| //===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===// |
| // |
| // This file contains a printer that converts from our internal representation |
| // of LLVM code to a nice human readable form that is suitable for debuggging. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Function.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "Support/Statistic.h" |
| |
| namespace { |
| struct Printer : public FunctionPass { |
| TargetMachine &TM; |
| std::ostream &O; |
| |
| Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {} |
| |
| virtual const char *getPassName() const { |
| return "X86 Assembly Printer"; |
| } |
| |
| bool runOnFunction(Function &F); |
| }; |
| } |
| |
| /// createX86CodePrinterPass - Print out the specified machine code function to |
| /// the specified stream. This function should work regardless of whether or |
| /// not the function is in SSA form or not. |
| /// |
| Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) { |
| return new Printer(TM, O); |
| } |
| |
| |
| /// runOnFunction - This uses the X86InstructionInfo::print method |
| /// to print assembly for each instruction. |
| bool Printer::runOnFunction (Function & F) |
| { |
| static unsigned bbnumber = 0; |
| MachineFunction & MF = MachineFunction::get (&F); |
| const MachineInstrInfo & MII = TM.getInstrInfo (); |
| |
| // Print out labels for the function. |
| O << "\t.globl\t" << F.getName () << "\n"; |
| O << "\t.type\t" << F.getName () << ", @function\n"; |
| O << F.getName () << ":\n"; |
| |
| // Print out code for the function. |
| for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end (); |
| bb_i != bb_e; ++bb_i) |
| { |
| // Print a label for the basic block. |
| O << ".BB" << bbnumber++ << ":\n"; |
| for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e = |
| bb_i->end (); i_i != i_e; ++i_i) |
| { |
| // Print the assembly for the instruction. |
| O << "\t"; |
| MII.print(*i_i, O, TM); |
| } |
| } |
| |
| // We didn't modify anything. |
| return false; |
| } |
| |
| static bool isScale(const MachineOperand &MO) { |
| return MO.isImmediate() && |
| (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || |
| MO.getImmedValue() == 4 || MO.getImmedValue() == 8); |
| } |
| |
| static bool isMem(const MachineInstr *MI, unsigned Op) { |
| return Op+4 <= MI->getNumOperands() && |
| MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) && |
| MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate(); |
| } |
| |
| static void printOp(std::ostream &O, const MachineOperand &MO, |
| const MRegisterInfo &RI) { |
| switch (MO.getType()) { |
| case MachineOperand::MO_VirtualRegister: |
| if (Value *V = MO.getVRegValueOrNull()) { |
| O << "<" << V->getName() << ">"; |
| return; |
| } |
| case MachineOperand::MO_MachineRegister: |
| if (MO.getReg() < MRegisterInfo::FirstVirtualRegister) |
| O << RI.get(MO.getReg()).Name; |
| else |
| O << "%reg" << MO.getReg(); |
| return; |
| |
| case MachineOperand::MO_SignExtendedImmed: |
| case MachineOperand::MO_UnextendedImmed: |
| O << (int)MO.getImmedValue(); |
| return; |
| case MachineOperand::MO_PCRelativeDisp: |
| O << "<" << MO.getVRegValue()->getName() << ">"; |
| return; |
| default: |
| O << "<unknown op ty>"; return; |
| } |
| } |
| |
| static const std::string sizePtr (const MachineInstrDescriptor &Desc) { |
| switch (Desc.TSFlags & X86II::ArgMask) { |
| case X86II::Arg8: return "BYTE PTR"; |
| case X86II::Arg16: return "WORD PTR"; |
| case X86II::Arg32: return "DWORD PTR"; |
| case X86II::Arg64: return "QWORD PTR"; |
| case X86II::Arg80: return "XWORD PTR"; |
| case X86II::Arg128: return "128BIT PTR"; // dunno what the real one is |
| default: return "<SIZE?> PTR"; // crack being smoked |
| } |
| } |
| |
| static void printMemReference(std::ostream &O, const MachineInstr *MI, |
| unsigned Op, const MRegisterInfo &RI) { |
| assert(isMem(MI, Op) && "Invalid memory reference!"); |
| const MachineOperand &BaseReg = MI->getOperand(Op); |
| const MachineOperand &Scale = MI->getOperand(Op+1); |
| const MachineOperand &IndexReg = MI->getOperand(Op+2); |
| const MachineOperand &Disp = MI->getOperand(Op+3); |
| |
| O << "["; |
| bool NeedPlus = false; |
| if (BaseReg.getReg()) { |
| printOp(O, BaseReg, RI); |
| NeedPlus = true; |
| } |
| |
| if (IndexReg.getReg()) { |
| if (NeedPlus) O << " + "; |
| if (Scale.getImmedValue() != 1) |
| O << Scale.getImmedValue() << "*"; |
| printOp(O, IndexReg, RI); |
| NeedPlus = true; |
| } |
| |
| if (Disp.getImmedValue()) { |
| if (NeedPlus) O << " + "; |
| printOp(O, Disp, RI); |
| } |
| O << "]"; |
| } |
| |
| // print - Print out an x86 instruction in intel syntax |
| void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O, |
| const TargetMachine &TM) const { |
| unsigned Opcode = MI->getOpcode(); |
| const MachineInstrDescriptor &Desc = get(Opcode); |
| |
| if (Opcode == X86::PHI) { |
| printOp(O, MI->getOperand(0), RI); |
| O << " = phi "; |
| for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { |
| if (i != 1) O << ", "; |
| O << "["; |
| printOp(O, MI->getOperand(i), RI); |
| O << ", "; |
| printOp(O, MI->getOperand(i+1), RI); |
| O << "]"; |
| } |
| O << "\n"; |
| return; |
| } |
| |
| |
| switch (Desc.TSFlags & X86II::FormMask) { |
| case X86II::RawFrm: |
| // The accepted forms of Raw instructions are: |
| // 1. nop - No operand required |
| // 2. jmp foo - PC relative displacement operand |
| // |
| assert(MI->getNumOperands() == 0 || |
| (MI->getNumOperands() == 1 && MI->getOperand(0).isPCRelativeDisp())&& |
| "Illegal raw instruction!"); |
| O << getName(MI->getOpCode()) << " "; |
| |
| if (MI->getNumOperands() == 1) { |
| printOp(O, MI->getOperand(0), RI); |
| } |
| O << "\n"; |
| return; |
| |
| case X86II::AddRegFrm: { |
| // There are currently two forms of acceptable AddRegFrm instructions. |
| // Either the instruction JUST takes a single register (like inc, dec, etc), |
| // or it takes a register and an immediate of the same size as the register |
| // (move immediate f.e.). Note that this immediate value might be stored as |
| // an LLVM value, to represent, for example, loading the address of a global |
| // into a register. The initial register might be duplicated if this is a |
| // M_2_ADDR_REG instruction |
| // |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 1 || |
| (MI->getNumOperands() == 2 && |
| (MI->getOperand(1).getVRegValueOrNull() || |
| MI->getOperand(1).isImmediate() || |
| MI->getOperand(1).isRegister()))) && |
| "Illegal form for AddRegFrm instruction!"); |
| |
| unsigned Reg = MI->getOperand(0).getReg(); |
| |
| O << getName(MI->getOpCode()) << " "; |
| printOp(O, MI->getOperand(0), RI); |
| if (MI->getNumOperands() == 2 && !MI->getOperand(1).isRegister()) { |
| O << ", "; |
| printOp(O, MI->getOperand(1), RI); |
| } |
| O << "\n"; |
| return; |
| } |
| case X86II::MRMDestReg: { |
| // There are two acceptable forms of MRMDestReg instructions, those with 3 |
| // and 2 operands: |
| // |
| // 3 Operands: in this form, the first two registers (the destination, and |
| // the first operand) should be the same, post register allocation. The 3rd |
| // operand is an additional input. This should be for things like add |
| // instructions. |
| // |
| // 2 Operands: this is for things like mov that do not read a second input |
| // |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 2 || |
| (MI->getNumOperands() == 3 && MI->getOperand(1).isRegister())) && |
| MI->getOperand(MI->getNumOperands()-1).isRegister() |
| && "Bad format for MRMDestReg!"); |
| if (MI->getNumOperands() == 3 && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << getName(MI->getOpCode()) << " "; |
| printOp(O, MI->getOperand(0), RI); |
| O << ", "; |
| printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMDestMem: { |
| // These instructions are the same as MRMDestReg, but instead of having a |
| // register reference for the mod/rm field, it's a memory reference. |
| // |
| assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 && |
| MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!"); |
| |
| O << getName(MI->getOpCode()) << " " << sizePtr (Desc) << " "; |
| printMemReference(O, MI, 0, RI); |
| O << ", "; |
| printOp(O, MI->getOperand(4), RI); |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMSrcReg: { |
| // There is a two forms that are acceptable for MRMSrcReg instructions, |
| // those with 3 and 2 operands: |
| // |
| // 3 Operands: in this form, the last register (the second input) is the |
| // ModR/M input. The first two operands should be the same, post register |
| // allocation. This is for things like: add r32, r/m32 |
| // |
| // 2 Operands: this is for things like mov that do not read a second input |
| // |
| assert(MI->getOperand(0).isRegister() && |
| MI->getOperand(1).isRegister() && |
| (MI->getNumOperands() == 2 || |
| (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister())) |
| && "Bad format for MRMDestReg!"); |
| if (MI->getNumOperands() == 3 && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << getName(MI->getOpCode()) << " "; |
| printOp(O, MI->getOperand(0), RI); |
| O << ", "; |
| printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMSrcMem: { |
| // These instructions are the same as MRMSrcReg, but instead of having a |
| // register reference for the mod/rm field, it's a memory reference. |
| // |
| assert(MI->getOperand(0).isRegister() && |
| (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || |
| (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && |
| isMem(MI, 2)) |
| && "Bad format for MRMDestReg!"); |
| if (MI->getNumOperands() == 2+4 && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << getName(MI->getOpCode()) << " "; |
| printOp(O, MI->getOperand(0), RI); |
| O << ", " << sizePtr (Desc) << " "; |
| printMemReference(O, MI, MI->getNumOperands()-4, RI); |
| O << "\n"; |
| return; |
| } |
| |
| case X86II::MRMS0r: case X86II::MRMS1r: |
| case X86II::MRMS2r: case X86II::MRMS3r: |
| case X86II::MRMS4r: case X86II::MRMS5r: |
| case X86II::MRMS6r: case X86II::MRMS7r: { |
| // In this form, the following are valid formats: |
| // 1. sete r |
| // 2. cmp reg, immediate |
| // 2. shl rdest, rinput <implicit CL or 1> |
| // 3. sbb rdest, rinput, immediate [rdest = rinput] |
| // |
| assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && |
| MI->getOperand(0).isRegister() && "Bad MRMSxR format!"); |
| assert((MI->getNumOperands() != 2 || |
| MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&& |
| "Bad MRMSxR format!"); |
| assert((MI->getNumOperands() < 3 || |
| (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) && |
| "Bad MRMSxR format!"); |
| |
| if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && |
| MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) |
| O << "**"; |
| |
| O << getName(MI->getOpCode()) << " "; |
| printOp(O, MI->getOperand(0), RI); |
| if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) { |
| O << ", "; |
| printOp(O, MI->getOperand(MI->getNumOperands()-1), RI); |
| } |
| O << "\n"; |
| |
| return; |
| } |
| |
| default: |
| O << "\t\t\t-"; MI->print(O, TM); break; |
| } |
| } |