| ======================================================= |
| Kaleidoscope: Extending the Language: Mutable Variables |
| ======================================================= |
| |
| .. contents:: |
| :local: |
| |
| Written by `Chris Lattner <mailto:sabre@nondot.org>`_ |
| |
| Chapter 7 Introduction |
| ====================== |
| |
| Welcome to Chapter 7 of the "`Implementing a language with |
| LLVM <index.html>`_" tutorial. In chapters 1 through 6, we've built a |
| very respectable, albeit simple, `functional programming |
| language <http://en.wikipedia.org/wiki/Functional_programming>`_. In our |
| journey, we learned some parsing techniques, how to build and represent |
| an AST, how to build LLVM IR, and how to optimize the resultant code as |
| well as JIT compile it. |
| |
| While Kaleidoscope is interesting as a functional language, the fact |
| that it is functional makes it "too easy" to generate LLVM IR for it. In |
| particular, a functional language makes it very easy to build LLVM IR |
| directly in `SSA |
| form <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_. |
| Since LLVM requires that the input code be in SSA form, this is a very |
| nice property and it is often unclear to newcomers how to generate code |
| for an imperative language with mutable variables. |
| |
| The short (and happy) summary of this chapter is that there is no need |
| for your front-end to build SSA form: LLVM provides highly tuned and |
| well tested support for this, though the way it works is a bit |
| unexpected for some. |
| |
| Why is this a hard problem? |
| =========================== |
| |
| To understand why mutable variables cause complexities in SSA |
| construction, consider this extremely simple C example: |
| |
| .. code-block:: c |
| |
| int G, H; |
| int test(_Bool Condition) { |
| int X; |
| if (Condition) |
| X = G; |
| else |
| X = H; |
| return X; |
| } |
| |
| In this case, we have the variable "X", whose value depends on the path |
| executed in the program. Because there are two different possible values |
| for X before the return instruction, a PHI node is inserted to merge the |
| two values. The LLVM IR that we want for this example looks like this: |
| |
| .. code-block:: llvm |
| |
| @G = weak global i32 0 ; type of @G is i32* |
| @H = weak global i32 0 ; type of @H is i32* |
| |
| define i32 @test(i1 %Condition) { |
| entry: |
| br i1 %Condition, label %cond_true, label %cond_false |
| |
| cond_true: |
| %X.0 = load i32* @G |
| br label %cond_next |
| |
| cond_false: |
| %X.1 = load i32* @H |
| br label %cond_next |
| |
| cond_next: |
| %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] |
| ret i32 %X.2 |
| } |
| |
| In this example, the loads from the G and H global variables are |
| explicit in the LLVM IR, and they live in the then/else branches of the |
| if statement (cond\_true/cond\_false). In order to merge the incoming |
| values, the X.2 phi node in the cond\_next block selects the right value |
| to use based on where control flow is coming from: if control flow comes |
| from the cond\_false block, X.2 gets the value of X.1. Alternatively, if |
| control flow comes from cond\_true, it gets the value of X.0. The intent |
| of this chapter is not to explain the details of SSA form. For more |
| information, see one of the many `online |
| references <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_. |
| |
| The question for this article is "who places the phi nodes when lowering |
| assignments to mutable variables?". The issue here is that LLVM |
| *requires* that its IR be in SSA form: there is no "non-ssa" mode for |
| it. However, SSA construction requires non-trivial algorithms and data |
| structures, so it is inconvenient and wasteful for every front-end to |
| have to reproduce this logic. |
| |
| Memory in LLVM |
| ============== |
| |
| The 'trick' here is that while LLVM does require all register values to |
| be in SSA form, it does not require (or permit) memory objects to be in |
| SSA form. In the example above, note that the loads from G and H are |
| direct accesses to G and H: they are not renamed or versioned. This |
| differs from some other compiler systems, which do try to version memory |
| objects. In LLVM, instead of encoding dataflow analysis of memory into |
| the LLVM IR, it is handled with `Analysis |
| Passes <../WritingAnLLVMPass.html>`_ which are computed on demand. |
| |
| With this in mind, the high-level idea is that we want to make a stack |
| variable (which lives in memory, because it is on the stack) for each |
| mutable object in a function. To take advantage of this trick, we need |
| to talk about how LLVM represents stack variables. |
| |
| In LLVM, all memory accesses are explicit with load/store instructions, |
| and it is carefully designed not to have (or need) an "address-of" |
| operator. Notice how the type of the @G/@H global variables is actually |
| "i32\*" even though the variable is defined as "i32". What this means is |
| that @G defines *space* for an i32 in the global data area, but its |
| *name* actually refers to the address for that space. Stack variables |
| work the same way, except that instead of being declared with global |
| variable definitions, they are declared with the `LLVM alloca |
| instruction <../LangRef.html#i_alloca>`_: |
| |
| .. code-block:: llvm |
| |
| define i32 @example() { |
| entry: |
| %X = alloca i32 ; type of %X is i32*. |
| ... |
| %tmp = load i32* %X ; load the stack value %X from the stack. |
| %tmp2 = add i32 %tmp, 1 ; increment it |
| store i32 %tmp2, i32* %X ; store it back |
| ... |
| |
| This code shows an example of how you can declare and manipulate a stack |
| variable in the LLVM IR. Stack memory allocated with the alloca |
| instruction is fully general: you can pass the address of the stack slot |
| to functions, you can store it in other variables, etc. In our example |
| above, we could rewrite the example to use the alloca technique to avoid |
| using a PHI node: |
| |
| .. code-block:: llvm |
| |
| @G = weak global i32 0 ; type of @G is i32* |
| @H = weak global i32 0 ; type of @H is i32* |
| |
| define i32 @test(i1 %Condition) { |
| entry: |
| %X = alloca i32 ; type of %X is i32*. |
| br i1 %Condition, label %cond_true, label %cond_false |
| |
| cond_true: |
| %X.0 = load i32* @G |
| store i32 %X.0, i32* %X ; Update X |
| br label %cond_next |
| |
| cond_false: |
| %X.1 = load i32* @H |
| store i32 %X.1, i32* %X ; Update X |
| br label %cond_next |
| |
| cond_next: |
| %X.2 = load i32* %X ; Read X |
| ret i32 %X.2 |
| } |
| |
| With this, we have discovered a way to handle arbitrary mutable |
| variables without the need to create Phi nodes at all: |
| |
| #. Each mutable variable becomes a stack allocation. |
| #. Each read of the variable becomes a load from the stack. |
| #. Each update of the variable becomes a store to the stack. |
| #. Taking the address of a variable just uses the stack address |
| directly. |
| |
| While this solution has solved our immediate problem, it introduced |
| another one: we have now apparently introduced a lot of stack traffic |
| for very simple and common operations, a major performance problem. |
| Fortunately for us, the LLVM optimizer has a highly-tuned optimization |
| pass named "mem2reg" that handles this case, promoting allocas like this |
| into SSA registers, inserting Phi nodes as appropriate. If you run this |
| example through the pass, for example, you'll get: |
| |
| .. code-block:: bash |
| |
| $ llvm-as < example.ll | opt -mem2reg | llvm-dis |
| @G = weak global i32 0 |
| @H = weak global i32 0 |
| |
| define i32 @test(i1 %Condition) { |
| entry: |
| br i1 %Condition, label %cond_true, label %cond_false |
| |
| cond_true: |
| %X.0 = load i32* @G |
| br label %cond_next |
| |
| cond_false: |
| %X.1 = load i32* @H |
| br label %cond_next |
| |
| cond_next: |
| %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] |
| ret i32 %X.01 |
| } |
| |
| The mem2reg pass implements the standard "iterated dominance frontier" |
| algorithm for constructing SSA form and has a number of optimizations |
| that speed up (very common) degenerate cases. The mem2reg optimization |
| pass is the answer to dealing with mutable variables, and we highly |
| recommend that you depend on it. Note that mem2reg only works on |
| variables in certain circumstances: |
| |
| #. mem2reg is alloca-driven: it looks for allocas and if it can handle |
| them, it promotes them. It does not apply to global variables or heap |
| allocations. |
| #. mem2reg only looks for alloca instructions in the entry block of the |
| function. Being in the entry block guarantees that the alloca is only |
| executed once, which makes analysis simpler. |
| #. mem2reg only promotes allocas whose uses are direct loads and stores. |
| If the address of the stack object is passed to a function, or if any |
| funny pointer arithmetic is involved, the alloca will not be |
| promoted. |
| #. mem2reg only works on allocas of `first |
| class <../LangRef.html#t_classifications>`_ values (such as pointers, |
| scalars and vectors), and only if the array size of the allocation is |
| 1 (or missing in the .ll file). mem2reg is not capable of promoting |
| structs or arrays to registers. Note that the "scalarrepl" pass is |
| more powerful and can promote structs, "unions", and arrays in many |
| cases. |
| |
| All of these properties are easy to satisfy for most imperative |
| languages, and we'll illustrate it below with Kaleidoscope. The final |
| question you may be asking is: should I bother with this nonsense for my |
| front-end? Wouldn't it be better if I just did SSA construction |
| directly, avoiding use of the mem2reg optimization pass? In short, we |
| strongly recommend that you use this technique for building SSA form, |
| unless there is an extremely good reason not to. Using this technique |
| is: |
| |
| - Proven and well tested: llvm-gcc and clang both use this technique |
| for local mutable variables. As such, the most common clients of LLVM |
| are using this to handle a bulk of their variables. You can be sure |
| that bugs are found fast and fixed early. |
| - Extremely Fast: mem2reg has a number of special cases that make it |
| fast in common cases as well as fully general. For example, it has |
| fast-paths for variables that are only used in a single block, |
| variables that only have one assignment point, good heuristics to |
| avoid insertion of unneeded phi nodes, etc. |
| - Needed for debug info generation: `Debug information in |
| LLVM <../SourceLevelDebugging.html>`_ relies on having the address of |
| the variable exposed so that debug info can be attached to it. This |
| technique dovetails very naturally with this style of debug info. |
| |
| If nothing else, this makes it much easier to get your front-end up and |
| running, and is very simple to implement. Lets extend Kaleidoscope with |
| mutable variables now! |
| |
| Mutable Variables in Kaleidoscope |
| ================================= |
| |
| Now that we know the sort of problem we want to tackle, lets see what |
| this looks like in the context of our little Kaleidoscope language. |
| We're going to add two features: |
| |
| #. The ability to mutate variables with the '=' operator. |
| #. The ability to define new variables. |
| |
| While the first item is really what this is about, we only have |
| variables for incoming arguments as well as for induction variables, and |
| redefining those only goes so far :). Also, the ability to define new |
| variables is a useful thing regardless of whether you will be mutating |
| them. Here's a motivating example that shows how we could use these: |
| |
| :: |
| |
| # Define ':' for sequencing: as a low-precedence operator that ignores operands |
| # and just returns the RHS. |
| def binary : 1 (x y) y; |
| |
| # Recursive fib, we could do this before. |
| def fib(x) |
| if (x < 3) then |
| 1 |
| else |
| fib(x-1)+fib(x-2); |
| |
| # Iterative fib. |
| def fibi(x) |
| var a = 1, b = 1, c in |
| (for i = 3, i < x in |
| c = a + b : |
| a = b : |
| b = c) : |
| b; |
| |
| # Call it. |
| fibi(10); |
| |
| In order to mutate variables, we have to change our existing variables |
| to use the "alloca trick". Once we have that, we'll add our new |
| operator, then extend Kaleidoscope to support new variable definitions. |
| |
| Adjusting Existing Variables for Mutation |
| ========================================= |
| |
| The symbol table in Kaleidoscope is managed at code generation time by |
| the '``NamedValues``' map. This map currently keeps track of the LLVM |
| "Value\*" that holds the double value for the named variable. In order |
| to support mutation, we need to change this slightly, so that it |
| ``NamedValues`` holds the *memory location* of the variable in question. |
| Note that this change is a refactoring: it changes the structure of the |
| code, but does not (by itself) change the behavior of the compiler. All |
| of these changes are isolated in the Kaleidoscope code generator. |
| |
| At this point in Kaleidoscope's development, it only supports variables |
| for two things: incoming arguments to functions and the induction |
| variable of 'for' loops. For consistency, we'll allow mutation of these |
| variables in addition to other user-defined variables. This means that |
| these will both need memory locations. |
| |
| To start our transformation of Kaleidoscope, we'll change the |
| NamedValues map so that it maps to AllocaInst\* instead of Value\*. Once |
| we do this, the C++ compiler will tell us what parts of the code we need |
| to update: |
| |
| .. code-block:: c++ |
| |
| static std::map<std::string, AllocaInst*> NamedValues; |
| |
| Also, since we will need to create these alloca's, we'll use a helper |
| function that ensures that the allocas are created in the entry block of |
| the function: |
| |
| .. code-block:: c++ |
| |
| /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| /// the function. This is used for mutable variables etc. |
| static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| const std::string &VarName) { |
| IRBuilder<> TmpB(&TheFunction->getEntryBlock(), |
| TheFunction->getEntryBlock().begin()); |
| return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, |
| VarName.c_str()); |
| } |
| |
| This funny looking code creates an IRBuilder object that is pointing at |
| the first instruction (.begin()) of the entry block. It then creates an |
| alloca with the expected name and returns it. Because all values in |
| Kaleidoscope are doubles, there is no need to pass in a type to use. |
| |
| With this in place, the first functionality change we want to make is to |
| variable references. In our new scheme, variables live on the stack, so |
| code generating a reference to them actually needs to produce a load |
| from the stack slot: |
| |
| .. code-block:: c++ |
| |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| if (V == 0) return ErrorV("Unknown variable name"); |
| |
| // Load the value. |
| return Builder.CreateLoad(V, Name.c_str()); |
| } |
| |
| As you can see, this is pretty straightforward. Now we need to update |
| the things that define the variables to set up the alloca. We'll start |
| with ``ForExprAST::Codegen`` (see the `full code listing <#code>`_ for |
| the unabridged code): |
| |
| .. code-block:: c++ |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create an alloca for the variable in the entry block. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| |
| // Store the value into the alloca. |
| Builder.CreateStore(StartVal, Alloca); |
| ... |
| |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Reload, increment, and restore the alloca. This handles the case where |
| // the body of the loop mutates the variable. |
| Value *CurVar = Builder.CreateLoad(Alloca); |
| Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); |
| Builder.CreateStore(NextVar, Alloca); |
| ... |
| |
| This code is virtually identical to the code `before we allowed mutable |
| variables <LangImpl5.html#forcodegen>`_. The big difference is that we |
| no longer have to construct a PHI node, and we use load/store to access |
| the variable as needed. |
| |
| To support mutable argument variables, we need to also make allocas for |
| them. The code for this is also pretty simple: |
| |
| .. code-block:: c++ |
| |
| /// CreateArgumentAllocas - Create an alloca for each argument and register the |
| /// argument in the symbol table so that references to it will succeed. |
| void PrototypeAST::CreateArgumentAllocas(Function *F) { |
| Function::arg_iterator AI = F->arg_begin(); |
| for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { |
| // Create an alloca for this variable. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); |
| |
| // Store the initial value into the alloca. |
| Builder.CreateStore(AI, Alloca); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = Alloca; |
| } |
| } |
| |
| For each argument, we make an alloca, store the input value to the |
| function into the alloca, and register the alloca as the memory location |
| for the argument. This method gets invoked by ``FunctionAST::Codegen`` |
| right after it sets up the entry block for the function. |
| |
| The final missing piece is adding the mem2reg pass, which allows us to |
| get good codegen once again: |
| |
| .. code-block:: c++ |
| |
| // Set up the optimizer pipeline. Start with registering info about how the |
| // target lays out data structures. |
| OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); |
| // Promote allocas to registers. |
| OurFPM.add(createPromoteMemoryToRegisterPass()); |
| // Do simple "peephole" optimizations and bit-twiddling optzns. |
| OurFPM.add(createInstructionCombiningPass()); |
| // Reassociate expressions. |
| OurFPM.add(createReassociatePass()); |
| |
| It is interesting to see what the code looks like before and after the |
| mem2reg optimization runs. For example, this is the before/after code |
| for our recursive fib function. Before the optimization: |
| |
| .. code-block:: llvm |
| |
| define double @fib(double %x) { |
| entry: |
| %x1 = alloca double |
| store double %x, double* %x1 |
| %x2 = load double* %x1 |
| %cmptmp = fcmp ult double %x2, 3.000000e+00 |
| %booltmp = uitofp i1 %cmptmp to double |
| %ifcond = fcmp one double %booltmp, 0.000000e+00 |
| br i1 %ifcond, label %then, label %else |
| |
| then: ; preds = %entry |
| br label %ifcont |
| |
| else: ; preds = %entry |
| %x3 = load double* %x1 |
| %subtmp = fsub double %x3, 1.000000e+00 |
| %calltmp = call double @fib(double %subtmp) |
| %x4 = load double* %x1 |
| %subtmp5 = fsub double %x4, 2.000000e+00 |
| %calltmp6 = call double @fib(double %subtmp5) |
| %addtmp = fadd double %calltmp, %calltmp6 |
| br label %ifcont |
| |
| ifcont: ; preds = %else, %then |
| %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] |
| ret double %iftmp |
| } |
| |
| Here there is only one variable (x, the input argument) but you can |
| still see the extremely simple-minded code generation strategy we are |
| using. In the entry block, an alloca is created, and the initial input |
| value is stored into it. Each reference to the variable does a reload |
| from the stack. Also, note that we didn't modify the if/then/else |
| expression, so it still inserts a PHI node. While we could make an |
| alloca for it, it is actually easier to create a PHI node for it, so we |
| still just make the PHI. |
| |
| Here is the code after the mem2reg pass runs: |
| |
| .. code-block:: llvm |
| |
| define double @fib(double %x) { |
| entry: |
| %cmptmp = fcmp ult double %x, 3.000000e+00 |
| %booltmp = uitofp i1 %cmptmp to double |
| %ifcond = fcmp one double %booltmp, 0.000000e+00 |
| br i1 %ifcond, label %then, label %else |
| |
| then: |
| br label %ifcont |
| |
| else: |
| %subtmp = fsub double %x, 1.000000e+00 |
| %calltmp = call double @fib(double %subtmp) |
| %subtmp5 = fsub double %x, 2.000000e+00 |
| %calltmp6 = call double @fib(double %subtmp5) |
| %addtmp = fadd double %calltmp, %calltmp6 |
| br label %ifcont |
| |
| ifcont: ; preds = %else, %then |
| %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] |
| ret double %iftmp |
| } |
| |
| This is a trivial case for mem2reg, since there are no redefinitions of |
| the variable. The point of showing this is to calm your tension about |
| inserting such blatent inefficiencies :). |
| |
| After the rest of the optimizers run, we get: |
| |
| .. code-block:: llvm |
| |
| define double @fib(double %x) { |
| entry: |
| %cmptmp = fcmp ult double %x, 3.000000e+00 |
| %booltmp = uitofp i1 %cmptmp to double |
| %ifcond = fcmp ueq double %booltmp, 0.000000e+00 |
| br i1 %ifcond, label %else, label %ifcont |
| |
| else: |
| %subtmp = fsub double %x, 1.000000e+00 |
| %calltmp = call double @fib(double %subtmp) |
| %subtmp5 = fsub double %x, 2.000000e+00 |
| %calltmp6 = call double @fib(double %subtmp5) |
| %addtmp = fadd double %calltmp, %calltmp6 |
| ret double %addtmp |
| |
| ifcont: |
| ret double 1.000000e+00 |
| } |
| |
| Here we see that the simplifycfg pass decided to clone the return |
| instruction into the end of the 'else' block. This allowed it to |
| eliminate some branches and the PHI node. |
| |
| Now that all symbol table references are updated to use stack variables, |
| we'll add the assignment operator. |
| |
| New Assignment Operator |
| ======================= |
| |
| With our current framework, adding a new assignment operator is really |
| simple. We will parse it just like any other binary operator, but handle |
| it internally (instead of allowing the user to define it). The first |
| step is to set a precedence: |
| |
| .. code-block:: c++ |
| |
| int main() { |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['='] = 2; |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| |
| Now that the parser knows the precedence of the binary operator, it |
| takes care of all the parsing and AST generation. We just need to |
| implement codegen for the assignment operator. This looks like: |
| |
| .. code-block:: c++ |
| |
| Value *BinaryExprAST::Codegen() { |
| // Special case '=' because we don't want to emit the LHS as an expression. |
| if (Op == '=') { |
| // Assignment requires the LHS to be an identifier. |
| VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); |
| if (!LHSE) |
| return ErrorV("destination of '=' must be a variable"); |
| |
| Unlike the rest of the binary operators, our assignment operator doesn't |
| follow the "emit LHS, emit RHS, do computation" model. As such, it is |
| handled as a special case before the other binary operators are handled. |
| The other strange thing is that it requires the LHS to be a variable. It |
| is invalid to have "(x+1) = expr" - only things like "x = expr" are |
| allowed. |
| |
| .. code-block:: c++ |
| |
| // Codegen the RHS. |
| Value *Val = RHS->Codegen(); |
| if (Val == 0) return 0; |
| |
| // Look up the name. |
| Value *Variable = NamedValues[LHSE->getName()]; |
| if (Variable == 0) return ErrorV("Unknown variable name"); |
| |
| Builder.CreateStore(Val, Variable); |
| return Val; |
| } |
| ... |
| |
| Once we have the variable, codegen'ing the assignment is |
| straightforward: we emit the RHS of the assignment, create a store, and |
| return the computed value. Returning a value allows for chained |
| assignments like "X = (Y = Z)". |
| |
| Now that we have an assignment operator, we can mutate loop variables |
| and arguments. For example, we can now run code like this: |
| |
| :: |
| |
| # Function to print a double. |
| extern printd(x); |
| |
| # Define ':' for sequencing: as a low-precedence operator that ignores operands |
| # and just returns the RHS. |
| def binary : 1 (x y) y; |
| |
| def test(x) |
| printd(x) : |
| x = 4 : |
| printd(x); |
| |
| test(123); |
| |
| When run, this example prints "123" and then "4", showing that we did |
| actually mutate the value! Okay, we have now officially implemented our |
| goal: getting this to work requires SSA construction in the general |
| case. However, to be really useful, we want the ability to define our |
| own local variables, lets add this next! |
| |
| User-defined Local Variables |
| ============================ |
| |
| Adding var/in is just like any other other extensions we made to |
| Kaleidoscope: we extend the lexer, the parser, the AST and the code |
| generator. The first step for adding our new 'var/in' construct is to |
| extend the lexer. As before, this is pretty trivial, the code looks like |
| this: |
| |
| .. code-block:: c++ |
| |
| enum Token { |
| ... |
| // var definition |
| tok_var = -13 |
| ... |
| } |
| ... |
| static int gettok() { |
| ... |
| if (IdentifierStr == "in") return tok_in; |
| if (IdentifierStr == "binary") return tok_binary; |
| if (IdentifierStr == "unary") return tok_unary; |
| if (IdentifierStr == "var") return tok_var; |
| return tok_identifier; |
| ... |
| |
| The next step is to define the AST node that we will construct. For |
| var/in, it looks like this: |
| |
| .. code-block:: c++ |
| |
| /// VarExprAST - Expression class for var/in |
| class VarExprAST : public ExprAST { |
| std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| ExprAST *Body; |
| public: |
| VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, |
| ExprAST *body) |
| : VarNames(varnames), Body(body) {} |
| |
| virtual Value *Codegen(); |
| }; |
| |
| var/in allows a list of names to be defined all at once, and each name |
| can optionally have an initializer value. As such, we capture this |
| information in the VarNames vector. Also, var/in has a body, this body |
| is allowed to access the variables defined by the var/in. |
| |
| With this in place, we can define the parser pieces. The first thing we |
| do is add it as a primary expression: |
| |
| .. code-block:: c++ |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| /// ::= ifexpr |
| /// ::= forexpr |
| /// ::= varexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| case tok_if: return ParseIfExpr(); |
| case tok_for: return ParseForExpr(); |
| case tok_var: return ParseVarExpr(); |
| } |
| } |
| |
| Next we define ParseVarExpr: |
| |
| .. code-block:: c++ |
| |
| /// varexpr ::= 'var' identifier ('=' expression)? |
| // (',' identifier ('=' expression)?)* 'in' expression |
| static ExprAST *ParseVarExpr() { |
| getNextToken(); // eat the var. |
| |
| std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| |
| // At least one variable name is required. |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after var"); |
| |
| The first part of this code parses the list of identifier/expr pairs |
| into the local ``VarNames`` vector. |
| |
| .. code-block:: c++ |
| |
| while (1) { |
| std::string Name = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| // Read the optional initializer. |
| ExprAST *Init = 0; |
| if (CurTok == '=') { |
| getNextToken(); // eat the '='. |
| |
| Init = ParseExpression(); |
| if (Init == 0) return 0; |
| } |
| |
| VarNames.push_back(std::make_pair(Name, Init)); |
| |
| // End of var list, exit loop. |
| if (CurTok != ',') break; |
| getNextToken(); // eat the ','. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier list after var"); |
| } |
| |
| Once all the variables are parsed, we then parse the body and create the |
| AST node: |
| |
| .. code-block:: c++ |
| |
| // At this point, we have to have 'in'. |
| if (CurTok != tok_in) |
| return Error("expected 'in' keyword after 'var'"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new VarExprAST(VarNames, Body); |
| } |
| |
| Now that we can parse and represent the code, we need to support |
| emission of LLVM IR for it. This code starts out with: |
| |
| .. code-block:: c++ |
| |
| Value *VarExprAST::Codegen() { |
| std::vector<AllocaInst *> OldBindings; |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Register all variables and emit their initializer. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| const std::string &VarName = VarNames[i].first; |
| ExprAST *Init = VarNames[i].second; |
| |
| Basically it loops over all the variables, installing them one at a |
| time. For each variable we put into the symbol table, we remember the |
| previous value that we replace in OldBindings. |
| |
| .. code-block:: c++ |
| |
| // Emit the initializer before adding the variable to scope, this prevents |
| // the initializer from referencing the variable itself, and permits stuff |
| // like this: |
| // var a = 1 in |
| // var a = a in ... # refers to outer 'a'. |
| Value *InitVal; |
| if (Init) { |
| InitVal = Init->Codegen(); |
| if (InitVal == 0) return 0; |
| } else { // If not specified, use 0.0. |
| InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); |
| } |
| |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| Builder.CreateStore(InitVal, Alloca); |
| |
| // Remember the old variable binding so that we can restore the binding when |
| // we unrecurse. |
| OldBindings.push_back(NamedValues[VarName]); |
| |
| // Remember this binding. |
| NamedValues[VarName] = Alloca; |
| } |
| |
| There are more comments here than code. The basic idea is that we emit |
| the initializer, create the alloca, then update the symbol table to |
| point to it. Once all the variables are installed in the symbol table, |
| we evaluate the body of the var/in expression: |
| |
| .. code-block:: c++ |
| |
| // Codegen the body, now that all vars are in scope. |
| Value *BodyVal = Body->Codegen(); |
| if (BodyVal == 0) return 0; |
| |
| Finally, before returning, we restore the previous variable bindings: |
| |
| .. code-block:: c++ |
| |
| // Pop all our variables from scope. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| NamedValues[VarNames[i].first] = OldBindings[i]; |
| |
| // Return the body computation. |
| return BodyVal; |
| } |
| |
| The end result of all of this is that we get properly scoped variable |
| definitions, and we even (trivially) allow mutation of them :). |
| |
| With this, we completed what we set out to do. Our nice iterative fib |
| example from the intro compiles and runs just fine. The mem2reg pass |
| optimizes all of our stack variables into SSA registers, inserting PHI |
| nodes where needed, and our front-end remains simple: no "iterated |
| dominance frontier" computation anywhere in sight. |
| |
| Full Code Listing |
| ================= |
| |
| Here is the complete code listing for our running example, enhanced with |
| mutable variables and var/in support. To build this example, use: |
| |
| .. code-block:: bash |
| |
| # Compile |
| clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| # Run |
| ./toy |
| |
| Here is the code: |
| |
| .. code-block:: c++ |
| |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| #include "llvm/ExecutionEngine/JIT.h" |
| #include "llvm/IRBuilder.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/DataLayout.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include <cstdio> |
| #include <string> |
| #include <map> |
| #include <vector> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, tok_number = -5, |
| |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| tok_for = -9, tok_in = -10, |
| |
| // operators |
| tok_binary = -11, tok_unary = -12, |
| |
| // var definition |
| tok_var = -13 |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in; |
| if (IdentifierStr == "binary") return tok_binary; |
| if (IdentifierStr == "unary") return tok_unary; |
| if (IdentifierStr == "var") return tok_var; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), 0); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| virtual Value *Codegen() = 0; |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| NumberExprAST(double val) : Val(val) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| VariableExprAST(const std::string &name) : Name(name) {} |
| const std::string &getName() const { return Name; } |
| virtual Value *Codegen(); |
| }; |
| |
| /// UnaryExprAST - Expression class for a unary operator. |
| class UnaryExprAST : public ExprAST { |
| char Opcode; |
| ExprAST *Operand; |
| public: |
| UnaryExprAST(char opcode, ExprAST *operand) |
| : Opcode(opcode), Operand(operand) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| ExprAST *Cond, *Then, *Else; |
| public: |
| IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| : Cond(cond), Then(then), Else(_else) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| ExprAST *Start, *End, *Step, *Body; |
| public: |
| ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| ExprAST *step, ExprAST *body) |
| : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VarExprAST - Expression class for var/in |
| class VarExprAST : public ExprAST { |
| std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| ExprAST *Body; |
| public: |
| VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, |
| ExprAST *body) |
| : VarNames(varnames), Body(body) {} |
| |
| virtual Value *Codegen(); |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its name, and its argument names (thus implicitly the number |
| /// of arguments the function takes), as well as if it is an operator. |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| bool isOperator; |
| unsigned Precedence; // Precedence if a binary op. |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| bool isoperator = false, unsigned prec = 0) |
| : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} |
| |
| bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| |
| char getOperatorName() const { |
| assert(isUnaryOp() || isBinaryOp()); |
| return Name[Name.size()-1]; |
| } |
| |
| unsigned getBinaryPrecedence() const { return Precedence; } |
| |
| Function *Codegen(); |
| |
| void CreateArgumentAllocas(Function *F); |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| |
| Function *Codegen(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser is looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| |
| static ExprAST *ParseExpression(); |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static ExprAST *ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| ExprAST *Cond = ParseExpression(); |
| if (!Cond) return 0; |
| |
| if (CurTok != tok_then) |
| return Error("expected then"); |
| getNextToken(); // eat the then |
| |
| ExprAST *Then = ParseExpression(); |
| if (Then == 0) return 0; |
| |
| if (CurTok != tok_else) |
| return Error("expected else"); |
| |
| getNextToken(); |
| |
| ExprAST *Else = ParseExpression(); |
| if (!Else) return 0; |
| |
| return new IfExprAST(Cond, Then, Else); |
| } |
| |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static ExprAST *ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return Error("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| |
| ExprAST *Start = ParseExpression(); |
| if (Start == 0) return 0; |
| if (CurTok != ',') |
| return Error("expected ',' after for start value"); |
| getNextToken(); |
| |
| ExprAST *End = ParseExpression(); |
| if (End == 0) return 0; |
| |
| // The step value is optional. |
| ExprAST *Step = 0; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (Step == 0) return 0; |
| } |
| |
| if (CurTok != tok_in) |
| return Error("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new ForExprAST(IdName, Start, End, Step, Body); |
| } |
| |
| /// varexpr ::= 'var' identifier ('=' expression)? |
| // (',' identifier ('=' expression)?)* 'in' expression |
| static ExprAST *ParseVarExpr() { |
| getNextToken(); // eat the var. |
| |
| std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| |
| // At least one variable name is required. |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after var"); |
| |
| while (1) { |
| std::string Name = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| // Read the optional initializer. |
| ExprAST *Init = 0; |
| if (CurTok == '=') { |
| getNextToken(); // eat the '='. |
| |
| Init = ParseExpression(); |
| if (Init == 0) return 0; |
| } |
| |
| VarNames.push_back(std::make_pair(Name, Init)); |
| |
| // End of var list, exit loop. |
| if (CurTok != ',') break; |
| getNextToken(); // eat the ','. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier list after var"); |
| } |
| |
| // At this point, we have to have 'in'. |
| if (CurTok != tok_in) |
| return Error("expected 'in' keyword after 'var'"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new VarExprAST(VarNames, Body); |
| } |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| /// ::= ifexpr |
| /// ::= forexpr |
| /// ::= varexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| case tok_if: return ParseIfExpr(); |
| case tok_for: return ParseForExpr(); |
| case tok_var: return ParseVarExpr(); |
| } |
| } |
| |
| /// unary |
| /// ::= primary |
| /// ::= '!' unary |
| static ExprAST *ParseUnary() { |
| // If the current token is not an operator, it must be a primary expr. |
| if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| return ParsePrimary(); |
| |
| // If this is a unary operator, read it. |
| int Opc = CurTok; |
| getNextToken(); |
| if (ExprAST *Operand = ParseUnary()) |
| return new UnaryExprAST(Opc, Operand); |
| return 0; |
| } |
| |
| /// binoprhs |
| /// ::= ('+' unary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the unary expression after the binary operator. |
| ExprAST *RHS = ParseUnary(); |
| if (!RHS) return 0; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } |
| } |
| |
| /// expression |
| /// ::= unary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParseUnary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| /// ::= binary LETTER number? (id, id) |
| /// ::= unary LETTER (id) |
| static PrototypeAST *ParsePrototype() { |
| std::string FnName; |
| |
| unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| unsigned BinaryPrecedence = 30; |
| |
| switch (CurTok) { |
| default: |
| return ErrorP("Expected function name in prototype"); |
| case tok_identifier: |
| FnName = IdentifierStr; |
| Kind = 0; |
| getNextToken(); |
| break; |
| case tok_unary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected unary operator"); |
| FnName = "unary"; |
| FnName += (char)CurTok; |
| Kind = 1; |
| getNextToken(); |
| break; |
| case tok_binary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected binary operator"); |
| FnName = "binary"; |
| FnName += (char)CurTok; |
| Kind = 2; |
| getNextToken(); |
| |
| // Read the precedence if present. |
| if (CurTok == tok_number) { |
| if (NumVal < 1 || NumVal > 100) |
| return ErrorP("Invalid precedecnce: must be 1..100"); |
| BinaryPrecedence = (unsigned)NumVal; |
| getNextToken(); |
| } |
| break; |
| } |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| // Verify right number of names for operator. |
| if (Kind && ArgNames.size() != Kind) |
| return ErrorP("Invalid number of operands for operator"); |
| |
| return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code Generation |
| //===----------------------------------------------------------------------===// |
| |
| static Module *TheModule; |
| static IRBuilder<> Builder(getGlobalContext()); |
| static std::map<std::string, AllocaInst*> NamedValues; |
| static FunctionPassManager *TheFPM; |
| |
| Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| |
| /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| /// the function. This is used for mutable variables etc. |
| static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| const std::string &VarName) { |
| IRBuilder<> TmpB(&TheFunction->getEntryBlock(), |
| TheFunction->getEntryBlock().begin()); |
| return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, |
| VarName.c_str()); |
| } |
| |
| Value *NumberExprAST::Codegen() { |
| return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| } |
| |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| if (V == 0) return ErrorV("Unknown variable name"); |
| |
| // Load the value. |
| return Builder.CreateLoad(V, Name.c_str()); |
| } |
| |
| Value *UnaryExprAST::Codegen() { |
| Value *OperandV = Operand->Codegen(); |
| if (OperandV == 0) return 0; |
| |
| Function *F = TheModule->getFunction(std::string("unary")+Opcode); |
| if (F == 0) |
| return ErrorV("Unknown unary operator"); |
| |
| return Builder.CreateCall(F, OperandV, "unop"); |
| } |
| |
| Value *BinaryExprAST::Codegen() { |
| // Special case '=' because we don't want to emit the LHS as an expression. |
| if (Op == '=') { |
| // Assignment requires the LHS to be an identifier. |
| VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); |
| if (!LHSE) |
| return ErrorV("destination of '=' must be a variable"); |
| // Codegen the RHS. |
| Value *Val = RHS->Codegen(); |
| if (Val == 0) return 0; |
| |
| // Look up the name. |
| Value *Variable = NamedValues[LHSE->getName()]; |
| if (Variable == 0) return ErrorV("Unknown variable name"); |
| |
| Builder.CreateStore(Val, Variable); |
| return Val; |
| } |
| |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| case '*': return Builder.CreateFMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| "booltmp"); |
| default: break; |
| } |
| |
| // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| // a call to it. |
| Function *F = TheModule->getFunction(std::string("binary")+Op); |
| assert(F && "binary operator not found!"); |
| |
| Value *Ops[2] = { L, R }; |
| return Builder.CreateCall(F, Ops, "binop"); |
| } |
| |
| Value *CallExprAST::Codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = TheModule->getFunction(Callee); |
| if (CalleeF == 0) |
| return ErrorV("Unknown function referenced"); |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return ErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value*> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->Codegen()); |
| if (ArgsV.back() == 0) return 0; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); |
| } |
| |
| Value *IfExprAST::Codegen() { |
| Value *CondV = Cond->Codegen(); |
| if (CondV == 0) return 0; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| CondV = Builder.CreateFCmpONE(CondV, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "ifcond"); |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); |
| BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); |
| BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->Codegen(); |
| if (ThenV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->Codegen(); |
| if (ElseV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, |
| "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| |
| Value *ForExprAST::Codegen() { |
| // Output this as: |
| // var = alloca double |
| // ... |
| // start = startexpr |
| // store start -> var |
| // goto loop |
| // loop: |
| // ... |
| // bodyexpr |
| // ... |
| // loopend: |
| // step = stepexpr |
| // endcond = endexpr |
| // |
| // curvar = load var |
| // nextvar = curvar + step |
| // store nextvar -> var |
| // br endcond, loop, endloop |
| // outloop: |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create an alloca for the variable in the entry block. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| |
| // Store the value into the alloca. |
| Builder.CreateStore(StartVal, Alloca); |
| |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| AllocaInst *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Alloca; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (Body->Codegen() == 0) |
| return 0; |
| |
| // Emit the step value. |
| Value *StepVal; |
| if (Step) { |
| StepVal = Step->Codegen(); |
| if (StepVal == 0) return 0; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); |
| } |
| |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Reload, increment, and restore the alloca. This handles the case where |
| // the body of the loop mutates the variable. |
| Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); |
| Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); |
| Builder.CreateStore(NextVar, Alloca); |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| EndCond = Builder.CreateFCmpONE(EndCond, |
| ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| "loopcond"); |
| |
| // Create the "after loop" block and insert it. |
| BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); |
| } |
| |
| Value *VarExprAST::Codegen() { |
| std::vector<AllocaInst *> OldBindings; |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Register all variables and emit their initializer. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| const std::string &VarName = VarNames[i].first; |
| ExprAST *Init = VarNames[i].second; |
| |
| // Emit the initializer before adding the variable to scope, this prevents |
| // the initializer from referencing the variable itself, and permits stuff |
| // like this: |
| // var a = 1 in |
| // var a = a in ... # refers to outer 'a'. |
| Value *InitVal; |
| if (Init) { |
| InitVal = Init->Codegen(); |
| if (InitVal == 0) return 0; |
| } else { // If not specified, use 0.0. |
| InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); |
| } |
| |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| Builder.CreateStore(InitVal, Alloca); |
| |
| // Remember the old variable binding so that we can restore the binding when |
| // we unrecurse. |
| OldBindings.push_back(NamedValues[VarName]); |
| |
| // Remember this binding. |
| NamedValues[VarName] = Alloca; |
| } |
| |
| // Codegen the body, now that all vars are in scope. |
| Value *BodyVal = Body->Codegen(); |
| if (BodyVal == 0) return 0; |
| |
| // Pop all our variables from scope. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| NamedValues[VarNames[i].first] = OldBindings[i]; |
| |
| // Return the body computation. |
| return BodyVal; |
| } |
| |
| Function *PrototypeAST::Codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<Type*> Doubles(Args.size(), |
| Type::getDoubleTy(getGlobalContext())); |
| FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| Doubles, false); |
| |
| Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| |
| // If F conflicted, there was already something named 'Name'. If it has a |
| // body, don't allow redefinition or reextern. |
| if (F->getName() != Name) { |
| // Delete the one we just made and get the existing one. |
| F->eraseFromParent(); |
| F = TheModule->getFunction(Name); |
| |
| // If F already has a body, reject this. |
| if (!F->empty()) { |
| ErrorF("redefinition of function"); |
| return 0; |
| } |
| |
| // If F took a different number of args, reject. |
| if (F->arg_size() != Args.size()) { |
| ErrorF("redefinition of function with different # args"); |
| return 0; |
| } |
| } |
| |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| ++AI, ++Idx) |
| AI->setName(Args[Idx]); |
| |
| return F; |
| } |
| |
| /// CreateArgumentAllocas - Create an alloca for each argument and register the |
| /// argument in the symbol table so that references to it will succeed. |
| void PrototypeAST::CreateArgumentAllocas(Function *F) { |
| Function::arg_iterator AI = F->arg_begin(); |
| for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { |
| // Create an alloca for this variable. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); |
| |
| // Store the initial value into the alloca. |
| Builder.CreateStore(AI, Alloca); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = Alloca; |
| } |
| } |
| |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| |
| // If this is an operator, install it. |
| if (Proto->isBinaryOp()) |
| BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| // Add all arguments to the symbol table and create their allocas. |
| Proto->CreateArgumentAllocas(TheFunction); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| |
| // Optimize the function. |
| TheFPM->run(*TheFunction); |
| |
| return TheFunction; |
| } |
| |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| |
| if (Proto->isBinaryOp()) |
| BinopPrecedence.erase(Proto->getOperatorName()); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing and JIT Driver |
| //===----------------------------------------------------------------------===// |
| |
| static ExecutionEngine *TheExecutionEngine; |
| |
| static void HandleDefinition() { |
| if (FunctionAST *F = ParseDefinition()) { |
| if (Function *LF = F->Codegen()) { |
| fprintf(stderr, "Read function definition:"); |
| LF->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (PrototypeAST *P = ParseExtern()) { |
| if (Function *F = P->Codegen()) { |
| fprintf(stderr, "Read extern: "); |
| F->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top-level expression into an anonymous function. |
| if (FunctionAST *F = ParseTopLevelExpr()) { |
| if (Function *LF = F->Codegen()) { |
| // JIT the function, returning a function pointer. |
| void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| |
| // Cast it to the right type (takes no arguments, returns a double) so we |
| // can call it as a native function. |
| double (*FP)() = (double (*)())(intptr_t)FPtr; |
| fprintf(stderr, "Evaluated to %f\n", FP()); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top-level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Library" functions that can be "extern'd" from user code. |
| //===----------------------------------------------------------------------===// |
| |
| /// putchard - putchar that takes a double and returns 0. |
| extern "C" |
| double putchard(double X) { |
| putchar((char)X); |
| return 0; |
| } |
| |
| /// printd - printf that takes a double prints it as "%f\n", returning 0. |
| extern "C" |
| double printd(double X) { |
| printf("%f\n", X); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main() { |
| InitializeNativeTarget(); |
| LLVMContext &Context = getGlobalContext(); |
| |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['='] = 2; |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Prime the first token. |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| // Make the module, which holds all the code. |
| TheModule = new Module("my cool jit", Context); |
| |
| // Create the JIT. This takes ownership of the module. |
| std::string ErrStr; |
| TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); |
| if (!TheExecutionEngine) { |
| fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); |
| exit(1); |
| } |
| |
| FunctionPassManager OurFPM(TheModule); |
| |
| // Set up the optimizer pipeline. Start with registering info about how the |
| // target lays out data structures. |
| OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); |
| // Provide basic AliasAnalysis support for GVN. |
| OurFPM.add(createBasicAliasAnalysisPass()); |
| // Promote allocas to registers. |
| OurFPM.add(createPromoteMemoryToRegisterPass()); |
| // Do simple "peephole" optimizations and bit-twiddling optzns. |
| OurFPM.add(createInstructionCombiningPass()); |
| // Reassociate expressions. |
| OurFPM.add(createReassociatePass()); |
| // Eliminate Common SubExpressions. |
| OurFPM.add(createGVNPass()); |
| // Simplify the control flow graph (deleting unreachable blocks, etc). |
| OurFPM.add(createCFGSimplificationPass()); |
| |
| OurFPM.doInitialization(); |
| |
| // Set the global so the code gen can use this. |
| TheFPM = &OurFPM; |
| |
| // Run the main "interpreter loop" now. |
| MainLoop(); |
| |
| TheFPM = 0; |
| |
| // Print out all of the generated code. |
| TheModule->dump(); |
| |
| return 0; |
| } |
| |
| `Next: Conclusion and other useful LLVM tidbits <LangImpl8.html>`_ |
| |