| //===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for the Cell SPU, |
| // converting from a legalized dag to a SPU-target dag. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SPU.h" |
| #include "SPUTargetMachine.h" |
| #include "SPUISelLowering.h" |
| #include "SPUHazardRecognizers.h" |
| #include "SPUFrameInfo.h" |
| #include "SPURegisterNames.h" |
| #include "SPUTargetMachine.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Constants.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Compiler.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| //! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates |
| bool |
| isI64IntS10Immediate(ConstantSDNode *CN) |
| { |
| return isS10Constant(CN->getSExtValue()); |
| } |
| |
| //! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates |
| bool |
| isI32IntS10Immediate(ConstantSDNode *CN) |
| { |
| return isS10Constant(CN->getSExtValue()); |
| } |
| |
| //! ConstantSDNode predicate for i32 unsigned 10-bit immediate values |
| bool |
| isI32IntU10Immediate(ConstantSDNode *CN) |
| { |
| return isU10Constant(CN->getSExtValue()); |
| } |
| |
| //! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values |
| bool |
| isI16IntS10Immediate(ConstantSDNode *CN) |
| { |
| return isS10Constant(CN->getSExtValue()); |
| } |
| |
| //! SDNode predicate for i16 sign-extended, 10-bit immediate values |
| bool |
| isI16IntS10Immediate(SDNode *N) |
| { |
| ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); |
| return (CN != 0 && isI16IntS10Immediate(CN)); |
| } |
| |
| //! ConstantSDNode predicate for i16 unsigned 10-bit immediate values |
| bool |
| isI16IntU10Immediate(ConstantSDNode *CN) |
| { |
| return isU10Constant((short) CN->getZExtValue()); |
| } |
| |
| //! SDNode predicate for i16 sign-extended, 10-bit immediate values |
| bool |
| isI16IntU10Immediate(SDNode *N) |
| { |
| return (N->getOpcode() == ISD::Constant |
| && isI16IntU10Immediate(cast<ConstantSDNode>(N))); |
| } |
| |
| //! ConstantSDNode predicate for signed 16-bit values |
| /*! |
| \arg CN The constant SelectionDAG node holding the value |
| \arg Imm The returned 16-bit value, if returning true |
| |
| This predicate tests the value in \a CN to see whether it can be |
| represented as a 16-bit, sign-extended quantity. Returns true if |
| this is the case. |
| */ |
| bool |
| isIntS16Immediate(ConstantSDNode *CN, short &Imm) |
| { |
| MVT vt = CN->getValueType(0); |
| Imm = (short) CN->getZExtValue(); |
| if (vt.getSimpleVT() >= MVT::i1 && vt.getSimpleVT() <= MVT::i16) { |
| return true; |
| } else if (vt == MVT::i32) { |
| int32_t i_val = (int32_t) CN->getZExtValue(); |
| short s_val = (short) i_val; |
| return i_val == s_val; |
| } else { |
| int64_t i_val = (int64_t) CN->getZExtValue(); |
| short s_val = (short) i_val; |
| return i_val == s_val; |
| } |
| |
| return false; |
| } |
| |
| //! SDNode predicate for signed 16-bit values. |
| bool |
| isIntS16Immediate(SDNode *N, short &Imm) |
| { |
| return (N->getOpcode() == ISD::Constant |
| && isIntS16Immediate(cast<ConstantSDNode>(N), Imm)); |
| } |
| |
| //! ConstantFPSDNode predicate for representing floats as 16-bit sign ext. |
| static bool |
| isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm) |
| { |
| MVT vt = FPN->getValueType(0); |
| if (vt == MVT::f32) { |
| int val = FloatToBits(FPN->getValueAPF().convertToFloat()); |
| int sval = (int) ((val << 16) >> 16); |
| Imm = (short) val; |
| return val == sval; |
| } |
| |
| return false; |
| } |
| |
| bool |
| isHighLow(const SDValue &Op) |
| { |
| return (Op.getOpcode() == SPUISD::IndirectAddr |
| && ((Op.getOperand(0).getOpcode() == SPUISD::Hi |
| && Op.getOperand(1).getOpcode() == SPUISD::Lo) |
| || (Op.getOperand(0).getOpcode() == SPUISD::Lo |
| && Op.getOperand(1).getOpcode() == SPUISD::Hi))); |
| } |
| |
| //===------------------------------------------------------------------===// |
| //! MVT to "useful stuff" mapping structure: |
| |
| struct valtype_map_s { |
| MVT VT; |
| unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined) |
| bool ldresult_imm; /// LDRESULT instruction requires immediate? |
| unsigned lrinst; /// LR instruction |
| }; |
| |
| const valtype_map_s valtype_map[] = { |
| { MVT::i8, SPU::ORBIr8, true, SPU::LRr8 }, |
| { MVT::i16, SPU::ORHIr16, true, SPU::LRr16 }, |
| { MVT::i32, SPU::ORIr32, true, SPU::LRr32 }, |
| { MVT::i64, SPU::ORr64, false, SPU::LRr64 }, |
| { MVT::f32, SPU::ORf32, false, SPU::LRf32 }, |
| { MVT::f64, SPU::ORf64, false, SPU::LRf64 }, |
| // vector types... (sigh!) |
| { MVT::v16i8, 0, false, SPU::LRv16i8 }, |
| { MVT::v8i16, 0, false, SPU::LRv8i16 }, |
| { MVT::v4i32, 0, false, SPU::LRv4i32 }, |
| { MVT::v2i64, 0, false, SPU::LRv2i64 }, |
| { MVT::v4f32, 0, false, SPU::LRv4f32 }, |
| { MVT::v2f64, 0, false, SPU::LRv2f64 } |
| }; |
| |
| const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]); |
| |
| const valtype_map_s *getValueTypeMapEntry(MVT VT) |
| { |
| const valtype_map_s *retval = 0; |
| for (size_t i = 0; i < n_valtype_map; ++i) { |
| if (valtype_map[i].VT == VT) { |
| retval = valtype_map + i; |
| break; |
| } |
| } |
| |
| |
| #ifndef NDEBUG |
| if (retval == 0) { |
| cerr << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for " |
| << VT.getMVTString() |
| << "\n"; |
| abort(); |
| } |
| #endif |
| |
| return retval; |
| } |
| |
| //! Generate the carry-generate shuffle mask. |
| SDValue getCarryGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) { |
| SmallVector<SDValue, 16 > ShufBytes; |
| |
| // Create the shuffle mask for "rotating" the borrow up one register slot |
| // once the borrow is generated. |
| ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32)); |
| ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32)); |
| ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32)); |
| ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32)); |
| |
| return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, |
| &ShufBytes[0], ShufBytes.size()); |
| } |
| |
| //! Generate the borrow-generate shuffle mask |
| SDValue getBorrowGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) { |
| SmallVector<SDValue, 16 > ShufBytes; |
| |
| // Create the shuffle mask for "rotating" the borrow up one register slot |
| // once the borrow is generated. |
| ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32)); |
| ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32)); |
| ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32)); |
| ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32)); |
| |
| return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, |
| &ShufBytes[0], ShufBytes.size()); |
| } |
| |
| //===------------------------------------------------------------------===// |
| /// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine |
| /// instructions for SelectionDAG operations. |
| /// |
| class SPUDAGToDAGISel : |
| public SelectionDAGISel |
| { |
| SPUTargetMachine &TM; |
| SPUTargetLowering &SPUtli; |
| unsigned GlobalBaseReg; |
| |
| public: |
| explicit SPUDAGToDAGISel(SPUTargetMachine &tm) : |
| SelectionDAGISel(tm), |
| TM(tm), |
| SPUtli(*tm.getTargetLowering()) |
| { } |
| |
| virtual bool runOnFunction(Function &Fn) { |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseReg = 0; |
| SelectionDAGISel::runOnFunction(Fn); |
| return true; |
| } |
| |
| /// getI32Imm - Return a target constant with the specified value, of type |
| /// i32. |
| inline SDValue getI32Imm(uint32_t Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i32); |
| } |
| |
| /// getI64Imm - Return a target constant with the specified value, of type |
| /// i64. |
| inline SDValue getI64Imm(uint64_t Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i64); |
| } |
| |
| /// getSmallIPtrImm - Return a target constant of pointer type. |
| inline SDValue getSmallIPtrImm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy()); |
| } |
| |
| SDNode *emitBuildVector(SDValue build_vec) { |
| MVT vecVT = build_vec.getValueType(); |
| MVT eltVT = vecVT.getVectorElementType(); |
| SDNode *bvNode = build_vec.getNode(); |
| DebugLoc dl = bvNode->getDebugLoc(); |
| |
| // Check to see if this vector can be represented as a CellSPU immediate |
| // constant by invoking all of the instruction selection predicates: |
| if (((vecVT == MVT::v8i16) && |
| (SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i16).getNode() != 0)) || |
| ((vecVT == MVT::v4i32) && |
| ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) || |
| (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) || |
| (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) || |
| (SPU::get_v4i32_imm(bvNode, *CurDAG).getNode() != 0))) || |
| ((vecVT == MVT::v2i64) && |
| ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) || |
| (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) || |
| (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i64).getNode() != 0)))) |
| return Select(build_vec); |
| |
| // No, need to emit a constant pool spill: |
| std::vector<Constant*> CV; |
| |
| for (size_t i = 0; i < build_vec.getNumOperands(); ++i) { |
| ConstantSDNode *V = dyn_cast<ConstantSDNode > (build_vec.getOperand(i)); |
| CV.push_back(const_cast<ConstantInt *> (V->getConstantIntValue())); |
| } |
| |
| Constant *CP = ConstantVector::get(CV); |
| SDValue CPIdx = CurDAG->getConstantPool(CP, SPUtli.getPointerTy()); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| SDValue CGPoolOffset = |
| SPU::LowerConstantPool(CPIdx, *CurDAG, |
| SPUtli.getSPUTargetMachine()); |
| return SelectCode(CurDAG->getLoad(build_vec.getValueType(), dl, |
| CurDAG->getEntryNode(), CGPoolOffset, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, Alignment)); |
| } |
| |
| /// Select - Convert the specified operand from a target-independent to a |
| /// target-specific node if it hasn't already been changed. |
| SDNode *Select(SDValue Op); |
| |
| //! Emit the instruction sequence for i64 shl |
| SDNode *SelectSHLi64(SDValue &Op, MVT OpVT); |
| |
| //! Emit the instruction sequence for i64 srl |
| SDNode *SelectSRLi64(SDValue &Op, MVT OpVT); |
| |
| //! Emit the instruction sequence for i64 sra |
| SDNode *SelectSRAi64(SDValue &Op, MVT OpVT); |
| |
| //! Emit the necessary sequence for loading i64 constants: |
| SDNode *SelectI64Constant(SDValue &Op, MVT OpVT, DebugLoc dl); |
| |
| //! Alternate instruction emit sequence for loading i64 constants |
| SDNode *SelectI64Constant(uint64_t i64const, MVT OpVT, DebugLoc dl); |
| |
| //! Returns true if the address N is an A-form (local store) address |
| bool SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base, |
| SDValue &Index); |
| |
| //! D-form address predicate |
| bool SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base, |
| SDValue &Index); |
| |
| /// Alternate D-form address using i7 offset predicate |
| bool SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp, |
| SDValue &Base); |
| |
| /// D-form address selection workhorse |
| bool DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Disp, |
| SDValue &Base, int minOffset, int maxOffset); |
| |
| //! Address predicate if N can be expressed as an indexed [r+r] operation. |
| bool SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base, |
| SDValue &Index); |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. |
| virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| char ConstraintCode, |
| std::vector<SDValue> &OutOps) { |
| SDValue Op0, Op1; |
| switch (ConstraintCode) { |
| default: return true; |
| case 'm': // memory |
| if (!SelectDFormAddr(Op, Op, Op0, Op1) |
| && !SelectAFormAddr(Op, Op, Op0, Op1)) |
| SelectXFormAddr(Op, Op, Op0, Op1); |
| break; |
| case 'o': // offsetable |
| if (!SelectDFormAddr(Op, Op, Op0, Op1) |
| && !SelectAFormAddr(Op, Op, Op0, Op1)) { |
| Op0 = Op; |
| Op1 = getSmallIPtrImm(0); |
| } |
| break; |
| case 'v': // not offsetable |
| #if 1 |
| assert(0 && "InlineAsmMemoryOperand 'v' constraint not handled."); |
| #else |
| SelectAddrIdxOnly(Op, Op, Op0, Op1); |
| #endif |
| break; |
| } |
| |
| OutOps.push_back(Op0); |
| OutOps.push_back(Op1); |
| return false; |
| } |
| |
| /// InstructionSelect - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| virtual void InstructionSelect(); |
| |
| virtual const char *getPassName() const { |
| return "Cell SPU DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for |
| /// this target when scheduling the DAG. |
| virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() { |
| const TargetInstrInfo *II = TM.getInstrInfo(); |
| assert(II && "No InstrInfo?"); |
| return new SPUHazardRecognizer(*II); |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "SPUGenDAGISel.inc" |
| }; |
| } |
| |
| /// InstructionSelect - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| void |
| SPUDAGToDAGISel::InstructionSelect() |
| { |
| DEBUG(BB->dump()); |
| |
| // Select target instructions for the DAG. |
| SelectRoot(*CurDAG); |
| CurDAG->RemoveDeadNodes(); |
| } |
| |
| /*! |
| \arg Op The ISD instruction operand |
| \arg N The address to be tested |
| \arg Base The base address |
| \arg Index The base address index |
| */ |
| bool |
| SPUDAGToDAGISel::SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base, |
| SDValue &Index) { |
| // These match the addr256k operand type: |
| MVT OffsVT = MVT::i16; |
| SDValue Zero = CurDAG->getTargetConstant(0, OffsVT); |
| |
| switch (N.getOpcode()) { |
| case ISD::Constant: |
| case ISD::ConstantPool: |
| case ISD::GlobalAddress: |
| cerr << "SPU SelectAFormAddr: Constant/Pool/Global not lowered.\n"; |
| abort(); |
| /*NOTREACHED*/ |
| |
| case ISD::TargetConstant: |
| case ISD::TargetGlobalAddress: |
| case ISD::TargetJumpTable: |
| cerr << "SPUSelectAFormAddr: Target Constant/Pool/Global not wrapped as " |
| << "A-form address.\n"; |
| abort(); |
| /*NOTREACHED*/ |
| |
| case SPUISD::AFormAddr: |
| // Just load from memory if there's only a single use of the location, |
| // otherwise, this will get handled below with D-form offset addresses |
| if (N.hasOneUse()) { |
| SDValue Op0 = N.getOperand(0); |
| switch (Op0.getOpcode()) { |
| case ISD::TargetConstantPool: |
| case ISD::TargetJumpTable: |
| Base = Op0; |
| Index = Zero; |
| return true; |
| |
| case ISD::TargetGlobalAddress: { |
| GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op0); |
| GlobalValue *GV = GSDN->getGlobal(); |
| if (GV->getAlignment() == 16) { |
| Base = Op0; |
| Index = Zero; |
| return true; |
| } |
| break; |
| } |
| } |
| } |
| break; |
| } |
| return false; |
| } |
| |
| bool |
| SPUDAGToDAGISel::SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp, |
| SDValue &Base) { |
| const int minDForm2Offset = -(1 << 7); |
| const int maxDForm2Offset = (1 << 7) - 1; |
| return DFormAddressPredicate(Op, N, Disp, Base, minDForm2Offset, |
| maxDForm2Offset); |
| } |
| |
| /*! |
| \arg Op The ISD instruction (ignored) |
| \arg N The address to be tested |
| \arg Base Base address register/pointer |
| \arg Index Base address index |
| |
| Examine the input address by a base register plus a signed 10-bit |
| displacement, [r+I10] (D-form address). |
| |
| \return true if \a N is a D-form address with \a Base and \a Index set |
| to non-empty SDValue instances. |
| */ |
| bool |
| SPUDAGToDAGISel::SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base, |
| SDValue &Index) { |
| return DFormAddressPredicate(Op, N, Base, Index, |
| SPUFrameInfo::minFrameOffset(), |
| SPUFrameInfo::maxFrameOffset()); |
| } |
| |
| bool |
| SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base, |
| SDValue &Index, int minOffset, |
| int maxOffset) { |
| unsigned Opc = N.getOpcode(); |
| MVT PtrTy = SPUtli.getPointerTy(); |
| |
| if (Opc == ISD::FrameIndex) { |
| // Stack frame index must be less than 512 (divided by 16): |
| FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N); |
| int FI = int(FIN->getIndex()); |
| DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = " |
| << FI << "\n"); |
| if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) { |
| Base = CurDAG->getTargetConstant(0, PtrTy); |
| Index = CurDAG->getTargetFrameIndex(FI, PtrTy); |
| return true; |
| } |
| } else if (Opc == ISD::ADD) { |
| // Generated by getelementptr |
| const SDValue Op0 = N.getOperand(0); |
| const SDValue Op1 = N.getOperand(1); |
| |
| if ((Op0.getOpcode() == SPUISD::Hi && Op1.getOpcode() == SPUISD::Lo) |
| || (Op1.getOpcode() == SPUISD::Hi && Op0.getOpcode() == SPUISD::Lo)) { |
| Base = CurDAG->getTargetConstant(0, PtrTy); |
| Index = N; |
| return true; |
| } else if (Op1.getOpcode() == ISD::Constant |
| || Op1.getOpcode() == ISD::TargetConstant) { |
| ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1); |
| int32_t offset = int32_t(CN->getSExtValue()); |
| |
| if (Op0.getOpcode() == ISD::FrameIndex) { |
| FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op0); |
| int FI = int(FIN->getIndex()); |
| DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset |
| << " frame index = " << FI << "\n"); |
| |
| if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) { |
| Base = CurDAG->getTargetConstant(offset, PtrTy); |
| Index = CurDAG->getTargetFrameIndex(FI, PtrTy); |
| return true; |
| } |
| } else if (offset > minOffset && offset < maxOffset) { |
| Base = CurDAG->getTargetConstant(offset, PtrTy); |
| Index = Op0; |
| return true; |
| } |
| } else if (Op0.getOpcode() == ISD::Constant |
| || Op0.getOpcode() == ISD::TargetConstant) { |
| ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0); |
| int32_t offset = int32_t(CN->getSExtValue()); |
| |
| if (Op1.getOpcode() == ISD::FrameIndex) { |
| FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op1); |
| int FI = int(FIN->getIndex()); |
| DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset |
| << " frame index = " << FI << "\n"); |
| |
| if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) { |
| Base = CurDAG->getTargetConstant(offset, PtrTy); |
| Index = CurDAG->getTargetFrameIndex(FI, PtrTy); |
| return true; |
| } |
| } else if (offset > minOffset && offset < maxOffset) { |
| Base = CurDAG->getTargetConstant(offset, PtrTy); |
| Index = Op1; |
| return true; |
| } |
| } |
| } else if (Opc == SPUISD::IndirectAddr) { |
| // Indirect with constant offset -> D-Form address |
| const SDValue Op0 = N.getOperand(0); |
| const SDValue Op1 = N.getOperand(1); |
| |
| if (Op0.getOpcode() == SPUISD::Hi |
| && Op1.getOpcode() == SPUISD::Lo) { |
| // (SPUindirect (SPUhi <arg>, 0), (SPUlo <arg>, 0)) |
| Base = CurDAG->getTargetConstant(0, PtrTy); |
| Index = N; |
| return true; |
| } else if (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1)) { |
| int32_t offset = 0; |
| SDValue idxOp; |
| |
| if (isa<ConstantSDNode>(Op1)) { |
| ConstantSDNode *CN = cast<ConstantSDNode>(Op1); |
| offset = int32_t(CN->getSExtValue()); |
| idxOp = Op0; |
| } else if (isa<ConstantSDNode>(Op0)) { |
| ConstantSDNode *CN = cast<ConstantSDNode>(Op0); |
| offset = int32_t(CN->getSExtValue()); |
| idxOp = Op1; |
| } |
| |
| if (offset >= minOffset && offset <= maxOffset) { |
| Base = CurDAG->getTargetConstant(offset, PtrTy); |
| Index = idxOp; |
| return true; |
| } |
| } |
| } else if (Opc == SPUISD::AFormAddr) { |
| Base = CurDAG->getTargetConstant(0, N.getValueType()); |
| Index = N; |
| return true; |
| } else if (Opc == SPUISD::LDRESULT) { |
| Base = CurDAG->getTargetConstant(0, N.getValueType()); |
| Index = N; |
| return true; |
| } else if (Opc == ISD::Register || Opc == ISD::CopyFromReg) { |
| unsigned OpOpc = Op.getOpcode(); |
| |
| if (OpOpc == ISD::STORE || OpOpc == ISD::LOAD) { |
| // Direct load/store without getelementptr |
| SDValue Addr, Offs; |
| |
| // Get the register from CopyFromReg |
| if (Opc == ISD::CopyFromReg) |
| Addr = N.getOperand(1); |
| else |
| Addr = N; // Register |
| |
| Offs = ((OpOpc == ISD::STORE) ? Op.getOperand(3) : Op.getOperand(2)); |
| |
| if (Offs.getOpcode() == ISD::Constant || Offs.getOpcode() == ISD::UNDEF) { |
| if (Offs.getOpcode() == ISD::UNDEF) |
| Offs = CurDAG->getTargetConstant(0, Offs.getValueType()); |
| |
| Base = Offs; |
| Index = Addr; |
| return true; |
| } |
| } else { |
| /* If otherwise unadorned, default to D-form address with 0 offset: */ |
| if (Opc == ISD::CopyFromReg) { |
| Index = N.getOperand(1); |
| } else { |
| Index = N; |
| } |
| |
| Base = CurDAG->getTargetConstant(0, Index.getValueType()); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /*! |
| \arg Op The ISD instruction operand |
| \arg N The address operand |
| \arg Base The base pointer operand |
| \arg Index The offset/index operand |
| |
| If the address \a N can be expressed as an A-form or D-form address, returns |
| false. Otherwise, creates two operands, Base and Index that will become the |
| (r)(r) X-form address. |
| */ |
| bool |
| SPUDAGToDAGISel::SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base, |
| SDValue &Index) { |
| if (!SelectAFormAddr(Op, N, Base, Index) |
| && !SelectDFormAddr(Op, N, Base, Index)) { |
| // If the address is neither A-form or D-form, punt and use an X-form |
| // address: |
| Base = N.getOperand(1); |
| Index = N.getOperand(0); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| //! Convert the operand from a target-independent to a target-specific node |
| /*! |
| */ |
| SDNode * |
| SPUDAGToDAGISel::Select(SDValue Op) { |
| SDNode *N = Op.getNode(); |
| unsigned Opc = N->getOpcode(); |
| int n_ops = -1; |
| unsigned NewOpc; |
| MVT OpVT = Op.getValueType(); |
| SDValue Ops[8]; |
| DebugLoc dl = N->getDebugLoc(); |
| |
| if (N->isMachineOpcode()) { |
| return NULL; // Already selected. |
| } |
| |
| if (Opc == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType()); |
| SDValue Imm0 = CurDAG->getTargetConstant(0, Op.getValueType()); |
| |
| if (FI < 128) { |
| NewOpc = SPU::AIr32; |
| Ops[0] = TFI; |
| Ops[1] = Imm0; |
| n_ops = 2; |
| } else { |
| NewOpc = SPU::Ar32; |
| Ops[0] = CurDAG->getRegister(SPU::R1, Op.getValueType()); |
| Ops[1] = SDValue(CurDAG->getTargetNode(SPU::ILAr32, dl, Op.getValueType(), |
| TFI, Imm0), 0); |
| n_ops = 2; |
| } |
| } else if (Opc == ISD::Constant && OpVT == MVT::i64) { |
| // Catch the i64 constants that end up here. Note: The backend doesn't |
| // attempt to legalize the constant (it's useless because DAGCombiner |
| // will insert 64-bit constants and we can't stop it). |
| return SelectI64Constant(Op, OpVT, Op.getDebugLoc()); |
| } else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) |
| && OpVT == MVT::i64) { |
| SDValue Op0 = Op.getOperand(0); |
| MVT Op0VT = Op0.getValueType(); |
| MVT Op0VecVT = MVT::getVectorVT(Op0VT, (128 / Op0VT.getSizeInBits())); |
| MVT OpVecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits())); |
| SDValue shufMask; |
| |
| switch (Op0VT.getSimpleVT()) { |
| default: |
| cerr << "CellSPU Select: Unhandled zero/any extend MVT\n"; |
| abort(); |
| /*NOTREACHED*/ |
| break; |
| case MVT::i32: |
| shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, |
| CurDAG->getConstant(0x80808080, MVT::i32), |
| CurDAG->getConstant(0x00010203, MVT::i32), |
| CurDAG->getConstant(0x80808080, MVT::i32), |
| CurDAG->getConstant(0x08090a0b, MVT::i32)); |
| break; |
| |
| case MVT::i16: |
| shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, |
| CurDAG->getConstant(0x80808080, MVT::i32), |
| CurDAG->getConstant(0x80800203, MVT::i32), |
| CurDAG->getConstant(0x80808080, MVT::i32), |
| CurDAG->getConstant(0x80800a0b, MVT::i32)); |
| break; |
| |
| case MVT::i8: |
| shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, |
| CurDAG->getConstant(0x80808080, MVT::i32), |
| CurDAG->getConstant(0x80808003, MVT::i32), |
| CurDAG->getConstant(0x80808080, MVT::i32), |
| CurDAG->getConstant(0x8080800b, MVT::i32)); |
| break; |
| } |
| |
| SDNode *shufMaskLoad = emitBuildVector(shufMask); |
| SDNode *PromoteScalar = |
| SelectCode(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl, Op0VecVT, Op0)); |
| |
| SDValue zextShuffle = |
| CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT, |
| SDValue(PromoteScalar, 0), |
| SDValue(PromoteScalar, 0), |
| SDValue(shufMaskLoad, 0)); |
| |
| // N.B.: BIT_CONVERT replaces and updates the zextShuffle node, so we |
| // re-use it in the VEC2PREFSLOT selection without needing to explicitly |
| // call SelectCode (it's already done for us.) |
| SelectCode(CurDAG->getNode(ISD::BIT_CONVERT, dl, OpVecVT, zextShuffle)); |
| return SelectCode(CurDAG->getNode(SPUISD::VEC2PREFSLOT, dl, OpVT, |
| zextShuffle)); |
| } else if (Opc == ISD::ADD && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) { |
| SDNode *CGLoad = |
| emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl)); |
| |
| return SelectCode(CurDAG->getNode(SPUISD::ADD64_MARKER, dl, OpVT, |
| Op.getOperand(0), Op.getOperand(1), |
| SDValue(CGLoad, 0))); |
| } else if (Opc == ISD::SUB && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) { |
| SDNode *CGLoad = |
| emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl)); |
| |
| return SelectCode(CurDAG->getNode(SPUISD::SUB64_MARKER, dl, OpVT, |
| Op.getOperand(0), Op.getOperand(1), |
| SDValue(CGLoad, 0))); |
| } else if (Opc == ISD::MUL && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) { |
| SDNode *CGLoad = |
| emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl)); |
| |
| return SelectCode(CurDAG->getNode(SPUISD::MUL64_MARKER, dl, OpVT, |
| Op.getOperand(0), Op.getOperand(1), |
| SDValue(CGLoad, 0))); |
| } else if (Opc == ISD::TRUNCATE) { |
| SDValue Op0 = Op.getOperand(0); |
| if ((Op0.getOpcode() == ISD::SRA || Op0.getOpcode() == ISD::SRL) |
| && OpVT == MVT::i32 |
| && Op0.getValueType() == MVT::i64) { |
| // Catch (truncate:i32 ([sra|srl]:i64 arg, c), where c >= 32 |
| // |
| // Take advantage of the fact that the upper 32 bits are in the |
| // i32 preferred slot and avoid shuffle gymnastics: |
| ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); |
| if (CN != 0) { |
| unsigned shift_amt = unsigned(CN->getZExtValue()); |
| |
| if (shift_amt >= 32) { |
| SDNode *hi32 = |
| CurDAG->getTargetNode(SPU::ORr32_r64, dl, OpVT, |
| Op0.getOperand(0)); |
| |
| shift_amt -= 32; |
| if (shift_amt > 0) { |
| // Take care of the additional shift, if present: |
| SDValue shift = CurDAG->getTargetConstant(shift_amt, MVT::i32); |
| unsigned Opc = SPU::ROTMAIr32_i32; |
| |
| if (Op0.getOpcode() == ISD::SRL) |
| Opc = SPU::ROTMr32; |
| |
| hi32 = CurDAG->getTargetNode(Opc, dl, OpVT, SDValue(hi32, 0), |
| shift); |
| } |
| |
| return hi32; |
| } |
| } |
| } |
| } else if (Opc == ISD::SHL) { |
| if (OpVT == MVT::i64) { |
| return SelectSHLi64(Op, OpVT); |
| } |
| } else if (Opc == ISD::SRL) { |
| if (OpVT == MVT::i64) { |
| return SelectSRLi64(Op, OpVT); |
| } |
| } else if (Opc == ISD::SRA) { |
| if (OpVT == MVT::i64) { |
| return SelectSRAi64(Op, OpVT); |
| } |
| } else if (Opc == ISD::FNEG |
| && (OpVT == MVT::f64 || OpVT == MVT::v2f64)) { |
| DebugLoc dl = Op.getDebugLoc(); |
| // Check if the pattern is a special form of DFNMS: |
| // (fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC)) |
| SDValue Op0 = Op.getOperand(0); |
| if (Op0.getOpcode() == ISD::FSUB) { |
| SDValue Op00 = Op0.getOperand(0); |
| if (Op00.getOpcode() == ISD::FMUL) { |
| unsigned Opc = SPU::DFNMSf64; |
| if (OpVT == MVT::v2f64) |
| Opc = SPU::DFNMSv2f64; |
| |
| return CurDAG->getTargetNode(Opc, dl, OpVT, |
| Op00.getOperand(0), |
| Op00.getOperand(1), |
| Op0.getOperand(1)); |
| } |
| } |
| |
| SDValue negConst = CurDAG->getConstant(0x8000000000000000ULL, MVT::i64); |
| SDNode *signMask = 0; |
| unsigned Opc = SPU::XORfneg64; |
| |
| if (OpVT == MVT::f64) { |
| signMask = SelectI64Constant(negConst, MVT::i64, dl); |
| } else if (OpVT == MVT::v2f64) { |
| Opc = SPU::XORfnegvec; |
| signMask = emitBuildVector(CurDAG->getNode(ISD::BUILD_VECTOR, dl, |
| MVT::v2i64, |
| negConst, negConst)); |
| } |
| |
| return CurDAG->getTargetNode(Opc, dl, OpVT, |
| Op.getOperand(0), SDValue(signMask, 0)); |
| } else if (Opc == ISD::FABS) { |
| if (OpVT == MVT::f64) { |
| SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl); |
| return CurDAG->getTargetNode(SPU::ANDfabs64, dl, OpVT, |
| Op.getOperand(0), SDValue(signMask, 0)); |
| } else if (OpVT == MVT::v2f64) { |
| SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64); |
| SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, |
| absConst, absConst); |
| SDNode *signMask = emitBuildVector(absVec); |
| return CurDAG->getTargetNode(SPU::ANDfabsvec, dl, OpVT, |
| Op.getOperand(0), SDValue(signMask, 0)); |
| } |
| } else if (Opc == SPUISD::LDRESULT) { |
| // Custom select instructions for LDRESULT |
| MVT VT = N->getValueType(0); |
| SDValue Arg = N->getOperand(0); |
| SDValue Chain = N->getOperand(1); |
| SDNode *Result; |
| const valtype_map_s *vtm = getValueTypeMapEntry(VT); |
| |
| if (vtm->ldresult_ins == 0) { |
| cerr << "LDRESULT for unsupported type: " |
| << VT.getMVTString() |
| << "\n"; |
| abort(); |
| } |
| |
| Opc = vtm->ldresult_ins; |
| if (vtm->ldresult_imm) { |
| SDValue Zero = CurDAG->getTargetConstant(0, VT); |
| |
| Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Zero, Chain); |
| } else { |
| Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Arg, Chain); |
| } |
| |
| return Result; |
| } else if (Opc == SPUISD::IndirectAddr) { |
| // Look at the operands: SelectCode() will catch the cases that aren't |
| // specifically handled here. |
| // |
| // SPUInstrInfo catches the following patterns: |
| // (SPUindirect (SPUhi ...), (SPUlo ...)) |
| // (SPUindirect $sp, imm) |
| MVT VT = Op.getValueType(); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| RegisterSDNode *RN; |
| |
| if ((Op0.getOpcode() != SPUISD::Hi && Op1.getOpcode() != SPUISD::Lo) |
| || (Op0.getOpcode() == ISD::Register |
| && ((RN = dyn_cast<RegisterSDNode>(Op0.getNode())) != 0 |
| && RN->getReg() != SPU::R1))) { |
| NewOpc = SPU::Ar32; |
| if (Op1.getOpcode() == ISD::Constant) { |
| ConstantSDNode *CN = cast<ConstantSDNode>(Op1); |
| Op1 = CurDAG->getTargetConstant(CN->getSExtValue(), VT); |
| NewOpc = (isI32IntS10Immediate(CN) ? SPU::AIr32 : SPU::Ar32); |
| } |
| Ops[0] = Op0; |
| Ops[1] = Op1; |
| n_ops = 2; |
| } |
| } |
| |
| if (n_ops > 0) { |
| if (N->hasOneUse()) |
| return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops); |
| else |
| return CurDAG->getTargetNode(NewOpc, dl, OpVT, Ops, n_ops); |
| } else |
| return SelectCode(Op); |
| } |
| |
| /*! |
| * Emit the instruction sequence for i64 left shifts. The basic algorithm |
| * is to fill the bottom two word slots with zeros so that zeros are shifted |
| * in as the entire quadword is shifted left. |
| * |
| * \note This code could also be used to implement v2i64 shl. |
| * |
| * @param Op The shl operand |
| * @param OpVT Op's machine value value type (doesn't need to be passed, but |
| * makes life easier.) |
| * @return The SDNode with the entire instruction sequence |
| */ |
| SDNode * |
| SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, MVT OpVT) { |
| SDValue Op0 = Op.getOperand(0); |
| MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits())); |
| SDValue ShiftAmt = Op.getOperand(1); |
| MVT ShiftAmtVT = ShiftAmt.getValueType(); |
| SDNode *VecOp0, *SelMask, *ZeroFill, *Shift = 0; |
| SDValue SelMaskVal; |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0); |
| SelMaskVal = CurDAG->getTargetConstant(0xff00ULL, MVT::i16); |
| SelMask = CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT, SelMaskVal); |
| ZeroFill = CurDAG->getTargetNode(SPU::ILv2i64, dl, VecVT, |
| CurDAG->getTargetConstant(0, OpVT)); |
| VecOp0 = CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT, |
| SDValue(ZeroFill, 0), |
| SDValue(VecOp0, 0), |
| SDValue(SelMask, 0)); |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) { |
| unsigned bytes = unsigned(CN->getZExtValue()) >> 3; |
| unsigned bits = unsigned(CN->getZExtValue()) & 7; |
| |
| if (bytes > 0) { |
| Shift = |
| CurDAG->getTargetNode(SPU::SHLQBYIv2i64, dl, VecVT, |
| SDValue(VecOp0, 0), |
| CurDAG->getTargetConstant(bytes, ShiftAmtVT)); |
| } |
| |
| if (bits > 0) { |
| Shift = |
| CurDAG->getTargetNode(SPU::SHLQBIIv2i64, dl, VecVT, |
| SDValue((Shift != 0 ? Shift : VecOp0), 0), |
| CurDAG->getTargetConstant(bits, ShiftAmtVT)); |
| } |
| } else { |
| SDNode *Bytes = |
| CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT, |
| ShiftAmt, |
| CurDAG->getTargetConstant(3, ShiftAmtVT)); |
| SDNode *Bits = |
| CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT, |
| ShiftAmt, |
| CurDAG->getTargetConstant(7, ShiftAmtVT)); |
| Shift = |
| CurDAG->getTargetNode(SPU::SHLQBYv2i64, dl, VecVT, |
| SDValue(VecOp0, 0), SDValue(Bytes, 0)); |
| Shift = |
| CurDAG->getTargetNode(SPU::SHLQBIv2i64, dl, VecVT, |
| SDValue(Shift, 0), SDValue(Bits, 0)); |
| } |
| |
| return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0)); |
| } |
| |
| /*! |
| * Emit the instruction sequence for i64 logical right shifts. |
| * |
| * @param Op The shl operand |
| * @param OpVT Op's machine value value type (doesn't need to be passed, but |
| * makes life easier.) |
| * @return The SDNode with the entire instruction sequence |
| */ |
| SDNode * |
| SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, MVT OpVT) { |
| SDValue Op0 = Op.getOperand(0); |
| MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits())); |
| SDValue ShiftAmt = Op.getOperand(1); |
| MVT ShiftAmtVT = ShiftAmt.getValueType(); |
| SDNode *VecOp0, *Shift = 0; |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0); |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) { |
| unsigned bytes = unsigned(CN->getZExtValue()) >> 3; |
| unsigned bits = unsigned(CN->getZExtValue()) & 7; |
| |
| if (bytes > 0) { |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQMBYIv2i64, dl, VecVT, |
| SDValue(VecOp0, 0), |
| CurDAG->getTargetConstant(bytes, ShiftAmtVT)); |
| } |
| |
| if (bits > 0) { |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQMBIIv2i64, dl, VecVT, |
| SDValue((Shift != 0 ? Shift : VecOp0), 0), |
| CurDAG->getTargetConstant(bits, ShiftAmtVT)); |
| } |
| } else { |
| SDNode *Bytes = |
| CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT, |
| ShiftAmt, |
| CurDAG->getTargetConstant(3, ShiftAmtVT)); |
| SDNode *Bits = |
| CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT, |
| ShiftAmt, |
| CurDAG->getTargetConstant(7, ShiftAmtVT)); |
| |
| // Ensure that the shift amounts are negated! |
| Bytes = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT, |
| SDValue(Bytes, 0), |
| CurDAG->getTargetConstant(0, ShiftAmtVT)); |
| |
| Bits = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT, |
| SDValue(Bits, 0), |
| CurDAG->getTargetConstant(0, ShiftAmtVT)); |
| |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQMBYv2i64, dl, VecVT, |
| SDValue(VecOp0, 0), SDValue(Bytes, 0)); |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQMBIv2i64, dl, VecVT, |
| SDValue(Shift, 0), SDValue(Bits, 0)); |
| } |
| |
| return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0)); |
| } |
| |
| /*! |
| * Emit the instruction sequence for i64 arithmetic right shifts. |
| * |
| * @param Op The shl operand |
| * @param OpVT Op's machine value value type (doesn't need to be passed, but |
| * makes life easier.) |
| * @return The SDNode with the entire instruction sequence |
| */ |
| SDNode * |
| SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, MVT OpVT) { |
| // Promote Op0 to vector |
| MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits())); |
| SDValue ShiftAmt = Op.getOperand(1); |
| MVT ShiftAmtVT = ShiftAmt.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| SDNode *VecOp0 = |
| CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op.getOperand(0)); |
| |
| SDValue SignRotAmt = CurDAG->getTargetConstant(31, ShiftAmtVT); |
| SDNode *SignRot = |
| CurDAG->getTargetNode(SPU::ROTMAIv2i64_i32, dl, MVT::v2i64, |
| SDValue(VecOp0, 0), SignRotAmt); |
| SDNode *UpperHalfSign = |
| CurDAG->getTargetNode(SPU::ORi32_v4i32, dl, MVT::i32, SDValue(SignRot, 0)); |
| |
| SDNode *UpperHalfSignMask = |
| CurDAG->getTargetNode(SPU::FSM64r32, dl, VecVT, SDValue(UpperHalfSign, 0)); |
| SDNode *UpperLowerMask = |
| CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT, |
| CurDAG->getTargetConstant(0xff00ULL, MVT::i16)); |
| SDNode *UpperLowerSelect = |
| CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT, |
| SDValue(UpperHalfSignMask, 0), |
| SDValue(VecOp0, 0), |
| SDValue(UpperLowerMask, 0)); |
| |
| SDNode *Shift = 0; |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) { |
| unsigned bytes = unsigned(CN->getZExtValue()) >> 3; |
| unsigned bits = unsigned(CN->getZExtValue()) & 7; |
| |
| if (bytes > 0) { |
| bytes = 31 - bytes; |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQBYIv2i64, dl, VecVT, |
| SDValue(UpperLowerSelect, 0), |
| CurDAG->getTargetConstant(bytes, ShiftAmtVT)); |
| } |
| |
| if (bits > 0) { |
| bits = 8 - bits; |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQBIIv2i64, dl, VecVT, |
| SDValue((Shift != 0 ? Shift : UpperLowerSelect), 0), |
| CurDAG->getTargetConstant(bits, ShiftAmtVT)); |
| } |
| } else { |
| SDNode *NegShift = |
| CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT, |
| ShiftAmt, CurDAG->getTargetConstant(0, ShiftAmtVT)); |
| |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQBYBIv2i64_r32, dl, VecVT, |
| SDValue(UpperLowerSelect, 0), SDValue(NegShift, 0)); |
| Shift = |
| CurDAG->getTargetNode(SPU::ROTQBIv2i64, dl, VecVT, |
| SDValue(Shift, 0), SDValue(NegShift, 0)); |
| } |
| |
| return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0)); |
| } |
| |
| /*! |
| Do the necessary magic necessary to load a i64 constant |
| */ |
| SDNode *SPUDAGToDAGISel::SelectI64Constant(SDValue& Op, MVT OpVT, |
| DebugLoc dl) { |
| ConstantSDNode *CN = cast<ConstantSDNode>(Op.getNode()); |
| return SelectI64Constant(CN->getZExtValue(), OpVT, dl); |
| } |
| |
| SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, MVT OpVT, |
| DebugLoc dl) { |
| MVT OpVecVT = MVT::getVectorVT(OpVT, 2); |
| SDValue i64vec = |
| SPU::LowerV2I64Splat(OpVecVT, *CurDAG, Value64, dl); |
| |
| // Here's where it gets interesting, because we have to parse out the |
| // subtree handed back in i64vec: |
| |
| if (i64vec.getOpcode() == ISD::BIT_CONVERT) { |
| // The degenerate case where the upper and lower bits in the splat are |
| // identical: |
| SDValue Op0 = i64vec.getOperand(0); |
| |
| ReplaceUses(i64vec, Op0); |
| return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, |
| SDValue(emitBuildVector(Op0), 0)); |
| } else if (i64vec.getOpcode() == SPUISD::SHUFB) { |
| SDValue lhs = i64vec.getOperand(0); |
| SDValue rhs = i64vec.getOperand(1); |
| SDValue shufmask = i64vec.getOperand(2); |
| |
| if (lhs.getOpcode() == ISD::BIT_CONVERT) { |
| ReplaceUses(lhs, lhs.getOperand(0)); |
| lhs = lhs.getOperand(0); |
| } |
| |
| SDNode *lhsNode = (lhs.getNode()->isMachineOpcode() |
| ? lhs.getNode() |
| : emitBuildVector(lhs)); |
| |
| if (rhs.getOpcode() == ISD::BIT_CONVERT) { |
| ReplaceUses(rhs, rhs.getOperand(0)); |
| rhs = rhs.getOperand(0); |
| } |
| |
| SDNode *rhsNode = (rhs.getNode()->isMachineOpcode() |
| ? rhs.getNode() |
| : emitBuildVector(rhs)); |
| |
| if (shufmask.getOpcode() == ISD::BIT_CONVERT) { |
| ReplaceUses(shufmask, shufmask.getOperand(0)); |
| shufmask = shufmask.getOperand(0); |
| } |
| |
| SDNode *shufMaskNode = (shufmask.getNode()->isMachineOpcode() |
| ? shufmask.getNode() |
| : emitBuildVector(shufmask)); |
| |
| SDNode *shufNode = |
| Select(CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT, |
| SDValue(lhsNode, 0), SDValue(rhsNode, 0), |
| SDValue(shufMaskNode, 0))); |
| |
| return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, |
| SDValue(shufNode, 0)); |
| } else if (i64vec.getOpcode() == ISD::BUILD_VECTOR) { |
| return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, |
| SDValue(emitBuildVector(i64vec), 0)); |
| } else { |
| cerr << "SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec condition\n"; |
| abort(); |
| } |
| } |
| |
| /// createSPUISelDag - This pass converts a legalized DAG into a |
| /// SPU-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) { |
| return new SPUDAGToDAGISel(TM); |
| } |