| //===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86 specific subclass of TargetSubtarget. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86Subtarget.h" |
| #include "X86GenSubtarget.inc" |
| #include "llvm/Module.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetMachine.h" |
| using namespace llvm; |
| |
| cl::opt<X86Subtarget::AsmWriterFlavorTy> |
| AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset), |
| cl::desc("Choose style of code to emit from X86 backend:"), |
| cl::values( |
| clEnumValN(X86Subtarget::ATT, "att", " Emit AT&T-style assembly"), |
| clEnumValN(X86Subtarget::Intel, "intel", " Emit Intel-style assembly"), |
| clEnumValEnd)); |
| |
| |
| /// True if accessing the GV requires an extra load. For Windows, dllimported |
| /// symbols are indirect, loading the value at address GV rather then the |
| /// value of GV itself. This means that the GlobalAddress must be in the base |
| /// or index register of the address, not the GV offset field. |
| bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV, |
| const TargetMachine& TM, |
| bool isDirectCall) const |
| { |
| // FIXME: PIC |
| if (TM.getRelocationModel() != Reloc::Static) { |
| if (isTargetDarwin()) { |
| return (!isDirectCall && |
| (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || |
| (GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode()))); |
| } else if (isTargetELF()) { |
| // Extra load is needed for all non-statics. |
| return (!isDirectCall && |
| (GV->isDeclaration() || !GV->hasInternalLinkage())); |
| } else if (isTargetCygMing() || isTargetWindows()) { |
| return (GV->hasDLLImportLinkage()); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// This function returns the name of a function which has an interface |
| /// like the non-standard bzero function, if such a function exists on |
| /// the current subtarget and it is considered prefereable over |
| /// memset with zero passed as the second argument. Otherwise it |
| /// returns null. |
| const char *X86Subtarget::getBZeroEntry() const { |
| |
| // Darwin 10 has a __bzero entry point for this purpose. |
| if (getDarwinVers() >= 10) |
| return "__bzero"; |
| |
| return 0; |
| } |
| |
| /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the |
| /// specified arguments. If we can't run cpuid on the host, return true. |
| bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, |
| unsigned *rECX, unsigned *rEDX) { |
| #if defined(__x86_64__) |
| // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. |
| asm ("movq\t%%rbx, %%rsi\n\t" |
| "cpuid\n\t" |
| "xchgq\t%%rbx, %%rsi\n\t" |
| : "=a" (*rEAX), |
| "=S" (*rEBX), |
| "=c" (*rECX), |
| "=d" (*rEDX) |
| : "a" (value)); |
| return false; |
| #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) |
| #if defined(__GNUC__) |
| asm ("movl\t%%ebx, %%esi\n\t" |
| "cpuid\n\t" |
| "xchgl\t%%ebx, %%esi\n\t" |
| : "=a" (*rEAX), |
| "=S" (*rEBX), |
| "=c" (*rECX), |
| "=d" (*rEDX) |
| : "a" (value)); |
| return false; |
| #elif defined(_MSC_VER) |
| __asm { |
| mov eax,value |
| cpuid |
| mov esi,rEAX |
| mov dword ptr [esi],eax |
| mov esi,rEBX |
| mov dword ptr [esi],ebx |
| mov esi,rECX |
| mov dword ptr [esi],ecx |
| mov esi,rEDX |
| mov dword ptr [esi],edx |
| } |
| return false; |
| #endif |
| #endif |
| return true; |
| } |
| |
| void X86Subtarget::AutoDetectSubtargetFeatures() { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| union { |
| unsigned u[3]; |
| char c[12]; |
| } text; |
| |
| if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) |
| return; |
| |
| X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); |
| |
| if ((EDX >> 23) & 0x1) X86SSELevel = MMX; |
| if ((EDX >> 25) & 0x1) X86SSELevel = SSE1; |
| if ((EDX >> 26) & 0x1) X86SSELevel = SSE2; |
| if (ECX & 0x1) X86SSELevel = SSE3; |
| if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3; |
| if ((ECX >> 19) & 0x1) X86SSELevel = SSE41; |
| if ((ECX >> 20) & 0x1) X86SSELevel = SSE42; |
| |
| if (memcmp(text.c, "GenuineIntel", 12) == 0 || |
| memcmp(text.c, "AuthenticAMD", 12) == 0) { |
| X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| HasX86_64 = (EDX >> 29) & 0x1; |
| } |
| } |
| |
| static const char *GetCurrentX86CPU() { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) |
| return "generic"; |
| unsigned Family = (EAX >> 8) & 0xf; // Bits 8 - 11 |
| unsigned Model = (EAX >> 4) & 0xf; // Bits 4 - 7 |
| X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| bool Em64T = (EDX >> 29) & 0x1; |
| |
| union { |
| unsigned u[3]; |
| char c[12]; |
| } text; |
| |
| X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); |
| if (memcmp(text.c, "GenuineIntel", 12) == 0) { |
| switch (Family) { |
| case 3: |
| return "i386"; |
| case 4: |
| return "i486"; |
| case 5: |
| switch (Model) { |
| case 4: return "pentium-mmx"; |
| default: return "pentium"; |
| } |
| case 6: |
| switch (Model) { |
| case 1: return "pentiumpro"; |
| case 3: |
| case 5: |
| case 6: return "pentium2"; |
| case 7: |
| case 8: |
| case 10: |
| case 11: return "pentium3"; |
| case 9: |
| case 13: return "pentium-m"; |
| case 14: return "yonah"; |
| case 15: return "core2"; |
| default: return "i686"; |
| } |
| case 15: { |
| switch (Model) { |
| case 3: |
| case 4: |
| return (Em64T) ? "nocona" : "prescott"; |
| default: |
| return (Em64T) ? "x86-64" : "pentium4"; |
| } |
| } |
| |
| default: |
| return "generic"; |
| } |
| } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { |
| // FIXME: this poorly matches the generated SubtargetFeatureKV table. There |
| // appears to be no way to generate the wide variety of AMD-specific targets |
| // from the information returned from CPUID. |
| switch (Family) { |
| case 4: |
| return "i486"; |
| case 5: |
| switch (Model) { |
| case 6: |
| case 7: return "k6"; |
| case 8: return "k6-2"; |
| case 9: |
| case 13: return "k6-3"; |
| default: return "pentium"; |
| } |
| case 6: |
| switch (Model) { |
| case 4: return "athlon-tbird"; |
| case 6: |
| case 7: |
| case 8: return "athlon-mp"; |
| case 10: return "athlon-xp"; |
| default: return "athlon"; |
| } |
| case 15: |
| switch (Model) { |
| case 1: return "opteron"; |
| case 5: return "athlon-fx"; // also opteron |
| default: return "athlon64"; |
| } |
| default: |
| return "generic"; |
| } |
| } else { |
| return "generic"; |
| } |
| } |
| |
| X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit) |
| : AsmFlavor(AsmWriterFlavor) |
| , PICStyle(PICStyle::None) |
| , X86SSELevel(NoMMXSSE) |
| , HasX86_64(false) |
| , DarwinVers(0) |
| , stackAlignment(8) |
| // FIXME: this is a known good value for Yonah. How about others? |
| , MaxInlineSizeThreshold(128) |
| , Is64Bit(is64Bit) |
| , TargetType(isELF) { // Default to ELF unless otherwise specified. |
| |
| // Determine default and user specified characteristics |
| if (!FS.empty()) { |
| // If feature string is not empty, parse features string. |
| std::string CPU = GetCurrentX86CPU(); |
| ParseSubtargetFeatures(FS, CPU); |
| } else { |
| // Otherwise, use CPUID to auto-detect feature set. |
| AutoDetectSubtargetFeatures(); |
| } |
| |
| // If requesting codegen for X86-64, make sure that 64-bit and SSE2 features |
| // are enabled. These are available on all x86-64 CPUs. |
| if (Is64Bit) { |
| HasX86_64 = true; |
| if (X86SSELevel < SSE2) |
| X86SSELevel = SSE2; |
| } |
| |
| // Set the boolean corresponding to the current target triple, or the default |
| // if one cannot be determined, to true. |
| const std::string& TT = M.getTargetTriple(); |
| if (TT.length() > 5) { |
| size_t Pos; |
| if ((Pos = TT.find("-darwin")) != std::string::npos) { |
| TargetType = isDarwin; |
| |
| // Compute the darwin version number. |
| if (isdigit(TT[Pos+7])) |
| DarwinVers = atoi(&TT[Pos+7]); |
| else |
| DarwinVers = 8; // Minimum supported darwin is Tiger. |
| } else if (TT.find("cygwin") != std::string::npos) { |
| TargetType = isCygwin; |
| } else if (TT.find("mingw") != std::string::npos) { |
| TargetType = isMingw; |
| } else if (TT.find("win32") != std::string::npos) { |
| TargetType = isWindows; |
| } else if (TT.find("windows") != std::string::npos) { |
| TargetType = isWindows; |
| } |
| } else if (TT.empty()) { |
| #if defined(__CYGWIN__) |
| TargetType = isCygwin; |
| #elif defined(__MINGW32__) || defined(__MINGW64__) |
| TargetType = isMingw; |
| #elif defined(__APPLE__) |
| TargetType = isDarwin; |
| #if __APPLE_CC__ > 5400 |
| DarwinVers = 9; // GCC 5400+ is Leopard. |
| #else |
| DarwinVers = 8; // Minimum supported darwin is Tiger. |
| #endif |
| |
| #elif defined(_WIN32) || defined(_WIN64) |
| TargetType = isWindows; |
| #endif |
| } |
| |
| // If the asm syntax hasn't been overridden on the command line, use whatever |
| // the target wants. |
| if (AsmFlavor == X86Subtarget::Unset) { |
| AsmFlavor = (TargetType == isWindows) |
| ? X86Subtarget::Intel : X86Subtarget::ATT; |
| } |
| |
| if (TargetType == isDarwin || |
| TargetType == isCygwin || |
| TargetType == isMingw || |
| TargetType == isWindows || |
| (TargetType == isELF && Is64Bit)) |
| stackAlignment = 16; |
| } |