| //===- README.txt - Notes for improving PowerPC-specific code gen ---------===// |
| |
| TODO: |
| * gpr0 allocation |
| * implement do-loop -> bdnz transform |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Support 'update' load/store instructions. These are cracked on the G5, but are |
| still a codesize win. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Teach the .td file to pattern match PPC::BR_COND to appropriate bc variant, so |
| we don't have to always run the branch selector for small functions. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| * Codegen this: |
| |
| void test2(int X) { |
| if (X == 0x12345678) bar(); |
| } |
| |
| as: |
| |
| xoris r0,r3,0x1234 |
| cmplwi cr0,r0,0x5678 |
| beq cr0,L6 |
| |
| not: |
| |
| lis r2, 4660 |
| ori r2, r2, 22136 |
| cmpw cr0, r3, r2 |
| bne .LBB_test2_2 |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Lump the constant pool for each function into ONE pic object, and reference |
| pieces of it as offsets from the start. For functions like this (contrived |
| to have lots of constants obviously): |
| |
| double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; } |
| |
| We generate: |
| |
| _X: |
| lis r2, ha16(.CPI_X_0) |
| lfd f0, lo16(.CPI_X_0)(r2) |
| lis r2, ha16(.CPI_X_1) |
| lfd f2, lo16(.CPI_X_1)(r2) |
| fmadd f0, f1, f0, f2 |
| lis r2, ha16(.CPI_X_2) |
| lfd f1, lo16(.CPI_X_2)(r2) |
| lis r2, ha16(.CPI_X_3) |
| lfd f2, lo16(.CPI_X_3)(r2) |
| fmadd f1, f0, f1, f2 |
| blr |
| |
| It would be better to materialize .CPI_X into a register, then use immediates |
| off of the register to avoid the lis's. This is even more important in PIC |
| mode. |
| |
| Note that this (and the static variable version) is discussed here for GCC: |
| http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html |
| |
| ===-------------------------------------------------------------------------=== |
| |
| PIC Code Gen IPO optimization: |
| |
| Squish small scalar globals together into a single global struct, allowing the |
| address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size |
| of the GOT on targets with one). |
| |
| Note that this is discussed here for GCC: |
| http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Implement Newton-Rhapson method for improving estimate instructions to the |
| correct accuracy, and implementing divide as multiply by reciprocal when it has |
| more than one use. Itanium will want this too. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Compile this: |
| |
| int %f1(int %a, int %b) { |
| %tmp.1 = and int %a, 15 ; <int> [#uses=1] |
| %tmp.3 = and int %b, 240 ; <int> [#uses=1] |
| %tmp.4 = or int %tmp.3, %tmp.1 ; <int> [#uses=1] |
| ret int %tmp.4 |
| } |
| |
| without a copy. We make this currently: |
| |
| _f1: |
| rlwinm r2, r4, 0, 24, 27 |
| rlwimi r2, r3, 0, 28, 31 |
| or r3, r2, r2 |
| blr |
| |
| The two-addr pass or RA needs to learn when it is profitable to commute an |
| instruction to avoid a copy AFTER the 2-addr instruction. The 2-addr pass |
| currently only commutes to avoid inserting a copy BEFORE the two addr instr. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Compile offsets from allocas: |
| |
| int *%test() { |
| %X = alloca { int, int } |
| %Y = getelementptr {int,int}* %X, int 0, uint 1 |
| ret int* %Y |
| } |
| |
| into a single add, not two: |
| |
| _test: |
| addi r2, r1, -8 |
| addi r3, r2, 4 |
| blr |
| |
| --> important for C++. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| int test3(int a, int b) { return (a < 0) ? a : 0; } |
| |
| should be branch free code. LLVM is turning it into < 1 because of the RHS. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| No loads or stores of the constants should be needed: |
| |
| struct foo { double X, Y; }; |
| void xxx(struct foo F); |
| void bar() { struct foo R = { 1.0, 2.0 }; xxx(R); } |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Darwin Stub LICM optimization: |
| |
| Loops like this: |
| |
| for (...) bar(); |
| |
| Have to go through an indirect stub if bar is external or linkonce. It would |
| be better to compile it as: |
| |
| fp = &bar; |
| for (...) fp(); |
| |
| which only computes the address of bar once (instead of each time through the |
| stub). This is Darwin specific and would have to be done in the code generator. |
| Probably not a win on x86. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| PowerPC i1/setcc stuff (depends on subreg stuff): |
| |
| Check out the PPC code we get for 'compare' in this testcase: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19672 |
| |
| oof. on top of not doing the logical crnand instead of (mfcr, mfcr, |
| invert, invert, or), we then have to compare it against zero instead of |
| using the value already in a CR! |
| |
| that should be something like |
| cmpw cr7, r8, r5 |
| cmpw cr0, r7, r3 |
| crnand cr0, cr0, cr7 |
| bne cr0, LBB_compare_4 |
| |
| instead of |
| cmpw cr7, r8, r5 |
| cmpw cr0, r7, r3 |
| mfcr r7, 1 |
| mcrf cr7, cr0 |
| mfcr r8, 1 |
| rlwinm r7, r7, 30, 31, 31 |
| rlwinm r8, r8, 30, 31, 31 |
| xori r7, r7, 1 |
| xori r8, r8, 1 |
| addi r2, r2, 1 |
| or r7, r8, r7 |
| cmpwi cr0, r7, 0 |
| bne cr0, LBB_compare_4 ; loopexit |
| |
| FreeBench/mason has a basic block that looks like this: |
| |
| %tmp.130 = seteq int %p.0__, 5 ; <bool> [#uses=1] |
| %tmp.134 = seteq int %p.1__, 6 ; <bool> [#uses=1] |
| %tmp.139 = seteq int %p.2__, 12 ; <bool> [#uses=1] |
| %tmp.144 = seteq int %p.3__, 13 ; <bool> [#uses=1] |
| %tmp.149 = seteq int %p.4__, 14 ; <bool> [#uses=1] |
| %tmp.154 = seteq int %p.5__, 15 ; <bool> [#uses=1] |
| %bothcond = and bool %tmp.134, %tmp.130 ; <bool> [#uses=1] |
| %bothcond123 = and bool %bothcond, %tmp.139 ; <bool> |
| %bothcond124 = and bool %bothcond123, %tmp.144 ; <bool> |
| %bothcond125 = and bool %bothcond124, %tmp.149 ; <bool> |
| %bothcond126 = and bool %bothcond125, %tmp.154 ; <bool> |
| br bool %bothcond126, label %shortcirc_next.5, label %else.0 |
| |
| This is a particularly important case where handling CRs better will help. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Simple IPO for argument passing, change: |
| void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y) |
| |
| the Darwin ABI specifies that any integer arguments in the first 32 bytes worth |
| of arguments get assigned to r3 through r10. That is, if you have a function |
| foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the |
| argument bytes for r4 and r5. The trick then would be to shuffle the argument |
| order for functions we can internalize so that the maximum number of |
| integers/pointers get passed in regs before you see any of the fp arguments. |
| |
| Instead of implementing this, it would actually probably be easier to just |
| implement a PPC fastcc, where we could do whatever we wanted to the CC, |
| including having this work sanely. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Fix Darwin FP-In-Integer Registers ABI |
| |
| Darwin passes doubles in structures in integer registers, which is very very |
| bad. Add something like a BIT_CONVERT to LLVM, then do an i-p transformation |
| that percolates these things out of functions. |
| |
| Check out how horrible this is: |
| http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html |
| |
| This is an extension of "interprocedural CC unmunging" that can't be done with |
| just fastcc. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Compile this: |
| |
| int foo(int a) { |
| int b = (a < 8); |
| if (b) { |
| return b * 3; // ignore the fact that this is always 3. |
| } else { |
| return 2; |
| } |
| } |
| |
| into something not this: |
| |
| _foo: |
| 1) cmpwi cr7, r3, 8 |
| mfcr r2, 1 |
| rlwinm r2, r2, 29, 31, 31 |
| 1) cmpwi cr0, r3, 7 |
| bgt cr0, LBB1_2 ; UnifiedReturnBlock |
| LBB1_1: ; then |
| rlwinm r2, r2, 0, 31, 31 |
| mulli r3, r2, 3 |
| blr |
| LBB1_2: ; UnifiedReturnBlock |
| li r3, 2 |
| blr |
| |
| In particular, the two compares (marked 1) could be shared by reversing one. |
| This could be done in the dag combiner, by swapping a BR_CC when a SETCC of the |
| same operands (but backwards) exists. In this case, this wouldn't save us |
| anything though, because the compares still wouldn't be shared. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| The legalizer should lower this: |
| |
| bool %test(ulong %x) { |
| %tmp = setlt ulong %x, 4294967296 |
| ret bool %tmp |
| } |
| |
| into "if x.high == 0", not: |
| |
| _test: |
| addi r2, r3, -1 |
| cntlzw r2, r2 |
| cntlzw r3, r3 |
| srwi r2, r2, 5 |
| srwi r4, r3, 5 |
| li r3, 0 |
| cmpwi cr0, r2, 0 |
| bne cr0, LBB1_2 ; |
| LBB1_1: |
| or r3, r4, r4 |
| LBB1_2: |
| blr |
| |
| noticed in 2005-05-11-Popcount-ffs-fls.c. |
| |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We should custom expand setcc instead of pretending that we have it. That |
| would allow us to expose the access of the crbit after the mfcr, allowing |
| that access to be trivially folded into other ops. A simple example: |
| |
| int foo(int a, int b) { return (a < b) << 4; } |
| |
| compiles into: |
| |
| _foo: |
| cmpw cr7, r3, r4 |
| mfcr r2, 1 |
| rlwinm r2, r2, 29, 31, 31 |
| slwi r3, r2, 4 |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Fold add and sub with constant into non-extern, non-weak addresses so this: |
| |
| static int a; |
| void bar(int b) { a = b; } |
| void foo(unsigned char *c) { |
| *c = a; |
| } |
| |
| So that |
| |
| _foo: |
| lis r2, ha16(_a) |
| la r2, lo16(_a)(r2) |
| lbz r2, 3(r2) |
| stb r2, 0(r3) |
| blr |
| |
| Becomes |
| |
| _foo: |
| lis r2, ha16(_a+3) |
| lbz r2, lo16(_a+3)(r2) |
| stb r2, 0(r3) |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We generate really bad code for this: |
| |
| int f(signed char *a, _Bool b, _Bool c) { |
| signed char t = 0; |
| if (b) t = *a; |
| if (c) *a = t; |
| } |
| |
| ===-------------------------------------------------------------------------=== |
| |
| This: |
| int test(unsigned *P) { return *P >> 24; } |
| |
| Should compile to: |
| |
| _test: |
| lbz r3,0(r3) |
| blr |
| |
| not: |
| |
| _test: |
| lwz r2, 0(r3) |
| srwi r3, r2, 24 |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| On the G5, logical CR operations are more expensive in their three |
| address form: ops that read/write the same register are half as expensive as |
| those that read from two registers that are different from their destination. |
| |
| We should model this with two separate instructions. The isel should generate |
| the "two address" form of the instructions. When the register allocator |
| detects that it needs to insert a copy due to the two-addresness of the CR |
| logical op, it will invoke PPCInstrInfo::convertToThreeAddress. At this point |
| we can convert to the "three address" instruction, to save code space. |
| |
| This only matters when we start generating cr logical ops. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We should compile these two functions to the same thing: |
| |
| #include <stdlib.h> |
| void f(int a, int b, int *P) { |
| *P = (a-b)>=0?(a-b):(b-a); |
| } |
| void g(int a, int b, int *P) { |
| *P = abs(a-b); |
| } |
| |
| Further, they should compile to something better than: |
| |
| _g: |
| subf r2, r4, r3 |
| subfic r3, r2, 0 |
| cmpwi cr0, r2, -1 |
| bgt cr0, LBB2_2 ; entry |
| LBB2_1: ; entry |
| mr r2, r3 |
| LBB2_2: ; entry |
| stw r2, 0(r5) |
| blr |
| |
| GCC produces: |
| |
| _g: |
| subf r4,r4,r3 |
| srawi r2,r4,31 |
| xor r0,r2,r4 |
| subf r0,r2,r0 |
| stw r0,0(r5) |
| blr |
| |
| ... which is much nicer. |
| |
| This theoretically may help improve twolf slightly (used in dimbox.c:142?). |
| |
| ===-------------------------------------------------------------------------=== |
| |
| int foo(int N, int ***W, int **TK, int X) { |
| int t, i; |
| |
| for (t = 0; t < N; ++t) |
| for (i = 0; i < 4; ++i) |
| W[t / X][i][t % X] = TK[i][t]; |
| |
| return 5; |
| } |
| |
| We generate relatively atrocious code for this loop compared to gcc. |
| |
| We could also strength reduce the rem and the div: |
| http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf |
| |
| ===-------------------------------------------------------------------------=== |
| |
| float foo(float X) { return (int)(X); } |
| |
| Currently produces: |
| |
| _foo: |
| fctiwz f0, f1 |
| stfd f0, -8(r1) |
| lwz r2, -4(r1) |
| extsw r2, r2 |
| std r2, -16(r1) |
| lfd f0, -16(r1) |
| fcfid f0, f0 |
| frsp f1, f0 |
| blr |
| |
| We could use a target dag combine to turn the lwz/extsw into an lwa when the |
| lwz has a single use. Since LWA is cracked anyway, this would be a codesize |
| win only. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| We generate ugly code for this: |
| |
| void func(unsigned int *ret, float dx, float dy, float dz, float dw) { |
| unsigned code = 0; |
| if(dx < -dw) code |= 1; |
| if(dx > dw) code |= 2; |
| if(dy < -dw) code |= 4; |
| if(dy > dw) code |= 8; |
| if(dz < -dw) code |= 16; |
| if(dz > dw) code |= 32; |
| *ret = code; |
| } |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Complete the signed i32 to FP conversion code using 64-bit registers |
| transformation, good for PI. See PPCISelLowering.cpp, this comment: |
| |
| // FIXME: disable this lowered code. This generates 64-bit register values, |
| // and we don't model the fact that the top part is clobbered by calls. We |
| // need to flag these together so that the value isn't live across a call. |
| //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| |
| Also, if the registers are spilled to the stack, we have to ensure that all |
| 64-bits of them are save/restored, otherwise we will miscompile the code. It |
| sounds like we need to get the 64-bit register classes going. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| %struct.B = type { ubyte, [3 x ubyte] } |
| |
| void %foo(%struct.B* %b) { |
| entry: |
| %tmp = cast %struct.B* %b to uint* ; <uint*> [#uses=1] |
| %tmp = load uint* %tmp ; <uint> [#uses=1] |
| %tmp3 = cast %struct.B* %b to uint* ; <uint*> [#uses=1] |
| %tmp4 = load uint* %tmp3 ; <uint> [#uses=1] |
| %tmp8 = cast %struct.B* %b to uint* ; <uint*> [#uses=2] |
| %tmp9 = load uint* %tmp8 ; <uint> [#uses=1] |
| %tmp4.mask17 = shl uint %tmp4, ubyte 1 ; <uint> [#uses=1] |
| %tmp1415 = and uint %tmp4.mask17, 2147483648 ; <uint> [#uses=1] |
| %tmp.masked = and uint %tmp, 2147483648 ; <uint> [#uses=1] |
| %tmp11 = or uint %tmp1415, %tmp.masked ; <uint> [#uses=1] |
| %tmp12 = and uint %tmp9, 2147483647 ; <uint> [#uses=1] |
| %tmp13 = or uint %tmp12, %tmp11 ; <uint> [#uses=1] |
| store uint %tmp13, uint* %tmp8 |
| ret void |
| } |
| |
| We emit: |
| |
| _foo: |
| lwz r2, 0(r3) |
| slwi r4, r2, 1 |
| or r4, r4, r2 |
| rlwimi r2, r4, 0, 0, 0 |
| stw r2, 0(r3) |
| blr |
| |
| We could collapse a bunch of those ORs and ANDs and generate the following |
| equivalent code: |
| |
| _foo: |
| lwz r2, 0(r3) |
| rlwinm r4, r2, 1, 0, 0 |
| or r2, r2, r4 |
| stw r2, 0(r3) |
| blr |
| |
| ===-------------------------------------------------------------------------=== |
| |
| On PPC64, this results in a truncate followed by a truncstore. These should |
| be folded together. |
| |
| unsigned short G; |
| void foo(unsigned long H) { G = H; } |
| |