| //===- ValueTracking.cpp - Walk computations to compute properties --------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains routines that help analyze properties that chains of | 
 | // computations have. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include <cstring> | 
 | using namespace llvm; | 
 |  | 
 | /// getOpcode - If this is an Instruction or a ConstantExpr, return the | 
 | /// opcode value. Otherwise return UserOp1. | 
 | static unsigned getOpcode(const Value *V) { | 
 |   if (const Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return I->getOpcode(); | 
 |   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
 |     return CE->getOpcode(); | 
 |   // Use UserOp1 to mean there's no opcode. | 
 |   return Instruction::UserOp1; | 
 | } | 
 |  | 
 |  | 
 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are | 
 | /// known to be either zero or one and return them in the KnownZero/KnownOne | 
 | /// bit sets.  This code only analyzes bits in Mask, in order to short-circuit | 
 | /// processing. | 
 | /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that | 
 | /// we cannot optimize based on the assumption that it is zero without changing | 
 | /// it to be an explicit zero.  If we don't change it to zero, other code could | 
 | /// optimized based on the contradictory assumption that it is non-zero. | 
 | /// Because instcombine aggressively folds operations with undef args anyway, | 
 | /// this won't lose us code quality. | 
 | void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, | 
 |                              APInt &KnownZero, APInt &KnownOne, | 
 |                              TargetData *TD, unsigned Depth) { | 
 |   assert(V && "No Value?"); | 
 |   assert(Depth <= 6 && "Limit Search Depth"); | 
 |   uint32_t BitWidth = Mask.getBitWidth(); | 
 |   assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) && | 
 |          "Not integer or pointer type!"); | 
 |   assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) && | 
 |          (!isa<IntegerType>(V->getType()) || | 
 |           V->getType()->getPrimitiveSizeInBits() == BitWidth) && | 
 |          KnownZero.getBitWidth() == BitWidth &&  | 
 |          KnownOne.getBitWidth() == BitWidth && | 
 |          "V, Mask, KnownOne and KnownZero should have same BitWidth"); | 
 |  | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
 |     // We know all of the bits for a constant! | 
 |     KnownOne = CI->getValue() & Mask; | 
 |     KnownZero = ~KnownOne & Mask; | 
 |     return; | 
 |   } | 
 |   // Null is all-zeros. | 
 |   if (isa<ConstantPointerNull>(V)) { | 
 |     KnownOne.clear(); | 
 |     KnownZero = Mask; | 
 |     return; | 
 |   } | 
 |   // The address of an aligned GlobalValue has trailing zeros. | 
 |   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
 |     unsigned Align = GV->getAlignment(); | 
 |     if (Align == 0 && TD && GV->getType()->getElementType()->isSized())  | 
 |       Align = TD->getPrefTypeAlignment(GV->getType()->getElementType()); | 
 |     if (Align > 0) | 
 |       KnownZero = Mask & APInt::getLowBitsSet(BitWidth, | 
 |                                               CountTrailingZeros_32(Align)); | 
 |     else | 
 |       KnownZero.clear(); | 
 |     KnownOne.clear(); | 
 |     return; | 
 |   } | 
 |  | 
 |   KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything. | 
 |  | 
 |   if (Depth == 6 || Mask == 0) | 
 |     return;  // Limit search depth. | 
 |  | 
 |   User *I = dyn_cast<User>(V); | 
 |   if (!I) return; | 
 |  | 
 |   APInt KnownZero2(KnownZero), KnownOne2(KnownOne); | 
 |   switch (getOpcode(I)) { | 
 |   default: break; | 
 |   case Instruction::And: { | 
 |     // If either the LHS or the RHS are Zero, the result is zero. | 
 |     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); | 
 |     APInt Mask2(Mask & ~KnownZero); | 
 |     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
 |                       Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Output known-1 bits are only known if set in both the LHS & RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
 |     KnownZero |= KnownZero2; | 
 |     return; | 
 |   } | 
 |   case Instruction::Or: { | 
 |     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); | 
 |     APInt Mask2(Mask & ~KnownOne); | 
 |     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
 |                       Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Output known-0 bits are only known if clear in both the LHS & RHS. | 
 |     KnownZero &= KnownZero2; | 
 |     // Output known-1 are known to be set if set in either the LHS | RHS. | 
 |     KnownOne |= KnownOne2; | 
 |     return; | 
 |   } | 
 |   case Instruction::Xor: { | 
 |     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); | 
 |     ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, | 
 |                       Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
 |     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
 |     // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
 |     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
 |     KnownZero = KnownZeroOut; | 
 |     return; | 
 |   } | 
 |   case Instruction::Mul: { | 
 |     APInt Mask2 = APInt::getAllOnesValue(BitWidth); | 
 |     ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); | 
 |     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
 |                       Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If low bits are zero in either operand, output low known-0 bits. | 
 |     // Also compute a conserative estimate for high known-0 bits. | 
 |     // More trickiness is possible, but this is sufficient for the | 
 |     // interesting case of alignment computation. | 
 |     KnownOne.clear(); | 
 |     unsigned TrailZ = KnownZero.countTrailingOnes() + | 
 |                       KnownZero2.countTrailingOnes(); | 
 |     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() + | 
 |                                KnownZero2.countLeadingOnes(), | 
 |                                BitWidth) - BitWidth; | 
 |  | 
 |     TrailZ = std::min(TrailZ, BitWidth); | 
 |     LeadZ = std::min(LeadZ, BitWidth); | 
 |     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | | 
 |                 APInt::getHighBitsSet(BitWidth, LeadZ); | 
 |     KnownZero &= Mask; | 
 |     return; | 
 |   } | 
 |   case Instruction::UDiv: { | 
 |     // For the purposes of computing leading zeros we can conservatively | 
 |     // treat a udiv as a logical right shift by the power of 2 known to | 
 |     // be less than the denominator. | 
 |     APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
 |     ComputeMaskedBits(I->getOperand(0), | 
 |                       AllOnes, KnownZero2, KnownOne2, TD, Depth+1); | 
 |     unsigned LeadZ = KnownZero2.countLeadingOnes(); | 
 |  | 
 |     KnownOne2.clear(); | 
 |     KnownZero2.clear(); | 
 |     ComputeMaskedBits(I->getOperand(1), | 
 |                       AllOnes, KnownZero2, KnownOne2, TD, Depth+1); | 
 |     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); | 
 |     if (RHSUnknownLeadingOnes != BitWidth) | 
 |       LeadZ = std::min(BitWidth, | 
 |                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); | 
 |  | 
 |     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; | 
 |     return; | 
 |   } | 
 |   case Instruction::Select: | 
 |     ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); | 
 |     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, | 
 |                       Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |  | 
 |     // Only known if known in both the LHS and RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     KnownZero &= KnownZero2; | 
 |     return; | 
 |   case Instruction::FPTrunc: | 
 |   case Instruction::FPExt: | 
 |   case Instruction::FPToUI: | 
 |   case Instruction::FPToSI: | 
 |   case Instruction::SIToFP: | 
 |   case Instruction::UIToFP: | 
 |     return; // Can't work with floating point. | 
 |   case Instruction::PtrToInt: | 
 |   case Instruction::IntToPtr: | 
 |     // We can't handle these if we don't know the pointer size. | 
 |     if (!TD) return; | 
 |     // FALL THROUGH and handle them the same as zext/trunc. | 
 |   case Instruction::ZExt: | 
 |   case Instruction::Trunc: { | 
 |     // Note that we handle pointer operands here because of inttoptr/ptrtoint | 
 |     // which fall through here. | 
 |     const Type *SrcTy = I->getOperand(0)->getType(); | 
 |     uint32_t SrcBitWidth = TD ? | 
 |       TD->getTypeSizeInBits(SrcTy) : | 
 |       SrcTy->getPrimitiveSizeInBits(); | 
 |     APInt MaskIn(Mask); | 
 |     MaskIn.zextOrTrunc(SrcBitWidth); | 
 |     KnownZero.zextOrTrunc(SrcBitWidth); | 
 |     KnownOne.zextOrTrunc(SrcBitWidth); | 
 |     ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, | 
 |                       Depth+1); | 
 |     KnownZero.zextOrTrunc(BitWidth); | 
 |     KnownOne.zextOrTrunc(BitWidth); | 
 |     // Any top bits are known to be zero. | 
 |     if (BitWidth > SrcBitWidth) | 
 |       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
 |     return; | 
 |   } | 
 |   case Instruction::BitCast: { | 
 |     const Type *SrcTy = I->getOperand(0)->getType(); | 
 |     if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) { | 
 |       ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, | 
 |                         Depth+1); | 
 |       return; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Instruction::SExt: { | 
 |     // Compute the bits in the result that are not present in the input. | 
 |     const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType()); | 
 |     uint32_t SrcBitWidth = SrcTy->getBitWidth(); | 
 |        | 
 |     APInt MaskIn(Mask);  | 
 |     MaskIn.trunc(SrcBitWidth); | 
 |     KnownZero.trunc(SrcBitWidth); | 
 |     KnownOne.trunc(SrcBitWidth); | 
 |     ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, | 
 |                       Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     KnownZero.zext(BitWidth); | 
 |     KnownOne.zext(BitWidth); | 
 |  | 
 |     // If the sign bit of the input is known set or clear, then we know the | 
 |     // top bits of the result. | 
 |     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero | 
 |       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
 |     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set | 
 |       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
 |     return; | 
 |   } | 
 |   case Instruction::Shl: | 
 |     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0 | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
 |       APInt Mask2(Mask.lshr(ShiftAmt)); | 
 |       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, | 
 |                         Depth+1); | 
 |       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |       KnownZero <<= ShiftAmt; | 
 |       KnownOne  <<= ShiftAmt; | 
 |       KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 | 
 |       return; | 
 |     } | 
 |     break; | 
 |   case Instruction::LShr: | 
 |     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       // Compute the new bits that are at the top now. | 
 |       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
 |        | 
 |       // Unsigned shift right. | 
 |       APInt Mask2(Mask.shl(ShiftAmt)); | 
 |       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, | 
 |                         Depth+1); | 
 |       assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");  | 
 |       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); | 
 |       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt); | 
 |       // high bits known zero. | 
 |       KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); | 
 |       return; | 
 |     } | 
 |     break; | 
 |   case Instruction::AShr: | 
 |     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       // Compute the new bits that are at the top now. | 
 |       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); | 
 |        | 
 |       // Signed shift right. | 
 |       APInt Mask2(Mask.shl(ShiftAmt)); | 
 |       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, | 
 |                         Depth+1); | 
 |       assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");  | 
 |       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); | 
 |       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt); | 
 |          | 
 |       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); | 
 |       if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero. | 
 |         KnownZero |= HighBits; | 
 |       else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one. | 
 |         KnownOne |= HighBits; | 
 |       return; | 
 |     } | 
 |     break; | 
 |   case Instruction::Sub: { | 
 |     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { | 
 |       // We know that the top bits of C-X are clear if X contains less bits | 
 |       // than C (i.e. no wrap-around can happen).  For example, 20-X is | 
 |       // positive if we can prove that X is >= 0 and < 16. | 
 |       if (!CLHS->getValue().isNegative()) { | 
 |         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); | 
 |         // NLZ can't be BitWidth with no sign bit | 
 |         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); | 
 |         ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, | 
 |                           TD, Depth+1); | 
 |      | 
 |         // If all of the MaskV bits are known to be zero, then we know the | 
 |         // output top bits are zero, because we now know that the output is | 
 |         // from [0-C]. | 
 |         if ((KnownZero2 & MaskV) == MaskV) { | 
 |           unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); | 
 |           // Top bits known zero. | 
 |           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; | 
 |         } | 
 |       }         | 
 |     } | 
 |   } | 
 |   // fall through | 
 |   case Instruction::Add: { | 
 |     // Output known-0 bits are known if clear or set in both the low clear bits | 
 |     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the | 
 |     // low 3 bits clear. | 
 |     APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes()); | 
 |     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, | 
 |                       Depth+1); | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |     unsigned KnownZeroOut = KnownZero2.countTrailingOnes(); | 
 |  | 
 |     ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,  | 
 |                       Depth+1); | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |     KnownZeroOut = std::min(KnownZeroOut,  | 
 |                             KnownZero2.countTrailingOnes()); | 
 |  | 
 |     KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut); | 
 |     return; | 
 |   } | 
 |   case Instruction::SRem: | 
 |     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       APInt RA = Rem->getValue(); | 
 |       if (RA.isPowerOf2() || (-RA).isPowerOf2()) { | 
 |         APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA; | 
 |         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); | 
 |         ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,  | 
 |                           Depth+1); | 
 |  | 
 |         // The sign of a remainder is equal to the sign of the first | 
 |         // operand (zero being positive). | 
 |         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) | 
 |           KnownZero2 |= ~LowBits; | 
 |         else if (KnownOne2[BitWidth-1]) | 
 |           KnownOne2 |= ~LowBits; | 
 |  | 
 |         KnownZero |= KnownZero2 & Mask; | 
 |         KnownOne |= KnownOne2 & Mask; | 
 |  | 
 |         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");  | 
 |       } | 
 |     } | 
 |     break; | 
 |   case Instruction::URem: { | 
 |     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       APInt RA = Rem->getValue(); | 
 |       if (RA.isPowerOf2()) { | 
 |         APInt LowBits = (RA - 1); | 
 |         APInt Mask2 = LowBits & Mask; | 
 |         KnownZero |= ~LowBits & Mask; | 
 |         ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, | 
 |                           Depth+1); | 
 |         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // Since the result is less than or equal to either operand, any leading | 
 |     // zero bits in either operand must also exist in the result. | 
 |     APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
 |     ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, | 
 |                       TD, Depth+1); | 
 |     ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, | 
 |                       TD, Depth+1); | 
 |  | 
 |     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), | 
 |                                 KnownZero2.countLeadingOnes()); | 
 |     KnownOne.clear(); | 
 |     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Instruction::Alloca: | 
 |   case Instruction::Malloc: { | 
 |     AllocationInst *AI = cast<AllocationInst>(V); | 
 |     unsigned Align = AI->getAlignment(); | 
 |     if (Align == 0 && TD) { | 
 |       if (isa<AllocaInst>(AI)) | 
 |         Align = TD->getPrefTypeAlignment(AI->getType()->getElementType()); | 
 |       else if (isa<MallocInst>(AI)) { | 
 |         // Malloc returns maximally aligned memory. | 
 |         Align = TD->getABITypeAlignment(AI->getType()->getElementType()); | 
 |         Align = | 
 |           std::max(Align, | 
 |                    (unsigned)TD->getABITypeAlignment(Type::DoubleTy)); | 
 |         Align = | 
 |           std::max(Align, | 
 |                    (unsigned)TD->getABITypeAlignment(Type::Int64Ty)); | 
 |       } | 
 |     } | 
 |      | 
 |     if (Align > 0) | 
 |       KnownZero = Mask & APInt::getLowBitsSet(BitWidth, | 
 |                                               CountTrailingZeros_32(Align)); | 
 |     break; | 
 |   } | 
 |   case Instruction::GetElementPtr: { | 
 |     // Analyze all of the subscripts of this getelementptr instruction | 
 |     // to determine if we can prove known low zero bits. | 
 |     APInt LocalMask = APInt::getAllOnesValue(BitWidth); | 
 |     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); | 
 |     ComputeMaskedBits(I->getOperand(0), LocalMask, | 
 |                       LocalKnownZero, LocalKnownOne, TD, Depth+1); | 
 |     unsigned TrailZ = LocalKnownZero.countTrailingOnes(); | 
 |  | 
 |     gep_type_iterator GTI = gep_type_begin(I); | 
 |     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { | 
 |       Value *Index = I->getOperand(i); | 
 |       if (const StructType *STy = dyn_cast<StructType>(*GTI)) { | 
 |         // Handle struct member offset arithmetic. | 
 |         if (!TD) return; | 
 |         const StructLayout *SL = TD->getStructLayout(STy); | 
 |         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); | 
 |         uint64_t Offset = SL->getElementOffset(Idx); | 
 |         TrailZ = std::min(TrailZ, | 
 |                           CountTrailingZeros_64(Offset)); | 
 |       } else { | 
 |         // Handle array index arithmetic. | 
 |         const Type *IndexedTy = GTI.getIndexedType(); | 
 |         if (!IndexedTy->isSized()) return; | 
 |         unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits(); | 
 |         uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1; | 
 |         LocalMask = APInt::getAllOnesValue(GEPOpiBits); | 
 |         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); | 
 |         ComputeMaskedBits(Index, LocalMask, | 
 |                           LocalKnownZero, LocalKnownOne, TD, Depth+1); | 
 |         TrailZ = std::min(TrailZ, | 
 |                           CountTrailingZeros_64(TypeSize) + | 
 |                             LocalKnownZero.countTrailingOnes()); | 
 |       } | 
 |     } | 
 |      | 
 |     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; | 
 |     break; | 
 |   } | 
 |   case Instruction::PHI: { | 
 |     PHINode *P = cast<PHINode>(I); | 
 |     // Handle the case of a simple two-predecessor recurrence PHI. | 
 |     // There's a lot more that could theoretically be done here, but | 
 |     // this is sufficient to catch some interesting cases. | 
 |     if (P->getNumIncomingValues() == 2) { | 
 |       for (unsigned i = 0; i != 2; ++i) { | 
 |         Value *L = P->getIncomingValue(i); | 
 |         Value *R = P->getIncomingValue(!i); | 
 |         User *LU = dyn_cast<User>(L); | 
 |         if (!LU) | 
 |           continue; | 
 |         unsigned Opcode = getOpcode(LU); | 
 |         // Check for operations that have the property that if | 
 |         // both their operands have low zero bits, the result | 
 |         // will have low zero bits. | 
 |         if (Opcode == Instruction::Add || | 
 |             Opcode == Instruction::Sub || | 
 |             Opcode == Instruction::And || | 
 |             Opcode == Instruction::Or || | 
 |             Opcode == Instruction::Mul) { | 
 |           Value *LL = LU->getOperand(0); | 
 |           Value *LR = LU->getOperand(1); | 
 |           // Find a recurrence. | 
 |           if (LL == I) | 
 |             L = LR; | 
 |           else if (LR == I) | 
 |             L = LL; | 
 |           else | 
 |             break; | 
 |           // Ok, we have a PHI of the form L op= R. Check for low | 
 |           // zero bits. | 
 |           APInt Mask2 = APInt::getAllOnesValue(BitWidth); | 
 |           ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); | 
 |           Mask2 = APInt::getLowBitsSet(BitWidth, | 
 |                                        KnownZero2.countTrailingOnes()); | 
 |           KnownOne2.clear(); | 
 |           KnownZero2.clear(); | 
 |           ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, TD, Depth+1); | 
 |           KnownZero = Mask & | 
 |                       APInt::getLowBitsSet(BitWidth, | 
 |                                            KnownZero2.countTrailingOnes()); | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Instruction::Call: | 
 |     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
 |       switch (II->getIntrinsicID()) { | 
 |       default: break; | 
 |       case Intrinsic::ctpop: | 
 |       case Intrinsic::ctlz: | 
 |       case Intrinsic::cttz: { | 
 |         unsigned LowBits = Log2_32(BitWidth)+1; | 
 |         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); | 
 |         break; | 
 |       } | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use | 
 | /// this predicate to simplify operations downstream.  Mask is known to be zero | 
 | /// for bits that V cannot have. | 
 | bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, | 
 |                              TargetData *TD, unsigned Depth) { | 
 |   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); | 
 |   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); | 
 |   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |   return (KnownZero & Mask) == Mask; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// ComputeNumSignBits - Return the number of times the sign bit of the | 
 | /// register is replicated into the other bits.  We know that at least 1 bit | 
 | /// is always equal to the sign bit (itself), but other cases can give us | 
 | /// information.  For example, immediately after an "ashr X, 2", we know that | 
 | /// the top 3 bits are all equal to each other, so we return 3. | 
 | /// | 
 | /// 'Op' must have a scalar integer type. | 
 | /// | 
 | unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) { | 
 |   const IntegerType *Ty = cast<IntegerType>(V->getType()); | 
 |   unsigned TyBits = Ty->getBitWidth(); | 
 |   unsigned Tmp, Tmp2; | 
 |   unsigned FirstAnswer = 1; | 
 |  | 
 |   // Note that ConstantInt is handled by the general ComputeMaskedBits case | 
 |   // below. | 
 |  | 
 |   if (Depth == 6) | 
 |     return 1;  // Limit search depth. | 
 |    | 
 |   User *U = dyn_cast<User>(V); | 
 |   switch (getOpcode(V)) { | 
 |   default: break; | 
 |   case Instruction::SExt: | 
 |     Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth(); | 
 |     return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; | 
 |      | 
 |   case Instruction::AShr: | 
 |     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
 |     // ashr X, C   -> adds C sign bits. | 
 |     if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
 |       Tmp += C->getZExtValue(); | 
 |       if (Tmp > TyBits) Tmp = TyBits; | 
 |     } | 
 |     return Tmp; | 
 |   case Instruction::Shl: | 
 |     if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
 |       // shl destroys sign bits. | 
 |       Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
 |       if (C->getZExtValue() >= TyBits ||      // Bad shift. | 
 |           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out. | 
 |       return Tmp - C->getZExtValue(); | 
 |     } | 
 |     break; | 
 |   case Instruction::And: | 
 |   case Instruction::Or: | 
 |   case Instruction::Xor:    // NOT is handled here. | 
 |     // Logical binary ops preserve the number of sign bits at the worst. | 
 |     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
 |     if (Tmp != 1) { | 
 |       Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
 |       FirstAnswer = std::min(Tmp, Tmp2); | 
 |       // We computed what we know about the sign bits as our first | 
 |       // answer. Now proceed to the generic code that uses | 
 |       // ComputeMaskedBits, and pick whichever answer is better. | 
 |     } | 
 |     break; | 
 |  | 
 |   case Instruction::Select: | 
 |     Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
 |     if (Tmp == 1) return 1;  // Early out. | 
 |     Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); | 
 |     return std::min(Tmp, Tmp2); | 
 |      | 
 |   case Instruction::Add: | 
 |     // Add can have at most one carry bit.  Thus we know that the output | 
 |     // is, at worst, one more bit than the inputs. | 
 |     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
 |     if (Tmp == 1) return 1;  // Early out. | 
 |        | 
 |     // Special case decrementing a value (ADD X, -1): | 
 |     if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(0))) | 
 |       if (CRHS->isAllOnesValue()) { | 
 |         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); | 
 |         APInt Mask = APInt::getAllOnesValue(TyBits); | 
 |         ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, | 
 |                           Depth+1); | 
 |          | 
 |         // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
 |         // sign bits set. | 
 |         if ((KnownZero | APInt(TyBits, 1)) == Mask) | 
 |           return TyBits; | 
 |          | 
 |         // If we are subtracting one from a positive number, there is no carry | 
 |         // out of the result. | 
 |         if (KnownZero.isNegative()) | 
 |           return Tmp; | 
 |       } | 
 |        | 
 |     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
 |     if (Tmp2 == 1) return 1; | 
 |       return std::min(Tmp, Tmp2)-1; | 
 |     break; | 
 |      | 
 |   case Instruction::Sub: | 
 |     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); | 
 |     if (Tmp2 == 1) return 1; | 
 |        | 
 |     // Handle NEG. | 
 |     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) | 
 |       if (CLHS->isNullValue()) { | 
 |         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); | 
 |         APInt Mask = APInt::getAllOnesValue(TyBits); | 
 |         ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,  | 
 |                           TD, Depth+1); | 
 |         // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
 |         // sign bits set. | 
 |         if ((KnownZero | APInt(TyBits, 1)) == Mask) | 
 |           return TyBits; | 
 |          | 
 |         // If the input is known to be positive (the sign bit is known clear), | 
 |         // the output of the NEG has the same number of sign bits as the input. | 
 |         if (KnownZero.isNegative()) | 
 |           return Tmp2; | 
 |          | 
 |         // Otherwise, we treat this like a SUB. | 
 |       } | 
 |      | 
 |     // Sub can have at most one carry bit.  Thus we know that the output | 
 |     // is, at worst, one more bit than the inputs. | 
 |     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); | 
 |     if (Tmp == 1) return 1;  // Early out. | 
 |       return std::min(Tmp, Tmp2)-1; | 
 |     break; | 
 |   case Instruction::Trunc: | 
 |     // FIXME: it's tricky to do anything useful for this, but it is an important | 
 |     // case for targets like X86. | 
 |     break; | 
 |   } | 
 |    | 
 |   // Finally, if we can prove that the top bits of the result are 0's or 1's, | 
 |   // use this information. | 
 |   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); | 
 |   APInt Mask = APInt::getAllOnesValue(TyBits); | 
 |   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); | 
 |    | 
 |   if (KnownZero.isNegative()) {        // sign bit is 0 | 
 |     Mask = KnownZero; | 
 |   } else if (KnownOne.isNegative()) {  // sign bit is 1; | 
 |     Mask = KnownOne; | 
 |   } else { | 
 |     // Nothing known. | 
 |     return FirstAnswer; | 
 |   } | 
 |    | 
 |   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine | 
 |   // the number of identical bits in the top of the input value. | 
 |   Mask = ~Mask; | 
 |   Mask <<= Mask.getBitWidth()-TyBits; | 
 |   // Return # leading zeros.  We use 'min' here in case Val was zero before | 
 |   // shifting.  We don't want to return '64' as for an i32 "0". | 
 |   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); | 
 | } | 
 |  | 
 | /// CannotBeNegativeZero - Return true if we can prove that the specified FP  | 
 | /// value is never equal to -0.0. | 
 | /// | 
 | /// NOTE: this function will need to be revisited when we support non-default | 
 | /// rounding modes! | 
 | /// | 
 | bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) | 
 |     return !CFP->getValueAPF().isNegZero(); | 
 |    | 
 |   if (Depth == 6) | 
 |     return 1;  // Limit search depth. | 
 |  | 
 |   const Instruction *I = dyn_cast<Instruction>(V); | 
 |   if (I == 0) return false; | 
 |    | 
 |   // (add x, 0.0) is guaranteed to return +0.0, not -0.0. | 
 |   if (I->getOpcode() == Instruction::Add && | 
 |       isa<ConstantFP>(I->getOperand(1)) &&  | 
 |       cast<ConstantFP>(I->getOperand(1))->isNullValue()) | 
 |     return true; | 
 |      | 
 |   // sitofp and uitofp turn into +0.0 for zero. | 
 |   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) | 
 |     return true; | 
 |    | 
 |   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) | 
 |     // sqrt(-0.0) = -0.0, no other negative results are possible. | 
 |     if (II->getIntrinsicID() == Intrinsic::sqrt) | 
 |       return CannotBeNegativeZero(II->getOperand(1), Depth+1); | 
 |    | 
 |   if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
 |     if (const Function *F = CI->getCalledFunction()) { | 
 |       if (F->isDeclaration()) { | 
 |         switch (F->getNameLen()) { | 
 |         case 3:  // abs(x) != -0.0 | 
 |           if (!strcmp(F->getNameStart(), "abs")) return true; | 
 |           break; | 
 |         case 4:  // abs[lf](x) != -0.0 | 
 |           if (!strcmp(F->getNameStart(), "absf")) return true; | 
 |           if (!strcmp(F->getNameStart(), "absl")) return true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | // This is the recursive version of BuildSubAggregate. It takes a few different | 
 | // arguments. Idxs is the index within the nested struct From that we are | 
 | // looking at now (which is of type IndexedType). IdxSkip is the number of | 
 | // indices from Idxs that should be left out when inserting into the resulting | 
 | // struct. To is the result struct built so far, new insertvalue instructions | 
 | // build on that. | 
 | Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, | 
 |                                  SmallVector<unsigned, 10> &Idxs, | 
 |                                  unsigned IdxSkip, | 
 |                                  Instruction *InsertBefore) { | 
 |   const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); | 
 |   if (STy) { | 
 |     // Save the original To argument so we can modify it | 
 |     Value *OrigTo = To; | 
 |     // General case, the type indexed by Idxs is a struct | 
 |     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
 |       // Process each struct element recursively | 
 |       Idxs.push_back(i); | 
 |       Value *PrevTo = To; | 
 |       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, | 
 |                              InsertBefore); | 
 |       Idxs.pop_back(); | 
 |       if (!To) { | 
 |         // Couldn't find any inserted value for this index? Cleanup | 
 |         while (PrevTo != OrigTo) { | 
 |           InsertValueInst* Del = cast<InsertValueInst>(PrevTo); | 
 |           PrevTo = Del->getAggregateOperand(); | 
 |           Del->eraseFromParent(); | 
 |         } | 
 |         // Stop processing elements | 
 |         break; | 
 |       } | 
 |     } | 
 |     // If we succesfully found a value for each of our subaggregates  | 
 |     if (To) | 
 |       return To; | 
 |   } | 
 |   // Base case, the type indexed by SourceIdxs is not a struct, or not all of | 
 |   // the struct's elements had a value that was inserted directly. In the latter | 
 |   // case, perhaps we can't determine each of the subelements individually, but | 
 |   // we might be able to find the complete struct somewhere. | 
 |    | 
 |   // Find the value that is at that particular spot | 
 |   Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); | 
 |  | 
 |   if (!V) | 
 |     return NULL; | 
 |  | 
 |   // Insert the value in the new (sub) aggregrate | 
 |   return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, | 
 |                                        Idxs.end(), "tmp", InsertBefore); | 
 | } | 
 |  | 
 | // This helper takes a nested struct and extracts a part of it (which is again a | 
 | // struct) into a new value. For example, given the struct: | 
 | // { a, { b, { c, d }, e } } | 
 | // and the indices "1, 1" this returns | 
 | // { c, d }. | 
 | // | 
 | // It does this by inserting an insertvalue for each element in the resulting | 
 | // struct, as opposed to just inserting a single struct. This will only work if | 
 | // each of the elements of the substruct are known (ie, inserted into From by an | 
 | // insertvalue instruction somewhere). | 
 | // | 
 | // All inserted insertvalue instructions are inserted before InsertBefore | 
 | Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, | 
 |                          const unsigned *idx_end, Instruction *InsertBefore) { | 
 |   assert(InsertBefore && "Must have someplace to insert!"); | 
 |   const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), | 
 |                                                              idx_begin, | 
 |                                                              idx_end); | 
 |   Value *To = UndefValue::get(IndexedType); | 
 |   SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); | 
 |   unsigned IdxSkip = Idxs.size(); | 
 |  | 
 |   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); | 
 | } | 
 |  | 
 | /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if | 
 | /// the scalar value indexed is already around as a register, for example if it | 
 | /// were inserted directly into the aggregrate. | 
 | /// | 
 | /// If InsertBefore is not null, this function will duplicate (modified) | 
 | /// insertvalues when a part of a nested struct is extracted. | 
 | Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, | 
 |                          const unsigned *idx_end, Instruction *InsertBefore) { | 
 |   // Nothing to index? Just return V then (this is useful at the end of our | 
 |   // recursion) | 
 |   if (idx_begin == idx_end) | 
 |     return V; | 
 |   // We have indices, so V should have an indexable type | 
 |   assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType())) | 
 |          && "Not looking at a struct or array?"); | 
 |   assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) | 
 |          && "Invalid indices for type?"); | 
 |   const CompositeType *PTy = cast<CompositeType>(V->getType()); | 
 |    | 
 |   if (isa<UndefValue>(V)) | 
 |     return UndefValue::get(ExtractValueInst::getIndexedType(PTy, | 
 |                                                               idx_begin, | 
 |                                                               idx_end)); | 
 |   else if (isa<ConstantAggregateZero>(V)) | 
 |     return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,  | 
 |                                                                      idx_begin, | 
 |                                                                      idx_end)); | 
 |   else if (Constant *C = dyn_cast<Constant>(V)) { | 
 |     if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) | 
 |       // Recursively process this constant | 
 |       return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end, | 
 |                                InsertBefore); | 
 |   } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { | 
 |     // Loop the indices for the insertvalue instruction in parallel with the | 
 |     // requested indices | 
 |     const unsigned *req_idx = idx_begin; | 
 |     for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); | 
 |          i != e; ++i, ++req_idx) { | 
 |       if (req_idx == idx_end) { | 
 |         if (InsertBefore) | 
 |           // The requested index identifies a part of a nested aggregate. Handle | 
 |           // this specially. For example, | 
 |           // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 | 
 |           // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 | 
 |           // %C = extractvalue {i32, { i32, i32 } } %B, 1 | 
 |           // This can be changed into | 
 |           // %A = insertvalue {i32, i32 } undef, i32 10, 0 | 
 |           // %C = insertvalue {i32, i32 } %A, i32 11, 1 | 
 |           // which allows the unused 0,0 element from the nested struct to be | 
 |           // removed. | 
 |           return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); | 
 |         else | 
 |           // We can't handle this without inserting insertvalues | 
 |           return 0; | 
 |       } | 
 |        | 
 |       // This insert value inserts something else than what we are looking for. | 
 |       // See if the (aggregrate) value inserted into has the value we are | 
 |       // looking for, then. | 
 |       if (*req_idx != *i) | 
 |         return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, | 
 |                                  InsertBefore); | 
 |     } | 
 |     // If we end up here, the indices of the insertvalue match with those | 
 |     // requested (though possibly only partially). Now we recursively look at | 
 |     // the inserted value, passing any remaining indices. | 
 |     return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, | 
 |                              InsertBefore); | 
 |   } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { | 
 |     // If we're extracting a value from an aggregrate that was extracted from | 
 |     // something else, we can extract from that something else directly instead. | 
 |     // However, we will need to chain I's indices with the requested indices. | 
 |     | 
 |     // Calculate the number of indices required  | 
 |     unsigned size = I->getNumIndices() + (idx_end - idx_begin); | 
 |     // Allocate some space to put the new indices in | 
 |     SmallVector<unsigned, 5> Idxs; | 
 |     Idxs.reserve(size); | 
 |     // Add indices from the extract value instruction | 
 |     for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); | 
 |          i != e; ++i) | 
 |       Idxs.push_back(*i); | 
 |      | 
 |     // Add requested indices | 
 |     for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i) | 
 |       Idxs.push_back(*i); | 
 |  | 
 |     assert(Idxs.size() == size  | 
 |            && "Number of indices added not correct?"); | 
 |      | 
 |     return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), | 
 |                              InsertBefore); | 
 |   } | 
 |   // Otherwise, we don't know (such as, extracting from a function return value | 
 |   // or load instruction) | 
 |   return 0; | 
 | } | 
 |  | 
 | /// GetConstantStringInfo - This function computes the length of a | 
 | /// null-terminated C string pointed to by V.  If successful, it returns true | 
 | /// and returns the string in Str.  If unsuccessful, it returns false. | 
 | bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset, | 
 |                                  bool StopAtNul) { | 
 |   // If V is NULL then return false; | 
 |   if (V == NULL) return false; | 
 |  | 
 |   // Look through bitcast instructions. | 
 |   if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) | 
 |     return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); | 
 |    | 
 |   // If the value is not a GEP instruction nor a constant expression with a | 
 |   // GEP instruction, then return false because ConstantArray can't occur | 
 |   // any other way | 
 |   User *GEP = 0; | 
 |   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { | 
 |     GEP = GEPI; | 
 |   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
 |     if (CE->getOpcode() == Instruction::BitCast) | 
 |       return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); | 
 |     if (CE->getOpcode() != Instruction::GetElementPtr) | 
 |       return false; | 
 |     GEP = CE; | 
 |   } | 
 |    | 
 |   if (GEP) { | 
 |     // Make sure the GEP has exactly three arguments. | 
 |     if (GEP->getNumOperands() != 3) | 
 |       return false; | 
 |      | 
 |     // Make sure the index-ee is a pointer to array of i8. | 
 |     const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); | 
 |     const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); | 
 |     if (AT == 0 || AT->getElementType() != Type::Int8Ty) | 
 |       return false; | 
 |      | 
 |     // Check to make sure that the first operand of the GEP is an integer and | 
 |     // has value 0 so that we are sure we're indexing into the initializer. | 
 |     ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); | 
 |     if (FirstIdx == 0 || !FirstIdx->isZero()) | 
 |       return false; | 
 |      | 
 |     // If the second index isn't a ConstantInt, then this is a variable index | 
 |     // into the array.  If this occurs, we can't say anything meaningful about | 
 |     // the string. | 
 |     uint64_t StartIdx = 0; | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) | 
 |       StartIdx = CI->getZExtValue(); | 
 |     else | 
 |       return false; | 
 |     return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, | 
 |                                  StopAtNul); | 
 |   } | 
 |    | 
 |   // The GEP instruction, constant or instruction, must reference a global | 
 |   // variable that is a constant and is initialized. The referenced constant | 
 |   // initializer is the array that we'll use for optimization. | 
 |   GlobalVariable* GV = dyn_cast<GlobalVariable>(V); | 
 |   if (!GV || !GV->isConstant() || !GV->hasInitializer()) | 
 |     return false; | 
 |   Constant *GlobalInit = GV->getInitializer(); | 
 |    | 
 |   // Handle the ConstantAggregateZero case | 
 |   if (isa<ConstantAggregateZero>(GlobalInit)) { | 
 |     // This is a degenerate case. The initializer is constant zero so the | 
 |     // length of the string must be zero. | 
 |     Str.clear(); | 
 |     return true; | 
 |   } | 
 |    | 
 |   // Must be a Constant Array | 
 |   ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); | 
 |   if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty) | 
 |     return false; | 
 |    | 
 |   // Get the number of elements in the array | 
 |   uint64_t NumElts = Array->getType()->getNumElements(); | 
 |    | 
 |   if (Offset > NumElts) | 
 |     return false; | 
 |    | 
 |   // Traverse the constant array from 'Offset' which is the place the GEP refers | 
 |   // to in the array. | 
 |   Str.reserve(NumElts-Offset); | 
 |   for (unsigned i = Offset; i != NumElts; ++i) { | 
 |     Constant *Elt = Array->getOperand(i); | 
 |     ConstantInt *CI = dyn_cast<ConstantInt>(Elt); | 
 |     if (!CI) // This array isn't suitable, non-int initializer. | 
 |       return false; | 
 |     if (StopAtNul && CI->isZero()) | 
 |       return true; // we found end of string, success! | 
 |     Str += (char)CI->getZExtValue(); | 
 |   } | 
 |    | 
 |   // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. | 
 |   return true; | 
 | } |