| //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements lowering for the llvm.gc* intrinsics for targets that do | 
 | // not natively support them (which includes the C backend). Note that the code | 
 | // generated is not quite as efficient as algorithms which generate stack maps | 
 | // to identify roots. | 
 | // | 
 | // This pass implements the code transformation described in this paper: | 
 | //   "Accurate Garbage Collection in an Uncooperative Environment" | 
 | //   Fergus Henderson, ISMM, 2002 | 
 | // | 
 | // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with | 
 | // ShadowStackGC. | 
 | // | 
 | // In order to support this particular transformation, all stack roots are | 
 | // coallocated in the stack. This allows a fully target-independent stack map | 
 | // while introducing only minor runtime overhead. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "shadowstackgc" | 
 | #include "llvm/CodeGen/GCs.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/CodeGen/GCStrategy.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/Support/IRBuilder.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |    | 
 |   class VISIBILITY_HIDDEN ShadowStackGC : public GCStrategy { | 
 |     /// RootChain - This is the global linked-list that contains the chain of GC | 
 |     /// roots. | 
 |     GlobalVariable *Head; | 
 |      | 
 |     /// StackEntryTy - Abstract type of a link in the shadow stack. | 
 |     ///  | 
 |     const StructType *StackEntryTy; | 
 |      | 
 |     /// Roots - GC roots in the current function. Each is a pair of the | 
 |     /// intrinsic call and its corresponding alloca. | 
 |     std::vector<std::pair<CallInst*,AllocaInst*> > Roots; | 
 |      | 
 |   public: | 
 |     ShadowStackGC(); | 
 |      | 
 |     bool initializeCustomLowering(Module &M); | 
 |     bool performCustomLowering(Function &F); | 
 |      | 
 |   private: | 
 |     bool IsNullValue(Value *V); | 
 |     Constant *GetFrameMap(Function &F); | 
 |     const Type* GetConcreteStackEntryType(Function &F); | 
 |     void CollectRoots(Function &F); | 
 |     static GetElementPtrInst *CreateGEP(IRBuilder<> &B, Value *BasePtr, | 
 |                                         int Idx1, const char *Name); | 
 |     static GetElementPtrInst *CreateGEP(IRBuilder<> &B, Value *BasePtr, | 
 |                                         int Idx1, int Idx2, const char *Name); | 
 |   }; | 
 |  | 
 | } | 
 |    | 
 | static GCRegistry::Add<ShadowStackGC> | 
 | X("shadow-stack", "Very portable GC for uncooperative code generators"); | 
 |    | 
 | namespace { | 
 |   /// EscapeEnumerator - This is a little algorithm to find all escape points | 
 |   /// from a function so that "finally"-style code can be inserted. In addition | 
 |   /// to finding the existing return and unwind instructions, it also (if | 
 |   /// necessary) transforms any call instructions into invokes and sends them to | 
 |   /// a landing pad. | 
 |   ///  | 
 |   /// It's wrapped up in a state machine using the same transform C# uses for | 
 |   /// 'yield return' enumerators, This transform allows it to be non-allocating. | 
 |   class VISIBILITY_HIDDEN EscapeEnumerator { | 
 |     Function &F; | 
 |     const char *CleanupBBName; | 
 |      | 
 |     // State. | 
 |     int State; | 
 |     Function::iterator StateBB, StateE; | 
 |     IRBuilder<> Builder; | 
 |      | 
 |   public: | 
 |     EscapeEnumerator(Function &F, const char *N = "cleanup") | 
 |       : F(F), CleanupBBName(N), State(0) {} | 
 |      | 
 |     IRBuilder<> *Next() { | 
 |       switch (State) { | 
 |       default: | 
 |         return 0; | 
 |          | 
 |       case 0: | 
 |         StateBB = F.begin(); | 
 |         StateE = F.end(); | 
 |         State = 1; | 
 |          | 
 |       case 1: | 
 |         // Find all 'return' and 'unwind' instructions. | 
 |         while (StateBB != StateE) { | 
 |           BasicBlock *CurBB = StateBB++; | 
 |            | 
 |           // Branches and invokes do not escape, only unwind and return do. | 
 |           TerminatorInst *TI = CurBB->getTerminator(); | 
 |           if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI)) | 
 |             continue; | 
 |            | 
 |           Builder.SetInsertPoint(TI->getParent(), TI); | 
 |           return &Builder; | 
 |         } | 
 |          | 
 |         State = 2; | 
 |          | 
 |         // Find all 'call' instructions. | 
 |         SmallVector<Instruction*,16> Calls; | 
 |         for (Function::iterator BB = F.begin(), | 
 |                                 E = F.end(); BB != E; ++BB) | 
 |           for (BasicBlock::iterator II = BB->begin(), | 
 |                                     EE = BB->end(); II != EE; ++II) | 
 |             if (CallInst *CI = dyn_cast<CallInst>(II)) | 
 |               if (!CI->getCalledFunction() || | 
 |                   !CI->getCalledFunction()->getIntrinsicID()) | 
 |                 Calls.push_back(CI); | 
 |          | 
 |         if (Calls.empty()) | 
 |           return 0; | 
 |          | 
 |         // Create a cleanup block. | 
 |         BasicBlock *CleanupBB = BasicBlock::Create(CleanupBBName, &F); | 
 |         UnwindInst *UI = new UnwindInst(CleanupBB); | 
 |          | 
 |         // Transform the 'call' instructions into 'invoke's branching to the | 
 |         // cleanup block. Go in reverse order to make prettier BB names. | 
 |         SmallVector<Value*,16> Args; | 
 |         for (unsigned I = Calls.size(); I != 0; ) { | 
 |           CallInst *CI = cast<CallInst>(Calls[--I]); | 
 |            | 
 |           // Split the basic block containing the function call. | 
 |           BasicBlock *CallBB = CI->getParent(); | 
 |           BasicBlock *NewBB = | 
 |             CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont"); | 
 |            | 
 |           // Remove the unconditional branch inserted at the end of CallBB. | 
 |           CallBB->getInstList().pop_back(); | 
 |           NewBB->getInstList().remove(CI); | 
 |            | 
 |           // Create a new invoke instruction. | 
 |           Args.clear(); | 
 |           Args.append(CI->op_begin() + 1, CI->op_end()); | 
 |            | 
 |           InvokeInst *II = InvokeInst::Create(CI->getOperand(0), | 
 |                                               NewBB, CleanupBB, | 
 |                                               Args.begin(), Args.end(), | 
 |                                               CI->getName(), CallBB); | 
 |           II->setCallingConv(CI->getCallingConv()); | 
 |           II->setParamAttrs(CI->getParamAttrs()); | 
 |           CI->replaceAllUsesWith(II); | 
 |           delete CI; | 
 |         } | 
 |          | 
 |         Builder.SetInsertPoint(UI->getParent(), UI); | 
 |         return &Builder; | 
 |       } | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 |  | 
 | void llvm::linkShadowStackGC() { } | 
 |  | 
 | ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) { | 
 |   InitRoots = true; | 
 |   CustomRoots = true; | 
 | } | 
 |  | 
 | Constant *ShadowStackGC::GetFrameMap(Function &F) { | 
 |   // doInitialization creates the abstract type of this value. | 
 |    | 
 |   Type *VoidPtr = PointerType::getUnqual(Type::Int8Ty); | 
 |    | 
 |   // Truncate the ShadowStackDescriptor if some metadata is null. | 
 |   unsigned NumMeta = 0; | 
 |   SmallVector<Constant*,16> Metadata; | 
 |   for (unsigned I = 0; I != Roots.size(); ++I) { | 
 |     Constant *C = cast<Constant>(Roots[I].first->getOperand(2)); | 
 |     if (!C->isNullValue()) | 
 |       NumMeta = I + 1; | 
 |     Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr)); | 
 |   } | 
 |    | 
 |   Constant *BaseElts[] = { | 
 |     ConstantInt::get(Type::Int32Ty, Roots.size(), false), | 
 |     ConstantInt::get(Type::Int32Ty, NumMeta, false), | 
 |   }; | 
 |    | 
 |   Constant *DescriptorElts[] = { | 
 |     ConstantStruct::get(BaseElts, 2), | 
 |     ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), | 
 |                        Metadata.begin(), NumMeta) | 
 |   }; | 
 |    | 
 |   Constant *FrameMap = ConstantStruct::get(DescriptorElts, 2); | 
 |    | 
 |   std::string TypeName("gc_map."); | 
 |   TypeName += utostr(NumMeta); | 
 |   F.getParent()->addTypeName(TypeName, FrameMap->getType()); | 
 |    | 
 |   // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems | 
 |   //        that, short of multithreaded LLVM, it should be safe; all that is | 
 |   //        necessary is that a simple Module::iterator loop not be invalidated. | 
 |   //        Appending to the GlobalVariable list is safe in that sense. | 
 |   //  | 
 |   //        All of the output passes emit globals last. The ExecutionEngine | 
 |   //        explicitly supports adding globals to the module after | 
 |   //        initialization. | 
 |   //  | 
 |   //        Still, if it isn't deemed acceptable, then this transformation needs | 
 |   //        to be a ModulePass (which means it cannot be in the 'llc' pipeline | 
 |   //        (which uses a FunctionPassManager (which segfaults (not asserts) if | 
 |   //        provided a ModulePass))). | 
 |   Constant *GV = new GlobalVariable(FrameMap->getType(), true, | 
 |                                     GlobalVariable::InternalLinkage, | 
 |                                     FrameMap, "__gc_" + F.getName(), | 
 |                                     F.getParent()); | 
 |    | 
 |   Constant *GEPIndices[2] = { ConstantInt::get(Type::Int32Ty, 0), | 
 |                               ConstantInt::get(Type::Int32Ty, 0) }; | 
 |   return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2); | 
 | } | 
 |  | 
 | const Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) { | 
 |   // doInitialization creates the generic version of this type. | 
 |   std::vector<const Type*> EltTys; | 
 |   EltTys.push_back(StackEntryTy); | 
 |   for (size_t I = 0; I != Roots.size(); I++) | 
 |     EltTys.push_back(Roots[I].second->getAllocatedType()); | 
 |   Type *Ty = StructType::get(EltTys); | 
 |    | 
 |   std::string TypeName("gc_stackentry."); | 
 |   TypeName += F.getName(); | 
 |   F.getParent()->addTypeName(TypeName, Ty); | 
 |    | 
 |   return Ty; | 
 | } | 
 |  | 
 | /// doInitialization - If this module uses the GC intrinsics, find them now. If | 
 | /// not, exit fast. | 
 | bool ShadowStackGC::initializeCustomLowering(Module &M) { | 
 |   // struct FrameMap { | 
 |   //   int32_t NumRoots; // Number of roots in stack frame. | 
 |   //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots. | 
 |   //   void *Meta[];     // May be absent for roots without metadata. | 
 |   // }; | 
 |   std::vector<const Type*> EltTys; | 
 |   EltTys.push_back(Type::Int32Ty); // 32 bits is ok up to a 32GB stack frame. :) | 
 |   EltTys.push_back(Type::Int32Ty); // Specifies length of variable length array. | 
 |   StructType *FrameMapTy = StructType::get(EltTys); | 
 |   M.addTypeName("gc_map", FrameMapTy); | 
 |   PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); | 
 |    | 
 |   // struct StackEntry { | 
 |   //   ShadowStackEntry *Next; // Caller's stack entry. | 
 |   //   FrameMap *Map;          // Pointer to constant FrameMap. | 
 |   //   void *Roots[];          // Stack roots (in-place array, so we pretend). | 
 |   // }; | 
 |   OpaqueType *RecursiveTy = OpaqueType::get(); | 
 |    | 
 |   EltTys.clear(); | 
 |   EltTys.push_back(PointerType::getUnqual(RecursiveTy)); | 
 |   EltTys.push_back(FrameMapPtrTy); | 
 |   PATypeHolder LinkTyH = StructType::get(EltTys); | 
 |    | 
 |   RecursiveTy->refineAbstractTypeTo(LinkTyH.get()); | 
 |   StackEntryTy = cast<StructType>(LinkTyH.get()); | 
 |   const PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); | 
 |   M.addTypeName("gc_stackentry", LinkTyH.get());  // FIXME: Is this safe from | 
 |                                                   //        a FunctionPass? | 
 |    | 
 |   // Get the root chain if it already exists. | 
 |   Head = M.getGlobalVariable("llvm_gc_root_chain"); | 
 |   if (!Head) { | 
 |     // If the root chain does not exist, insert a new one with linkonce | 
 |     // linkage! | 
 |     Head = new GlobalVariable(StackEntryPtrTy, false, | 
 |                               GlobalValue::LinkOnceLinkage, | 
 |                               Constant::getNullValue(StackEntryPtrTy), | 
 |                               "llvm_gc_root_chain", &M); | 
 |   } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { | 
 |     Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); | 
 |     Head->setLinkage(GlobalValue::LinkOnceLinkage); | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | bool ShadowStackGC::IsNullValue(Value *V) { | 
 |   if (Constant *C = dyn_cast<Constant>(V)) | 
 |     return C->isNullValue(); | 
 |   return false; | 
 | } | 
 |  | 
 | void ShadowStackGC::CollectRoots(Function &F) { | 
 |   // FIXME: Account for original alignment. Could fragment the root array. | 
 |   //   Approach 1: Null initialize empty slots at runtime. Yuck. | 
 |   //   Approach 2: Emit a map of the array instead of just a count. | 
 |    | 
 |   assert(Roots.empty() && "Not cleaned up?"); | 
 |    | 
 |   SmallVector<std::pair<CallInst*,AllocaInst*>,16> MetaRoots; | 
 |    | 
 |   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
 |     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) | 
 |       if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) | 
 |         if (Function *F = CI->getCalledFunction()) | 
 |           if (F->getIntrinsicID() == Intrinsic::gcroot) { | 
 |             std::pair<CallInst*,AllocaInst*> Pair = std::make_pair( | 
 |               CI, cast<AllocaInst>(CI->getOperand(1)->stripPointerCasts())); | 
 |             if (IsNullValue(CI->getOperand(2))) | 
 |               Roots.push_back(Pair); | 
 |             else | 
 |               MetaRoots.push_back(Pair); | 
 |           } | 
 |    | 
 |   // Number roots with metadata (usually empty) at the beginning, so that the | 
 |   // FrameMap::Meta array can be elided. | 
 |   Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); | 
 | } | 
 |  | 
 | GetElementPtrInst * | 
 | ShadowStackGC::CreateGEP(IRBuilder<> &B, Value *BasePtr, | 
 |                          int Idx, int Idx2, const char *Name) { | 
 |   Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0), | 
 |                        ConstantInt::get(Type::Int32Ty, Idx), | 
 |                        ConstantInt::get(Type::Int32Ty, Idx2) }; | 
 |   Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name); | 
 |      | 
 |   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); | 
 |      | 
 |   return dyn_cast<GetElementPtrInst>(Val); | 
 | } | 
 |  | 
 | GetElementPtrInst * | 
 | ShadowStackGC::CreateGEP(IRBuilder<> &B, Value *BasePtr, | 
 |                          int Idx, const char *Name) { | 
 |   Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0), | 
 |                        ConstantInt::get(Type::Int32Ty, Idx) }; | 
 |   Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name); | 
 |      | 
 |   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); | 
 |  | 
 |   return dyn_cast<GetElementPtrInst>(Val); | 
 | } | 
 |  | 
 | /// runOnFunction - Insert code to maintain the shadow stack. | 
 | bool ShadowStackGC::performCustomLowering(Function &F) { | 
 |   // Find calls to llvm.gcroot. | 
 |   CollectRoots(F); | 
 |    | 
 |   // If there are no roots in this function, then there is no need to add a | 
 |   // stack map entry for it. | 
 |   if (Roots.empty()) | 
 |     return false; | 
 |    | 
 |   // Build the constant map and figure the type of the shadow stack entry. | 
 |   Value *FrameMap = GetFrameMap(F); | 
 |   const Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); | 
 |    | 
 |   // Build the shadow stack entry at the very start of the function. | 
 |   BasicBlock::iterator IP = F.getEntryBlock().begin(); | 
 |   IRBuilder<> AtEntry(IP->getParent(), IP); | 
 |    | 
 |   Instruction *StackEntry   = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0, | 
 |                                                    "gc_frame"); | 
 |    | 
 |   while (isa<AllocaInst>(IP)) ++IP; | 
 |   AtEntry.SetInsertPoint(IP->getParent(), IP); | 
 |    | 
 |   // Initialize the map pointer and load the current head of the shadow stack. | 
 |   Instruction *CurrentHead  = AtEntry.CreateLoad(Head, "gc_currhead"); | 
 |   Instruction *EntryMapPtr  = CreateGEP(AtEntry, StackEntry,0,1,"gc_frame.map"); | 
 |                               AtEntry.CreateStore(FrameMap, EntryMapPtr); | 
 |    | 
 |   // After all the allocas... | 
 |   for (unsigned I = 0, E = Roots.size(); I != E; ++I) { | 
 |     // For each root, find the corresponding slot in the aggregate... | 
 |     Value *SlotPtr = CreateGEP(AtEntry, StackEntry, 1 + I, "gc_root"); | 
 |      | 
 |     // And use it in lieu of the alloca. | 
 |     AllocaInst *OriginalAlloca = Roots[I].second; | 
 |     SlotPtr->takeName(OriginalAlloca); | 
 |     OriginalAlloca->replaceAllUsesWith(SlotPtr); | 
 |   } | 
 |    | 
 |   // Move past the original stores inserted by GCStrategy::InitRoots. This isn't | 
 |   // really necessary (the collector would never see the intermediate state at | 
 |   // runtime), but it's nicer not to push the half-initialized entry onto the | 
 |   // shadow stack. | 
 |   while (isa<StoreInst>(IP)) ++IP; | 
 |   AtEntry.SetInsertPoint(IP->getParent(), IP); | 
 |    | 
 |   // Push the entry onto the shadow stack. | 
 |   Instruction *EntryNextPtr = CreateGEP(AtEntry,StackEntry,0,0,"gc_frame.next"); | 
 |   Instruction *NewHeadVal   = CreateGEP(AtEntry,StackEntry, 0, "gc_newhead"); | 
 |                               AtEntry.CreateStore(CurrentHead, EntryNextPtr); | 
 |                               AtEntry.CreateStore(NewHeadVal, Head); | 
 |    | 
 |   // For each instruction that escapes... | 
 |   EscapeEnumerator EE(F, "gc_cleanup"); | 
 |   while (IRBuilder<> *AtExit = EE.Next()) { | 
 |     // Pop the entry from the shadow stack. Don't reuse CurrentHead from | 
 |     // AtEntry, since that would make the value live for the entire function. | 
 |     Instruction *EntryNextPtr2 = CreateGEP(*AtExit, StackEntry, 0, 0, | 
 |                                            "gc_frame.next"); | 
 |     Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead"); | 
 |                        AtExit->CreateStore(SavedHead, Head); | 
 |   } | 
 |    | 
 |   // Delete the original allocas (which are no longer used) and the intrinsic | 
 |   // calls (which are no longer valid). Doing this last avoids invalidating | 
 |   // iterators. | 
 |   for (unsigned I = 0, E = Roots.size(); I != E; ++I) { | 
 |     Roots[I].first->eraseFromParent(); | 
 |     Roots[I].second->eraseFromParent(); | 
 |   } | 
 |    | 
 |   Roots.clear(); | 
 |   return true; | 
 | } |