 | <li>If heap objects are not polymorphic, often the "shape" of the heap can be | 
 | determined from the roots of the heap or from some other meta-data [<a | 
 | href="#appel89">Appel89</a>, <a href="#goldberg91">Goldberg91</a>, <a | 
 | href="#tolmach94">Tolmach94</a>]. In this case, the garbage collector can | 
 | propagate the information around from meta data stored with the roots. This | 
 | often eliminates the need to have a header on objects in the heap. This is | 
 | common in the ML family.</li> | 
 |  | 
 | <li>If all heap objects have pointers in the same locations, or pointers can be | 
 | distinguished just by looking at them (e.g., the low order bit is clear), no | 
 | book-keeping is needed at all. This is common for Lisp-like languages.</li> | 
 | </ol> | 
 |  | 
 | <p>The LLVM garbage collectors are capable of supporting all of these styles of | 
 | language, including ones that mix various implementations. To do this, it | 
 | allows the source-language to associate meta-data with the <a | 
 | href="#roots">stack roots</a>, and the heap tracing routines can propagate the | 
 | information. In addition, LLVM allows the front-end to extract GC information | 
 | in any form from a specific object pointer (this supports situations #1 and #3). | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="references">References</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p><a name="appel89">[Appel89]</a> Runtime Tags Aren't Necessary. Andrew | 
 | W. Appel. Lisp and Symbolic Computation 19(7):703-705, July 1989.</p> | 
 |  | 
 | <p><a name="goldberg91">[Goldberg91]</a> Tag-free garbage collection for | 
 | strongly typed programming languages. Benjamin Goldberg. ACM SIGPLAN | 
 | PLDI'91.</p> | 
 |  | 
 | <p><a name="tolmach94">[Tolmach94]</a> Tag-free garbage collection using | 
 | explicit type parameters. Andrew Tolmach. Proceedings of the 1994 ACM | 
 | conference on LISP and functional programming.</p> | 
 |  | 
 | <p><a name="henderson02">[Henderson2002]</a> <a | 
 | href="http://citeseer.ist.psu.edu/henderson02accurate.html"> | 
 | Accurate Garbage Collection in an Uncooperative Environment</a>. | 
 | Fergus Henderson. International Symposium on Memory Management 2002.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <hr> | 
 | <address> | 
 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 |   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
 |   <a href="http://validator.w3.org/check/referer"><img | 
 |   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
 |  | 
 |   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
 |   <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br> | 
 |   Last modified: $Date$ | 
 | </address> | 
 |  | 
 | </body> | 
 | </html> |