| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "assembler" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCAsmLayout.h" |
| #include "llvm/MC/MCCodeEmitter.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetRegistry.h" |
| #include "llvm/Target/TargetAsmBackend.h" |
| |
| #include <vector> |
| using namespace llvm; |
| |
| namespace { |
| namespace stats { |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments"); |
| STATISTIC(EvaluateFixup, "Number of evaluated fixups"); |
| STATISTIC(FragmentLayouts, "Number of fragment layouts"); |
| STATISTIC(ObjectBytes, "Number of emitted object file bytes"); |
| STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); |
| STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); |
| STATISTIC(SectionLayouts, "Number of section layouts"); |
| } |
| } |
| |
| // FIXME FIXME FIXME: There are number of places in this file where we convert |
| // what is a 64-bit assembler value used for computation into a value in the |
| // object file, which may truncate it. We should detect that truncation where |
| // invalid and report errors back. |
| |
| /* *** */ |
| |
| void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) { |
| // We shouldn't have to do anything special to support negative slides, and it |
| // is a perfectly valid thing to do as long as other parts of the system are |
| // can guarantee convergence. |
| assert(SlideAmount >= 0 && "Negative slides not yet supported"); |
| |
| // Update the layout by simply recomputing the layout for the entire |
| // file. This is trivially correct, but very slow. |
| // |
| // FIXME-PERF: This is O(N^2), but will be eliminated once we get smarter. |
| |
| // Layout the concrete sections and fragments. |
| MCAssembler &Asm = getAssembler(); |
| uint64_t Address = 0; |
| for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { |
| // Skip virtual sections. |
| if (Asm.getBackend().isVirtualSection(it->getSection())) |
| continue; |
| |
| // Layout the section fragments and its size. |
| Address = Asm.LayoutSection(*it, *this, Address); |
| } |
| |
| // Layout the virtual sections. |
| for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { |
| if (!Asm.getBackend().isVirtualSection(it->getSection())) |
| continue; |
| |
| // Layout the section fragments and its size. |
| Address = Asm.LayoutSection(*it, *this, Address); |
| } |
| } |
| |
| uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const { |
| assert(F->getParent() && "Missing section()!"); |
| return getSectionAddress(F->getParent()) + getFragmentOffset(F); |
| } |
| |
| uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const { |
| assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!"); |
| return F->EffectiveSize; |
| } |
| |
| void MCAsmLayout::setFragmentEffectiveSize(MCFragment *F, uint64_t Value) { |
| F->EffectiveSize = Value; |
| } |
| |
| uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const { |
| assert(F->Offset != ~UINT64_C(0) && "Address not set!"); |
| return F->Offset; |
| } |
| |
| void MCAsmLayout::setFragmentOffset(MCFragment *F, uint64_t Value) { |
| F->Offset = Value; |
| } |
| |
| uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const { |
| assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!"); |
| return getFragmentAddress(SD->getFragment()) + SD->getOffset(); |
| } |
| |
| uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const { |
| assert(SD->Address != ~UINT64_C(0) && "Address not set!"); |
| return SD->Address; |
| } |
| |
| void MCAsmLayout::setSectionAddress(MCSectionData *SD, uint64_t Value) { |
| SD->Address = Value; |
| } |
| |
| uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const { |
| assert(SD->Size != ~UINT64_C(0) && "File size not set!"); |
| return SD->Size; |
| } |
| void MCAsmLayout::setSectionSize(MCSectionData *SD, uint64_t Value) { |
| SD->Size = Value; |
| } |
| |
| uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const { |
| assert(SD->FileSize != ~UINT64_C(0) && "File size not set!"); |
| return SD->FileSize; |
| } |
| void MCAsmLayout::setSectionFileSize(MCSectionData *SD, uint64_t Value) { |
| SD->FileSize = Value; |
| } |
| |
| /// @} |
| |
| /* *** */ |
| |
| MCFragment::MCFragment() : Kind(FragmentType(~0)) { |
| } |
| |
| MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) |
| : Kind(_Kind), |
| Parent(_Parent), |
| EffectiveSize(~UINT64_C(0)) |
| { |
| if (Parent) |
| Parent->getFragmentList().push_back(this); |
| } |
| |
| MCFragment::~MCFragment() { |
| } |
| |
| /* *** */ |
| |
| MCSectionData::MCSectionData() : Section(0) {} |
| |
| MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) |
| : Section(&_Section), |
| Alignment(1), |
| Address(~UINT64_C(0)), |
| Size(~UINT64_C(0)), |
| FileSize(~UINT64_C(0)), |
| HasInstructions(false) |
| { |
| if (A) |
| A->getSectionList().push_back(this); |
| } |
| |
| /* *** */ |
| |
| MCSymbolData::MCSymbolData() : Symbol(0) {} |
| |
| MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, |
| uint64_t _Offset, MCAssembler *A) |
| : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset), |
| IsExternal(false), IsPrivateExtern(false), |
| CommonSize(0), CommonAlign(0), Flags(0), Index(0) |
| { |
| if (A) |
| A->getSymbolList().push_back(this); |
| } |
| |
| /* *** */ |
| |
| MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend, |
| MCCodeEmitter &_Emitter, raw_ostream &_OS) |
| : Context(_Context), Backend(_Backend), Emitter(_Emitter), |
| OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false) |
| { |
| } |
| |
| MCAssembler::~MCAssembler() { |
| } |
| |
| static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm, |
| const MCAsmFixup &Fixup, |
| const MCValue Target, |
| const MCSection *BaseSection) { |
| // The effective fixup address is |
| // addr(atom(A)) + offset(A) |
| // - addr(atom(B)) - offset(B) |
| // - addr(<base symbol>) + <fixup offset from base symbol> |
| // and the offsets are not relocatable, so the fixup is fully resolved when |
| // addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0. |
| // |
| // The simple (Darwin, except on x86_64) way of dealing with this was to |
| // assume that any reference to a temporary symbol *must* be a temporary |
| // symbol in the same atom, unless the sections differ. Therefore, any PCrel |
| // relocation to a temporary symbol (in the same section) is fully |
| // resolved. This also works in conjunction with absolutized .set, which |
| // requires the compiler to use .set to absolutize the differences between |
| // symbols which the compiler knows to be assembly time constants, so we don't |
| // need to worry about considering symbol differences fully resolved. |
| |
| // Non-relative fixups are only resolved if constant. |
| if (!BaseSection) |
| return Target.isAbsolute(); |
| |
| // Otherwise, relative fixups are only resolved if not a difference and the |
| // target is a temporary in the same section. |
| if (Target.isAbsolute() || Target.getSymB()) |
| return false; |
| |
| const MCSymbol *A = &Target.getSymA()->getSymbol(); |
| if (!A->isTemporary() || !A->isInSection() || |
| &A->getSection() != BaseSection) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isScatteredFixupFullyResolved(const MCAssembler &Asm, |
| const MCAsmLayout &Layout, |
| const MCAsmFixup &Fixup, |
| const MCValue Target, |
| const MCSymbolData *BaseSymbol) { |
| // The effective fixup address is |
| // addr(atom(A)) + offset(A) |
| // - addr(atom(B)) - offset(B) |
| // - addr(BaseSymbol) + <fixup offset from base symbol> |
| // and the offsets are not relocatable, so the fixup is fully resolved when |
| // addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0. |
| // |
| // Note that "false" is almost always conservatively correct (it means we emit |
| // a relocation which is unnecessary), except when it would force us to emit a |
| // relocation which the target cannot encode. |
| |
| const MCSymbolData *A_Base = 0, *B_Base = 0; |
| if (const MCSymbolRefExpr *A = Target.getSymA()) { |
| // Modified symbol references cannot be resolved. |
| if (A->getKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol())); |
| if (!A_Base) |
| return false; |
| } |
| |
| if (const MCSymbolRefExpr *B = Target.getSymB()) { |
| // Modified symbol references cannot be resolved. |
| if (B->getKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol())); |
| if (!B_Base) |
| return false; |
| } |
| |
| // If there is no base, A and B have to be the same atom for this fixup to be |
| // fully resolved. |
| if (!BaseSymbol) |
| return A_Base == B_Base; |
| |
| // Otherwise, B must be missing and A must be the base. |
| return !B_Base && BaseSymbol == A_Base; |
| } |
| |
| bool MCAssembler::isSymbolLinkerVisible(const MCSymbolData *SD) const { |
| // Non-temporary labels should always be visible to the linker. |
| if (!SD->getSymbol().isTemporary()) |
| return true; |
| |
| // Absolute temporary labels are never visible. |
| if (!SD->getFragment()) |
| return false; |
| |
| // Otherwise, check if the section requires symbols even for temporary labels. |
| return getBackend().doesSectionRequireSymbols( |
| SD->getFragment()->getParent()->getSection()); |
| } |
| |
| // FIXME-PERF: This routine is really slow. |
| const MCSymbolData *MCAssembler::getAtomForAddress(const MCAsmLayout &Layout, |
| const MCSectionData *Section, |
| uint64_t Address) const { |
| const MCSymbolData *Best = 0; |
| uint64_t BestAddress = 0; |
| |
| for (MCAssembler::const_symbol_iterator it = symbol_begin(), |
| ie = symbol_end(); it != ie; ++it) { |
| // Ignore non-linker visible symbols. |
| if (!isSymbolLinkerVisible(it)) |
| continue; |
| |
| // Ignore symbols not in the same section. |
| if (!it->getFragment() || it->getFragment()->getParent() != Section) |
| continue; |
| |
| // Otherwise, find the closest symbol preceding this address (ties are |
| // resolved in favor of the last defined symbol). |
| uint64_t SymbolAddress = Layout.getSymbolAddress(it); |
| if (SymbolAddress <= Address && (!Best || SymbolAddress >= BestAddress)) { |
| Best = it; |
| BestAddress = SymbolAddress; |
| } |
| } |
| |
| return Best; |
| } |
| |
| // FIXME-PERF: This routine is really slow. |
| const MCSymbolData *MCAssembler::getAtom(const MCAsmLayout &Layout, |
| const MCSymbolData *SD) const { |
| // Linker visible symbols define atoms. |
| if (isSymbolLinkerVisible(SD)) |
| return SD; |
| |
| // Absolute and undefined symbols have no defining atom. |
| if (!SD->getFragment()) |
| return 0; |
| |
| // Otherwise, search by address. |
| return getAtomForAddress(Layout, SD->getFragment()->getParent(), |
| Layout.getSymbolAddress(SD)); |
| } |
| |
| bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout, |
| const MCAsmFixup &Fixup, const MCFragment *DF, |
| MCValue &Target, uint64_t &Value) const { |
| ++stats::EvaluateFixup; |
| |
| if (!Fixup.Value->EvaluateAsRelocatable(Target, &Layout)) |
| report_fatal_error("expected relocatable expression"); |
| |
| // FIXME: How do non-scattered symbols work in ELF? I presume the linker |
| // doesn't support small relocations, but then under what criteria does the |
| // assembler allow symbol differences? |
| |
| Value = Target.getConstant(); |
| |
| bool IsPCRel = |
| Emitter.getFixupKindInfo(Fixup.Kind).Flags & MCFixupKindInfo::FKF_IsPCRel; |
| bool IsResolved = true; |
| if (const MCSymbolRefExpr *A = Target.getSymA()) { |
| if (A->getSymbol().isDefined()) |
| Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol())); |
| else |
| IsResolved = false; |
| } |
| if (const MCSymbolRefExpr *B = Target.getSymB()) { |
| if (B->getSymbol().isDefined()) |
| Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol())); |
| else |
| IsResolved = false; |
| } |
| |
| // If we are using scattered symbols, determine whether this value is actually |
| // resolved; scattering may cause atoms to move. |
| if (IsResolved && getBackend().hasScatteredSymbols()) { |
| if (getBackend().hasReliableSymbolDifference()) { |
| // If this is a PCrel relocation, find the base atom (identified by its |
| // symbol) that the fixup value is relative to. |
| const MCSymbolData *BaseSymbol = 0; |
| if (IsPCRel) { |
| BaseSymbol = getAtomForAddress( |
| Layout, DF->getParent(), Layout.getFragmentAddress(DF)+Fixup.Offset); |
| if (!BaseSymbol) |
| IsResolved = false; |
| } |
| |
| if (IsResolved) |
| IsResolved = isScatteredFixupFullyResolved(*this, Layout, Fixup, Target, |
| BaseSymbol); |
| } else { |
| const MCSection *BaseSection = 0; |
| if (IsPCRel) |
| BaseSection = &DF->getParent()->getSection(); |
| |
| IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, Target, |
| BaseSection); |
| } |
| } |
| |
| if (IsPCRel) |
| Value -= Layout.getFragmentAddress(DF) + Fixup.Offset; |
| |
| return IsResolved; |
| } |
| |
| uint64_t MCAssembler::LayoutSection(MCSectionData &SD, |
| MCAsmLayout &Layout, |
| uint64_t StartAddress) { |
| bool IsVirtual = getBackend().isVirtualSection(SD.getSection()); |
| |
| ++stats::SectionLayouts; |
| |
| // Align this section if necessary by adding padding bytes to the previous |
| // section. It is safe to adjust this out-of-band, because no symbol or |
| // fragment is allowed to point past the end of the section at any time. |
| if (uint64_t Pad = OffsetToAlignment(StartAddress, SD.getAlignment())) { |
| // Unless this section is virtual (where we are allowed to adjust the offset |
| // freely), the padding goes in the previous section. |
| if (!IsVirtual) { |
| // Find the previous non-virtual section. |
| iterator it = &SD; |
| assert(it != begin() && "Invalid initial section address!"); |
| for (--it; getBackend().isVirtualSection(it->getSection()); --it) ; |
| Layout.setSectionFileSize(&*it, Layout.getSectionFileSize(&*it) + Pad); |
| } |
| |
| StartAddress += Pad; |
| } |
| |
| // Set the aligned section address. |
| Layout.setSectionAddress(&SD, StartAddress); |
| |
| uint64_t Address = StartAddress; |
| for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) { |
| MCFragment &F = *it; |
| |
| ++stats::FragmentLayouts; |
| |
| uint64_t FragmentOffset = Address - StartAddress; |
| Layout.setFragmentOffset(&F, FragmentOffset); |
| |
| // Evaluate fragment size. |
| uint64_t EffectiveSize = 0; |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| |
| EffectiveSize = OffsetToAlignment(Address, AF.getAlignment()); |
| if (EffectiveSize > AF.getMaxBytesToEmit()) |
| EffectiveSize = 0; |
| break; |
| } |
| |
| case MCFragment::FT_Data: |
| EffectiveSize = cast<MCDataFragment>(F).getContents().size(); |
| break; |
| |
| case MCFragment::FT_Fill: { |
| MCFillFragment &FF = cast<MCFillFragment>(F); |
| EffectiveSize = FF.getValueSize() * FF.getCount(); |
| break; |
| } |
| |
| case MCFragment::FT_Inst: |
| EffectiveSize = cast<MCInstFragment>(F).getInstSize(); |
| break; |
| |
| case MCFragment::FT_Org: { |
| MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| int64_t TargetLocation; |
| if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout)) |
| report_fatal_error("expected assembly-time absolute expression"); |
| |
| // FIXME: We need a way to communicate this error. |
| int64_t Offset = TargetLocation - FragmentOffset; |
| if (Offset < 0) |
| report_fatal_error("invalid .org offset '" + Twine(TargetLocation) + |
| "' (at offset '" + Twine(FragmentOffset) + "'"); |
| |
| EffectiveSize = Offset; |
| break; |
| } |
| |
| case MCFragment::FT_ZeroFill: { |
| MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F); |
| |
| // Align the fragment offset; it is safe to adjust the offset freely since |
| // this is only in virtual sections. |
| // |
| // FIXME: We shouldn't be doing this here. |
| Address = RoundUpToAlignment(Address, ZFF.getAlignment()); |
| Layout.setFragmentOffset(&F, Address - StartAddress); |
| |
| EffectiveSize = ZFF.getSize(); |
| break; |
| } |
| } |
| |
| Layout.setFragmentEffectiveSize(&F, EffectiveSize); |
| Address += EffectiveSize; |
| } |
| |
| // Set the section sizes. |
| Layout.setSectionSize(&SD, Address - StartAddress); |
| if (IsVirtual) |
| Layout.setSectionFileSize(&SD, 0); |
| else |
| Layout.setSectionFileSize(&SD, Address - StartAddress); |
| |
| return Address; |
| } |
| |
| /// WriteFragmentData - Write the \arg F data to the output file. |
| static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout, |
| const MCFragment &F, MCObjectWriter *OW) { |
| uint64_t Start = OW->getStream().tell(); |
| (void) Start; |
| |
| ++stats::EmittedFragments; |
| |
| // FIXME: Embed in fragments instead? |
| uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F); |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| uint64_t Count = FragmentSize / AF.getValueSize(); |
| |
| // FIXME: This error shouldn't actually occur (the front end should emit |
| // multiple .align directives to enforce the semantics it wants), but is |
| // severe enough that we want to report it. How to handle this? |
| if (Count * AF.getValueSize() != FragmentSize) |
| report_fatal_error("undefined .align directive, value size '" + |
| Twine(AF.getValueSize()) + |
| "' is not a divisor of padding size '" + |
| Twine(FragmentSize) + "'"); |
| |
| // See if we are aligning with nops, and if so do that first to try to fill |
| // the Count bytes. Then if that did not fill any bytes or there are any |
| // bytes left to fill use the the Value and ValueSize to fill the rest. |
| // If we are aligning with nops, ask that target to emit the right data. |
| if (AF.getEmitNops()) { |
| if (!Asm.getBackend().WriteNopData(Count, OW)) |
| report_fatal_error("unable to write nop sequence of " + |
| Twine(Count) + " bytes"); |
| break; |
| } |
| |
| // Otherwise, write out in multiples of the value size. |
| for (uint64_t i = 0; i != Count; ++i) { |
| switch (AF.getValueSize()) { |
| default: |
| assert(0 && "Invalid size!"); |
| case 1: OW->Write8 (uint8_t (AF.getValue())); break; |
| case 2: OW->Write16(uint16_t(AF.getValue())); break; |
| case 4: OW->Write32(uint32_t(AF.getValue())); break; |
| case 8: OW->Write64(uint64_t(AF.getValue())); break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Data: { |
| MCDataFragment &DF = cast<MCDataFragment>(F); |
| assert(FragmentSize == DF.getContents().size() && "Invalid size!"); |
| OW->WriteBytes(DF.getContents().str()); |
| break; |
| } |
| |
| case MCFragment::FT_Fill: { |
| MCFillFragment &FF = cast<MCFillFragment>(F); |
| for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { |
| switch (FF.getValueSize()) { |
| default: |
| assert(0 && "Invalid size!"); |
| case 1: OW->Write8 (uint8_t (FF.getValue())); break; |
| case 2: OW->Write16(uint16_t(FF.getValue())); break; |
| case 4: OW->Write32(uint32_t(FF.getValue())); break; |
| case 8: OW->Write64(uint64_t(FF.getValue())); break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Inst: |
| llvm_unreachable("unexpected inst fragment after lowering"); |
| break; |
| |
| case MCFragment::FT_Org: { |
| MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| for (uint64_t i = 0, e = FragmentSize; i != e; ++i) |
| OW->Write8(uint8_t(OF.getValue())); |
| |
| break; |
| } |
| |
| case MCFragment::FT_ZeroFill: { |
| assert(0 && "Invalid zero fill fragment in concrete section!"); |
| break; |
| } |
| } |
| |
| assert(OW->getStream().tell() - Start == FragmentSize); |
| } |
| |
| void MCAssembler::WriteSectionData(const MCSectionData *SD, |
| const MCAsmLayout &Layout, |
| MCObjectWriter *OW) const { |
| uint64_t SectionSize = Layout.getSectionSize(SD); |
| uint64_t SectionFileSize = Layout.getSectionFileSize(SD); |
| |
| // Ignore virtual sections. |
| if (getBackend().isVirtualSection(SD->getSection())) { |
| assert(SectionFileSize == 0 && "Invalid size for section!"); |
| return; |
| } |
| |
| uint64_t Start = OW->getStream().tell(); |
| (void) Start; |
| |
| for (MCSectionData::const_iterator it = SD->begin(), |
| ie = SD->end(); it != ie; ++it) |
| WriteFragmentData(*this, Layout, *it, OW); |
| |
| // Add section padding. |
| assert(SectionFileSize >= SectionSize && "Invalid section sizes!"); |
| OW->WriteZeros(SectionFileSize - SectionSize); |
| |
| assert(OW->getStream().tell() - Start == SectionFileSize); |
| } |
| |
| void MCAssembler::Finish() { |
| DEBUG_WITH_TYPE("mc-dump", { |
| llvm::errs() << "assembler backend - pre-layout\n--\n"; |
| dump(); }); |
| |
| // Assign section and fragment ordinals, all subsequent backend code is |
| // responsible for updating these in place. |
| unsigned SectionIndex = 0; |
| unsigned FragmentIndex = 0; |
| for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { |
| it->setOrdinal(SectionIndex++); |
| |
| for (MCSectionData::iterator it2 = it->begin(), |
| ie2 = it->end(); it2 != ie2; ++it2) |
| it2->setOrdinal(FragmentIndex++); |
| } |
| |
| // Layout until everything fits. |
| MCAsmLayout Layout(*this); |
| while (LayoutOnce(Layout)) |
| continue; |
| |
| DEBUG_WITH_TYPE("mc-dump", { |
| llvm::errs() << "assembler backend - post-relaxation\n--\n"; |
| dump(); }); |
| |
| // Finalize the layout, including fragment lowering. |
| FinishLayout(Layout); |
| |
| DEBUG_WITH_TYPE("mc-dump", { |
| llvm::errs() << "assembler backend - final-layout\n--\n"; |
| dump(); }); |
| |
| uint64_t StartOffset = OS.tell(); |
| llvm::OwningPtr<MCObjectWriter> Writer(getBackend().createObjectWriter(OS)); |
| if (!Writer) |
| report_fatal_error("unable to create object writer!"); |
| |
| // Allow the object writer a chance to perform post-layout binding (for |
| // example, to set the index fields in the symbol data). |
| Writer->ExecutePostLayoutBinding(*this); |
| |
| // Evaluate and apply the fixups, generating relocation entries as necessary. |
| for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { |
| for (MCSectionData::iterator it2 = it->begin(), |
| ie2 = it->end(); it2 != ie2; ++it2) { |
| MCDataFragment *DF = dyn_cast<MCDataFragment>(it2); |
| if (!DF) |
| continue; |
| |
| for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(), |
| ie3 = DF->fixup_end(); it3 != ie3; ++it3) { |
| MCAsmFixup &Fixup = *it3; |
| |
| // Evaluate the fixup. |
| MCValue Target; |
| uint64_t FixedValue; |
| if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) { |
| // The fixup was unresolved, we need a relocation. Inform the object |
| // writer of the relocation, and give it an opportunity to adjust the |
| // fixup value if need be. |
| Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue); |
| } |
| |
| getBackend().ApplyFixup(Fixup, *DF, FixedValue); |
| } |
| } |
| } |
| |
| // Write the object file. |
| Writer->WriteObject(*this, Layout); |
| OS.flush(); |
| |
| stats::ObjectBytes += OS.tell() - StartOffset; |
| } |
| |
| bool MCAssembler::FixupNeedsRelaxation(const MCAsmFixup &Fixup, |
| const MCFragment *DF, |
| const MCAsmLayout &Layout) const { |
| if (getRelaxAll()) |
| return true; |
| |
| // If we cannot resolve the fixup value, it requires relaxation. |
| MCValue Target; |
| uint64_t Value; |
| if (!EvaluateFixup(Layout, Fixup, DF, Target, Value)) |
| return true; |
| |
| // Otherwise, relax if the value is too big for a (signed) i8. |
| // |
| // FIXME: This is target dependent! |
| return int64_t(Value) != int64_t(int8_t(Value)); |
| } |
| |
| bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF, |
| const MCAsmLayout &Layout) const { |
| // If this inst doesn't ever need relaxation, ignore it. This occurs when we |
| // are intentionally pushing out inst fragments, or because we relaxed a |
| // previous instruction to one that doesn't need relaxation. |
| if (!getBackend().MayNeedRelaxation(IF->getInst(), IF->getFixups())) |
| return false; |
| |
| for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(), |
| ie = IF->fixup_end(); it != ie; ++it) |
| if (FixupNeedsRelaxation(*it, IF, Layout)) |
| return true; |
| |
| return false; |
| } |
| |
| bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) { |
| ++stats::RelaxationSteps; |
| |
| // Layout the concrete sections and fragments. |
| uint64_t Address = 0; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| // Skip virtual sections. |
| if (getBackend().isVirtualSection(it->getSection())) |
| continue; |
| |
| // Layout the section fragments and its size. |
| Address = LayoutSection(*it, Layout, Address); |
| } |
| |
| // Layout the virtual sections. |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| if (!getBackend().isVirtualSection(it->getSection())) |
| continue; |
| |
| // Layout the section fragments and its size. |
| Address = LayoutSection(*it, Layout, Address); |
| } |
| |
| // Scan for fragments that need relaxation. |
| bool WasRelaxed = false; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| for (MCSectionData::iterator it2 = SD.begin(), |
| ie2 = SD.end(); it2 != ie2; ++it2) { |
| // Check if this is an instruction fragment that needs relaxation. |
| MCInstFragment *IF = dyn_cast<MCInstFragment>(it2); |
| if (!IF || !FragmentNeedsRelaxation(IF, Layout)) |
| continue; |
| |
| ++stats::RelaxedInstructions; |
| |
| // FIXME-PERF: We could immediately lower out instructions if we can tell |
| // they are fully resolved, to avoid retesting on later passes. |
| |
| // Relax the fragment. |
| |
| MCInst Relaxed; |
| getBackend().RelaxInstruction(IF, Relaxed); |
| |
| // Encode the new instruction. |
| // |
| // FIXME-PERF: If it matters, we could let the target do this. It can |
| // probably do so more efficiently in many cases. |
| SmallVector<MCFixup, 4> Fixups; |
| SmallString<256> Code; |
| raw_svector_ostream VecOS(Code); |
| getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups); |
| VecOS.flush(); |
| |
| // Update the instruction fragment. |
| int SlideAmount = Code.size() - IF->getInstSize(); |
| IF->setInst(Relaxed); |
| IF->getCode() = Code; |
| IF->getFixups().clear(); |
| for (unsigned i = 0, e = Fixups.size(); i != e; ++i) { |
| MCFixup &F = Fixups[i]; |
| IF->getFixups().push_back(MCAsmFixup(F.getOffset(), *F.getValue(), |
| F.getKind())); |
| } |
| |
| // Update the layout, and remember that we relaxed. If we are relaxing |
| // everything, we can skip this step since nothing will depend on updating |
| // the values. |
| if (!getRelaxAll()) |
| Layout.UpdateForSlide(IF, SlideAmount); |
| WasRelaxed = true; |
| } |
| } |
| |
| return WasRelaxed; |
| } |
| |
| void MCAssembler::FinishLayout(MCAsmLayout &Layout) { |
| // Lower out any instruction fragments, to simplify the fixup application and |
| // output. |
| // |
| // FIXME-PERF: We don't have to do this, but the assumption is that it is |
| // cheap (we will mostly end up eliminating fragments and appending on to data |
| // fragments), so the extra complexity downstream isn't worth it. Evaluate |
| // this assumption. |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| for (MCSectionData::iterator it2 = SD.begin(), |
| ie2 = SD.end(); it2 != ie2; ++it2) { |
| MCInstFragment *IF = dyn_cast<MCInstFragment>(it2); |
| if (!IF) |
| continue; |
| |
| // Create a new data fragment for the instruction. |
| // |
| // FIXME-PERF: Reuse previous data fragment if possible. |
| MCDataFragment *DF = new MCDataFragment(); |
| SD.getFragmentList().insert(it2, DF); |
| |
| // Update the data fragments layout data. |
| // |
| // FIXME: Add MCAsmLayout utility for this. |
| DF->setParent(IF->getParent()); |
| DF->setOrdinal(IF->getOrdinal()); |
| Layout.setFragmentOffset(DF, Layout.getFragmentOffset(IF)); |
| Layout.setFragmentEffectiveSize(DF, Layout.getFragmentEffectiveSize(IF)); |
| |
| // Copy in the data and the fixups. |
| DF->getContents().append(IF->getCode().begin(), IF->getCode().end()); |
| for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i) |
| DF->getFixups().push_back(IF->getFixups()[i]); |
| |
| // Delete the instruction fragment and update the iterator. |
| SD.getFragmentList().erase(IF); |
| it2 = DF; |
| } |
| } |
| } |
| |
| // Debugging methods |
| |
| namespace llvm { |
| |
| raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) { |
| OS << "<MCAsmFixup" << " Offset:" << AF.Offset << " Value:" << *AF.Value |
| << " Kind:" << AF.Kind << ">"; |
| return OS; |
| } |
| |
| } |
| |
| void MCFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCFragment " << (void*) this << " Offset:" << Offset |
| << " EffectiveSize:" << EffectiveSize; |
| |
| OS << ">"; |
| } |
| |
| void MCAlignFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCAlignFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Alignment:" << getAlignment() |
| << " Value:" << getValue() << " ValueSize:" << getValueSize() |
| << " MaxBytesToEmit:" << getMaxBytesToEmit() << ">"; |
| } |
| |
| void MCDataFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCDataFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Contents:["; |
| for (unsigned i = 0, e = getContents().size(); i != e; ++i) { |
| if (i) OS << ","; |
| OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); |
| } |
| OS << "] (" << getContents().size() << " bytes)"; |
| |
| if (!getFixups().empty()) { |
| OS << ",\n "; |
| OS << " Fixups:["; |
| for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) { |
| if (it != fixup_begin()) OS << ",\n "; |
| OS << *it; |
| } |
| OS << "]"; |
| } |
| |
| OS << ">"; |
| } |
| |
| void MCFillFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCFillFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Value:" << getValue() << " ValueSize:" << getValueSize() |
| << " Count:" << getCount() << ">"; |
| } |
| |
| void MCInstFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCInstFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Inst:"; |
| getInst().dump_pretty(OS); |
| OS << ">"; |
| } |
| |
| void MCOrgFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCOrgFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Offset:" << getOffset() << " Value:" << getValue() << ">"; |
| } |
| |
| void MCZeroFillFragment::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCZeroFillFragment "; |
| this->MCFragment::dump(); |
| OS << "\n "; |
| OS << " Size:" << getSize() << " Alignment:" << getAlignment() << ">"; |
| } |
| |
| void MCSectionData::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCSectionData"; |
| OS << " Alignment:" << getAlignment() << " Address:" << Address |
| << " Size:" << Size << " FileSize:" << FileSize |
| << " Fragments:[\n "; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| if (it != begin()) OS << ",\n "; |
| it->dump(); |
| } |
| OS << "]>"; |
| } |
| |
| void MCSymbolData::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCSymbolData Symbol:" << getSymbol() |
| << " Fragment:" << getFragment() << " Offset:" << getOffset() |
| << " Flags:" << getFlags() << " Index:" << getIndex(); |
| if (isCommon()) |
| OS << " (common, size:" << getCommonSize() |
| << " align: " << getCommonAlignment() << ")"; |
| if (isExternal()) |
| OS << " (external)"; |
| if (isPrivateExtern()) |
| OS << " (private extern)"; |
| OS << ">"; |
| } |
| |
| void MCAssembler::dump() { |
| raw_ostream &OS = llvm::errs(); |
| |
| OS << "<MCAssembler\n"; |
| OS << " Sections:[\n "; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| if (it != begin()) OS << ",\n "; |
| it->dump(); |
| } |
| OS << "],\n"; |
| OS << " Symbols:["; |
| |
| for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { |
| if (it != symbol_begin()) OS << ",\n "; |
| it->dump(); |
| } |
| OS << "]>\n"; |
| } |