| //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the X86 implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef X86INSTRUCTIONINFO_H |
| #define X86INSTRUCTIONINFO_H |
| |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "X86RegisterInfo.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| |
| namespace llvm { |
| class X86RegisterInfo; |
| class X86TargetMachine; |
| |
| namespace X86 { |
| // X86 specific condition code. These correspond to X86_*_COND in |
| // X86InstrInfo.td. They must be kept in synch. |
| enum CondCode { |
| COND_A = 0, |
| COND_AE = 1, |
| COND_B = 2, |
| COND_BE = 3, |
| COND_E = 4, |
| COND_G = 5, |
| COND_GE = 6, |
| COND_L = 7, |
| COND_LE = 8, |
| COND_NE = 9, |
| COND_NO = 10, |
| COND_NP = 11, |
| COND_NS = 12, |
| COND_O = 13, |
| COND_P = 14, |
| COND_S = 15, |
| COND_INVALID |
| }; |
| |
| // Turn condition code into conditional branch opcode. |
| unsigned GetCondBranchFromCond(CondCode CC); |
| |
| /// GetOppositeBranchCondition - Return the inverse of the specified cond, |
| /// e.g. turning COND_E to COND_NE. |
| CondCode GetOppositeBranchCondition(X86::CondCode CC); |
| |
| } |
| |
| /// X86II - This namespace holds all of the target specific flags that |
| /// instruction info tracks. |
| /// |
| namespace X86II { |
| enum { |
| //===------------------------------------------------------------------===// |
| // Instruction types. These are the standard/most common forms for X86 |
| // instructions. |
| // |
| |
| // PseudoFrm - This represents an instruction that is a pseudo instruction |
| // or one that has not been implemented yet. It is illegal to code generate |
| // it, but tolerated for intermediate implementation stages. |
| Pseudo = 0, |
| |
| /// Raw - This form is for instructions that don't have any operands, so |
| /// they are just a fixed opcode value, like 'leave'. |
| RawFrm = 1, |
| |
| /// AddRegFrm - This form is used for instructions like 'push r32' that have |
| /// their one register operand added to their opcode. |
| AddRegFrm = 2, |
| |
| /// MRMDestReg - This form is used for instructions that use the Mod/RM byte |
| /// to specify a destination, which in this case is a register. |
| /// |
| MRMDestReg = 3, |
| |
| /// MRMDestMem - This form is used for instructions that use the Mod/RM byte |
| /// to specify a destination, which in this case is memory. |
| /// |
| MRMDestMem = 4, |
| |
| /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte |
| /// to specify a source, which in this case is a register. |
| /// |
| MRMSrcReg = 5, |
| |
| /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte |
| /// to specify a source, which in this case is memory. |
| /// |
| MRMSrcMem = 6, |
| |
| /// MRM[0-7][rm] - These forms are used to represent instructions that use |
| /// a Mod/RM byte, and use the middle field to hold extended opcode |
| /// information. In the intel manual these are represented as /0, /1, ... |
| /// |
| |
| // First, instructions that operate on a register r/m operand... |
| MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3 |
| MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7 |
| |
| // Next, instructions that operate on a memory r/m operand... |
| MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3 |
| MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7 |
| |
| // MRMInitReg - This form is used for instructions whose source and |
| // destinations are the same register. |
| MRMInitReg = 32, |
| |
| FormMask = 63, |
| |
| //===------------------------------------------------------------------===// |
| // Actual flags... |
| |
| // OpSize - Set if this instruction requires an operand size prefix (0x66), |
| // which most often indicates that the instruction operates on 16 bit data |
| // instead of 32 bit data. |
| OpSize = 1 << 6, |
| |
| // AsSize - Set if this instruction requires an operand size prefix (0x67), |
| // which most often indicates that the instruction address 16 bit address |
| // instead of 32 bit address (or 32 bit address in 64 bit mode). |
| AdSize = 1 << 7, |
| |
| //===------------------------------------------------------------------===// |
| // Op0Mask - There are several prefix bytes that are used to form two byte |
| // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is |
| // used to obtain the setting of this field. If no bits in this field is |
| // set, there is no prefix byte for obtaining a multibyte opcode. |
| // |
| Op0Shift = 8, |
| Op0Mask = 0xF << Op0Shift, |
| |
| // TB - TwoByte - Set if this instruction has a two byte opcode, which |
| // starts with a 0x0F byte before the real opcode. |
| TB = 1 << Op0Shift, |
| |
| // REP - The 0xF3 prefix byte indicating repetition of the following |
| // instruction. |
| REP = 2 << Op0Shift, |
| |
| // D8-DF - These escape opcodes are used by the floating point unit. These |
| // values must remain sequential. |
| D8 = 3 << Op0Shift, D9 = 4 << Op0Shift, |
| DA = 5 << Op0Shift, DB = 6 << Op0Shift, |
| DC = 7 << Op0Shift, DD = 8 << Op0Shift, |
| DE = 9 << Op0Shift, DF = 10 << Op0Shift, |
| |
| // XS, XD - These prefix codes are for single and double precision scalar |
| // floating point operations performed in the SSE registers. |
| XD = 11 << Op0Shift, XS = 12 << Op0Shift, |
| |
| // T8, TA - Prefix after the 0x0F prefix. |
| T8 = 13 << Op0Shift, TA = 14 << Op0Shift, |
| |
| //===------------------------------------------------------------------===// |
| // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. |
| // They are used to specify GPRs and SSE registers, 64-bit operand size, |
| // etc. We only cares about REX.W and REX.R bits and only the former is |
| // statically determined. |
| // |
| REXShift = 12, |
| REX_W = 1 << REXShift, |
| |
| //===------------------------------------------------------------------===// |
| // This three-bit field describes the size of an immediate operand. Zero is |
| // unused so that we can tell if we forgot to set a value. |
| ImmShift = 13, |
| ImmMask = 7 << ImmShift, |
| Imm8 = 1 << ImmShift, |
| Imm16 = 2 << ImmShift, |
| Imm32 = 3 << ImmShift, |
| Imm64 = 4 << ImmShift, |
| |
| //===------------------------------------------------------------------===// |
| // FP Instruction Classification... Zero is non-fp instruction. |
| |
| // FPTypeMask - Mask for all of the FP types... |
| FPTypeShift = 16, |
| FPTypeMask = 7 << FPTypeShift, |
| |
| // NotFP - The default, set for instructions that do not use FP registers. |
| NotFP = 0 << FPTypeShift, |
| |
| // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 |
| ZeroArgFP = 1 << FPTypeShift, |
| |
| // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst |
| OneArgFP = 2 << FPTypeShift, |
| |
| // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a |
| // result back to ST(0). For example, fcos, fsqrt, etc. |
| // |
| OneArgFPRW = 3 << FPTypeShift, |
| |
| // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an |
| // explicit argument, storing the result to either ST(0) or the implicit |
| // argument. For example: fadd, fsub, fmul, etc... |
| TwoArgFP = 4 << FPTypeShift, |
| |
| // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an |
| // explicit argument, but have no destination. Example: fucom, fucomi, ... |
| CompareFP = 5 << FPTypeShift, |
| |
| // CondMovFP - "2 operand" floating point conditional move instructions. |
| CondMovFP = 6 << FPTypeShift, |
| |
| // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. |
| SpecialFP = 7 << FPTypeShift, |
| |
| // Lock prefix |
| LOCKShift = 19, |
| LOCK = 1 << LOCKShift, |
| |
| // Bits 20 -> 23 are unused |
| OpcodeShift = 24, |
| OpcodeMask = 0xFF << OpcodeShift |
| }; |
| } |
| |
| class X86InstrInfo : public TargetInstrInfoImpl { |
| X86TargetMachine &TM; |
| const X86RegisterInfo RI; |
| |
| /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, |
| /// RegOp2MemOpTable2 - Load / store folding opcode maps. |
| /// |
| DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr; |
| DenseMap<unsigned*, unsigned> RegOp2MemOpTable0; |
| DenseMap<unsigned*, unsigned> RegOp2MemOpTable1; |
| DenseMap<unsigned*, unsigned> RegOp2MemOpTable2; |
| |
| /// MemOp2RegOpTable - Load / store unfolding opcode map. |
| /// |
| DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable; |
| |
| public: |
| explicit X86InstrInfo(X86TargetMachine &tm); |
| |
| /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As |
| /// such, whenever a client has an instance of instruction info, it should |
| /// always be able to get register info as well (through this method). |
| /// |
| virtual const TargetRegisterInfo &getRegisterInfo() const { return RI; } |
| |
| // Return true if the instruction is a register to register move and |
| // leave the source and dest operands in the passed parameters. |
| // |
| bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, |
| unsigned& destReg) const; |
| unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const; |
| unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const; |
| |
| bool isReallyTriviallyReMaterializable(MachineInstr *MI) const; |
| void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| unsigned DestReg, const MachineInstr *Orig) const; |
| |
| bool isInvariantLoad(MachineInstr *MI) const; |
| |
| /// convertToThreeAddress - This method must be implemented by targets that |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| /// may be able to convert a two-address instruction into a true |
| /// three-address instruction on demand. This allows the X86 target (for |
| /// example) to convert ADD and SHL instructions into LEA instructions if they |
| /// would require register copies due to two-addressness. |
| /// |
| /// This method returns a null pointer if the transformation cannot be |
| /// performed, otherwise it returns the new instruction. |
| /// |
| virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, |
| LiveVariables &LV) const; |
| |
| /// commuteInstruction - We have a few instructions that must be hacked on to |
| /// commute them. |
| /// |
| virtual MachineInstr *commuteInstruction(MachineInstr *MI) const; |
| |
| // Branch analysis. |
| virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const; |
| virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| std::vector<MachineOperand> &Cond) const; |
| virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; |
| virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const std::vector<MachineOperand> &Cond) const; |
| virtual void copyRegToReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, unsigned SrcReg, |
| const TargetRegisterClass *DestRC, |
| const TargetRegisterClass *SrcRC) const; |
| virtual void storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned SrcReg, bool isKill, int FrameIndex, |
| const TargetRegisterClass *RC) const; |
| |
| virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const; |
| |
| virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, int FrameIndex, |
| const TargetRegisterClass *RC) const; |
| |
| virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const; |
| |
| virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const std::vector<CalleeSavedInfo> &CSI) const; |
| |
| virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const std::vector<CalleeSavedInfo> &CSI) const; |
| |
| /// foldMemoryOperand - If this target supports it, fold a load or store of |
| /// the specified stack slot into the specified machine instruction for the |
| /// specified operand(s). If this is possible, the target should perform the |
| /// folding and return true, otherwise it should return false. If it folds |
| /// the instruction, it is likely that the MachineInstruction the iterator |
| /// references has been changed. |
| virtual MachineInstr* foldMemoryOperand(MachineFunction &MF, |
| MachineInstr* MI, |
| SmallVectorImpl<unsigned> &Ops, |
| int FrameIndex) const; |
| |
| /// foldMemoryOperand - Same as the previous version except it allows folding |
| /// of any load and store from / to any address, not just from a specific |
| /// stack slot. |
| virtual MachineInstr* foldMemoryOperand(MachineFunction &MF, |
| MachineInstr* MI, |
| SmallVectorImpl<unsigned> &Ops, |
| MachineInstr* LoadMI) const; |
| |
| /// canFoldMemoryOperand - Returns true if the specified load / store is |
| /// folding is possible. |
| virtual bool canFoldMemoryOperand(MachineInstr*, SmallVectorImpl<unsigned> &) const; |
| |
| /// unfoldMemoryOperand - Separate a single instruction which folded a load or |
| /// a store or a load and a store into two or more instruction. If this is |
| /// possible, returns true as well as the new instructions by reference. |
| virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, |
| unsigned Reg, bool UnfoldLoad, bool UnfoldStore, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const; |
| |
| virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, |
| SmallVectorImpl<SDNode*> &NewNodes) const; |
| |
| /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new |
| /// instruction after load / store are unfolded from an instruction of the |
| /// specified opcode. It returns zero if the specified unfolding is not |
| /// possible. |
| virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, |
| bool UnfoldLoad, bool UnfoldStore) const; |
| |
| virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const; |
| virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const; |
| |
| const TargetRegisterClass *getPointerRegClass() const; |
| |
| // getBaseOpcodeFor - This function returns the "base" X86 opcode for the |
| // specified machine instruction. |
| // |
| unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const { |
| return TID->TSFlags >> X86II::OpcodeShift; |
| } |
| unsigned char getBaseOpcodeFor(unsigned Opcode) const { |
| return getBaseOpcodeFor(&get(Opcode)); |
| } |
| |
| private: |
| MachineInstr* foldMemoryOperand(MachineInstr* MI, |
| unsigned OpNum, |
| SmallVector<MachineOperand,4> &MOs) const; |
| }; |
| |
| } // End llvm namespace |
| |
| #endif |