| //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements routines for translating from LLVM IR into SelectionDAG IR. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "isel" | 
 | #include "SelectionDAGBuild.h" | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/CallingConv.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/InlineAsm.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/CodeGen/FastISel.h" | 
 | #include "llvm/CodeGen/GCStrategy.h" | 
 | #include "llvm/CodeGen/GCMetadata.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/CodeGen/DwarfWriter.h" | 
 | #include "llvm/Analysis/DebugInfo.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Target/TargetFrameInfo.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetIntrinsicInfo.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | /// LimitFloatPrecision - Generate low-precision inline sequences for | 
 | /// some float libcalls (6, 8 or 12 bits). | 
 | static unsigned LimitFloatPrecision; | 
 |  | 
 | static cl::opt<unsigned, true> | 
 | LimitFPPrecision("limit-float-precision", | 
 |                  cl::desc("Generate low-precision inline sequences " | 
 |                           "for some float libcalls"), | 
 |                  cl::location(LimitFloatPrecision), | 
 |                  cl::init(0)); | 
 |  | 
 | /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence | 
 | /// of insertvalue or extractvalue indices that identify a member, return | 
 | /// the linearized index of the start of the member. | 
 | /// | 
 | static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, | 
 |                                    const unsigned *Indices, | 
 |                                    const unsigned *IndicesEnd, | 
 |                                    unsigned CurIndex = 0) { | 
 |   // Base case: We're done. | 
 |   if (Indices && Indices == IndicesEnd) | 
 |     return CurIndex; | 
 |  | 
 |   // Given a struct type, recursively traverse the elements. | 
 |   if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |     for (StructType::element_iterator EB = STy->element_begin(), | 
 |                                       EI = EB, | 
 |                                       EE = STy->element_end(); | 
 |         EI != EE; ++EI) { | 
 |       if (Indices && *Indices == unsigned(EI - EB)) | 
 |         return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); | 
 |       CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); | 
 |     } | 
 |     return CurIndex; | 
 |   } | 
 |   // Given an array type, recursively traverse the elements. | 
 |   else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
 |     const Type *EltTy = ATy->getElementType(); | 
 |     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { | 
 |       if (Indices && *Indices == i) | 
 |         return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); | 
 |       CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); | 
 |     } | 
 |     return CurIndex; | 
 |   } | 
 |   // We haven't found the type we're looking for, so keep searching. | 
 |   return CurIndex + 1; | 
 | } | 
 |  | 
 | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of | 
 | /// EVTs that represent all the individual underlying | 
 | /// non-aggregate types that comprise it. | 
 | /// | 
 | /// If Offsets is non-null, it points to a vector to be filled in | 
 | /// with the in-memory offsets of each of the individual values. | 
 | /// | 
 | static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, | 
 |                             SmallVectorImpl<EVT> &ValueVTs, | 
 |                             SmallVectorImpl<uint64_t> *Offsets = 0, | 
 |                             uint64_t StartingOffset = 0) { | 
 |   // Given a struct type, recursively traverse the elements. | 
 |   if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); | 
 |     for (StructType::element_iterator EB = STy->element_begin(), | 
 |                                       EI = EB, | 
 |                                       EE = STy->element_end(); | 
 |          EI != EE; ++EI) | 
 |       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, | 
 |                       StartingOffset + SL->getElementOffset(EI - EB)); | 
 |     return; | 
 |   } | 
 |   // Given an array type, recursively traverse the elements. | 
 |   if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
 |     const Type *EltTy = ATy->getElementType(); | 
 |     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); | 
 |     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
 |       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, | 
 |                       StartingOffset + i * EltSize); | 
 |     return; | 
 |   } | 
 |   // Interpret void as zero return values. | 
 |   if (Ty == Type::getVoidTy(Ty->getContext())) | 
 |     return; | 
 |   // Base case: we can get an EVT for this LLVM IR type. | 
 |   ValueVTs.push_back(TLI.getValueType(Ty)); | 
 |   if (Offsets) | 
 |     Offsets->push_back(StartingOffset); | 
 | } | 
 |  | 
 | namespace llvm { | 
 |   /// RegsForValue - This struct represents the registers (physical or virtual) | 
 |   /// that a particular set of values is assigned, and the type information about | 
 |   /// the value. The most common situation is to represent one value at a time, | 
 |   /// but struct or array values are handled element-wise as multiple values. | 
 |   /// The splitting of aggregates is performed recursively, so that we never | 
 |   /// have aggregate-typed registers. The values at this point do not necessarily | 
 |   /// have legal types, so each value may require one or more registers of some | 
 |   /// legal type. | 
 |   /// | 
 |   struct VISIBILITY_HIDDEN RegsForValue { | 
 |     /// TLI - The TargetLowering object. | 
 |     /// | 
 |     const TargetLowering *TLI; | 
 |  | 
 |     /// ValueVTs - The value types of the values, which may not be legal, and | 
 |     /// may need be promoted or synthesized from one or more registers. | 
 |     /// | 
 |     SmallVector<EVT, 4> ValueVTs; | 
 |  | 
 |     /// RegVTs - The value types of the registers. This is the same size as | 
 |     /// ValueVTs and it records, for each value, what the type of the assigned | 
 |     /// register or registers are. (Individual values are never synthesized | 
 |     /// from more than one type of register.) | 
 |     /// | 
 |     /// With virtual registers, the contents of RegVTs is redundant with TLI's | 
 |     /// getRegisterType member function, however when with physical registers | 
 |     /// it is necessary to have a separate record of the types. | 
 |     /// | 
 |     SmallVector<EVT, 4> RegVTs; | 
 |  | 
 |     /// Regs - This list holds the registers assigned to the values. | 
 |     /// Each legal or promoted value requires one register, and each | 
 |     /// expanded value requires multiple registers. | 
 |     /// | 
 |     SmallVector<unsigned, 4> Regs; | 
 |  | 
 |     RegsForValue() : TLI(0) {} | 
 |  | 
 |     RegsForValue(const TargetLowering &tli, | 
 |                  const SmallVector<unsigned, 4> ®s, | 
 |                  EVT regvt, EVT valuevt) | 
 |       : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} | 
 |     RegsForValue(const TargetLowering &tli, | 
 |                  const SmallVector<unsigned, 4> ®s, | 
 |                  const SmallVector<EVT, 4> ®vts, | 
 |                  const SmallVector<EVT, 4> &valuevts) | 
 |       : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} | 
 |     RegsForValue(LLVMContext &Context, const TargetLowering &tli, | 
 |                  unsigned Reg, const Type *Ty) : TLI(&tli) { | 
 |       ComputeValueVTs(tli, Ty, ValueVTs); | 
 |  | 
 |       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
 |         EVT ValueVT = ValueVTs[Value]; | 
 |         unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); | 
 |         EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); | 
 |         for (unsigned i = 0; i != NumRegs; ++i) | 
 |           Regs.push_back(Reg + i); | 
 |         RegVTs.push_back(RegisterVT); | 
 |         Reg += NumRegs; | 
 |       } | 
 |     } | 
 |  | 
 |     /// append - Add the specified values to this one. | 
 |     void append(const RegsForValue &RHS) { | 
 |       TLI = RHS.TLI; | 
 |       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); | 
 |       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); | 
 |       Regs.append(RHS.Regs.begin(), RHS.Regs.end()); | 
 |     } | 
 |  | 
 |  | 
 |     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
 |     /// this value and returns the result as a ValueVTs value.  This uses | 
 |     /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 |     /// If the Flag pointer is NULL, no flag is used. | 
 |     SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, | 
 |                               SDValue &Chain, SDValue *Flag) const; | 
 |  | 
 |     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
 |     /// specified value into the registers specified by this object.  This uses | 
 |     /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 |     /// If the Flag pointer is NULL, no flag is used. | 
 |     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, | 
 |                        SDValue &Chain, SDValue *Flag) const; | 
 |  | 
 |     /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
 |     /// operand list.  This adds the code marker, matching input operand index | 
 |     /// (if applicable), and includes the number of values added into it. | 
 |     void AddInlineAsmOperands(unsigned Code, | 
 |                               bool HasMatching, unsigned MatchingIdx, | 
 |                               SelectionDAG &DAG, std::vector<SDValue> &Ops) const; | 
 |   }; | 
 | } | 
 |  | 
 | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by | 
 | /// PHI nodes or outside of the basic block that defines it, or used by a | 
 | /// switch or atomic instruction, which may expand to multiple basic blocks. | 
 | static bool isUsedOutsideOfDefiningBlock(Instruction *I) { | 
 |   if (isa<PHINode>(I)) return true; | 
 |   BasicBlock *BB = I->getParent(); | 
 |   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) | 
 |     if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// isOnlyUsedInEntryBlock - If the specified argument is only used in the | 
 | /// entry block, return true.  This includes arguments used by switches, since | 
 | /// the switch may expand into multiple basic blocks. | 
 | static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) { | 
 |   // With FastISel active, we may be splitting blocks, so force creation | 
 |   // of virtual registers for all non-dead arguments. | 
 |   // Don't force virtual registers for byval arguments though, because | 
 |   // fast-isel can't handle those in all cases. | 
 |   if (EnableFastISel && !A->hasByValAttr()) | 
 |     return A->use_empty(); | 
 |  | 
 |   BasicBlock *Entry = A->getParent()->begin(); | 
 |   for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) | 
 |     if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) | 
 |       return false;  // Use not in entry block. | 
 |   return true; | 
 | } | 
 |  | 
 | FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) | 
 |   : TLI(tli) { | 
 | } | 
 |  | 
 | void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf, | 
 |                                SelectionDAG &DAG, | 
 |                                bool EnableFastISel) { | 
 |   Fn = &fn; | 
 |   MF = &mf; | 
 |   RegInfo = &MF->getRegInfo(); | 
 |  | 
 |   // Create a vreg for each argument register that is not dead and is used | 
 |   // outside of the entry block for the function. | 
 |   for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); | 
 |        AI != E; ++AI) | 
 |     if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) | 
 |       InitializeRegForValue(AI); | 
 |  | 
 |   // Initialize the mapping of values to registers.  This is only set up for | 
 |   // instruction values that are used outside of the block that defines | 
 |   // them. | 
 |   Function::iterator BB = Fn->begin(), EB = Fn->end(); | 
 |   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
 |     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) | 
 |       if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { | 
 |         const Type *Ty = AI->getAllocatedType(); | 
 |         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); | 
 |         unsigned Align = | 
 |           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
 |                    AI->getAlignment()); | 
 |  | 
 |         TySize *= CUI->getZExtValue();   // Get total allocated size. | 
 |         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. | 
 |         StaticAllocaMap[AI] = | 
 |           MF->getFrameInfo()->CreateStackObject(TySize, Align); | 
 |       } | 
 |  | 
 |   for (; BB != EB; ++BB) | 
 |     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
 |       if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) | 
 |         if (!isa<AllocaInst>(I) || | 
 |             !StaticAllocaMap.count(cast<AllocaInst>(I))) | 
 |           InitializeRegForValue(I); | 
 |  | 
 |   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This | 
 |   // also creates the initial PHI MachineInstrs, though none of the input | 
 |   // operands are populated. | 
 |   for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) { | 
 |     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); | 
 |     MBBMap[BB] = MBB; | 
 |     MF->push_back(MBB); | 
 |  | 
 |     // Transfer the address-taken flag. This is necessary because there could | 
 |     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only | 
 |     // the first one should be marked. | 
 |     if (BB->hasAddressTaken()) | 
 |       MBB->setHasAddressTaken(); | 
 |  | 
 |     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as | 
 |     // appropriate. | 
 |     PHINode *PN; | 
 |     DebugLoc DL; | 
 |     for (BasicBlock::iterator | 
 |            I = BB->begin(), E = BB->end(); I != E; ++I) { | 
 |       if (CallInst *CI = dyn_cast<CallInst>(I)) { | 
 |         if (Function *F = CI->getCalledFunction()) { | 
 |           switch (F->getIntrinsicID()) { | 
 |           default: break; | 
 |           case Intrinsic::dbg_stoppoint: { | 
 |             DbgStopPointInst *SPI = cast<DbgStopPointInst>(I); | 
 |             if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::Default))  | 
 |               DL = ExtractDebugLocation(*SPI, MF->getDebugLocInfo()); | 
 |             break; | 
 |           } | 
 |           case Intrinsic::dbg_func_start: { | 
 |             DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I); | 
 |             if (isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::Default))  | 
 |               DL = ExtractDebugLocation(*FSI, MF->getDebugLocInfo()); | 
 |             break; | 
 |           } | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       PN = dyn_cast<PHINode>(I); | 
 |       if (!PN || PN->use_empty()) continue; | 
 |  | 
 |       unsigned PHIReg = ValueMap[PN]; | 
 |       assert(PHIReg && "PHI node does not have an assigned virtual register!"); | 
 |  | 
 |       SmallVector<EVT, 4> ValueVTs; | 
 |       ComputeValueVTs(TLI, PN->getType(), ValueVTs); | 
 |       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
 |         EVT VT = ValueVTs[vti]; | 
 |         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); | 
 |         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
 |         for (unsigned i = 0; i != NumRegisters; ++i) | 
 |           BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i); | 
 |         PHIReg += NumRegisters; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | unsigned FunctionLoweringInfo::MakeReg(EVT VT) { | 
 |   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); | 
 | } | 
 |  | 
 | /// CreateRegForValue - Allocate the appropriate number of virtual registers of | 
 | /// the correctly promoted or expanded types.  Assign these registers | 
 | /// consecutive vreg numbers and return the first assigned number. | 
 | /// | 
 | /// In the case that the given value has struct or array type, this function | 
 | /// will assign registers for each member or element. | 
 | /// | 
 | unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   ComputeValueVTs(TLI, V->getType(), ValueVTs); | 
 |  | 
 |   unsigned FirstReg = 0; | 
 |   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
 |     EVT ValueVT = ValueVTs[Value]; | 
 |     EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT); | 
 |  | 
 |     unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT); | 
 |     for (unsigned i = 0; i != NumRegs; ++i) { | 
 |       unsigned R = MakeReg(RegisterVT); | 
 |       if (!FirstReg) FirstReg = R; | 
 |     } | 
 |   } | 
 |   return FirstReg; | 
 | } | 
 |  | 
 | /// getCopyFromParts - Create a value that contains the specified legal parts | 
 | /// combined into the value they represent.  If the parts combine to a type | 
 | /// larger then ValueVT then AssertOp can be used to specify whether the extra | 
 | /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT | 
 | /// (ISD::AssertSext). | 
 | static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, | 
 |                                 const SDValue *Parts, | 
 |                                 unsigned NumParts, EVT PartVT, EVT ValueVT, | 
 |                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) { | 
 |   assert(NumParts > 0 && "No parts to assemble!"); | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   SDValue Val = Parts[0]; | 
 |  | 
 |   if (NumParts > 1) { | 
 |     // Assemble the value from multiple parts. | 
 |     if (!ValueVT.isVector() && ValueVT.isInteger()) { | 
 |       unsigned PartBits = PartVT.getSizeInBits(); | 
 |       unsigned ValueBits = ValueVT.getSizeInBits(); | 
 |  | 
 |       // Assemble the power of 2 part. | 
 |       unsigned RoundParts = NumParts & (NumParts - 1) ? | 
 |         1 << Log2_32(NumParts) : NumParts; | 
 |       unsigned RoundBits = PartBits * RoundParts; | 
 |       EVT RoundVT = RoundBits == ValueBits ? | 
 |         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); | 
 |       SDValue Lo, Hi; | 
 |  | 
 |       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); | 
 |  | 
 |       if (RoundParts > 2) { | 
 |         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); | 
 |         Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, | 
 |                               PartVT, HalfVT); | 
 |       } else { | 
 |         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); | 
 |         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); | 
 |       } | 
 |       if (TLI.isBigEndian()) | 
 |         std::swap(Lo, Hi); | 
 |       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); | 
 |  | 
 |       if (RoundParts < NumParts) { | 
 |         // Assemble the trailing non-power-of-2 part. | 
 |         unsigned OddParts = NumParts - RoundParts; | 
 |         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); | 
 |         Hi = getCopyFromParts(DAG, dl, | 
 |                               Parts+RoundParts, OddParts, PartVT, OddVT); | 
 |  | 
 |         // Combine the round and odd parts. | 
 |         Lo = Val; | 
 |         if (TLI.isBigEndian()) | 
 |           std::swap(Lo, Hi); | 
 |         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
 |         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); | 
 |         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, | 
 |                          DAG.getConstant(Lo.getValueType().getSizeInBits(), | 
 |                                          TLI.getPointerTy())); | 
 |         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); | 
 |         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); | 
 |       } | 
 |     } else if (ValueVT.isVector()) { | 
 |       // Handle a multi-element vector. | 
 |       EVT IntermediateVT, RegisterVT; | 
 |       unsigned NumIntermediates; | 
 |       unsigned NumRegs = | 
 |         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,  | 
 |                                    NumIntermediates, RegisterVT); | 
 |       assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
 |       NumParts = NumRegs; // Silence a compiler warning. | 
 |       assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
 |       assert(RegisterVT == Parts[0].getValueType() && | 
 |              "Part type doesn't match part!"); | 
 |  | 
 |       // Assemble the parts into intermediate operands. | 
 |       SmallVector<SDValue, 8> Ops(NumIntermediates); | 
 |       if (NumIntermediates == NumParts) { | 
 |         // If the register was not expanded, truncate or copy the value, | 
 |         // as appropriate. | 
 |         for (unsigned i = 0; i != NumParts; ++i) | 
 |           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, | 
 |                                     PartVT, IntermediateVT); | 
 |       } else if (NumParts > 0) { | 
 |         // If the intermediate type was expanded, build the intermediate operands | 
 |         // from the parts. | 
 |         assert(NumParts % NumIntermediates == 0 && | 
 |                "Must expand into a divisible number of parts!"); | 
 |         unsigned Factor = NumParts / NumIntermediates; | 
 |         for (unsigned i = 0; i != NumIntermediates; ++i) | 
 |           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, | 
 |                                     PartVT, IntermediateVT); | 
 |       } | 
 |  | 
 |       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate | 
 |       // operands. | 
 |       Val = DAG.getNode(IntermediateVT.isVector() ? | 
 |                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, | 
 |                         ValueVT, &Ops[0], NumIntermediates); | 
 |     } else if (PartVT.isFloatingPoint()) { | 
 |       // FP split into multiple FP parts (for ppcf128) | 
 |       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && | 
 |              "Unexpected split"); | 
 |       SDValue Lo, Hi; | 
 |       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); | 
 |       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); | 
 |       if (TLI.isBigEndian()) | 
 |         std::swap(Lo, Hi); | 
 |       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); | 
 |     } else { | 
 |       // FP split into integer parts (soft fp) | 
 |       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && | 
 |              !PartVT.isVector() && "Unexpected split"); | 
 |       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); | 
 |       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); | 
 |     } | 
 |   } | 
 |  | 
 |   // There is now one part, held in Val.  Correct it to match ValueVT. | 
 |   PartVT = Val.getValueType(); | 
 |  | 
 |   if (PartVT == ValueVT) | 
 |     return Val; | 
 |  | 
 |   if (PartVT.isVector()) { | 
 |     assert(ValueVT.isVector() && "Unknown vector conversion!"); | 
 |     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); | 
 |   } | 
 |  | 
 |   if (ValueVT.isVector()) { | 
 |     assert(ValueVT.getVectorElementType() == PartVT && | 
 |            ValueVT.getVectorNumElements() == 1 && | 
 |            "Only trivial scalar-to-vector conversions should get here!"); | 
 |     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); | 
 |   } | 
 |  | 
 |   if (PartVT.isInteger() && | 
 |       ValueVT.isInteger()) { | 
 |     if (ValueVT.bitsLT(PartVT)) { | 
 |       // For a truncate, see if we have any information to | 
 |       // indicate whether the truncated bits will always be | 
 |       // zero or sign-extension. | 
 |       if (AssertOp != ISD::DELETED_NODE) | 
 |         Val = DAG.getNode(AssertOp, dl, PartVT, Val, | 
 |                           DAG.getValueType(ValueVT)); | 
 |       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); | 
 |     } else { | 
 |       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); | 
 |     } | 
 |   } | 
 |  | 
 |   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
 |     if (ValueVT.bitsLT(Val.getValueType())) | 
 |       // FP_ROUND's are always exact here. | 
 |       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, | 
 |                          DAG.getIntPtrConstant(1)); | 
 |     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); | 
 |   } | 
 |  | 
 |   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) | 
 |     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); | 
 |  | 
 |   llvm_unreachable("Unknown mismatch!"); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// getCopyToParts - Create a series of nodes that contain the specified value | 
 | /// split into legal parts.  If the parts contain more bits than Val, then, for | 
 | /// integers, ExtendKind can be used to specify how to generate the extra bits. | 
 | static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, | 
 |                            SDValue *Parts, unsigned NumParts, EVT PartVT, | 
 |                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   EVT PtrVT = TLI.getPointerTy(); | 
 |   EVT ValueVT = Val.getValueType(); | 
 |   unsigned PartBits = PartVT.getSizeInBits(); | 
 |   unsigned OrigNumParts = NumParts; | 
 |   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); | 
 |  | 
 |   if (!NumParts) | 
 |     return; | 
 |  | 
 |   if (!ValueVT.isVector()) { | 
 |     if (PartVT == ValueVT) { | 
 |       assert(NumParts == 1 && "No-op copy with multiple parts!"); | 
 |       Parts[0] = Val; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (NumParts * PartBits > ValueVT.getSizeInBits()) { | 
 |       // If the parts cover more bits than the value has, promote the value. | 
 |       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
 |         assert(NumParts == 1 && "Do not know what to promote to!"); | 
 |         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); | 
 |       } else if (PartVT.isInteger() && ValueVT.isInteger()) { | 
 |         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
 |         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); | 
 |       } else { | 
 |         llvm_unreachable("Unknown mismatch!"); | 
 |       } | 
 |     } else if (PartBits == ValueVT.getSizeInBits()) { | 
 |       // Different types of the same size. | 
 |       assert(NumParts == 1 && PartVT != ValueVT); | 
 |       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); | 
 |     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { | 
 |       // If the parts cover less bits than value has, truncate the value. | 
 |       if (PartVT.isInteger() && ValueVT.isInteger()) { | 
 |         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
 |         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); | 
 |       } else { | 
 |         llvm_unreachable("Unknown mismatch!"); | 
 |       } | 
 |     } | 
 |  | 
 |     // The value may have changed - recompute ValueVT. | 
 |     ValueVT = Val.getValueType(); | 
 |     assert(NumParts * PartBits == ValueVT.getSizeInBits() && | 
 |            "Failed to tile the value with PartVT!"); | 
 |  | 
 |     if (NumParts == 1) { | 
 |       assert(PartVT == ValueVT && "Type conversion failed!"); | 
 |       Parts[0] = Val; | 
 |       return; | 
 |     } | 
 |  | 
 |     // Expand the value into multiple parts. | 
 |     if (NumParts & (NumParts - 1)) { | 
 |       // The number of parts is not a power of 2.  Split off and copy the tail. | 
 |       assert(PartVT.isInteger() && ValueVT.isInteger() && | 
 |              "Do not know what to expand to!"); | 
 |       unsigned RoundParts = 1 << Log2_32(NumParts); | 
 |       unsigned RoundBits = RoundParts * PartBits; | 
 |       unsigned OddParts = NumParts - RoundParts; | 
 |       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, | 
 |                                    DAG.getConstant(RoundBits, | 
 |                                                    TLI.getPointerTy())); | 
 |       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); | 
 |       if (TLI.isBigEndian()) | 
 |         // The odd parts were reversed by getCopyToParts - unreverse them. | 
 |         std::reverse(Parts + RoundParts, Parts + NumParts); | 
 |       NumParts = RoundParts; | 
 |       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
 |       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); | 
 |     } | 
 |  | 
 |     // The number of parts is a power of 2.  Repeatedly bisect the value using | 
 |     // EXTRACT_ELEMENT. | 
 |     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                            EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), | 
 |                            Val); | 
 |     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { | 
 |       for (unsigned i = 0; i < NumParts; i += StepSize) { | 
 |         unsigned ThisBits = StepSize * PartBits / 2; | 
 |         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); | 
 |         SDValue &Part0 = Parts[i]; | 
 |         SDValue &Part1 = Parts[i+StepSize/2]; | 
 |  | 
 |         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, | 
 |                             ThisVT, Part0, | 
 |                             DAG.getConstant(1, PtrVT)); | 
 |         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, | 
 |                             ThisVT, Part0, | 
 |                             DAG.getConstant(0, PtrVT)); | 
 |  | 
 |         if (ThisBits == PartBits && ThisVT != PartVT) { | 
 |           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                                                 PartVT, Part0); | 
 |           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                                                 PartVT, Part1); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (TLI.isBigEndian()) | 
 |       std::reverse(Parts, Parts + OrigNumParts); | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   // Vector ValueVT. | 
 |   if (NumParts == 1) { | 
 |     if (PartVT != ValueVT) { | 
 |       if (PartVT.isVector()) { | 
 |         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); | 
 |       } else { | 
 |         assert(ValueVT.getVectorElementType() == PartVT && | 
 |                ValueVT.getVectorNumElements() == 1 && | 
 |                "Only trivial vector-to-scalar conversions should get here!"); | 
 |         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
 |                           PartVT, Val, | 
 |                           DAG.getConstant(0, PtrVT)); | 
 |       } | 
 |     } | 
 |  | 
 |     Parts[0] = Val; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Handle a multi-element vector. | 
 |   EVT IntermediateVT, RegisterVT; | 
 |   unsigned NumIntermediates; | 
 |   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, | 
 |                               IntermediateVT, NumIntermediates, RegisterVT); | 
 |   unsigned NumElements = ValueVT.getVectorNumElements(); | 
 |  | 
 |   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
 |   NumParts = NumRegs; // Silence a compiler warning. | 
 |   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
 |  | 
 |   // Split the vector into intermediate operands. | 
 |   SmallVector<SDValue, 8> Ops(NumIntermediates); | 
 |   for (unsigned i = 0; i != NumIntermediates; ++i) | 
 |     if (IntermediateVT.isVector()) | 
 |       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, | 
 |                            IntermediateVT, Val, | 
 |                            DAG.getConstant(i * (NumElements / NumIntermediates), | 
 |                                            PtrVT)); | 
 |     else | 
 |       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
 |                            IntermediateVT, Val, | 
 |                            DAG.getConstant(i, PtrVT)); | 
 |  | 
 |   // Split the intermediate operands into legal parts. | 
 |   if (NumParts == NumIntermediates) { | 
 |     // If the register was not expanded, promote or copy the value, | 
 |     // as appropriate. | 
 |     for (unsigned i = 0; i != NumParts; ++i) | 
 |       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); | 
 |   } else if (NumParts > 0) { | 
 |     // If the intermediate type was expanded, split each the value into | 
 |     // legal parts. | 
 |     assert(NumParts % NumIntermediates == 0 && | 
 |            "Must expand into a divisible number of parts!"); | 
 |     unsigned Factor = NumParts / NumIntermediates; | 
 |     for (unsigned i = 0; i != NumIntermediates; ++i) | 
 |       getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { | 
 |   AA = &aa; | 
 |   GFI = gfi; | 
 |   TD = DAG.getTarget().getTargetData(); | 
 | } | 
 |  | 
 | /// clear - Clear out the curret SelectionDAG and the associated | 
 | /// state and prepare this SelectionDAGLowering object to be used | 
 | /// for a new block. This doesn't clear out information about | 
 | /// additional blocks that are needed to complete switch lowering | 
 | /// or PHI node updating; that information is cleared out as it is | 
 | /// consumed. | 
 | void SelectionDAGLowering::clear() { | 
 |   NodeMap.clear(); | 
 |   PendingLoads.clear(); | 
 |   PendingExports.clear(); | 
 |   EdgeMapping.clear(); | 
 |   DAG.clear(); | 
 |   CurDebugLoc = DebugLoc::getUnknownLoc(); | 
 |   HasTailCall = false; | 
 | } | 
 |  | 
 | /// getRoot - Return the current virtual root of the Selection DAG, | 
 | /// flushing any PendingLoad items. This must be done before emitting | 
 | /// a store or any other node that may need to be ordered after any | 
 | /// prior load instructions. | 
 | /// | 
 | SDValue SelectionDAGLowering::getRoot() { | 
 |   if (PendingLoads.empty()) | 
 |     return DAG.getRoot(); | 
 |  | 
 |   if (PendingLoads.size() == 1) { | 
 |     SDValue Root = PendingLoads[0]; | 
 |     DAG.setRoot(Root); | 
 |     PendingLoads.clear(); | 
 |     return Root; | 
 |   } | 
 |  | 
 |   // Otherwise, we have to make a token factor node. | 
 |   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, | 
 |                                &PendingLoads[0], PendingLoads.size()); | 
 |   PendingLoads.clear(); | 
 |   DAG.setRoot(Root); | 
 |   return Root; | 
 | } | 
 |  | 
 | /// getControlRoot - Similar to getRoot, but instead of flushing all the | 
 | /// PendingLoad items, flush all the PendingExports items. It is necessary | 
 | /// to do this before emitting a terminator instruction. | 
 | /// | 
 | SDValue SelectionDAGLowering::getControlRoot() { | 
 |   SDValue Root = DAG.getRoot(); | 
 |  | 
 |   if (PendingExports.empty()) | 
 |     return Root; | 
 |  | 
 |   // Turn all of the CopyToReg chains into one factored node. | 
 |   if (Root.getOpcode() != ISD::EntryToken) { | 
 |     unsigned i = 0, e = PendingExports.size(); | 
 |     for (; i != e; ++i) { | 
 |       assert(PendingExports[i].getNode()->getNumOperands() > 1); | 
 |       if (PendingExports[i].getNode()->getOperand(0) == Root) | 
 |         break;  // Don't add the root if we already indirectly depend on it. | 
 |     } | 
 |  | 
 |     if (i == e) | 
 |       PendingExports.push_back(Root); | 
 |   } | 
 |  | 
 |   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, | 
 |                      &PendingExports[0], | 
 |                      PendingExports.size()); | 
 |   PendingExports.clear(); | 
 |   DAG.setRoot(Root); | 
 |   return Root; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visit(Instruction &I) { | 
 |   visit(I.getOpcode(), I); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visit(unsigned Opcode, User &I) { | 
 |   // Note: this doesn't use InstVisitor, because it has to work with | 
 |   // ConstantExpr's in addition to instructions. | 
 |   switch (Opcode) { | 
 |   default: llvm_unreachable("Unknown instruction type encountered!"); | 
 |     // Build the switch statement using the Instruction.def file. | 
 | #define HANDLE_INST(NUM, OPCODE, CLASS) \ | 
 |   case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); | 
 | #include "llvm/Instruction.def" | 
 |   } | 
 | } | 
 |  | 
 | SDValue SelectionDAGLowering::getValue(const Value *V) { | 
 |   SDValue &N = NodeMap[V]; | 
 |   if (N.getNode()) return N; | 
 |  | 
 |   if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { | 
 |     EVT VT = TLI.getValueType(V->getType(), true); | 
 |  | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) | 
 |       return N = DAG.getConstant(*CI, VT); | 
 |  | 
 |     if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
 |       return N = DAG.getGlobalAddress(GV, VT); | 
 |  | 
 |     if (isa<ConstantPointerNull>(C)) | 
 |       return N = DAG.getConstant(0, TLI.getPointerTy()); | 
 |  | 
 |     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
 |       return N = DAG.getConstantFP(*CFP, VT); | 
 |  | 
 |     if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) | 
 |       return N = DAG.getUNDEF(VT); | 
 |  | 
 |     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
 |       visit(CE->getOpcode(), *CE); | 
 |       SDValue N1 = NodeMap[V]; | 
 |       assert(N1.getNode() && "visit didn't populate the ValueMap!"); | 
 |       return N1; | 
 |     } | 
 |  | 
 |     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { | 
 |       SmallVector<SDValue, 4> Constants; | 
 |       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); | 
 |            OI != OE; ++OI) { | 
 |         SDNode *Val = getValue(*OI).getNode(); | 
 |         // If the operand is an empty aggregate, there are no values. | 
 |         if (!Val) continue; | 
 |         // Add each leaf value from the operand to the Constants list | 
 |         // to form a flattened list of all the values. | 
 |         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) | 
 |           Constants.push_back(SDValue(Val, i)); | 
 |       } | 
 |       return DAG.getMergeValues(&Constants[0], Constants.size(), | 
 |                                 getCurDebugLoc()); | 
 |     } | 
 |  | 
 |     if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { | 
 |       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && | 
 |              "Unknown struct or array constant!"); | 
 |  | 
 |       SmallVector<EVT, 4> ValueVTs; | 
 |       ComputeValueVTs(TLI, C->getType(), ValueVTs); | 
 |       unsigned NumElts = ValueVTs.size(); | 
 |       if (NumElts == 0) | 
 |         return SDValue(); // empty struct | 
 |       SmallVector<SDValue, 4> Constants(NumElts); | 
 |       for (unsigned i = 0; i != NumElts; ++i) { | 
 |         EVT EltVT = ValueVTs[i]; | 
 |         if (isa<UndefValue>(C)) | 
 |           Constants[i] = DAG.getUNDEF(EltVT); | 
 |         else if (EltVT.isFloatingPoint()) | 
 |           Constants[i] = DAG.getConstantFP(0, EltVT); | 
 |         else | 
 |           Constants[i] = DAG.getConstant(0, EltVT); | 
 |       } | 
 |       return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); | 
 |     } | 
 |  | 
 |     if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) | 
 |       return DAG.getBlockAddress(BA, getCurDebugLoc()); | 
 |  | 
 |     const VectorType *VecTy = cast<VectorType>(V->getType()); | 
 |     unsigned NumElements = VecTy->getNumElements(); | 
 |  | 
 |     // Now that we know the number and type of the elements, get that number of | 
 |     // elements into the Ops array based on what kind of constant it is. | 
 |     SmallVector<SDValue, 16> Ops; | 
 |     if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { | 
 |       for (unsigned i = 0; i != NumElements; ++i) | 
 |         Ops.push_back(getValue(CP->getOperand(i))); | 
 |     } else { | 
 |       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); | 
 |       EVT EltVT = TLI.getValueType(VecTy->getElementType()); | 
 |  | 
 |       SDValue Op; | 
 |       if (EltVT.isFloatingPoint()) | 
 |         Op = DAG.getConstantFP(0, EltVT); | 
 |       else | 
 |         Op = DAG.getConstant(0, EltVT); | 
 |       Ops.assign(NumElements, Op); | 
 |     } | 
 |  | 
 |     // Create a BUILD_VECTOR node. | 
 |     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), | 
 |                                     VT, &Ops[0], Ops.size()); | 
 |   } | 
 |  | 
 |   // If this is a static alloca, generate it as the frameindex instead of | 
 |   // computation. | 
 |   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
 |     DenseMap<const AllocaInst*, int>::iterator SI = | 
 |       FuncInfo.StaticAllocaMap.find(AI); | 
 |     if (SI != FuncInfo.StaticAllocaMap.end()) | 
 |       return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); | 
 |   } | 
 |  | 
 |   unsigned InReg = FuncInfo.ValueMap[V]; | 
 |   assert(InReg && "Value not in map!"); | 
 |  | 
 |   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); | 
 |   SDValue Chain = DAG.getEntryNode(); | 
 |   return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); | 
 | } | 
 |  | 
 | /// Get the EVTs and ArgFlags collections that represent the return type | 
 | /// of the given function.  This does not require a DAG or a return value, and | 
 | /// is suitable for use before any DAGs for the function are constructed. | 
 | static void getReturnInfo(const Function* F, SmallVectorImpl<EVT> &OutVTs, | 
 |                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, | 
 |                    TargetLowering &TLI) { | 
 |   const Type* ReturnType = F->getReturnType(); | 
 |  | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   ComputeValueVTs(TLI, ReturnType, ValueVTs); | 
 |   unsigned NumValues = ValueVTs.size(); | 
 |   if ( NumValues == 0 ) return; | 
 |  | 
 |   for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
 |     EVT VT = ValueVTs[j]; | 
 |     ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
 |      | 
 |     if (F->paramHasAttr(0, Attribute::SExt)) | 
 |       ExtendKind = ISD::SIGN_EXTEND; | 
 |     else if (F->paramHasAttr(0, Attribute::ZExt)) | 
 |       ExtendKind = ISD::ZERO_EXTEND; | 
 |  | 
 |     // FIXME: C calling convention requires the return type to be promoted to | 
 |     // at least 32-bit. But this is not necessary for non-C calling | 
 |     // conventions. The frontend should mark functions whose return values | 
 |     // require promoting with signext or zeroext attributes. | 
 |     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { | 
 |       EVT MinVT = TLI.getRegisterType(F->getContext(), MVT::i32); | 
 |       if (VT.bitsLT(MinVT)) | 
 |         VT = MinVT; | 
 |     } | 
 |  | 
 |     unsigned NumParts = TLI.getNumRegisters(F->getContext(), VT); | 
 |     EVT PartVT = TLI.getRegisterType(F->getContext(), VT); | 
 |     // 'inreg' on function refers to return value | 
 |     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
 |     if (F->paramHasAttr(0, Attribute::InReg)) | 
 |       Flags.setInReg(); | 
 |  | 
 |     // Propagate extension type if any | 
 |     if (F->paramHasAttr(0, Attribute::SExt)) | 
 |       Flags.setSExt(); | 
 |     else if (F->paramHasAttr(0, Attribute::ZExt)) | 
 |       Flags.setZExt(); | 
 |  | 
 |     for (unsigned i = 0; i < NumParts; ++i) | 
 |     { | 
 |       OutVTs.push_back(PartVT); | 
 |       OutFlags.push_back(Flags); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitRet(ReturnInst &I) { | 
 |   SDValue Chain = getControlRoot(); | 
 |   SmallVector<ISD::OutputArg, 8> Outs; | 
 |   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
 |     SmallVector<EVT, 4> ValueVTs; | 
 |     ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); | 
 |     unsigned NumValues = ValueVTs.size(); | 
 |     if (NumValues == 0) continue; | 
 |  | 
 |     SDValue RetOp = getValue(I.getOperand(i)); | 
 |     for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
 |       EVT VT = ValueVTs[j]; | 
 |  | 
 |       ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
 |  | 
 |       const Function *F = I.getParent()->getParent(); | 
 |       if (F->paramHasAttr(0, Attribute::SExt)) | 
 |         ExtendKind = ISD::SIGN_EXTEND; | 
 |       else if (F->paramHasAttr(0, Attribute::ZExt)) | 
 |         ExtendKind = ISD::ZERO_EXTEND; | 
 |  | 
 |       // FIXME: C calling convention requires the return type to be promoted to | 
 |       // at least 32-bit. But this is not necessary for non-C calling | 
 |       // conventions. The frontend should mark functions whose return values | 
 |       // require promoting with signext or zeroext attributes. | 
 |       if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { | 
 |         EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); | 
 |         if (VT.bitsLT(MinVT)) | 
 |           VT = MinVT; | 
 |       } | 
 |  | 
 |       unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); | 
 |       EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); | 
 |       SmallVector<SDValue, 4> Parts(NumParts); | 
 |       getCopyToParts(DAG, getCurDebugLoc(), | 
 |                      SDValue(RetOp.getNode(), RetOp.getResNo() + j), | 
 |                      &Parts[0], NumParts, PartVT, ExtendKind); | 
 |  | 
 |       // 'inreg' on function refers to return value | 
 |       ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
 |       if (F->paramHasAttr(0, Attribute::InReg)) | 
 |         Flags.setInReg(); | 
 |  | 
 |       // Propagate extension type if any | 
 |       if (F->paramHasAttr(0, Attribute::SExt)) | 
 |         Flags.setSExt(); | 
 |       else if (F->paramHasAttr(0, Attribute::ZExt)) | 
 |         Flags.setZExt(); | 
 |  | 
 |       for (unsigned i = 0; i < NumParts; ++i) | 
 |         Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); | 
 |     } | 
 |   } | 
 |  | 
 |   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); | 
 |   CallingConv::ID CallConv = | 
 |     DAG.getMachineFunction().getFunction()->getCallingConv(); | 
 |   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, | 
 |                           Outs, getCurDebugLoc(), DAG); | 
 |  | 
 |   // Verify that the target's LowerReturn behaved as expected. | 
 |   assert(Chain.getNode() && Chain.getValueType() == MVT::Other && | 
 |          "LowerReturn didn't return a valid chain!"); | 
 |  | 
 |   // Update the DAG with the new chain value resulting from return lowering. | 
 |   DAG.setRoot(Chain); | 
 | } | 
 |  | 
 | /// CopyToExportRegsIfNeeded - If the given value has virtual registers | 
 | /// created for it, emit nodes to copy the value into the virtual | 
 | /// registers. | 
 | void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value *V) { | 
 |   if (!V->use_empty()) { | 
 |     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); | 
 |     if (VMI != FuncInfo.ValueMap.end()) | 
 |       CopyValueToVirtualRegister(V, VMI->second); | 
 |   } | 
 | } | 
 |  | 
 | /// ExportFromCurrentBlock - If this condition isn't known to be exported from | 
 | /// the current basic block, add it to ValueMap now so that we'll get a | 
 | /// CopyTo/FromReg. | 
 | void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { | 
 |   // No need to export constants. | 
 |   if (!isa<Instruction>(V) && !isa<Argument>(V)) return; | 
 |  | 
 |   // Already exported? | 
 |   if (FuncInfo.isExportedInst(V)) return; | 
 |  | 
 |   unsigned Reg = FuncInfo.InitializeRegForValue(V); | 
 |   CopyValueToVirtualRegister(V, Reg); | 
 | } | 
 |  | 
 | bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, | 
 |                                                     const BasicBlock *FromBB) { | 
 |   // The operands of the setcc have to be in this block.  We don't know | 
 |   // how to export them from some other block. | 
 |   if (Instruction *VI = dyn_cast<Instruction>(V)) { | 
 |     // Can export from current BB. | 
 |     if (VI->getParent() == FromBB) | 
 |       return true; | 
 |  | 
 |     // Is already exported, noop. | 
 |     return FuncInfo.isExportedInst(V); | 
 |   } | 
 |  | 
 |   // If this is an argument, we can export it if the BB is the entry block or | 
 |   // if it is already exported. | 
 |   if (isa<Argument>(V)) { | 
 |     if (FromBB == &FromBB->getParent()->getEntryBlock()) | 
 |       return true; | 
 |  | 
 |     // Otherwise, can only export this if it is already exported. | 
 |     return FuncInfo.isExportedInst(V); | 
 |   } | 
 |  | 
 |   // Otherwise, constants can always be exported. | 
 |   return true; | 
 | } | 
 |  | 
 | static bool InBlock(const Value *V, const BasicBlock *BB) { | 
 |   if (const Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return I->getParent() == BB; | 
 |   return true; | 
 | } | 
 |  | 
 | /// getFCmpCondCode - Return the ISD condition code corresponding to | 
 | /// the given LLVM IR floating-point condition code.  This includes | 
 | /// consideration of global floating-point math flags. | 
 | /// | 
 | static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { | 
 |   ISD::CondCode FPC, FOC; | 
 |   switch (Pred) { | 
 |   case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; | 
 |   case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; | 
 |   case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; | 
 |   case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; | 
 |   case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; | 
 |   case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; | 
 |   case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; | 
 |   case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break; | 
 |   case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break; | 
 |   case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; | 
 |   case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; | 
 |   case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; | 
 |   case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; | 
 |   case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; | 
 |   case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; | 
 |   case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; | 
 |   default: | 
 |     llvm_unreachable("Invalid FCmp predicate opcode!"); | 
 |     FOC = FPC = ISD::SETFALSE; | 
 |     break; | 
 |   } | 
 |   if (FiniteOnlyFPMath()) | 
 |     return FOC; | 
 |   else | 
 |     return FPC; | 
 | } | 
 |  | 
 | /// getICmpCondCode - Return the ISD condition code corresponding to | 
 | /// the given LLVM IR integer condition code. | 
 | /// | 
 | static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { | 
 |   switch (Pred) { | 
 |   case ICmpInst::ICMP_EQ:  return ISD::SETEQ; | 
 |   case ICmpInst::ICMP_NE:  return ISD::SETNE; | 
 |   case ICmpInst::ICMP_SLE: return ISD::SETLE; | 
 |   case ICmpInst::ICMP_ULE: return ISD::SETULE; | 
 |   case ICmpInst::ICMP_SGE: return ISD::SETGE; | 
 |   case ICmpInst::ICMP_UGE: return ISD::SETUGE; | 
 |   case ICmpInst::ICMP_SLT: return ISD::SETLT; | 
 |   case ICmpInst::ICMP_ULT: return ISD::SETULT; | 
 |   case ICmpInst::ICMP_SGT: return ISD::SETGT; | 
 |   case ICmpInst::ICMP_UGT: return ISD::SETUGT; | 
 |   default: | 
 |     llvm_unreachable("Invalid ICmp predicate opcode!"); | 
 |     return ISD::SETNE; | 
 |   } | 
 | } | 
 |  | 
 | /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. | 
 | /// This function emits a branch and is used at the leaves of an OR or an | 
 | /// AND operator tree. | 
 | /// | 
 | void | 
 | SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond, | 
 |                                                    MachineBasicBlock *TBB, | 
 |                                                    MachineBasicBlock *FBB, | 
 |                                                    MachineBasicBlock *CurBB) { | 
 |   const BasicBlock *BB = CurBB->getBasicBlock(); | 
 |  | 
 |   // If the leaf of the tree is a comparison, merge the condition into | 
 |   // the caseblock. | 
 |   if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { | 
 |     // The operands of the cmp have to be in this block.  We don't know | 
 |     // how to export them from some other block.  If this is the first block | 
 |     // of the sequence, no exporting is needed. | 
 |     if (CurBB == CurMBB || | 
 |         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && | 
 |          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { | 
 |       ISD::CondCode Condition; | 
 |       if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { | 
 |         Condition = getICmpCondCode(IC->getPredicate()); | 
 |       } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { | 
 |         Condition = getFCmpCondCode(FC->getPredicate()); | 
 |       } else { | 
 |         Condition = ISD::SETEQ; // silence warning. | 
 |         llvm_unreachable("Unknown compare instruction"); | 
 |       } | 
 |  | 
 |       CaseBlock CB(Condition, BOp->getOperand(0), | 
 |                    BOp->getOperand(1), NULL, TBB, FBB, CurBB); | 
 |       SwitchCases.push_back(CB); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Create a CaseBlock record representing this branch. | 
 |   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), | 
 |                NULL, TBB, FBB, CurBB); | 
 |   SwitchCases.push_back(CB); | 
 | } | 
 |  | 
 | /// FindMergedConditions - If Cond is an expression like | 
 | void SelectionDAGLowering::FindMergedConditions(Value *Cond, | 
 |                                                 MachineBasicBlock *TBB, | 
 |                                                 MachineBasicBlock *FBB, | 
 |                                                 MachineBasicBlock *CurBB, | 
 |                                                 unsigned Opc) { | 
 |   // If this node is not part of the or/and tree, emit it as a branch. | 
 |   Instruction *BOp = dyn_cast<Instruction>(Cond); | 
 |   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || | 
 |       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || | 
 |       BOp->getParent() != CurBB->getBasicBlock() || | 
 |       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || | 
 |       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { | 
 |     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); | 
 |     return; | 
 |   } | 
 |  | 
 |   //  Create TmpBB after CurBB. | 
 |   MachineFunction::iterator BBI = CurBB; | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); | 
 |   CurBB->getParent()->insert(++BBI, TmpBB); | 
 |  | 
 |   if (Opc == Instruction::Or) { | 
 |     // Codegen X | Y as: | 
 |     //   jmp_if_X TBB | 
 |     //   jmp TmpBB | 
 |     // TmpBB: | 
 |     //   jmp_if_Y TBB | 
 |     //   jmp FBB | 
 |     // | 
 |  | 
 |     // Emit the LHS condition. | 
 |     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); | 
 |  | 
 |     // Emit the RHS condition into TmpBB. | 
 |     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); | 
 |   } else { | 
 |     assert(Opc == Instruction::And && "Unknown merge op!"); | 
 |     // Codegen X & Y as: | 
 |     //   jmp_if_X TmpBB | 
 |     //   jmp FBB | 
 |     // TmpBB: | 
 |     //   jmp_if_Y TBB | 
 |     //   jmp FBB | 
 |     // | 
 |     //  This requires creation of TmpBB after CurBB. | 
 |  | 
 |     // Emit the LHS condition. | 
 |     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); | 
 |  | 
 |     // Emit the RHS condition into TmpBB. | 
 |     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); | 
 |   } | 
 | } | 
 |  | 
 | /// If the set of cases should be emitted as a series of branches, return true. | 
 | /// If we should emit this as a bunch of and/or'd together conditions, return | 
 | /// false. | 
 | bool | 
 | SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ | 
 |   if (Cases.size() != 2) return true; | 
 |  | 
 |   // If this is two comparisons of the same values or'd or and'd together, they | 
 |   // will get folded into a single comparison, so don't emit two blocks. | 
 |   if ((Cases[0].CmpLHS == Cases[1].CmpLHS && | 
 |        Cases[0].CmpRHS == Cases[1].CmpRHS) || | 
 |       (Cases[0].CmpRHS == Cases[1].CmpLHS && | 
 |        Cases[0].CmpLHS == Cases[1].CmpRHS)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitBr(BranchInst &I) { | 
 |   // Update machine-CFG edges. | 
 |   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != FuncInfo.MF->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   if (I.isUnconditional()) { | 
 |     // Update machine-CFG edges. | 
 |     CurMBB->addSuccessor(Succ0MBB); | 
 |  | 
 |     // If this is not a fall-through branch, emit the branch. | 
 |     if (Succ0MBB != NextBlock) | 
 |       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), | 
 |                               MVT::Other, getControlRoot(), | 
 |                               DAG.getBasicBlock(Succ0MBB))); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If this condition is one of the special cases we handle, do special stuff | 
 |   // now. | 
 |   Value *CondVal = I.getCondition(); | 
 |   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
 |  | 
 |   // If this is a series of conditions that are or'd or and'd together, emit | 
 |   // this as a sequence of branches instead of setcc's with and/or operations. | 
 |   // For example, instead of something like: | 
 |   //     cmp A, B | 
 |   //     C = seteq | 
 |   //     cmp D, E | 
 |   //     F = setle | 
 |   //     or C, F | 
 |   //     jnz foo | 
 |   // Emit: | 
 |   //     cmp A, B | 
 |   //     je foo | 
 |   //     cmp D, E | 
 |   //     jle foo | 
 |   // | 
 |   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { | 
 |     if (BOp->hasOneUse() && | 
 |         (BOp->getOpcode() == Instruction::And || | 
 |          BOp->getOpcode() == Instruction::Or)) { | 
 |       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); | 
 |       // If the compares in later blocks need to use values not currently | 
 |       // exported from this block, export them now.  This block should always | 
 |       // be the first entry. | 
 |       assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); | 
 |  | 
 |       // Allow some cases to be rejected. | 
 |       if (ShouldEmitAsBranches(SwitchCases)) { | 
 |         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { | 
 |           ExportFromCurrentBlock(SwitchCases[i].CmpLHS); | 
 |           ExportFromCurrentBlock(SwitchCases[i].CmpRHS); | 
 |         } | 
 |  | 
 |         // Emit the branch for this block. | 
 |         visitSwitchCase(SwitchCases[0]); | 
 |         SwitchCases.erase(SwitchCases.begin()); | 
 |         return; | 
 |       } | 
 |  | 
 |       // Okay, we decided not to do this, remove any inserted MBB's and clear | 
 |       // SwitchCases. | 
 |       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) | 
 |         FuncInfo.MF->erase(SwitchCases[i].ThisBB); | 
 |  | 
 |       SwitchCases.clear(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Create a CaseBlock record representing this branch. | 
 |   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), | 
 |                NULL, Succ0MBB, Succ1MBB, CurMBB); | 
 |   // Use visitSwitchCase to actually insert the fast branch sequence for this | 
 |   // cond branch. | 
 |   visitSwitchCase(CB); | 
 | } | 
 |  | 
 | /// visitSwitchCase - Emits the necessary code to represent a single node in | 
 | /// the binary search tree resulting from lowering a switch instruction. | 
 | void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) { | 
 |   SDValue Cond; | 
 |   SDValue CondLHS = getValue(CB.CmpLHS); | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |  | 
 |   // Build the setcc now. | 
 |   if (CB.CmpMHS == NULL) { | 
 |     // Fold "(X == true)" to X and "(X == false)" to !X to | 
 |     // handle common cases produced by branch lowering. | 
 |     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && | 
 |         CB.CC == ISD::SETEQ) | 
 |       Cond = CondLHS; | 
 |     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && | 
 |              CB.CC == ISD::SETEQ) { | 
 |       SDValue True = DAG.getConstant(1, CondLHS.getValueType()); | 
 |       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); | 
 |     } else | 
 |       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); | 
 |   } else { | 
 |     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); | 
 |  | 
 |     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); | 
 |     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue(); | 
 |  | 
 |     SDValue CmpOp = getValue(CB.CmpMHS); | 
 |     EVT VT = CmpOp.getValueType(); | 
 |  | 
 |     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { | 
 |       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), | 
 |                           ISD::SETLE); | 
 |     } else { | 
 |       SDValue SUB = DAG.getNode(ISD::SUB, dl, | 
 |                                 VT, CmpOp, DAG.getConstant(Low, VT)); | 
 |       Cond = DAG.getSetCC(dl, MVT::i1, SUB, | 
 |                           DAG.getConstant(High-Low, VT), ISD::SETULE); | 
 |     } | 
 |   } | 
 |  | 
 |   // Update successor info | 
 |   CurMBB->addSuccessor(CB.TrueBB); | 
 |   CurMBB->addSuccessor(CB.FalseBB); | 
 |  | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != FuncInfo.MF->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   // If the lhs block is the next block, invert the condition so that we can | 
 |   // fall through to the lhs instead of the rhs block. | 
 |   if (CB.TrueBB == NextBlock) { | 
 |     std::swap(CB.TrueBB, CB.FalseBB); | 
 |     SDValue True = DAG.getConstant(1, Cond.getValueType()); | 
 |     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); | 
 |   } | 
 |   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
 |                                MVT::Other, getControlRoot(), Cond, | 
 |                                DAG.getBasicBlock(CB.TrueBB)); | 
 |  | 
 |   // If the branch was constant folded, fix up the CFG. | 
 |   if (BrCond.getOpcode() == ISD::BR) { | 
 |     CurMBB->removeSuccessor(CB.FalseBB); | 
 |     DAG.setRoot(BrCond); | 
 |   } else { | 
 |     // Otherwise, go ahead and insert the false branch. | 
 |     if (BrCond == getControlRoot()) | 
 |       CurMBB->removeSuccessor(CB.TrueBB); | 
 |  | 
 |     if (CB.FalseBB == NextBlock) | 
 |       DAG.setRoot(BrCond); | 
 |     else | 
 |       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, | 
 |                               DAG.getBasicBlock(CB.FalseBB))); | 
 |   } | 
 | } | 
 |  | 
 | /// visitJumpTable - Emit JumpTable node in the current MBB | 
 | void SelectionDAGLowering::visitJumpTable(JumpTable &JT) { | 
 |   // Emit the code for the jump table | 
 |   assert(JT.Reg != -1U && "Should lower JT Header first!"); | 
 |   EVT PTy = TLI.getPointerTy(); | 
 |   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), | 
 |                                      JT.Reg, PTy); | 
 |   SDValue Table = DAG.getJumpTable(JT.JTI, PTy); | 
 |   DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(), | 
 |                           MVT::Other, Index.getValue(1), | 
 |                           Table, Index)); | 
 | } | 
 |  | 
 | /// visitJumpTableHeader - This function emits necessary code to produce index | 
 | /// in the JumpTable from switch case. | 
 | void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT, | 
 |                                                 JumpTableHeader &JTH) { | 
 |   // Subtract the lowest switch case value from the value being switched on and | 
 |   // conditional branch to default mbb if the result is greater than the | 
 |   // difference between smallest and largest cases. | 
 |   SDValue SwitchOp = getValue(JTH.SValue); | 
 |   EVT VT = SwitchOp.getValueType(); | 
 |   SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, | 
 |                             DAG.getConstant(JTH.First, VT)); | 
 |  | 
 |   // The SDNode we just created, which holds the value being switched on minus | 
 |   // the the smallest case value, needs to be copied to a virtual register so it | 
 |   // can be used as an index into the jump table in a subsequent basic block. | 
 |   // This value may be smaller or larger than the target's pointer type, and | 
 |   // therefore require extension or truncating. | 
 |   SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); | 
 |  | 
 |   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); | 
 |   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), | 
 |                                     JumpTableReg, SwitchOp); | 
 |   JT.Reg = JumpTableReg; | 
 |  | 
 |   // Emit the range check for the jump table, and branch to the default block | 
 |   // for the switch statement if the value being switched on exceeds the largest | 
 |   // case in the switch. | 
 |   SDValue CMP = DAG.getSetCC(getCurDebugLoc(), | 
 |                              TLI.getSetCCResultType(SUB.getValueType()), SUB, | 
 |                              DAG.getConstant(JTH.Last-JTH.First,VT), | 
 |                              ISD::SETUGT); | 
 |  | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != FuncInfo.MF->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), | 
 |                                MVT::Other, CopyTo, CMP, | 
 |                                DAG.getBasicBlock(JT.Default)); | 
 |  | 
 |   if (JT.MBB == NextBlock) | 
 |     DAG.setRoot(BrCond); | 
 |   else | 
 |     DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, | 
 |                             DAG.getBasicBlock(JT.MBB))); | 
 | } | 
 |  | 
 | /// visitBitTestHeader - This function emits necessary code to produce value | 
 | /// suitable for "bit tests" | 
 | void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) { | 
 |   // Subtract the minimum value | 
 |   SDValue SwitchOp = getValue(B.SValue); | 
 |   EVT VT = SwitchOp.getValueType(); | 
 |   SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, | 
 |                             DAG.getConstant(B.First, VT)); | 
 |  | 
 |   // Check range | 
 |   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), | 
 |                                   TLI.getSetCCResultType(SUB.getValueType()), | 
 |                                   SUB, DAG.getConstant(B.Range, VT), | 
 |                                   ISD::SETUGT); | 
 |  | 
 |   SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); | 
 |  | 
 |   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); | 
 |   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), | 
 |                                     B.Reg, ShiftOp); | 
 |  | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != FuncInfo.MF->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   MachineBasicBlock* MBB = B.Cases[0].ThisBB; | 
 |  | 
 |   CurMBB->addSuccessor(B.Default); | 
 |   CurMBB->addSuccessor(MBB); | 
 |  | 
 |   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), | 
 |                                 MVT::Other, CopyTo, RangeCmp, | 
 |                                 DAG.getBasicBlock(B.Default)); | 
 |  | 
 |   if (MBB == NextBlock) | 
 |     DAG.setRoot(BrRange); | 
 |   else | 
 |     DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, | 
 |                             DAG.getBasicBlock(MBB))); | 
 | } | 
 |  | 
 | /// visitBitTestCase - this function produces one "bit test" | 
 | void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB, | 
 |                                             unsigned Reg, | 
 |                                             BitTestCase &B) { | 
 |   // Make desired shift | 
 |   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, | 
 |                                        TLI.getPointerTy()); | 
 |   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), | 
 |                                   TLI.getPointerTy(), | 
 |                                   DAG.getConstant(1, TLI.getPointerTy()), | 
 |                                   ShiftOp); | 
 |  | 
 |   // Emit bit tests and jumps | 
 |   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), | 
 |                               TLI.getPointerTy(), SwitchVal, | 
 |                               DAG.getConstant(B.Mask, TLI.getPointerTy())); | 
 |   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), | 
 |                                 TLI.getSetCCResultType(AndOp.getValueType()), | 
 |                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()), | 
 |                                 ISD::SETNE); | 
 |  | 
 |   CurMBB->addSuccessor(B.TargetBB); | 
 |   CurMBB->addSuccessor(NextMBB); | 
 |  | 
 |   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), | 
 |                               MVT::Other, getControlRoot(), | 
 |                               AndCmp, DAG.getBasicBlock(B.TargetBB)); | 
 |  | 
 |   // Set NextBlock to be the MBB immediately after the current one, if any. | 
 |   // This is used to avoid emitting unnecessary branches to the next block. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CurMBB; | 
 |   if (++BBI != FuncInfo.MF->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   if (NextMBB == NextBlock) | 
 |     DAG.setRoot(BrAnd); | 
 |   else | 
 |     DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, | 
 |                             DAG.getBasicBlock(NextMBB))); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitInvoke(InvokeInst &I) { | 
 |   // Retrieve successors. | 
 |   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
 |   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
 |  | 
 |   const Value *Callee(I.getCalledValue()); | 
 |   if (isa<InlineAsm>(Callee)) | 
 |     visitInlineAsm(&I); | 
 |   else | 
 |     LowerCallTo(&I, getValue(Callee), false, LandingPad); | 
 |  | 
 |   // If the value of the invoke is used outside of its defining block, make it | 
 |   // available as a virtual register. | 
 |   CopyToExportRegsIfNeeded(&I); | 
 |  | 
 |   // Update successor info | 
 |   CurMBB->addSuccessor(Return); | 
 |   CurMBB->addSuccessor(LandingPad); | 
 |  | 
 |   // Drop into normal successor. | 
 |   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), | 
 |                           MVT::Other, getControlRoot(), | 
 |                           DAG.getBasicBlock(Return))); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitUnwind(UnwindInst &I) { | 
 | } | 
 |  | 
 | /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for | 
 | /// small case ranges). | 
 | bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, | 
 |                                                   CaseRecVector& WorkList, | 
 |                                                   Value* SV, | 
 |                                                   MachineBasicBlock* Default) { | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |  | 
 |   // Size is the number of Cases represented by this range. | 
 |   size_t Size = CR.Range.second - CR.Range.first; | 
 |   if (Size > 3) | 
 |     return false; | 
 |  | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = FuncInfo.MF; | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |  | 
 |   if (++BBI != FuncInfo.MF->end()) | 
 |     NextBlock = BBI; | 
 |  | 
 |   // TODO: If any two of the cases has the same destination, and if one value | 
 |   // is the same as the other, but has one bit unset that the other has set, | 
 |   // use bit manipulation to do two compares at once.  For example: | 
 |   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" | 
 |  | 
 |   // Rearrange the case blocks so that the last one falls through if possible. | 
 |   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { | 
 |     // The last case block won't fall through into 'NextBlock' if we emit the | 
 |     // branches in this order.  See if rearranging a case value would help. | 
 |     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { | 
 |       if (I->BB == NextBlock) { | 
 |         std::swap(*I, BackCase); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Create a CaseBlock record representing a conditional branch to | 
 |   // the Case's target mbb if the value being switched on SV is equal | 
 |   // to C. | 
 |   MachineBasicBlock *CurBlock = CR.CaseBB; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { | 
 |     MachineBasicBlock *FallThrough; | 
 |     if (I != E-1) { | 
 |       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); | 
 |       CurMF->insert(BBI, FallThrough); | 
 |  | 
 |       // Put SV in a virtual register to make it available from the new blocks. | 
 |       ExportFromCurrentBlock(SV); | 
 |     } else { | 
 |       // If the last case doesn't match, go to the default block. | 
 |       FallThrough = Default; | 
 |     } | 
 |  | 
 |     Value *RHS, *LHS, *MHS; | 
 |     ISD::CondCode CC; | 
 |     if (I->High == I->Low) { | 
 |       // This is just small small case range :) containing exactly 1 case | 
 |       CC = ISD::SETEQ; | 
 |       LHS = SV; RHS = I->High; MHS = NULL; | 
 |     } else { | 
 |       CC = ISD::SETLE; | 
 |       LHS = I->Low; MHS = SV; RHS = I->High; | 
 |     } | 
 |     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); | 
 |  | 
 |     // If emitting the first comparison, just call visitSwitchCase to emit the | 
 |     // code into the current block.  Otherwise, push the CaseBlock onto the | 
 |     // vector to be later processed by SDISel, and insert the node's MBB | 
 |     // before the next MBB. | 
 |     if (CurBlock == CurMBB) | 
 |       visitSwitchCase(CB); | 
 |     else | 
 |       SwitchCases.push_back(CB); | 
 |  | 
 |     CurBlock = FallThrough; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static inline bool areJTsAllowed(const TargetLowering &TLI) { | 
 |   return !DisableJumpTables && | 
 |           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || | 
 |            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); | 
 | } | 
 |  | 
 | static APInt ComputeRange(const APInt &First, const APInt &Last) { | 
 |   APInt LastExt(Last), FirstExt(First); | 
 |   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; | 
 |   LastExt.sext(BitWidth); FirstExt.sext(BitWidth); | 
 |   return (LastExt - FirstExt + 1ULL); | 
 | } | 
 |  | 
 | /// handleJTSwitchCase - Emit jumptable for current switch case range | 
 | bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, | 
 |                                               CaseRecVector& WorkList, | 
 |                                               Value* SV, | 
 |                                               MachineBasicBlock* Default) { | 
 |   Case& FrontCase = *CR.Range.first; | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |  | 
 |   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); | 
 |   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue(); | 
 |  | 
 |   APInt TSize(First.getBitWidth(), 0); | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
 |        I!=E; ++I) | 
 |     TSize += I->size(); | 
 |  | 
 |   if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) | 
 |     return false; | 
 |  | 
 |   APInt Range = ComputeRange(First, Last); | 
 |   double Density = TSize.roundToDouble() / Range.roundToDouble(); | 
 |   if (Density < 0.4) | 
 |     return false; | 
 |  | 
 |   DEBUG(errs() << "Lowering jump table\n" | 
 |                << "First entry: " << First << ". Last entry: " << Last << '\n' | 
 |                << "Range: " << Range | 
 |                << "Size: " << TSize << ". Density: " << Density << "\n\n"); | 
 |  | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = FuncInfo.MF; | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |   ++BBI; | 
 |  | 
 |   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
 |  | 
 |   // Create a new basic block to hold the code for loading the address | 
 |   // of the jump table, and jumping to it.  Update successor information; | 
 |   // we will either branch to the default case for the switch, or the jump | 
 |   // table. | 
 |   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
 |   CurMF->insert(BBI, JumpTableBB); | 
 |   CR.CaseBB->addSuccessor(Default); | 
 |   CR.CaseBB->addSuccessor(JumpTableBB); | 
 |  | 
 |   // Build a vector of destination BBs, corresponding to each target | 
 |   // of the jump table. If the value of the jump table slot corresponds to | 
 |   // a case statement, push the case's BB onto the vector, otherwise, push | 
 |   // the default BB. | 
 |   std::vector<MachineBasicBlock*> DestBBs; | 
 |   APInt TEI = First; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { | 
 |     const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); | 
 |     const APInt& High = cast<ConstantInt>(I->High)->getValue(); | 
 |  | 
 |     if (Low.sle(TEI) && TEI.sle(High)) { | 
 |       DestBBs.push_back(I->BB); | 
 |       if (TEI==High) | 
 |         ++I; | 
 |     } else { | 
 |       DestBBs.push_back(Default); | 
 |     } | 
 |   } | 
 |  | 
 |   // Update successor info. Add one edge to each unique successor. | 
 |   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); | 
 |   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), | 
 |          E = DestBBs.end(); I != E; ++I) { | 
 |     if (!SuccsHandled[(*I)->getNumber()]) { | 
 |       SuccsHandled[(*I)->getNumber()] = true; | 
 |       JumpTableBB->addSuccessor(*I); | 
 |     } | 
 |   } | 
 |  | 
 |   // Create a jump table index for this jump table, or return an existing | 
 |   // one. | 
 |   unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); | 
 |  | 
 |   // Set the jump table information so that we can codegen it as a second | 
 |   // MachineBasicBlock | 
 |   JumpTable JT(-1U, JTI, JumpTableBB, Default); | 
 |   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); | 
 |   if (CR.CaseBB == CurMBB) | 
 |     visitJumpTableHeader(JT, JTH); | 
 |  | 
 |   JTCases.push_back(JumpTableBlock(JTH, JT)); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// handleBTSplitSwitchCase - emit comparison and split binary search tree into | 
 | /// 2 subtrees. | 
 | bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, | 
 |                                                    CaseRecVector& WorkList, | 
 |                                                    Value* SV, | 
 |                                                    MachineBasicBlock* Default) { | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = FuncInfo.MF; | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |   ++BBI; | 
 |  | 
 |   Case& FrontCase = *CR.Range.first; | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
 |  | 
 |   // Size is the number of Cases represented by this range. | 
 |   unsigned Size = CR.Range.second - CR.Range.first; | 
 |  | 
 |   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); | 
 |   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue(); | 
 |   double FMetric = 0; | 
 |   CaseItr Pivot = CR.Range.first + Size/2; | 
 |  | 
 |   // Select optimal pivot, maximizing sum density of LHS and RHS. This will | 
 |   // (heuristically) allow us to emit JumpTable's later. | 
 |   APInt TSize(First.getBitWidth(), 0); | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
 |        I!=E; ++I) | 
 |     TSize += I->size(); | 
 |  | 
 |   APInt LSize = FrontCase.size(); | 
 |   APInt RSize = TSize-LSize; | 
 |   DEBUG(errs() << "Selecting best pivot: \n" | 
 |                << "First: " << First << ", Last: " << Last <<'\n' | 
 |                << "LSize: " << LSize << ", RSize: " << RSize << '\n'); | 
 |   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; | 
 |        J!=E; ++I, ++J) { | 
 |     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); | 
 |     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); | 
 |     APInt Range = ComputeRange(LEnd, RBegin); | 
 |     assert((Range - 2ULL).isNonNegative() && | 
 |            "Invalid case distance"); | 
 |     double LDensity = (double)LSize.roundToDouble() /  | 
 |                            (LEnd - First + 1ULL).roundToDouble(); | 
 |     double RDensity = (double)RSize.roundToDouble() / | 
 |                            (Last - RBegin + 1ULL).roundToDouble(); | 
 |     double Metric = Range.logBase2()*(LDensity+RDensity); | 
 |     // Should always split in some non-trivial place | 
 |     DEBUG(errs() <<"=>Step\n" | 
 |                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' | 
 |                  << "LDensity: " << LDensity | 
 |                  << ", RDensity: " << RDensity << '\n' | 
 |                  << "Metric: " << Metric << '\n'); | 
 |     if (FMetric < Metric) { | 
 |       Pivot = J; | 
 |       FMetric = Metric; | 
 |       DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); | 
 |     } | 
 |  | 
 |     LSize += J->size(); | 
 |     RSize -= J->size(); | 
 |   } | 
 |   if (areJTsAllowed(TLI)) { | 
 |     // If our case is dense we *really* should handle it earlier! | 
 |     assert((FMetric > 0) && "Should handle dense range earlier!"); | 
 |   } else { | 
 |     Pivot = CR.Range.first + Size/2; | 
 |   } | 
 |  | 
 |   CaseRange LHSR(CR.Range.first, Pivot); | 
 |   CaseRange RHSR(Pivot, CR.Range.second); | 
 |   Constant *C = Pivot->Low; | 
 |   MachineBasicBlock *FalseBB = 0, *TrueBB = 0; | 
 |  | 
 |   // We know that we branch to the LHS if the Value being switched on is | 
 |   // less than the Pivot value, C.  We use this to optimize our binary | 
 |   // tree a bit, by recognizing that if SV is greater than or equal to the | 
 |   // LHS's Case Value, and that Case Value is exactly one less than the | 
 |   // Pivot's Value, then we can branch directly to the LHS's Target, | 
 |   // rather than creating a leaf node for it. | 
 |   if ((LHSR.second - LHSR.first) == 1 && | 
 |       LHSR.first->High == CR.GE && | 
 |       cast<ConstantInt>(C)->getValue() == | 
 |       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { | 
 |     TrueBB = LHSR.first->BB; | 
 |   } else { | 
 |     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
 |     CurMF->insert(BBI, TrueBB); | 
 |     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); | 
 |  | 
 |     // Put SV in a virtual register to make it available from the new blocks. | 
 |     ExportFromCurrentBlock(SV); | 
 |   } | 
 |  | 
 |   // Similar to the optimization above, if the Value being switched on is | 
 |   // known to be less than the Constant CR.LT, and the current Case Value | 
 |   // is CR.LT - 1, then we can branch directly to the target block for | 
 |   // the current Case Value, rather than emitting a RHS leaf node for it. | 
 |   if ((RHSR.second - RHSR.first) == 1 && CR.LT && | 
 |       cast<ConstantInt>(RHSR.first->Low)->getValue() == | 
 |       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { | 
 |     FalseBB = RHSR.first->BB; | 
 |   } else { | 
 |     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
 |     CurMF->insert(BBI, FalseBB); | 
 |     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); | 
 |  | 
 |     // Put SV in a virtual register to make it available from the new blocks. | 
 |     ExportFromCurrentBlock(SV); | 
 |   } | 
 |  | 
 |   // Create a CaseBlock record representing a conditional branch to | 
 |   // the LHS node if the value being switched on SV is less than C. | 
 |   // Otherwise, branch to LHS. | 
 |   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); | 
 |  | 
 |   if (CR.CaseBB == CurMBB) | 
 |     visitSwitchCase(CB); | 
 |   else | 
 |     SwitchCases.push_back(CB); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// handleBitTestsSwitchCase - if current case range has few destination and | 
 | /// range span less, than machine word bitwidth, encode case range into series | 
 | /// of masks and emit bit tests with these masks. | 
 | bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR, | 
 |                                                     CaseRecVector& WorkList, | 
 |                                                     Value* SV, | 
 |                                                     MachineBasicBlock* Default){ | 
 |   EVT PTy = TLI.getPointerTy(); | 
 |   unsigned IntPtrBits = PTy.getSizeInBits(); | 
 |  | 
 |   Case& FrontCase = *CR.Range.first; | 
 |   Case& BackCase  = *(CR.Range.second-1); | 
 |  | 
 |   // Get the MachineFunction which holds the current MBB.  This is used when | 
 |   // inserting any additional MBBs necessary to represent the switch. | 
 |   MachineFunction *CurMF = FuncInfo.MF; | 
 |  | 
 |   // If target does not have legal shift left, do not emit bit tests at all. | 
 |   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) | 
 |     return false; | 
 |  | 
 |   size_t numCmps = 0; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
 |        I!=E; ++I) { | 
 |     // Single case counts one, case range - two. | 
 |     numCmps += (I->Low == I->High ? 1 : 2); | 
 |   } | 
 |  | 
 |   // Count unique destinations | 
 |   SmallSet<MachineBasicBlock*, 4> Dests; | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
 |     Dests.insert(I->BB); | 
 |     if (Dests.size() > 3) | 
 |       // Don't bother the code below, if there are too much unique destinations | 
 |       return false; | 
 |   } | 
 |   DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' | 
 |                << "Total number of comparisons: " << numCmps << '\n'); | 
 |  | 
 |   // Compute span of values. | 
 |   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); | 
 |   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); | 
 |   APInt cmpRange = maxValue - minValue; | 
 |  | 
 |   DEBUG(errs() << "Compare range: " << cmpRange << '\n' | 
 |                << "Low bound: " << minValue << '\n' | 
 |                << "High bound: " << maxValue << '\n'); | 
 |  | 
 |   if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || | 
 |       (!(Dests.size() == 1 && numCmps >= 3) && | 
 |        !(Dests.size() == 2 && numCmps >= 5) && | 
 |        !(Dests.size() >= 3 && numCmps >= 6))) | 
 |     return false; | 
 |  | 
 |   DEBUG(errs() << "Emitting bit tests\n"); | 
 |   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); | 
 |  | 
 |   // Optimize the case where all the case values fit in a | 
 |   // word without having to subtract minValue. In this case, | 
 |   // we can optimize away the subtraction. | 
 |   if (minValue.isNonNegative() && | 
 |       maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { | 
 |     cmpRange = maxValue; | 
 |   } else { | 
 |     lowBound = minValue; | 
 |   } | 
 |  | 
 |   CaseBitsVector CasesBits; | 
 |   unsigned i, count = 0; | 
 |  | 
 |   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
 |     MachineBasicBlock* Dest = I->BB; | 
 |     for (i = 0; i < count; ++i) | 
 |       if (Dest == CasesBits[i].BB) | 
 |         break; | 
 |  | 
 |     if (i == count) { | 
 |       assert((count < 3) && "Too much destinations to test!"); | 
 |       CasesBits.push_back(CaseBits(0, Dest, 0)); | 
 |       count++; | 
 |     } | 
 |  | 
 |     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); | 
 |     const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); | 
 |  | 
 |     uint64_t lo = (lowValue - lowBound).getZExtValue(); | 
 |     uint64_t hi = (highValue - lowBound).getZExtValue(); | 
 |  | 
 |     for (uint64_t j = lo; j <= hi; j++) { | 
 |       CasesBits[i].Mask |=  1ULL << j; | 
 |       CasesBits[i].Bits++; | 
 |     } | 
 |  | 
 |   } | 
 |   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); | 
 |  | 
 |   BitTestInfo BTC; | 
 |  | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineFunction::iterator BBI = CR.CaseBB; | 
 |   ++BBI; | 
 |  | 
 |   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
 |  | 
 |   DEBUG(errs() << "Cases:\n"); | 
 |   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { | 
 |     DEBUG(errs() << "Mask: " << CasesBits[i].Mask | 
 |                  << ", Bits: " << CasesBits[i].Bits | 
 |                  << ", BB: " << CasesBits[i].BB << '\n'); | 
 |  | 
 |     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
 |     CurMF->insert(BBI, CaseBB); | 
 |     BTC.push_back(BitTestCase(CasesBits[i].Mask, | 
 |                               CaseBB, | 
 |                               CasesBits[i].BB)); | 
 |  | 
 |     // Put SV in a virtual register to make it available from the new blocks. | 
 |     ExportFromCurrentBlock(SV); | 
 |   } | 
 |  | 
 |   BitTestBlock BTB(lowBound, cmpRange, SV, | 
 |                    -1U, (CR.CaseBB == CurMBB), | 
 |                    CR.CaseBB, Default, BTC); | 
 |  | 
 |   if (CR.CaseBB == CurMBB) | 
 |     visitBitTestHeader(BTB); | 
 |  | 
 |   BitTestCases.push_back(BTB); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// Clusterify - Transform simple list of Cases into list of CaseRange's | 
 | size_t SelectionDAGLowering::Clusterify(CaseVector& Cases, | 
 |                                           const SwitchInst& SI) { | 
 |   size_t numCmps = 0; | 
 |  | 
 |   // Start with "simple" cases | 
 |   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { | 
 |     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; | 
 |     Cases.push_back(Case(SI.getSuccessorValue(i), | 
 |                          SI.getSuccessorValue(i), | 
 |                          SMBB)); | 
 |   } | 
 |   std::sort(Cases.begin(), Cases.end(), CaseCmp()); | 
 |  | 
 |   // Merge case into clusters | 
 |   if (Cases.size() >= 2) | 
 |     // Must recompute end() each iteration because it may be | 
 |     // invalidated by erase if we hold on to it | 
 |     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { | 
 |       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); | 
 |       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); | 
 |       MachineBasicBlock* nextBB = J->BB; | 
 |       MachineBasicBlock* currentBB = I->BB; | 
 |  | 
 |       // If the two neighboring cases go to the same destination, merge them | 
 |       // into a single case. | 
 |       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { | 
 |         I->High = J->High; | 
 |         J = Cases.erase(J); | 
 |       } else { | 
 |         I = J++; | 
 |       } | 
 |     } | 
 |  | 
 |   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { | 
 |     if (I->Low != I->High) | 
 |       // A range counts double, since it requires two compares. | 
 |       ++numCmps; | 
 |   } | 
 |  | 
 |   return numCmps; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSwitch(SwitchInst &SI) { | 
 |   // Figure out which block is immediately after the current one. | 
 |   MachineBasicBlock *NextBlock = 0; | 
 |  | 
 |   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; | 
 |  | 
 |   // If there is only the default destination, branch to it if it is not the | 
 |   // next basic block.  Otherwise, just fall through. | 
 |   if (SI.getNumOperands() == 2) { | 
 |     // Update machine-CFG edges. | 
 |  | 
 |     // If this is not a fall-through branch, emit the branch. | 
 |     CurMBB->addSuccessor(Default); | 
 |     if (Default != NextBlock) | 
 |       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), | 
 |                               MVT::Other, getControlRoot(), | 
 |                               DAG.getBasicBlock(Default))); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If there are any non-default case statements, create a vector of Cases | 
 |   // representing each one, and sort the vector so that we can efficiently | 
 |   // create a binary search tree from them. | 
 |   CaseVector Cases; | 
 |   size_t numCmps = Clusterify(Cases, SI); | 
 |   DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() | 
 |                << ". Total compares: " << numCmps << '\n'); | 
 |   numCmps = 0; | 
 |  | 
 |   // Get the Value to be switched on and default basic blocks, which will be | 
 |   // inserted into CaseBlock records, representing basic blocks in the binary | 
 |   // search tree. | 
 |   Value *SV = SI.getOperand(0); | 
 |  | 
 |   // Push the initial CaseRec onto the worklist | 
 |   CaseRecVector WorkList; | 
 |   WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); | 
 |  | 
 |   while (!WorkList.empty()) { | 
 |     // Grab a record representing a case range to process off the worklist | 
 |     CaseRec CR = WorkList.back(); | 
 |     WorkList.pop_back(); | 
 |  | 
 |     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) | 
 |       continue; | 
 |  | 
 |     // If the range has few cases (two or less) emit a series of specific | 
 |     // tests. | 
 |     if (handleSmallSwitchRange(CR, WorkList, SV, Default)) | 
 |       continue; | 
 |  | 
 |     // If the switch has more than 5 blocks, and at least 40% dense, and the | 
 |     // target supports indirect branches, then emit a jump table rather than | 
 |     // lowering the switch to a binary tree of conditional branches. | 
 |     if (handleJTSwitchCase(CR, WorkList, SV, Default)) | 
 |       continue; | 
 |  | 
 |     // Emit binary tree. We need to pick a pivot, and push left and right ranges | 
 |     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. | 
 |     handleBTSplitSwitchCase(CR, WorkList, SV, Default); | 
 |   } | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitIndirectBr(IndirectBrInst &I) { | 
 |   // Update machine-CFG edges. | 
 |   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) | 
 |     CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); | 
 |  | 
 |   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), | 
 |                           MVT::Other, getControlRoot(), | 
 |                           getValue(I.getAddress()))); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitFSub(User &I) { | 
 |   // -0.0 - X --> fneg | 
 |   const Type *Ty = I.getType(); | 
 |   if (isa<VectorType>(Ty)) { | 
 |     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { | 
 |       const VectorType *DestTy = cast<VectorType>(I.getType()); | 
 |       const Type *ElTy = DestTy->getElementType(); | 
 |       unsigned VL = DestTy->getNumElements(); | 
 |       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); | 
 |       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); | 
 |       if (CV == CNZ) { | 
 |         SDValue Op2 = getValue(I.getOperand(1)); | 
 |         setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), | 
 |                                  Op2.getValueType(), Op2)); | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) | 
 |     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { | 
 |       SDValue Op2 = getValue(I.getOperand(1)); | 
 |       setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), | 
 |                                Op2.getValueType(), Op2)); | 
 |       return; | 
 |     } | 
 |  | 
 |   visitBinary(I, ISD::FSUB); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) { | 
 |   SDValue Op1 = getValue(I.getOperand(0)); | 
 |   SDValue Op2 = getValue(I.getOperand(1)); | 
 |  | 
 |   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), | 
 |                            Op1.getValueType(), Op1, Op2)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { | 
 |   SDValue Op1 = getValue(I.getOperand(0)); | 
 |   SDValue Op2 = getValue(I.getOperand(1)); | 
 |   if (!isa<VectorType>(I.getType()) && | 
 |       Op2.getValueType() != TLI.getShiftAmountTy()) { | 
 |     // If the operand is smaller than the shift count type, promote it. | 
 |     EVT PTy = TLI.getPointerTy(); | 
 |     EVT STy = TLI.getShiftAmountTy(); | 
 |     if (STy.bitsGT(Op2.getValueType())) | 
 |       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), | 
 |                         TLI.getShiftAmountTy(), Op2); | 
 |     // If the operand is larger than the shift count type but the shift | 
 |     // count type has enough bits to represent any shift value, truncate | 
 |     // it now. This is a common case and it exposes the truncate to | 
 |     // optimization early. | 
 |     else if (STy.getSizeInBits() >= | 
 |              Log2_32_Ceil(Op2.getValueType().getSizeInBits())) | 
 |       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), | 
 |                         TLI.getShiftAmountTy(), Op2); | 
 |     // Otherwise we'll need to temporarily settle for some other | 
 |     // convenient type; type legalization will make adjustments as | 
 |     // needed. | 
 |     else if (PTy.bitsLT(Op2.getValueType())) | 
 |       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), | 
 |                         TLI.getPointerTy(), Op2); | 
 |     else if (PTy.bitsGT(Op2.getValueType())) | 
 |       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), | 
 |                         TLI.getPointerTy(), Op2); | 
 |   } | 
 |  | 
 |   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), | 
 |                            Op1.getValueType(), Op1, Op2)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitICmp(User &I) { | 
 |   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; | 
 |   if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) | 
 |     predicate = IC->getPredicate(); | 
 |   else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) | 
 |     predicate = ICmpInst::Predicate(IC->getPredicate()); | 
 |   SDValue Op1 = getValue(I.getOperand(0)); | 
 |   SDValue Op2 = getValue(I.getOperand(1)); | 
 |   ISD::CondCode Opcode = getICmpCondCode(predicate); | 
 |    | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFCmp(User &I) { | 
 |   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; | 
 |   if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) | 
 |     predicate = FC->getPredicate(); | 
 |   else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) | 
 |     predicate = FCmpInst::Predicate(FC->getPredicate()); | 
 |   SDValue Op1 = getValue(I.getOperand(0)); | 
 |   SDValue Op2 = getValue(I.getOperand(1)); | 
 |   ISD::CondCode Condition = getFCmpCondCode(predicate); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSelect(User &I) { | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   ComputeValueVTs(TLI, I.getType(), ValueVTs); | 
 |   unsigned NumValues = ValueVTs.size(); | 
 |   if (NumValues != 0) { | 
 |     SmallVector<SDValue, 4> Values(NumValues); | 
 |     SDValue Cond     = getValue(I.getOperand(0)); | 
 |     SDValue TrueVal  = getValue(I.getOperand(1)); | 
 |     SDValue FalseVal = getValue(I.getOperand(2)); | 
 |  | 
 |     for (unsigned i = 0; i != NumValues; ++i) | 
 |       Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), | 
 |                               TrueVal.getValueType(), Cond, | 
 |                               SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), | 
 |                               SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); | 
 |  | 
 |     setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
 |                              DAG.getVTList(&ValueVTs[0], NumValues), | 
 |                              &Values[0], NumValues)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitTrunc(User &I) { | 
 |   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitZExt(User &I) { | 
 |   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
 |   // ZExt also can't be a cast to bool for same reason. So, nothing much to do | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSExt(User &I) { | 
 |   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
 |   // SExt also can't be a cast to bool for same reason. So, nothing much to do | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPTrunc(User &I) { | 
 |   // FPTrunc is never a no-op cast, no need to check | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), | 
 |                            DestVT, N, DAG.getIntPtrConstant(0))); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPExt(User &I){ | 
 |   // FPTrunc is never a no-op cast, no need to check | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPToUI(User &I) { | 
 |   // FPToUI is never a no-op cast, no need to check | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitFPToSI(User &I) { | 
 |   // FPToSI is never a no-op cast, no need to check | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitUIToFP(User &I) { | 
 |   // UIToFP is never a no-op cast, no need to check | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitSIToFP(User &I){ | 
 |   // SIToFP is never a no-op cast, no need to check | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitPtrToInt(User &I) { | 
 |   // What to do depends on the size of the integer and the size of the pointer. | 
 |   // We can either truncate, zero extend, or no-op, accordingly. | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT SrcVT = N.getValueType(); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); | 
 |   setValue(&I, Result); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitIntToPtr(User &I) { | 
 |   // What to do depends on the size of the integer and the size of the pointer. | 
 |   // We can either truncate, zero extend, or no-op, accordingly. | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT SrcVT = N.getValueType(); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitBitCast(User &I) { | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   EVT DestVT = TLI.getValueType(I.getType()); | 
 |  | 
 |   // BitCast assures us that source and destination are the same size so this | 
 |   // is either a BIT_CONVERT or a no-op. | 
 |   if (DestVT != N.getValueType()) | 
 |     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), | 
 |                              DestVT, N)); // convert types | 
 |   else | 
 |     setValue(&I, N); // noop cast. | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitInsertElement(User &I) { | 
 |   SDValue InVec = getValue(I.getOperand(0)); | 
 |   SDValue InVal = getValue(I.getOperand(1)); | 
 |   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), | 
 |                                 TLI.getPointerTy(), | 
 |                                 getValue(I.getOperand(2))); | 
 |  | 
 |   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), | 
 |                            TLI.getValueType(I.getType()), | 
 |                            InVec, InVal, InIdx)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitExtractElement(User &I) { | 
 |   SDValue InVec = getValue(I.getOperand(0)); | 
 |   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), | 
 |                                 TLI.getPointerTy(), | 
 |                                 getValue(I.getOperand(1))); | 
 |   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), | 
 |                            TLI.getValueType(I.getType()), InVec, InIdx)); | 
 | } | 
 |  | 
 |  | 
 | // Utility for visitShuffleVector - Returns true if the mask is mask starting | 
 | // from SIndx and increasing to the element length (undefs are allowed). | 
 | static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { | 
 |   unsigned MaskNumElts = Mask.size(); | 
 |   for (unsigned i = 0; i != MaskNumElts; ++i) | 
 |     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitShuffleVector(User &I) { | 
 |   SmallVector<int, 8> Mask; | 
 |   SDValue Src1 = getValue(I.getOperand(0)); | 
 |   SDValue Src2 = getValue(I.getOperand(1)); | 
 |  | 
 |   // Convert the ConstantVector mask operand into an array of ints, with -1 | 
 |   // representing undef values. | 
 |   SmallVector<Constant*, 8> MaskElts; | 
 |   cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),  | 
 |                                                      MaskElts); | 
 |   unsigned MaskNumElts = MaskElts.size(); | 
 |   for (unsigned i = 0; i != MaskNumElts; ++i) { | 
 |     if (isa<UndefValue>(MaskElts[i])) | 
 |       Mask.push_back(-1); | 
 |     else | 
 |       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); | 
 |   } | 
 |    | 
 |   EVT VT = TLI.getValueType(I.getType()); | 
 |   EVT SrcVT = Src1.getValueType(); | 
 |   unsigned SrcNumElts = SrcVT.getVectorNumElements(); | 
 |  | 
 |   if (SrcNumElts == MaskNumElts) { | 
 |     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, | 
 |                                       &Mask[0])); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Normalize the shuffle vector since mask and vector length don't match. | 
 |   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { | 
 |     // Mask is longer than the source vectors and is a multiple of the source | 
 |     // vectors.  We can use concatenate vector to make the mask and vectors | 
 |     // lengths match. | 
 |     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { | 
 |       // The shuffle is concatenating two vectors together. | 
 |       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), | 
 |                                VT, Src1, Src2)); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Pad both vectors with undefs to make them the same length as the mask. | 
 |     unsigned NumConcat = MaskNumElts / SrcNumElts; | 
 |     bool Src1U = Src1.getOpcode() == ISD::UNDEF; | 
 |     bool Src2U = Src2.getOpcode() == ISD::UNDEF; | 
 |     SDValue UndefVal = DAG.getUNDEF(SrcVT); | 
 |  | 
 |     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); | 
 |     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); | 
 |     MOps1[0] = Src1; | 
 |     MOps2[0] = Src2; | 
 |      | 
 |     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,  | 
 |                                                   getCurDebugLoc(), VT,  | 
 |                                                   &MOps1[0], NumConcat); | 
 |     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, | 
 |                                                   getCurDebugLoc(), VT,  | 
 |                                                   &MOps2[0], NumConcat); | 
 |  | 
 |     // Readjust mask for new input vector length. | 
 |     SmallVector<int, 8> MappedOps; | 
 |     for (unsigned i = 0; i != MaskNumElts; ++i) { | 
 |       int Idx = Mask[i]; | 
 |       if (Idx < (int)SrcNumElts) | 
 |         MappedOps.push_back(Idx); | 
 |       else | 
 |         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); | 
 |     } | 
 |     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,  | 
 |                                       &MappedOps[0])); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (SrcNumElts > MaskNumElts) { | 
 |     // Analyze the access pattern of the vector to see if we can extract | 
 |     // two subvectors and do the shuffle. The analysis is done by calculating | 
 |     // the range of elements the mask access on both vectors. | 
 |     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; | 
 |     int MaxRange[2] = {-1, -1}; | 
 |  | 
 |     for (unsigned i = 0; i != MaskNumElts; ++i) { | 
 |       int Idx = Mask[i]; | 
 |       int Input = 0; | 
 |       if (Idx < 0) | 
 |         continue; | 
 |        | 
 |       if (Idx >= (int)SrcNumElts) { | 
 |         Input = 1; | 
 |         Idx -= SrcNumElts; | 
 |       } | 
 |       if (Idx > MaxRange[Input]) | 
 |         MaxRange[Input] = Idx; | 
 |       if (Idx < MinRange[Input]) | 
 |         MinRange[Input] = Idx; | 
 |     } | 
 |  | 
 |     // Check if the access is smaller than the vector size and can we find | 
 |     // a reasonable extract index. | 
 |     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not Extract. | 
 |     int StartIdx[2];  // StartIdx to extract from | 
 |     for (int Input=0; Input < 2; ++Input) { | 
 |       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { | 
 |         RangeUse[Input] = 0; // Unused | 
 |         StartIdx[Input] = 0; | 
 |       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { | 
 |         // Fits within range but we should see if we can find a good | 
 |         // start index that is a multiple of the mask length. | 
 |         if (MaxRange[Input] < (int)MaskNumElts) { | 
 |           RangeUse[Input] = 1; // Extract from beginning of the vector | 
 |           StartIdx[Input] = 0; | 
 |         } else { | 
 |           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; | 
 |           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && | 
 |               StartIdx[Input] + MaskNumElts < SrcNumElts) | 
 |             RangeUse[Input] = 1; // Extract from a multiple of the mask length. | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (RangeUse[0] == 0 && RangeUse[1] == 0) { | 
 |       setValue(&I, DAG.getUNDEF(VT));  // Vectors are not used. | 
 |       return; | 
 |     } | 
 |     else if (RangeUse[0] < 2 && RangeUse[1] < 2) { | 
 |       // Extract appropriate subvector and generate a vector shuffle | 
 |       for (int Input=0; Input < 2; ++Input) { | 
 |         SDValue& Src = Input == 0 ? Src1 : Src2; | 
 |         if (RangeUse[Input] == 0) { | 
 |           Src = DAG.getUNDEF(VT); | 
 |         } else { | 
 |           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, | 
 |                             Src, DAG.getIntPtrConstant(StartIdx[Input])); | 
 |         } | 
 |       } | 
 |       // Calculate new mask. | 
 |       SmallVector<int, 8> MappedOps; | 
 |       for (unsigned i = 0; i != MaskNumElts; ++i) { | 
 |         int Idx = Mask[i]; | 
 |         if (Idx < 0) | 
 |           MappedOps.push_back(Idx); | 
 |         else if (Idx < (int)SrcNumElts) | 
 |           MappedOps.push_back(Idx - StartIdx[0]); | 
 |         else | 
 |           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); | 
 |       } | 
 |       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, | 
 |                                         &MappedOps[0])); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // We can't use either concat vectors or extract subvectors so fall back to | 
 |   // replacing the shuffle with extract and build vector. | 
 |   // to insert and build vector. | 
 |   EVT EltVT = VT.getVectorElementType(); | 
 |   EVT PtrVT = TLI.getPointerTy(); | 
 |   SmallVector<SDValue,8> Ops; | 
 |   for (unsigned i = 0; i != MaskNumElts; ++i) { | 
 |     if (Mask[i] < 0) { | 
 |       Ops.push_back(DAG.getUNDEF(EltVT)); | 
 |     } else { | 
 |       int Idx = Mask[i]; | 
 |       if (Idx < (int)SrcNumElts) | 
 |         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), | 
 |                                   EltVT, Src1, DAG.getConstant(Idx, PtrVT))); | 
 |       else | 
 |         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), | 
 |                                   EltVT, Src2, | 
 |                                   DAG.getConstant(Idx - SrcNumElts, PtrVT))); | 
 |     } | 
 |   } | 
 |   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), | 
 |                            VT, &Ops[0], Ops.size())); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) { | 
 |   const Value *Op0 = I.getOperand(0); | 
 |   const Value *Op1 = I.getOperand(1); | 
 |   const Type *AggTy = I.getType(); | 
 |   const Type *ValTy = Op1->getType(); | 
 |   bool IntoUndef = isa<UndefValue>(Op0); | 
 |   bool FromUndef = isa<UndefValue>(Op1); | 
 |  | 
 |   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, | 
 |                                             I.idx_begin(), I.idx_end()); | 
 |  | 
 |   SmallVector<EVT, 4> AggValueVTs; | 
 |   ComputeValueVTs(TLI, AggTy, AggValueVTs); | 
 |   SmallVector<EVT, 4> ValValueVTs; | 
 |   ComputeValueVTs(TLI, ValTy, ValValueVTs); | 
 |  | 
 |   unsigned NumAggValues = AggValueVTs.size(); | 
 |   unsigned NumValValues = ValValueVTs.size(); | 
 |   SmallVector<SDValue, 4> Values(NumAggValues); | 
 |  | 
 |   SDValue Agg = getValue(Op0); | 
 |   SDValue Val = getValue(Op1); | 
 |   unsigned i = 0; | 
 |   // Copy the beginning value(s) from the original aggregate. | 
 |   for (; i != LinearIndex; ++i) | 
 |     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
 |                 SDValue(Agg.getNode(), Agg.getResNo() + i); | 
 |   // Copy values from the inserted value(s). | 
 |   for (; i != LinearIndex + NumValValues; ++i) | 
 |     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
 |                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); | 
 |   // Copy remaining value(s) from the original aggregate. | 
 |   for (; i != NumAggValues; ++i) | 
 |     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
 |                 SDValue(Agg.getNode(), Agg.getResNo() + i); | 
 |  | 
 |   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
 |                            DAG.getVTList(&AggValueVTs[0], NumAggValues), | 
 |                            &Values[0], NumAggValues)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) { | 
 |   const Value *Op0 = I.getOperand(0); | 
 |   const Type *AggTy = Op0->getType(); | 
 |   const Type *ValTy = I.getType(); | 
 |   bool OutOfUndef = isa<UndefValue>(Op0); | 
 |  | 
 |   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, | 
 |                                             I.idx_begin(), I.idx_end()); | 
 |  | 
 |   SmallVector<EVT, 4> ValValueVTs; | 
 |   ComputeValueVTs(TLI, ValTy, ValValueVTs); | 
 |  | 
 |   unsigned NumValValues = ValValueVTs.size(); | 
 |   SmallVector<SDValue, 4> Values(NumValValues); | 
 |  | 
 |   SDValue Agg = getValue(Op0); | 
 |   // Copy out the selected value(s). | 
 |   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) | 
 |     Values[i - LinearIndex] = | 
 |       OutOfUndef ? | 
 |         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : | 
 |         SDValue(Agg.getNode(), Agg.getResNo() + i); | 
 |  | 
 |   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
 |                            DAG.getVTList(&ValValueVTs[0], NumValValues), | 
 |                            &Values[0], NumValValues)); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitGetElementPtr(User &I) { | 
 |   SDValue N = getValue(I.getOperand(0)); | 
 |   const Type *Ty = I.getOperand(0)->getType(); | 
 |  | 
 |   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); | 
 |        OI != E; ++OI) { | 
 |     Value *Idx = *OI; | 
 |     if (const StructType *StTy = dyn_cast<StructType>(Ty)) { | 
 |       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); | 
 |       if (Field) { | 
 |         // N = N + Offset | 
 |         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); | 
 |         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, | 
 |                         DAG.getIntPtrConstant(Offset)); | 
 |       } | 
 |       Ty = StTy->getElementType(Field); | 
 |     } else { | 
 |       Ty = cast<SequentialType>(Ty)->getElementType(); | 
 |  | 
 |       // If this is a constant subscript, handle it quickly. | 
 |       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { | 
 |         if (CI->getZExtValue() == 0) continue; | 
 |         uint64_t Offs = | 
 |             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); | 
 |         SDValue OffsVal; | 
 |         EVT PTy = TLI.getPointerTy(); | 
 |         unsigned PtrBits = PTy.getSizeInBits(); | 
 |         if (PtrBits < 64) { | 
 |           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), | 
 |                                 TLI.getPointerTy(), | 
 |                                 DAG.getConstant(Offs, MVT::i64)); | 
 |         } else | 
 |           OffsVal = DAG.getIntPtrConstant(Offs); | 
 |         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, | 
 |                         OffsVal); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // N = N + Idx * ElementSize; | 
 |       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), | 
 |                                 TD->getTypeAllocSize(Ty)); | 
 |       SDValue IdxN = getValue(Idx); | 
 |  | 
 |       // If the index is smaller or larger than intptr_t, truncate or extend | 
 |       // it. | 
 |       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); | 
 |  | 
 |       // If this is a multiply by a power of two, turn it into a shl | 
 |       // immediately.  This is a very common case. | 
 |       if (ElementSize != 1) { | 
 |         if (ElementSize.isPowerOf2()) { | 
 |           unsigned Amt = ElementSize.logBase2(); | 
 |           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), | 
 |                              N.getValueType(), IdxN, | 
 |                              DAG.getConstant(Amt, TLI.getPointerTy())); | 
 |         } else { | 
 |           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); | 
 |           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), | 
 |                              N.getValueType(), IdxN, Scale); | 
 |         } | 
 |       } | 
 |  | 
 |       N = DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
 |                       N.getValueType(), N, IdxN); | 
 |     } | 
 |   } | 
 |   setValue(&I, N); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitAlloca(AllocaInst &I) { | 
 |   // If this is a fixed sized alloca in the entry block of the function, | 
 |   // allocate it statically on the stack. | 
 |   if (FuncInfo.StaticAllocaMap.count(&I)) | 
 |     return;   // getValue will auto-populate this. | 
 |  | 
 |   const Type *Ty = I.getAllocatedType(); | 
 |   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); | 
 |   unsigned Align = | 
 |     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
 |              I.getAlignment()); | 
 |  | 
 |   SDValue AllocSize = getValue(I.getArraySize()); | 
 |    | 
 |   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), | 
 |                           AllocSize, | 
 |                           DAG.getConstant(TySize, AllocSize.getValueType())); | 
 |    | 
 |    | 
 |    | 
 |   EVT IntPtr = TLI.getPointerTy(); | 
 |   AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); | 
 |  | 
 |   // Handle alignment.  If the requested alignment is less than or equal to | 
 |   // the stack alignment, ignore it.  If the size is greater than or equal to | 
 |   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. | 
 |   unsigned StackAlign = | 
 |     TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); | 
 |   if (Align <= StackAlign) | 
 |     Align = 0; | 
 |  | 
 |   // Round the size of the allocation up to the stack alignment size | 
 |   // by add SA-1 to the size. | 
 |   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
 |                           AllocSize.getValueType(), AllocSize, | 
 |                           DAG.getIntPtrConstant(StackAlign-1)); | 
 |   // Mask out the low bits for alignment purposes. | 
 |   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), | 
 |                           AllocSize.getValueType(), AllocSize, | 
 |                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); | 
 |  | 
 |   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; | 
 |   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); | 
 |   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), | 
 |                             VTs, Ops, 3); | 
 |   setValue(&I, DSA); | 
 |   DAG.setRoot(DSA.getValue(1)); | 
 |  | 
 |   // Inform the Frame Information that we have just allocated a variable-sized | 
 |   // object. | 
 |   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitLoad(LoadInst &I) { | 
 |   const Value *SV = I.getOperand(0); | 
 |   SDValue Ptr = getValue(SV); | 
 |  | 
 |   const Type *Ty = I.getType(); | 
 |   bool isVolatile = I.isVolatile(); | 
 |   unsigned Alignment = I.getAlignment(); | 
 |  | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   SmallVector<uint64_t, 4> Offsets; | 
 |   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); | 
 |   unsigned NumValues = ValueVTs.size(); | 
 |   if (NumValues == 0) | 
 |     return; | 
 |  | 
 |   SDValue Root; | 
 |   bool ConstantMemory = false; | 
 |   if (I.isVolatile()) | 
 |     // Serialize volatile loads with other side effects. | 
 |     Root = getRoot(); | 
 |   else if (AA->pointsToConstantMemory(SV)) { | 
 |     // Do not serialize (non-volatile) loads of constant memory with anything. | 
 |     Root = DAG.getEntryNode(); | 
 |     ConstantMemory = true; | 
 |   } else { | 
 |     // Do not serialize non-volatile loads against each other. | 
 |     Root = DAG.getRoot(); | 
 |   } | 
 |  | 
 |   SmallVector<SDValue, 4> Values(NumValues); | 
 |   SmallVector<SDValue, 4> Chains(NumValues); | 
 |   EVT PtrVT = Ptr.getValueType(); | 
 |   for (unsigned i = 0; i != NumValues; ++i) { | 
 |     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, | 
 |                             DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
 |                                         PtrVT, Ptr, | 
 |                                         DAG.getConstant(Offsets[i], PtrVT)), | 
 |                             SV, Offsets[i], isVolatile, Alignment); | 
 |     Values[i] = L; | 
 |     Chains[i] = L.getValue(1); | 
 |   } | 
 |  | 
 |   if (!ConstantMemory) { | 
 |     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
 |                                   MVT::Other, | 
 |                                   &Chains[0], NumValues); | 
 |     if (isVolatile) | 
 |       DAG.setRoot(Chain); | 
 |     else | 
 |       PendingLoads.push_back(Chain); | 
 |   } | 
 |  | 
 |   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
 |                            DAG.getVTList(&ValueVTs[0], NumValues), | 
 |                            &Values[0], NumValues)); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitStore(StoreInst &I) { | 
 |   Value *SrcV = I.getOperand(0); | 
 |   Value *PtrV = I.getOperand(1); | 
 |  | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   SmallVector<uint64_t, 4> Offsets; | 
 |   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); | 
 |   unsigned NumValues = ValueVTs.size(); | 
 |   if (NumValues == 0) | 
 |     return; | 
 |  | 
 |   // Get the lowered operands. Note that we do this after | 
 |   // checking if NumResults is zero, because with zero results | 
 |   // the operands won't have values in the map. | 
 |   SDValue Src = getValue(SrcV); | 
 |   SDValue Ptr = getValue(PtrV); | 
 |  | 
 |   SDValue Root = getRoot(); | 
 |   SmallVector<SDValue, 4> Chains(NumValues); | 
 |   EVT PtrVT = Ptr.getValueType(); | 
 |   bool isVolatile = I.isVolatile(); | 
 |   unsigned Alignment = I.getAlignment(); | 
 |   for (unsigned i = 0; i != NumValues; ++i) | 
 |     Chains[i] = DAG.getStore(Root, getCurDebugLoc(), | 
 |                              SDValue(Src.getNode(), Src.getResNo() + i), | 
 |                              DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
 |                                          PtrVT, Ptr, | 
 |                                          DAG.getConstant(Offsets[i], PtrVT)), | 
 |                              PtrV, Offsets[i], isVolatile, Alignment); | 
 |  | 
 |   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
 |                           MVT::Other, &Chains[0], NumValues)); | 
 | } | 
 |  | 
 | /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC | 
 | /// node. | 
 | void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, | 
 |                                                 unsigned Intrinsic) { | 
 |   bool HasChain = !I.doesNotAccessMemory(); | 
 |   bool OnlyLoad = HasChain && I.onlyReadsMemory(); | 
 |  | 
 |   // Build the operand list. | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   if (HasChain) {  // If this intrinsic has side-effects, chainify it. | 
 |     if (OnlyLoad) { | 
 |       // We don't need to serialize loads against other loads. | 
 |       Ops.push_back(DAG.getRoot()); | 
 |     } else { | 
 |       Ops.push_back(getRoot()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Info is set by getTgtMemInstrinsic | 
 |   TargetLowering::IntrinsicInfo Info; | 
 |   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); | 
 |  | 
 |   // Add the intrinsic ID as an integer operand if it's not a target intrinsic. | 
 |   if (!IsTgtIntrinsic) | 
 |     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); | 
 |  | 
 |   // Add all operands of the call to the operand list. | 
 |   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { | 
 |     SDValue Op = getValue(I.getOperand(i)); | 
 |     assert(TLI.isTypeLegal(Op.getValueType()) && | 
 |            "Intrinsic uses a non-legal type?"); | 
 |     Ops.push_back(Op); | 
 |   } | 
 |  | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   ComputeValueVTs(TLI, I.getType(), ValueVTs); | 
 | #ifndef NDEBUG | 
 |   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { | 
 |     assert(TLI.isTypeLegal(ValueVTs[Val]) && | 
 |            "Intrinsic uses a non-legal type?"); | 
 |   } | 
 | #endif // NDEBUG | 
 |   if (HasChain) | 
 |     ValueVTs.push_back(MVT::Other); | 
 |  | 
 |   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); | 
 |  | 
 |   // Create the node. | 
 |   SDValue Result; | 
 |   if (IsTgtIntrinsic) { | 
 |     // This is target intrinsic that touches memory | 
 |     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), | 
 |                                      VTs, &Ops[0], Ops.size(), | 
 |                                      Info.memVT, Info.ptrVal, Info.offset, | 
 |                                      Info.align, Info.vol, | 
 |                                      Info.readMem, Info.writeMem); | 
 |   } | 
 |   else if (!HasChain) | 
 |     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), | 
 |                          VTs, &Ops[0], Ops.size()); | 
 |   else if (I.getType() != Type::getVoidTy(*DAG.getContext())) | 
 |     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), | 
 |                          VTs, &Ops[0], Ops.size()); | 
 |   else | 
 |     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), | 
 |                          VTs, &Ops[0], Ops.size()); | 
 |  | 
 |   if (HasChain) { | 
 |     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); | 
 |     if (OnlyLoad) | 
 |       PendingLoads.push_back(Chain); | 
 |     else | 
 |       DAG.setRoot(Chain); | 
 |   } | 
 |   if (I.getType() != Type::getVoidTy(*DAG.getContext())) { | 
 |     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { | 
 |       EVT VT = TLI.getValueType(PTy); | 
 |       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); | 
 |     } | 
 |     setValue(&I, Result); | 
 |   } | 
 | } | 
 |  | 
 | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
 | static GlobalVariable *ExtractTypeInfo(Value *V) { | 
 |   V = V->stripPointerCasts(); | 
 |   GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | 
 |   assert ((GV || isa<ConstantPointerNull>(V)) && | 
 |           "TypeInfo must be a global variable or NULL"); | 
 |   return GV; | 
 | } | 
 |  | 
 | namespace llvm { | 
 |  | 
 | /// AddCatchInfo - Extract the personality and type infos from an eh.selector | 
 | /// call, and add them to the specified machine basic block. | 
 | void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI, | 
 |                   MachineBasicBlock *MBB) { | 
 |   // Inform the MachineModuleInfo of the personality for this landing pad. | 
 |   ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2)); | 
 |   assert(CE->getOpcode() == Instruction::BitCast && | 
 |          isa<Function>(CE->getOperand(0)) && | 
 |          "Personality should be a function"); | 
 |   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); | 
 |  | 
 |   // Gather all the type infos for this landing pad and pass them along to | 
 |   // MachineModuleInfo. | 
 |   std::vector<GlobalVariable *> TyInfo; | 
 |   unsigned N = I.getNumOperands(); | 
 |  | 
 |   for (unsigned i = N - 1; i > 2; --i) { | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { | 
 |       unsigned FilterLength = CI->getZExtValue(); | 
 |       unsigned FirstCatch = i + FilterLength + !FilterLength; | 
 |       assert (FirstCatch <= N && "Invalid filter length"); | 
 |  | 
 |       if (FirstCatch < N) { | 
 |         TyInfo.reserve(N - FirstCatch); | 
 |         for (unsigned j = FirstCatch; j < N; ++j) | 
 |           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
 |         MMI->addCatchTypeInfo(MBB, TyInfo); | 
 |         TyInfo.clear(); | 
 |       } | 
 |  | 
 |       if (!FilterLength) { | 
 |         // Cleanup. | 
 |         MMI->addCleanup(MBB); | 
 |       } else { | 
 |         // Filter. | 
 |         TyInfo.reserve(FilterLength - 1); | 
 |         for (unsigned j = i + 1; j < FirstCatch; ++j) | 
 |           TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
 |         MMI->addFilterTypeInfo(MBB, TyInfo); | 
 |         TyInfo.clear(); | 
 |       } | 
 |  | 
 |       N = i; | 
 |     } | 
 |   } | 
 |  | 
 |   if (N > 3) { | 
 |     TyInfo.reserve(N - 3); | 
 |     for (unsigned j = 3; j < N; ++j) | 
 |       TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
 |     MMI->addCatchTypeInfo(MBB, TyInfo); | 
 |   } | 
 | } | 
 |  | 
 | } | 
 |  | 
 | /// GetSignificand - Get the significand and build it into a floating-point | 
 | /// number with exponent of 1: | 
 | /// | 
 | ///   Op = (Op & 0x007fffff) | 0x3f800000; | 
 | /// | 
 | /// where Op is the hexidecimal representation of floating point value. | 
 | static SDValue | 
 | GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { | 
 |   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
 |                            DAG.getConstant(0x007fffff, MVT::i32)); | 
 |   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, | 
 |                            DAG.getConstant(0x3f800000, MVT::i32)); | 
 |   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); | 
 | } | 
 |  | 
 | /// GetExponent - Get the exponent: | 
 | /// | 
 | ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127); | 
 | /// | 
 | /// where Op is the hexidecimal representation of floating point value. | 
 | static SDValue | 
 | GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, | 
 |             DebugLoc dl) { | 
 |   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
 |                            DAG.getConstant(0x7f800000, MVT::i32)); | 
 |   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, | 
 |                            DAG.getConstant(23, TLI.getPointerTy())); | 
 |   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, | 
 |                            DAG.getConstant(127, MVT::i32)); | 
 |   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); | 
 | } | 
 |  | 
 | /// getF32Constant - Get 32-bit floating point constant. | 
 | static SDValue | 
 | getF32Constant(SelectionDAG &DAG, unsigned Flt) { | 
 |   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); | 
 | } | 
 |  | 
 | /// Inlined utility function to implement binary input atomic intrinsics for | 
 | /// visitIntrinsicCall: I is a call instruction | 
 | ///                     Op is the associated NodeType for I | 
 | const char * | 
 | SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { | 
 |   SDValue Root = getRoot(); | 
 |   SDValue L = | 
 |     DAG.getAtomic(Op, getCurDebugLoc(), | 
 |                   getValue(I.getOperand(2)).getValueType().getSimpleVT(), | 
 |                   Root, | 
 |                   getValue(I.getOperand(1)), | 
 |                   getValue(I.getOperand(2)), | 
 |                   I.getOperand(1)); | 
 |   setValue(&I, L); | 
 |   DAG.setRoot(L.getValue(1)); | 
 |   return 0; | 
 | } | 
 |  | 
 | // implVisitAluOverflow - Lower arithmetic overflow instrinsics. | 
 | const char * | 
 | SelectionDAGLowering::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { | 
 |   SDValue Op1 = getValue(I.getOperand(1)); | 
 |   SDValue Op2 = getValue(I.getOperand(2)); | 
 |  | 
 |   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); | 
 |   SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); | 
 |  | 
 |   setValue(&I, Result); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// visitExp - Lower an exp intrinsic. Handles the special sequences for | 
 | /// limited-precision mode. | 
 | void | 
 | SelectionDAGLowering::visitExp(CallInst &I) { | 
 |   SDValue result; | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |  | 
 |   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
 |       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
 |     SDValue Op = getValue(I.getOperand(1)); | 
 |  | 
 |     // Put the exponent in the right bit position for later addition to the | 
 |     // final result: | 
 |     // | 
 |     //   #define LOG2OFe 1.4426950f | 
 |     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe)); | 
 |     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, | 
 |                              getF32Constant(DAG, 0x3fb8aa3b)); | 
 |     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); | 
 |  | 
 |     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; | 
 |     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
 |     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); | 
 |  | 
 |     //   IntegerPartOfX <<= 23; | 
 |     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
 |                                  DAG.getConstant(23, TLI.getPointerTy())); | 
 |  | 
 |     if (LimitFloatPrecision <= 6) { | 
 |       // For floating-point precision of 6: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.997535578f + | 
 |       //       (0.735607626f + 0.252464424f * x) * x; | 
 |       // | 
 |       // error 0.0144103317, which is 6 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3e814304)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3f3c50c8)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3f7f5e7e)); | 
 |       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); | 
 |  | 
 |       // Add the exponent into the result in integer domain. | 
 |       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, | 
 |                                TwoToFracPartOfX, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); | 
 |     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
 |       // For floating-point precision of 12: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.999892986f + | 
 |       //       (0.696457318f + | 
 |       //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
 |       // | 
 |       // 0.000107046256 error, which is 13 to 14 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3da235e3)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3e65b8f3)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3f324b07)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x3f7ff8fd)); | 
 |       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); | 
 |  | 
 |       // Add the exponent into the result in integer domain. | 
 |       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, | 
 |                                TwoToFracPartOfX, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); | 
 |     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
 |       // For floating-point precision of 18: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.999999982f + | 
 |       //       (0.693148872f + | 
 |       //         (0.240227044f + | 
 |       //           (0.554906021e-1f + | 
 |       //             (0.961591928e-2f + | 
 |       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
 |       // | 
 |       // error 2.47208000*10^(-7), which is better than 18 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3924b03e)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3ab24b87)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3c1d8c17)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x3d634a1d)); | 
 |       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
 |       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
 |                                getF32Constant(DAG, 0x3e75fe14)); | 
 |       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
 |       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
 |                                 getF32Constant(DAG, 0x3f317234)); | 
 |       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
 |       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
 |                                 getF32Constant(DAG, 0x3f800000)); | 
 |       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                                              MVT::i32, t13); | 
 |  | 
 |       // Add the exponent into the result in integer domain. | 
 |       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, | 
 |                                 TwoToFracPartOfX, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); | 
 |     } | 
 |   } else { | 
 |     // No special expansion. | 
 |     result = DAG.getNode(ISD::FEXP, dl, | 
 |                          getValue(I.getOperand(1)).getValueType(), | 
 |                          getValue(I.getOperand(1))); | 
 |   } | 
 |  | 
 |   setValue(&I, result); | 
 | } | 
 |  | 
 | /// visitLog - Lower a log intrinsic. Handles the special sequences for | 
 | /// limited-precision mode. | 
 | void | 
 | SelectionDAGLowering::visitLog(CallInst &I) { | 
 |   SDValue result; | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |  | 
 |   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
 |       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
 |     SDValue Op = getValue(I.getOperand(1)); | 
 |     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); | 
 |  | 
 |     // Scale the exponent by log(2) [0.69314718f]. | 
 |     SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
 |     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
 |                                         getF32Constant(DAG, 0x3f317218)); | 
 |  | 
 |     // Get the significand and build it into a floating-point number with | 
 |     // exponent of 1. | 
 |     SDValue X = GetSignificand(DAG, Op1, dl); | 
 |  | 
 |     if (LimitFloatPrecision <= 6) { | 
 |       // For floating-point precision of 6: | 
 |       // | 
 |       //   LogofMantissa = | 
 |       //     -1.1609546f + | 
 |       //       (1.4034025f - 0.23903021f * x) * x; | 
 |       // | 
 |       // error 0.0034276066, which is better than 8 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0xbe74c456)); | 
 |       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3fb3a2b1)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
 |                                           getF32Constant(DAG, 0x3f949a29)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, LogOfMantissa); | 
 |     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
 |       // For floating-point precision of 12: | 
 |       // | 
 |       //   LogOfMantissa = | 
 |       //     -1.7417939f + | 
 |       //       (2.8212026f + | 
 |       //         (-1.4699568f + | 
 |       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; | 
 |       // | 
 |       // error 0.000061011436, which is 14 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0xbd67b6d6)); | 
 |       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3ee4f4b8)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3fbc278b)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x40348e95)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
 |                                           getF32Constant(DAG, 0x3fdef31a)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, LogOfMantissa); | 
 |     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
 |       // For floating-point precision of 18: | 
 |       // | 
 |       //   LogOfMantissa = | 
 |       //     -2.1072184f + | 
 |       //       (4.2372794f + | 
 |       //         (-3.7029485f + | 
 |       //           (2.2781945f + | 
 |       //             (-0.87823314f + | 
 |       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; | 
 |       // | 
 |       // error 0.0000023660568, which is better than 18 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0xbc91e5ac)); | 
 |       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3e4350aa)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3f60d3e3)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x4011cdf0)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x406cfd1c)); | 
 |       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
 |       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
 |                                getF32Constant(DAG, 0x408797cb)); | 
 |       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
 |       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
 |                                           getF32Constant(DAG, 0x4006dcab)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, LogOfMantissa); | 
 |     } | 
 |   } else { | 
 |     // No special expansion. | 
 |     result = DAG.getNode(ISD::FLOG, dl, | 
 |                          getValue(I.getOperand(1)).getValueType(), | 
 |                          getValue(I.getOperand(1))); | 
 |   } | 
 |  | 
 |   setValue(&I, result); | 
 | } | 
 |  | 
 | /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for | 
 | /// limited-precision mode. | 
 | void | 
 | SelectionDAGLowering::visitLog2(CallInst &I) { | 
 |   SDValue result; | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |  | 
 |   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
 |       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
 |     SDValue Op = getValue(I.getOperand(1)); | 
 |     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); | 
 |  | 
 |     // Get the exponent. | 
 |     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); | 
 |  | 
 |     // Get the significand and build it into a floating-point number with | 
 |     // exponent of 1. | 
 |     SDValue X = GetSignificand(DAG, Op1, dl); | 
 |  | 
 |     // Different possible minimax approximations of significand in | 
 |     // floating-point for various degrees of accuracy over [1,2]. | 
 |     if (LimitFloatPrecision <= 6) { | 
 |       // For floating-point precision of 6: | 
 |       // | 
 |       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; | 
 |       // | 
 |       // error 0.0049451742, which is more than 7 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0xbeb08fe0)); | 
 |       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x40019463)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
 |                                            getF32Constant(DAG, 0x3fd6633d)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, Log2ofMantissa); | 
 |     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
 |       // For floating-point precision of 12: | 
 |       // | 
 |       //   Log2ofMantissa = | 
 |       //     -2.51285454f + | 
 |       //       (4.07009056f + | 
 |       //         (-2.12067489f + | 
 |       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x; | 
 |       // | 
 |       // error 0.0000876136000, which is better than 13 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0xbda7262e)); | 
 |       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3f25280b)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x4007b923)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x40823e2f)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
 |                                            getF32Constant(DAG, 0x4020d29c)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, Log2ofMantissa); | 
 |     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
 |       // For floating-point precision of 18: | 
 |       // | 
 |       //   Log2ofMantissa = | 
 |       //     -3.0400495f + | 
 |       //       (6.1129976f + | 
 |       //         (-5.3420409f + | 
 |       //           (3.2865683f + | 
 |       //             (-1.2669343f + | 
 |       //               (0.27515199f - | 
 |       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x; | 
 |       // | 
 |       // error 0.0000018516, which is better than 18 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0xbcd2769e)); | 
 |       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3e8ce0b9)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3fa22ae7)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x40525723)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x40aaf200)); | 
 |       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
 |       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
 |                                getF32Constant(DAG, 0x40c39dad)); | 
 |       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
 |       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
 |                                            getF32Constant(DAG, 0x4042902c)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, Log2ofMantissa); | 
 |     } | 
 |   } else { | 
 |     // No special expansion. | 
 |     result = DAG.getNode(ISD::FLOG2, dl, | 
 |                          getValue(I.getOperand(1)).getValueType(), | 
 |                          getValue(I.getOperand(1))); | 
 |   } | 
 |  | 
 |   setValue(&I, result); | 
 | } | 
 |  | 
 | /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for | 
 | /// limited-precision mode. | 
 | void | 
 | SelectionDAGLowering::visitLog10(CallInst &I) { | 
 |   SDValue result; | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |  | 
 |   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
 |       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
 |     SDValue Op = getValue(I.getOperand(1)); | 
 |     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); | 
 |  | 
 |     // Scale the exponent by log10(2) [0.30102999f]. | 
 |     SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
 |     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
 |                                         getF32Constant(DAG, 0x3e9a209a)); | 
 |  | 
 |     // Get the significand and build it into a floating-point number with | 
 |     // exponent of 1. | 
 |     SDValue X = GetSignificand(DAG, Op1, dl); | 
 |  | 
 |     if (LimitFloatPrecision <= 6) { | 
 |       // For floating-point precision of 6: | 
 |       // | 
 |       //   Log10ofMantissa = | 
 |       //     -0.50419619f + | 
 |       //       (0.60948995f - 0.10380950f * x) * x; | 
 |       // | 
 |       // error 0.0014886165, which is 6 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0xbdd49a13)); | 
 |       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3f1c0789)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
 |                                             getF32Constant(DAG, 0x3f011300)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, Log10ofMantissa); | 
 |     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
 |       // For floating-point precision of 12: | 
 |       // | 
 |       //   Log10ofMantissa = | 
 |       //     -0.64831180f + | 
 |       //       (0.91751397f + | 
 |       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x; | 
 |       // | 
 |       // error 0.00019228036, which is better than 12 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3d431f31)); | 
 |       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3ea21fb2)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3f6ae232)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
 |                                             getF32Constant(DAG, 0x3f25f7c3)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, Log10ofMantissa); | 
 |     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
 |       // For floating-point precision of 18: | 
 |       // | 
 |       //   Log10ofMantissa = | 
 |       //     -0.84299375f + | 
 |       //       (1.5327582f + | 
 |       //         (-1.0688956f + | 
 |       //           (0.49102474f + | 
 |       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; | 
 |       // | 
 |       // error 0.0000037995730, which is better than 18 bits | 
 |       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3c5d51ce)); | 
 |       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
 |                                getF32Constant(DAG, 0x3e00685a)); | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3efb6798)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3f88d192)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x3fc4316c)); | 
 |       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
 |       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, | 
 |                                             getF32Constant(DAG, 0x3f57ce70)); | 
 |  | 
 |       result = DAG.getNode(ISD::FADD, dl, | 
 |                            MVT::f32, LogOfExponent, Log10ofMantissa); | 
 |     } | 
 |   } else { | 
 |     // No special expansion. | 
 |     result = DAG.getNode(ISD::FLOG10, dl, | 
 |                          getValue(I.getOperand(1)).getValueType(), | 
 |                          getValue(I.getOperand(1))); | 
 |   } | 
 |  | 
 |   setValue(&I, result); | 
 | } | 
 |  | 
 | /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for | 
 | /// limited-precision mode. | 
 | void | 
 | SelectionDAGLowering::visitExp2(CallInst &I) { | 
 |   SDValue result; | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |  | 
 |   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && | 
 |       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
 |     SDValue Op = getValue(I.getOperand(1)); | 
 |  | 
 |     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); | 
 |  | 
 |     //   FractionalPartOfX = x - (float)IntegerPartOfX; | 
 |     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
 |     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); | 
 |  | 
 |     //   IntegerPartOfX <<= 23; | 
 |     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
 |                                  DAG.getConstant(23, TLI.getPointerTy())); | 
 |  | 
 |     if (LimitFloatPrecision <= 6) { | 
 |       // For floating-point precision of 6: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.997535578f + | 
 |       //       (0.735607626f + 0.252464424f * x) * x; | 
 |       // | 
 |       // error 0.0144103317, which is 6 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3e814304)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3f3c50c8)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3f7f5e7e)); | 
 |       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); | 
 |       SDValue TwoToFractionalPartOfX = | 
 |         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                            MVT::f32, TwoToFractionalPartOfX); | 
 |     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
 |       // For floating-point precision of 12: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.999892986f + | 
 |       //       (0.696457318f + | 
 |       //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
 |       // | 
 |       // error 0.000107046256, which is 13 to 14 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3da235e3)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3e65b8f3)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3f324b07)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x3f7ff8fd)); | 
 |       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); | 
 |       SDValue TwoToFractionalPartOfX = | 
 |         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                            MVT::f32, TwoToFractionalPartOfX); | 
 |     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
 |       // For floating-point precision of 18: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.999999982f + | 
 |       //       (0.693148872f + | 
 |       //         (0.240227044f + | 
 |       //           (0.554906021e-1f + | 
 |       //             (0.961591928e-2f + | 
 |       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
 |       // error 2.47208000*10^(-7), which is better than 18 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3924b03e)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3ab24b87)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3c1d8c17)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x3d634a1d)); | 
 |       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
 |       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
 |                                getF32Constant(DAG, 0x3e75fe14)); | 
 |       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
 |       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
 |                                 getF32Constant(DAG, 0x3f317234)); | 
 |       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
 |       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
 |                                 getF32Constant(DAG, 0x3f800000)); | 
 |       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); | 
 |       SDValue TwoToFractionalPartOfX = | 
 |         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                            MVT::f32, TwoToFractionalPartOfX); | 
 |     } | 
 |   } else { | 
 |     // No special expansion. | 
 |     result = DAG.getNode(ISD::FEXP2, dl, | 
 |                          getValue(I.getOperand(1)).getValueType(), | 
 |                          getValue(I.getOperand(1))); | 
 |   } | 
 |  | 
 |   setValue(&I, result); | 
 | } | 
 |  | 
 | /// visitPow - Lower a pow intrinsic. Handles the special sequences for | 
 | /// limited-precision mode with x == 10.0f. | 
 | void | 
 | SelectionDAGLowering::visitPow(CallInst &I) { | 
 |   SDValue result; | 
 |   Value *Val = I.getOperand(1); | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |   bool IsExp10 = false; | 
 |  | 
 |   if (getValue(Val).getValueType() == MVT::f32 && | 
 |       getValue(I.getOperand(2)).getValueType() == MVT::f32 && | 
 |       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
 |     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { | 
 |       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
 |         APFloat Ten(10.0f); | 
 |         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
 |     SDValue Op = getValue(I.getOperand(2)); | 
 |  | 
 |     // Put the exponent in the right bit position for later addition to the | 
 |     // final result: | 
 |     // | 
 |     //   #define LOG2OF10 3.3219281f | 
 |     //   IntegerPartOfX = (int32_t)(x * LOG2OF10); | 
 |     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, | 
 |                              getF32Constant(DAG, 0x40549a78)); | 
 |     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); | 
 |  | 
 |     //   FractionalPartOfX = x - (float)IntegerPartOfX; | 
 |     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
 |     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); | 
 |  | 
 |     //   IntegerPartOfX <<= 23; | 
 |     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
 |                                  DAG.getConstant(23, TLI.getPointerTy())); | 
 |  | 
 |     if (LimitFloatPrecision <= 6) { | 
 |       // For floating-point precision of 6: | 
 |       // | 
 |       //   twoToFractionalPartOfX = | 
 |       //     0.997535578f + | 
 |       //       (0.735607626f + 0.252464424f * x) * x; | 
 |       // | 
 |       // error 0.0144103317, which is 6 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3e814304)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3f3c50c8)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3f7f5e7e)); | 
 |       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); | 
 |       SDValue TwoToFractionalPartOfX = | 
 |         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                            MVT::f32, TwoToFractionalPartOfX); | 
 |     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
 |       // For floating-point precision of 12: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.999892986f + | 
 |       //       (0.696457318f + | 
 |       //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
 |       // | 
 |       // error 0.000107046256, which is 13 to 14 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3da235e3)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3e65b8f3)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3f324b07)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x3f7ff8fd)); | 
 |       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); | 
 |       SDValue TwoToFractionalPartOfX = | 
 |         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                            MVT::f32, TwoToFractionalPartOfX); | 
 |     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
 |       // For floating-point precision of 18: | 
 |       // | 
 |       //   TwoToFractionalPartOfX = | 
 |       //     0.999999982f + | 
 |       //       (0.693148872f + | 
 |       //         (0.240227044f + | 
 |       //           (0.554906021e-1f + | 
 |       //             (0.961591928e-2f + | 
 |       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
 |       // error 2.47208000*10^(-7), which is better than 18 bits | 
 |       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
 |                                getF32Constant(DAG, 0x3924b03e)); | 
 |       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
 |                                getF32Constant(DAG, 0x3ab24b87)); | 
 |       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
 |       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
 |                                getF32Constant(DAG, 0x3c1d8c17)); | 
 |       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
 |       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
 |                                getF32Constant(DAG, 0x3d634a1d)); | 
 |       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
 |       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
 |                                getF32Constant(DAG, 0x3e75fe14)); | 
 |       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
 |       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
 |                                 getF32Constant(DAG, 0x3f317234)); | 
 |       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
 |       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
 |                                 getF32Constant(DAG, 0x3f800000)); | 
 |       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); | 
 |       SDValue TwoToFractionalPartOfX = | 
 |         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); | 
 |  | 
 |       result = DAG.getNode(ISD::BIT_CONVERT, dl, | 
 |                            MVT::f32, TwoToFractionalPartOfX); | 
 |     } | 
 |   } else { | 
 |     // No special expansion. | 
 |     result = DAG.getNode(ISD::FPOW, dl, | 
 |                          getValue(I.getOperand(1)).getValueType(), | 
 |                          getValue(I.getOperand(1)), | 
 |                          getValue(I.getOperand(2))); | 
 |   } | 
 |  | 
 |   setValue(&I, result); | 
 | } | 
 |  | 
 | /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If | 
 | /// we want to emit this as a call to a named external function, return the name | 
 | /// otherwise lower it and return null. | 
 | const char * | 
 | SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { | 
 |   DebugLoc dl = getCurDebugLoc(); | 
 |   switch (Intrinsic) { | 
 |   default: | 
 |     // By default, turn this into a target intrinsic node. | 
 |     visitTargetIntrinsic(I, Intrinsic); | 
 |     return 0; | 
 |   case Intrinsic::vastart:  visitVAStart(I); return 0; | 
 |   case Intrinsic::vaend:    visitVAEnd(I); return 0; | 
 |   case Intrinsic::vacopy:   visitVACopy(I); return 0; | 
 |   case Intrinsic::returnaddress: | 
 |     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::frameaddress: | 
 |     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::setjmp: | 
 |     return "_setjmp"+!TLI.usesUnderscoreSetJmp(); | 
 |     break; | 
 |   case Intrinsic::longjmp: | 
 |     return "_longjmp"+!TLI.usesUnderscoreLongJmp(); | 
 |     break; | 
 |   case Intrinsic::memcpy: { | 
 |     SDValue Op1 = getValue(I.getOperand(1)); | 
 |     SDValue Op2 = getValue(I.getOperand(2)); | 
 |     SDValue Op3 = getValue(I.getOperand(3)); | 
 |     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); | 
 |     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, | 
 |                               I.getOperand(1), 0, I.getOperand(2), 0)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::memset: { | 
 |     SDValue Op1 = getValue(I.getOperand(1)); | 
 |     SDValue Op2 = getValue(I.getOperand(2)); | 
 |     SDValue Op3 = getValue(I.getOperand(3)); | 
 |     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); | 
 |     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, | 
 |                               I.getOperand(1), 0)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::memmove: { | 
 |     SDValue Op1 = getValue(I.getOperand(1)); | 
 |     SDValue Op2 = getValue(I.getOperand(2)); | 
 |     SDValue Op3 = getValue(I.getOperand(3)); | 
 |     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); | 
 |  | 
 |     // If the source and destination are known to not be aliases, we can | 
 |     // lower memmove as memcpy. | 
 |     uint64_t Size = -1ULL; | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) | 
 |       Size = C->getZExtValue(); | 
 |     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == | 
 |         AliasAnalysis::NoAlias) { | 
 |       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, | 
 |                                 I.getOperand(1), 0, I.getOperand(2), 0)); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, | 
 |                                I.getOperand(1), 0, I.getOperand(2), 0)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_stoppoint: { | 
 |     DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); | 
 |     if (isValidDebugInfoIntrinsic(SPI, CodeGenOpt::Default)) { | 
 |       MachineFunction &MF = DAG.getMachineFunction(); | 
 |       DebugLoc Loc = ExtractDebugLocation(SPI, MF.getDebugLocInfo()); | 
 |       setCurDebugLoc(Loc); | 
 |  | 
 |       if (OptLevel == CodeGenOpt::None) | 
 |         DAG.setRoot(DAG.getDbgStopPoint(Loc, getRoot(), | 
 |                                         SPI.getLine(), | 
 |                                         SPI.getColumn(), | 
 |                                         SPI.getContext())); | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_region_start: { | 
 |     DwarfWriter *DW = DAG.getDwarfWriter(); | 
 |     DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I); | 
 |     if (isValidDebugInfoIntrinsic(RSI, OptLevel) && DW | 
 |         && DW->ShouldEmitDwarfDebug()) { | 
 |       unsigned LabelID = | 
 |         DW->RecordRegionStart(RSI.getContext()); | 
 |       DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(), | 
 |                                getRoot(), LabelID)); | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_region_end: { | 
 |     DwarfWriter *DW = DAG.getDwarfWriter(); | 
 |     DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I); | 
 |  | 
 |     if (!isValidDebugInfoIntrinsic(REI, OptLevel) || !DW | 
 |         || !DW->ShouldEmitDwarfDebug())  | 
 |       return 0; | 
 |  | 
 |     DISubprogram Subprogram(REI.getContext()); | 
 |      | 
 |     unsigned LabelID = | 
 |       DW->RecordRegionEnd(REI.getContext()); | 
 |     DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(), | 
 |                              getRoot(), LabelID)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_func_start: { | 
 |     DwarfWriter *DW = DAG.getDwarfWriter(); | 
 |     DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I); | 
 |     if (!isValidDebugInfoIntrinsic(FSI, CodeGenOpt::None)) | 
 |       return 0; | 
 |  | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     MF.setDefaultDebugLoc(ExtractDebugLocation(FSI, MF.getDebugLocInfo())); | 
 |  | 
 |     if (!DW || !DW->ShouldEmitDwarfDebug()) | 
 |       return 0; | 
 |     // llvm.dbg.func_start also defines beginning of function scope. | 
 |     DW->RecordRegionStart(FSI.getSubprogram()); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::dbg_declare: { | 
 |     if (OptLevel != CodeGenOpt::None)  | 
 |       // FIXME: Variable debug info is not supported here. | 
 |       return 0; | 
 |     DwarfWriter *DW = DAG.getDwarfWriter(); | 
 |     if (!DW) | 
 |       return 0; | 
 |     DbgDeclareInst &DI = cast<DbgDeclareInst>(I); | 
 |     if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) | 
 |       return 0; | 
 |  | 
 |     MDNode *Variable = DI.getVariable(); | 
 |     Value *Address = DI.getAddress(); | 
 |     if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
 |       Address = BCI->getOperand(0); | 
 |     AllocaInst *AI = dyn_cast<AllocaInst>(Address); | 
 |     // Don't handle byval struct arguments or VLAs, for example. | 
 |     if (!AI) | 
 |       return 0; | 
 |     DenseMap<const AllocaInst*, int>::iterator SI = | 
 |       FuncInfo.StaticAllocaMap.find(AI); | 
 |     if (SI == FuncInfo.StaticAllocaMap.end())  | 
 |       return 0; // VLAs. | 
 |     int FI = SI->second; | 
 | #ifdef ATTACH_DEBUG_INFO_TO_AN_INSN | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |     if (MMI) { | 
 |       MetadataContext &TheMetadata =  | 
 |         DI.getParent()->getContext().getMetadata(); | 
 |       unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); | 
 |       MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); | 
 |       MMI->setVariableDbgInfo(Variable, FI, Dbg); | 
 |     } | 
 | #else | 
 |     DW->RecordVariable(Variable, FI); | 
 | #endif | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::eh_exception: { | 
 |     // Insert the EXCEPTIONADDR instruction. | 
 |     assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); | 
 |     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
 |     SDValue Ops[1]; | 
 |     Ops[0] = DAG.getRoot(); | 
 |     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); | 
 |     setValue(&I, Op); | 
 |     DAG.setRoot(Op.getValue(1)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::eh_selector: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |  | 
 |     if (CurMBB->isLandingPad()) | 
 |       AddCatchInfo(I, MMI, CurMBB); | 
 |     else { | 
 | #ifndef NDEBUG | 
 |       FuncInfo.CatchInfoLost.insert(&I); | 
 | #endif | 
 |       // FIXME: Mark exception selector register as live in.  Hack for PR1508. | 
 |       unsigned Reg = TLI.getExceptionSelectorRegister(); | 
 |       if (Reg) CurMBB->addLiveIn(Reg); | 
 |     } | 
 |  | 
 |     // Insert the EHSELECTION instruction. | 
 |     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
 |     SDValue Ops[2]; | 
 |     Ops[0] = getValue(I.getOperand(1)); | 
 |     Ops[1] = getRoot(); | 
 |     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); | 
 |  | 
 |     DAG.setRoot(Op.getValue(1)); | 
 |  | 
 |     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::eh_typeid_for: { | 
 |     MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |  | 
 |     if (MMI) { | 
 |       // Find the type id for the given typeinfo. | 
 |       GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); | 
 |  | 
 |       unsigned TypeID = MMI->getTypeIDFor(GV); | 
 |       setValue(&I, DAG.getConstant(TypeID, MVT::i32)); | 
 |     } else { | 
 |       // Return something different to eh_selector. | 
 |       setValue(&I, DAG.getConstant(1, MVT::i32)); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::eh_return_i32: | 
 |   case Intrinsic::eh_return_i64: | 
 |     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { | 
 |       MMI->setCallsEHReturn(true); | 
 |       DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, | 
 |                               MVT::Other, | 
 |                               getControlRoot(), | 
 |                               getValue(I.getOperand(1)), | 
 |                               getValue(I.getOperand(2)))); | 
 |     } else { | 
 |       setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); | 
 |     } | 
 |  | 
 |     return 0; | 
 |   case Intrinsic::eh_unwind_init: | 
 |     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { | 
 |       MMI->setCallsUnwindInit(true); | 
 |     } | 
 |  | 
 |     return 0; | 
 |  | 
 |   case Intrinsic::eh_dwarf_cfa: { | 
 |     EVT VT = getValue(I.getOperand(1)).getValueType(); | 
 |     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, | 
 |                                         TLI.getPointerTy()); | 
 |  | 
 |     SDValue Offset = DAG.getNode(ISD::ADD, dl, | 
 |                                  TLI.getPointerTy(), | 
 |                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, | 
 |                                              TLI.getPointerTy()), | 
 |                                  CfaArg); | 
 |     setValue(&I, DAG.getNode(ISD::ADD, dl, | 
 |                              TLI.getPointerTy(), | 
 |                              DAG.getNode(ISD::FRAMEADDR, dl, | 
 |                                          TLI.getPointerTy(), | 
 |                                          DAG.getConstant(0, | 
 |                                                          TLI.getPointerTy())), | 
 |                              Offset)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::convertff: | 
 |   case Intrinsic::convertfsi: | 
 |   case Intrinsic::convertfui: | 
 |   case Intrinsic::convertsif: | 
 |   case Intrinsic::convertuif: | 
 |   case Intrinsic::convertss: | 
 |   case Intrinsic::convertsu: | 
 |   case Intrinsic::convertus: | 
 |   case Intrinsic::convertuu: { | 
 |     ISD::CvtCode Code = ISD::CVT_INVALID; | 
 |     switch (Intrinsic) { | 
 |     case Intrinsic::convertff:  Code = ISD::CVT_FF; break; | 
 |     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; | 
 |     case Intrinsic::convertfui: Code = ISD::CVT_FU; break; | 
 |     case Intrinsic::convertsif: Code = ISD::CVT_SF; break; | 
 |     case Intrinsic::convertuif: Code = ISD::CVT_UF; break; | 
 |     case Intrinsic::convertss:  Code = ISD::CVT_SS; break; | 
 |     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break; | 
 |     case Intrinsic::convertus:  Code = ISD::CVT_US; break; | 
 |     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break; | 
 |     } | 
 |     EVT DestVT = TLI.getValueType(I.getType()); | 
 |     Value* Op1 = I.getOperand(1); | 
 |     setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), | 
 |                                 DAG.getValueType(DestVT), | 
 |                                 DAG.getValueType(getValue(Op1).getValueType()), | 
 |                                 getValue(I.getOperand(2)), | 
 |                                 getValue(I.getOperand(3)), | 
 |                                 Code)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::sqrt: | 
 |     setValue(&I, DAG.getNode(ISD::FSQRT, dl, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::powi: | 
 |     setValue(&I, DAG.getNode(ISD::FPOWI, dl, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)), | 
 |                              getValue(I.getOperand(2)))); | 
 |     return 0; | 
 |   case Intrinsic::sin: | 
 |     setValue(&I, DAG.getNode(ISD::FSIN, dl, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::cos: | 
 |     setValue(&I, DAG.getNode(ISD::FCOS, dl, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::log: | 
 |     visitLog(I); | 
 |     return 0; | 
 |   case Intrinsic::log2: | 
 |     visitLog2(I); | 
 |     return 0; | 
 |   case Intrinsic::log10: | 
 |     visitLog10(I); | 
 |     return 0; | 
 |   case Intrinsic::exp: | 
 |     visitExp(I); | 
 |     return 0; | 
 |   case Intrinsic::exp2: | 
 |     visitExp2(I); | 
 |     return 0; | 
 |   case Intrinsic::pow: | 
 |     visitPow(I); | 
 |     return 0; | 
 |   case Intrinsic::pcmarker: { | 
 |     SDValue Tmp = getValue(I.getOperand(1)); | 
 |     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::readcyclecounter: { | 
 |     SDValue Op = getRoot(); | 
 |     SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, | 
 |                               DAG.getVTList(MVT::i64, MVT::Other), | 
 |                               &Op, 1); | 
 |     setValue(&I, Tmp); | 
 |     DAG.setRoot(Tmp.getValue(1)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::bswap: | 
 |     setValue(&I, DAG.getNode(ISD::BSWAP, dl, | 
 |                              getValue(I.getOperand(1)).getValueType(), | 
 |                              getValue(I.getOperand(1)))); | 
 |     return 0; | 
 |   case Intrinsic::cttz: { | 
 |     SDValue Arg = getValue(I.getOperand(1)); | 
 |     EVT Ty = Arg.getValueType(); | 
 |     SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); | 
 |     setValue(&I, result); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::ctlz: { | 
 |     SDValue Arg = getValue(I.getOperand(1)); | 
 |     EVT Ty = Arg.getValueType(); | 
 |     SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); | 
 |     setValue(&I, result); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::ctpop: { | 
 |     SDValue Arg = getValue(I.getOperand(1)); | 
 |     EVT Ty = Arg.getValueType(); | 
 |     SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); | 
 |     setValue(&I, result); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::stacksave: { | 
 |     SDValue Op = getRoot(); | 
 |     SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, | 
 |               DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); | 
 |     setValue(&I, Tmp); | 
 |     DAG.setRoot(Tmp.getValue(1)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::stackrestore: { | 
 |     SDValue Tmp = getValue(I.getOperand(1)); | 
 |     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::stackprotector: { | 
 |     // Emit code into the DAG to store the stack guard onto the stack. | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |     EVT PtrTy = TLI.getPointerTy(); | 
 |  | 
 |     SDValue Src = getValue(I.getOperand(1));   // The guard's value. | 
 |     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); | 
 |  | 
 |     int FI = FuncInfo.StaticAllocaMap[Slot]; | 
 |     MFI->setStackProtectorIndex(FI); | 
 |  | 
 |     SDValue FIN = DAG.getFrameIndex(FI, PtrTy); | 
 |  | 
 |     // Store the stack protector onto the stack. | 
 |     SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, | 
 |                                   PseudoSourceValue::getFixedStack(FI), | 
 |                                   0, true); | 
 |     setValue(&I, Result); | 
 |     DAG.setRoot(Result); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::objectsize: { | 
 |     // If we don't know by now, we're never going to know. | 
 |     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); | 
 |  | 
 |     assert(CI && "Non-constant type in __builtin_object_size?"); | 
 |  | 
 |     SDValue Arg = getValue(I.getOperand(0)); | 
 |     EVT Ty = Arg.getValueType(); | 
 |  | 
 |     if (CI->getZExtValue() < 2) | 
 |       setValue(&I, DAG.getConstant(-1ULL, Ty)); | 
 |     else | 
 |       setValue(&I, DAG.getConstant(0, Ty)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::var_annotation: | 
 |     // Discard annotate attributes | 
 |     return 0; | 
 |  | 
 |   case Intrinsic::init_trampoline: { | 
 |     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); | 
 |  | 
 |     SDValue Ops[6]; | 
 |     Ops[0] = getRoot(); | 
 |     Ops[1] = getValue(I.getOperand(1)); | 
 |     Ops[2] = getValue(I.getOperand(2)); | 
 |     Ops[3] = getValue(I.getOperand(3)); | 
 |     Ops[4] = DAG.getSrcValue(I.getOperand(1)); | 
 |     Ops[5] = DAG.getSrcValue(F); | 
 |  | 
 |     SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, | 
 |                               DAG.getVTList(TLI.getPointerTy(), MVT::Other), | 
 |                               Ops, 6); | 
 |  | 
 |     setValue(&I, Tmp); | 
 |     DAG.setRoot(Tmp.getValue(1)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::gcroot: | 
 |     if (GFI) { | 
 |       Value *Alloca = I.getOperand(1); | 
 |       Constant *TypeMap = cast<Constant>(I.getOperand(2)); | 
 |  | 
 |       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); | 
 |       GFI->addStackRoot(FI->getIndex(), TypeMap); | 
 |     } | 
 |     return 0; | 
 |  | 
 |   case Intrinsic::gcread: | 
 |   case Intrinsic::gcwrite: | 
 |     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); | 
 |     return 0; | 
 |  | 
 |   case Intrinsic::flt_rounds: { | 
 |     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::trap: { | 
 |     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::uadd_with_overflow: | 
 |     return implVisitAluOverflow(I, ISD::UADDO); | 
 |   case Intrinsic::sadd_with_overflow: | 
 |     return implVisitAluOverflow(I, ISD::SADDO); | 
 |   case Intrinsic::usub_with_overflow: | 
 |     return implVisitAluOverflow(I, ISD::USUBO); | 
 |   case Intrinsic::ssub_with_overflow: | 
 |     return implVisitAluOverflow(I, ISD::SSUBO); | 
 |   case Intrinsic::umul_with_overflow: | 
 |     return implVisitAluOverflow(I, ISD::UMULO); | 
 |   case Intrinsic::smul_with_overflow: | 
 |     return implVisitAluOverflow(I, ISD::SMULO); | 
 |  | 
 |   case Intrinsic::prefetch: { | 
 |     SDValue Ops[4]; | 
 |     Ops[0] = getRoot(); | 
 |     Ops[1] = getValue(I.getOperand(1)); | 
 |     Ops[2] = getValue(I.getOperand(2)); | 
 |     Ops[3] = getValue(I.getOperand(3)); | 
 |     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   case Intrinsic::memory_barrier: { | 
 |     SDValue Ops[6]; | 
 |     Ops[0] = getRoot(); | 
 |     for (int x = 1; x < 6; ++x) | 
 |       Ops[x] = getValue(I.getOperand(x)); | 
 |  | 
 |     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::atomic_cmp_swap: { | 
 |     SDValue Root = getRoot(); | 
 |     SDValue L = | 
 |       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), | 
 |                     getValue(I.getOperand(2)).getValueType().getSimpleVT(), | 
 |                     Root, | 
 |                     getValue(I.getOperand(1)), | 
 |                     getValue(I.getOperand(2)), | 
 |                     getValue(I.getOperand(3)), | 
 |                     I.getOperand(1)); | 
 |     setValue(&I, L); | 
 |     DAG.setRoot(L.getValue(1)); | 
 |     return 0; | 
 |   } | 
 |   case Intrinsic::atomic_load_add: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); | 
 |   case Intrinsic::atomic_load_sub: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); | 
 |   case Intrinsic::atomic_load_or: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); | 
 |   case Intrinsic::atomic_load_xor: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); | 
 |   case Intrinsic::atomic_load_and: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); | 
 |   case Intrinsic::atomic_load_nand: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); | 
 |   case Intrinsic::atomic_load_max: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); | 
 |   case Intrinsic::atomic_load_min: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); | 
 |   case Intrinsic::atomic_load_umin: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); | 
 |   case Intrinsic::atomic_load_umax: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); | 
 |   case Intrinsic::atomic_swap: | 
 |     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); | 
 |  | 
 |   case Intrinsic::invariant_start: | 
 |   case Intrinsic::lifetime_start: | 
 |     // Discard region information. | 
 |     setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); | 
 |     return 0; | 
 |   case Intrinsic::invariant_end: | 
 |   case Intrinsic::lifetime_end: | 
 |     // Discard region information. | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | /// Test if the given instruction is in a position to be optimized | 
 | /// with a tail-call. This roughly means that it's in a block with | 
 | /// a return and there's nothing that needs to be scheduled | 
 | /// between it and the return. | 
 | /// | 
 | /// This function only tests target-independent requirements. | 
 | /// For target-dependent requirements, a target should override | 
 | /// TargetLowering::IsEligibleForTailCallOptimization. | 
 | /// | 
 | static bool | 
 | isInTailCallPosition(const Instruction *I, Attributes RetAttr, | 
 |                      const TargetLowering &TLI) { | 
 |   const BasicBlock *ExitBB = I->getParent(); | 
 |   const TerminatorInst *Term = ExitBB->getTerminator(); | 
 |   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); | 
 |   const Function *F = ExitBB->getParent(); | 
 |  | 
 |   // The block must end in a return statement or an unreachable. | 
 |   if (!Ret && !isa<UnreachableInst>(Term)) return false; | 
 |  | 
 |   // If I will have a chain, make sure no other instruction that will have a | 
 |   // chain interposes between I and the return. | 
 |   if (I->mayHaveSideEffects() || I->mayReadFromMemory() || | 
 |       !I->isSafeToSpeculativelyExecute()) | 
 |     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; | 
 |          --BBI) { | 
 |       if (&*BBI == I) | 
 |         break; | 
 |       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || | 
 |           !BBI->isSafeToSpeculativelyExecute()) | 
 |         return false; | 
 |     } | 
 |  | 
 |   // If the block ends with a void return or unreachable, it doesn't matter | 
 |   // what the call's return type is. | 
 |   if (!Ret || Ret->getNumOperands() == 0) return true; | 
 |  | 
 |   // Conservatively require the attributes of the call to match those of | 
 |   // the return. | 
 |   if (F->getAttributes().getRetAttributes() != RetAttr) | 
 |     return false; | 
 |  | 
 |   // Otherwise, make sure the unmodified return value of I is the return value. | 
 |   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; | 
 |        U = dyn_cast<Instruction>(U->getOperand(0))) { | 
 |     if (!U) | 
 |       return false; | 
 |     if (!U->hasOneUse()) | 
 |       return false; | 
 |     if (U == I) | 
 |       break; | 
 |     // Check for a truly no-op truncate. | 
 |     if (isa<TruncInst>(U) && | 
 |         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) | 
 |       continue; | 
 |     // Check for a truly no-op bitcast. | 
 |     if (isa<BitCastInst>(U) && | 
 |         (U->getOperand(0)->getType() == U->getType() || | 
 |          (isa<PointerType>(U->getOperand(0)->getType()) && | 
 |           isa<PointerType>(U->getType())))) | 
 |       continue; | 
 |     // Otherwise it's not a true no-op. | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee, | 
 |                                        bool isTailCall, | 
 |                                        MachineBasicBlock *LandingPad) { | 
 |   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); | 
 |   const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); | 
 |   MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); | 
 |   unsigned BeginLabel = 0, EndLabel = 0; | 
 |  | 
 |   TargetLowering::ArgListTy Args; | 
 |   TargetLowering::ArgListEntry Entry; | 
 |   Args.reserve(CS.arg_size()); | 
 |   unsigned j = 1; | 
 |   for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
 |        i != e; ++i, ++j) { | 
 |     SDValue ArgNode = getValue(*i); | 
 |     Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); | 
 |  | 
 |     unsigned attrInd = i - CS.arg_begin() + 1; | 
 |     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt); | 
 |     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt); | 
 |     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); | 
 |     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet); | 
 |     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest); | 
 |     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); | 
 |     Entry.Alignment = CS.getParamAlignment(attrInd); | 
 |     Args.push_back(Entry); | 
 |   } | 
 |  | 
 |   if (LandingPad && MMI) { | 
 |     // Insert a label before the invoke call to mark the try range.  This can be | 
 |     // used to detect deletion of the invoke via the MachineModuleInfo. | 
 |     BeginLabel = MMI->NextLabelID(); | 
 |  | 
 |     // Both PendingLoads and PendingExports must be flushed here; | 
 |     // this call might not return. | 
 |     (void)getRoot(); | 
 |     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), | 
 |                              getControlRoot(), BeginLabel)); | 
 |   } | 
 |  | 
 |   // Check if target-independent constraints permit a tail call here. | 
 |   // Target-dependent constraints are checked within TLI.LowerCallTo. | 
 |   if (isTailCall && | 
 |       !isInTailCallPosition(CS.getInstruction(), | 
 |                             CS.getAttributes().getRetAttributes(), | 
 |                             TLI)) | 
 |     isTailCall = false; | 
 |  | 
 |   std::pair<SDValue,SDValue> Result = | 
 |     TLI.LowerCallTo(getRoot(), CS.getType(), | 
 |                     CS.paramHasAttr(0, Attribute::SExt), | 
 |                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), | 
 |                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), | 
 |                     CS.getCallingConv(), | 
 |                     isTailCall, | 
 |                     !CS.getInstruction()->use_empty(), | 
 |                     Callee, Args, DAG, getCurDebugLoc()); | 
 |   assert((isTailCall || Result.second.getNode()) && | 
 |          "Non-null chain expected with non-tail call!"); | 
 |   assert((Result.second.getNode() || !Result.first.getNode()) && | 
 |          "Null value expected with tail call!"); | 
 |   if (Result.first.getNode()) | 
 |     setValue(CS.getInstruction(), Result.first); | 
 |   // As a special case, a null chain means that a tail call has | 
 |   // been emitted and the DAG root is already updated. | 
 |   if (Result.second.getNode()) | 
 |     DAG.setRoot(Result.second); | 
 |   else | 
 |     HasTailCall = true; | 
 |  | 
 |   if (LandingPad && MMI) { | 
 |     // Insert a label at the end of the invoke call to mark the try range.  This | 
 |     // can be used to detect deletion of the invoke via the MachineModuleInfo. | 
 |     EndLabel = MMI->NextLabelID(); | 
 |     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), | 
 |                              getRoot(), EndLabel)); | 
 |  | 
 |     // Inform MachineModuleInfo of range. | 
 |     MMI->addInvoke(LandingPad, BeginLabel, EndLabel); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::visitCall(CallInst &I) { | 
 |   const char *RenameFn = 0; | 
 |   if (Function *F = I.getCalledFunction()) { | 
 |     if (F->isDeclaration()) { | 
 |       const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); | 
 |       if (II) { | 
 |         if (unsigned IID = II->getIntrinsicID(F)) { | 
 |           RenameFn = visitIntrinsicCall(I, IID); | 
 |           if (!RenameFn) | 
 |             return; | 
 |         } | 
 |       } | 
 |       if (unsigned IID = F->getIntrinsicID()) { | 
 |         RenameFn = visitIntrinsicCall(I, IID); | 
 |         if (!RenameFn) | 
 |           return; | 
 |       } | 
 |     } | 
 |  | 
 |     // Check for well-known libc/libm calls.  If the function is internal, it | 
 |     // can't be a library call. | 
 |     if (!F->hasLocalLinkage() && F->hasName()) { | 
 |       StringRef Name = F->getName(); | 
 |       if (Name == "copysign" || Name == "copysignf") { | 
 |         if (I.getNumOperands() == 3 &&   // Basic sanity checks. | 
 |             I.getOperand(1)->getType()->isFloatingPoint() && | 
 |             I.getType() == I.getOperand(1)->getType() && | 
 |             I.getType() == I.getOperand(2)->getType()) { | 
 |           SDValue LHS = getValue(I.getOperand(1)); | 
 |           SDValue RHS = getValue(I.getOperand(2)); | 
 |           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), | 
 |                                    LHS.getValueType(), LHS, RHS)); | 
 |           return; | 
 |         } | 
 |       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { | 
 |         if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
 |             I.getOperand(1)->getType()->isFloatingPoint() && | 
 |             I.getType() == I.getOperand(1)->getType()) { | 
 |           SDValue Tmp = getValue(I.getOperand(1)); | 
 |           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), | 
 |                                    Tmp.getValueType(), Tmp)); | 
 |           return; | 
 |         } | 
 |       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { | 
 |         if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
 |             I.getOperand(1)->getType()->isFloatingPoint() && | 
 |             I.getType() == I.getOperand(1)->getType() && | 
 |             I.onlyReadsMemory()) { | 
 |           SDValue Tmp = getValue(I.getOperand(1)); | 
 |           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), | 
 |                                    Tmp.getValueType(), Tmp)); | 
 |           return; | 
 |         } | 
 |       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { | 
 |         if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
 |             I.getOperand(1)->getType()->isFloatingPoint() && | 
 |             I.getType() == I.getOperand(1)->getType() && | 
 |             I.onlyReadsMemory()) { | 
 |           SDValue Tmp = getValue(I.getOperand(1)); | 
 |           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), | 
 |                                    Tmp.getValueType(), Tmp)); | 
 |           return; | 
 |         } | 
 |       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { | 
 |         if (I.getNumOperands() == 2 &&   // Basic sanity checks. | 
 |             I.getOperand(1)->getType()->isFloatingPoint() && | 
 |             I.getType() == I.getOperand(1)->getType() && | 
 |             I.onlyReadsMemory()) { | 
 |           SDValue Tmp = getValue(I.getOperand(1)); | 
 |           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), | 
 |                                    Tmp.getValueType(), Tmp)); | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |   } else if (isa<InlineAsm>(I.getOperand(0))) { | 
 |     visitInlineAsm(&I); | 
 |     return; | 
 |   } | 
 |  | 
 |   SDValue Callee; | 
 |   if (!RenameFn) | 
 |     Callee = getValue(I.getOperand(0)); | 
 |   else | 
 |     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); | 
 |  | 
 |   // Check if we can potentially perform a tail call. More detailed | 
 |   // checking is be done within LowerCallTo, after more information | 
 |   // about the call is known. | 
 |   bool isTailCall = PerformTailCallOpt && I.isTailCall(); | 
 |  | 
 |   LowerCallTo(&I, Callee, isTailCall); | 
 | } | 
 |  | 
 |  | 
 | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
 | /// this value and returns the result as a ValueVT value.  This uses | 
 | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 | /// If the Flag pointer is NULL, no flag is used. | 
 | SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, | 
 |                                       SDValue &Chain, | 
 |                                       SDValue *Flag) const { | 
 |   // Assemble the legal parts into the final values. | 
 |   SmallVector<SDValue, 4> Values(ValueVTs.size()); | 
 |   SmallVector<SDValue, 8> Parts; | 
 |   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
 |     // Copy the legal parts from the registers. | 
 |     EVT ValueVT = ValueVTs[Value]; | 
 |     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); | 
 |     EVT RegisterVT = RegVTs[Value]; | 
 |  | 
 |     Parts.resize(NumRegs); | 
 |     for (unsigned i = 0; i != NumRegs; ++i) { | 
 |       SDValue P; | 
 |       if (Flag == 0) | 
 |         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); | 
 |       else { | 
 |         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); | 
 |         *Flag = P.getValue(2); | 
 |       } | 
 |       Chain = P.getValue(1); | 
 |  | 
 |       // If the source register was virtual and if we know something about it, | 
 |       // add an assert node. | 
 |       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && | 
 |           RegisterVT.isInteger() && !RegisterVT.isVector()) { | 
 |         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; | 
 |         FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); | 
 |         if (FLI.LiveOutRegInfo.size() > SlotNo) { | 
 |           FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; | 
 |  | 
 |           unsigned RegSize = RegisterVT.getSizeInBits(); | 
 |           unsigned NumSignBits = LOI.NumSignBits; | 
 |           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); | 
 |  | 
 |           // FIXME: We capture more information than the dag can represent.  For | 
 |           // now, just use the tightest assertzext/assertsext possible. | 
 |           bool isSExt = true; | 
 |           EVT FromVT(MVT::Other); | 
 |           if (NumSignBits == RegSize) | 
 |             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1 | 
 |           else if (NumZeroBits >= RegSize-1) | 
 |             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1 | 
 |           else if (NumSignBits > RegSize-8) | 
 |             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8 | 
 |           else if (NumZeroBits >= RegSize-8) | 
 |             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8 | 
 |           else if (NumSignBits > RegSize-16) | 
 |             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16 | 
 |           else if (NumZeroBits >= RegSize-16) | 
 |             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 | 
 |           else if (NumSignBits > RegSize-32) | 
 |             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32 | 
 |           else if (NumZeroBits >= RegSize-32) | 
 |             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 | 
 |  | 
 |           if (FromVT != MVT::Other) { | 
 |             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, | 
 |                             RegisterVT, P, DAG.getValueType(FromVT)); | 
 |  | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       Parts[i] = P; | 
 |     } | 
 |  | 
 |     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), | 
 |                                      NumRegs, RegisterVT, ValueVT); | 
 |     Part += NumRegs; | 
 |     Parts.clear(); | 
 |   } | 
 |  | 
 |   return DAG.getNode(ISD::MERGE_VALUES, dl, | 
 |                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()), | 
 |                      &Values[0], ValueVTs.size()); | 
 | } | 
 |  | 
 | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
 | /// specified value into the registers specified by this object.  This uses | 
 | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
 | /// If the Flag pointer is NULL, no flag is used. | 
 | void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, | 
 |                                  SDValue &Chain, SDValue *Flag) const { | 
 |   // Get the list of the values's legal parts. | 
 |   unsigned NumRegs = Regs.size(); | 
 |   SmallVector<SDValue, 8> Parts(NumRegs); | 
 |   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
 |     EVT ValueVT = ValueVTs[Value]; | 
 |     unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); | 
 |     EVT RegisterVT = RegVTs[Value]; | 
 |  | 
 |     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), | 
 |                    &Parts[Part], NumParts, RegisterVT); | 
 |     Part += NumParts; | 
 |   } | 
 |  | 
 |   // Copy the parts into the registers. | 
 |   SmallVector<SDValue, 8> Chains(NumRegs); | 
 |   for (unsigned i = 0; i != NumRegs; ++i) { | 
 |     SDValue Part; | 
 |     if (Flag == 0) | 
 |       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); | 
 |     else { | 
 |       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); | 
 |       *Flag = Part.getValue(1); | 
 |     } | 
 |     Chains[i] = Part.getValue(0); | 
 |   } | 
 |  | 
 |   if (NumRegs == 1 || Flag) | 
 |     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is | 
 |     // flagged to it. That is the CopyToReg nodes and the user are considered | 
 |     // a single scheduling unit. If we create a TokenFactor and return it as | 
 |     // chain, then the TokenFactor is both a predecessor (operand) of the | 
 |     // user as well as a successor (the TF operands are flagged to the user). | 
 |     // c1, f1 = CopyToReg | 
 |     // c2, f2 = CopyToReg | 
 |     // c3     = TokenFactor c1, c2 | 
 |     // ... | 
 |     //        = op c3, ..., f2 | 
 |     Chain = Chains[NumRegs-1]; | 
 |   else | 
 |     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); | 
 | } | 
 |  | 
 | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
 | /// operand list.  This adds the code marker and includes the number of | 
 | /// values added into it. | 
 | void RegsForValue::AddInlineAsmOperands(unsigned Code, | 
 |                                         bool HasMatching,unsigned MatchingIdx, | 
 |                                         SelectionDAG &DAG, | 
 |                                         std::vector<SDValue> &Ops) const { | 
 |   EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); | 
 |   assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); | 
 |   unsigned Flag = Code | (Regs.size() << 3); | 
 |   if (HasMatching) | 
 |     Flag |= 0x80000000 | (MatchingIdx << 16); | 
 |   Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); | 
 |   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
 |     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); | 
 |     EVT RegisterVT = RegVTs[Value]; | 
 |     for (unsigned i = 0; i != NumRegs; ++i) { | 
 |       assert(Reg < Regs.size() && "Mismatch in # registers expected"); | 
 |       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// isAllocatableRegister - If the specified register is safe to allocate, | 
 | /// i.e. it isn't a stack pointer or some other special register, return the | 
 | /// register class for the register.  Otherwise, return null. | 
 | static const TargetRegisterClass * | 
 | isAllocatableRegister(unsigned Reg, MachineFunction &MF, | 
 |                       const TargetLowering &TLI, | 
 |                       const TargetRegisterInfo *TRI) { | 
 |   EVT FoundVT = MVT::Other; | 
 |   const TargetRegisterClass *FoundRC = 0; | 
 |   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), | 
 |        E = TRI->regclass_end(); RCI != E; ++RCI) { | 
 |     EVT ThisVT = MVT::Other; | 
 |  | 
 |     const TargetRegisterClass *RC = *RCI; | 
 |     // If none of the the value types for this register class are valid, we | 
 |     // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
 |     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
 |          I != E; ++I) { | 
 |       if (TLI.isTypeLegal(*I)) { | 
 |         // If we have already found this register in a different register class, | 
 |         // choose the one with the largest VT specified.  For example, on | 
 |         // PowerPC, we favor f64 register classes over f32. | 
 |         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { | 
 |           ThisVT = *I; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (ThisVT == MVT::Other) continue; | 
 |  | 
 |     // NOTE: This isn't ideal.  In particular, this might allocate the | 
 |     // frame pointer in functions that need it (due to them not being taken | 
 |     // out of allocation, because a variable sized allocation hasn't been seen | 
 |     // yet).  This is a slight code pessimization, but should still work. | 
 |     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), | 
 |          E = RC->allocation_order_end(MF); I != E; ++I) | 
 |       if (*I == Reg) { | 
 |         // We found a matching register class.  Keep looking at others in case | 
 |         // we find one with larger registers that this physreg is also in. | 
 |         FoundRC = RC; | 
 |         FoundVT = ThisVT; | 
 |         break; | 
 |       } | 
 |   } | 
 |   return FoundRC; | 
 | } | 
 |  | 
 |  | 
 | namespace llvm { | 
 | /// AsmOperandInfo - This contains information for each constraint that we are | 
 | /// lowering. | 
 | class VISIBILITY_HIDDEN SDISelAsmOperandInfo : | 
 |     public TargetLowering::AsmOperandInfo { | 
 | public: | 
 |   /// CallOperand - If this is the result output operand or a clobber | 
 |   /// this is null, otherwise it is the incoming operand to the CallInst. | 
 |   /// This gets modified as the asm is processed. | 
 |   SDValue CallOperand; | 
 |  | 
 |   /// AssignedRegs - If this is a register or register class operand, this | 
 |   /// contains the set of register corresponding to the operand. | 
 |   RegsForValue AssignedRegs; | 
 |  | 
 |   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) | 
 |     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { | 
 |   } | 
 |  | 
 |   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers | 
 |   /// busy in OutputRegs/InputRegs. | 
 |   void MarkAllocatedRegs(bool isOutReg, bool isInReg, | 
 |                          std::set<unsigned> &OutputRegs, | 
 |                          std::set<unsigned> &InputRegs, | 
 |                          const TargetRegisterInfo &TRI) const { | 
 |     if (isOutReg) { | 
 |       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) | 
 |         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); | 
 |     } | 
 |     if (isInReg) { | 
 |       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) | 
 |         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); | 
 |     } | 
 |   } | 
 |  | 
 |   /// getCallOperandValEVT - Return the EVT of the Value* that this operand | 
 |   /// corresponds to.  If there is no Value* for this operand, it returns | 
 |   /// MVT::Other. | 
 |   EVT getCallOperandValEVT(LLVMContext &Context,  | 
 |                            const TargetLowering &TLI, | 
 |                            const TargetData *TD) const { | 
 |     if (CallOperandVal == 0) return MVT::Other; | 
 |  | 
 |     if (isa<BasicBlock>(CallOperandVal)) | 
 |       return TLI.getPointerTy(); | 
 |  | 
 |     const llvm::Type *OpTy = CallOperandVal->getType(); | 
 |  | 
 |     // If this is an indirect operand, the operand is a pointer to the | 
 |     // accessed type. | 
 |     if (isIndirect) | 
 |       OpTy = cast<PointerType>(OpTy)->getElementType(); | 
 |  | 
 |     // If OpTy is not a single value, it may be a struct/union that we | 
 |     // can tile with integers. | 
 |     if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
 |       unsigned BitSize = TD->getTypeSizeInBits(OpTy); | 
 |       switch (BitSize) { | 
 |       default: break; | 
 |       case 1: | 
 |       case 8: | 
 |       case 16: | 
 |       case 32: | 
 |       case 64: | 
 |       case 128: | 
 |         OpTy = IntegerType::get(Context, BitSize); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     return TLI.getValueType(OpTy, true); | 
 |   } | 
 |  | 
 | private: | 
 |   /// MarkRegAndAliases - Mark the specified register and all aliases in the | 
 |   /// specified set. | 
 |   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, | 
 |                                 const TargetRegisterInfo &TRI) { | 
 |     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); | 
 |     Regs.insert(Reg); | 
 |     if (const unsigned *Aliases = TRI.getAliasSet(Reg)) | 
 |       for (; *Aliases; ++Aliases) | 
 |         Regs.insert(*Aliases); | 
 |   } | 
 | }; | 
 | } // end llvm namespace. | 
 |  | 
 |  | 
 | /// GetRegistersForValue - Assign registers (virtual or physical) for the | 
 | /// specified operand.  We prefer to assign virtual registers, to allow the | 
 | /// register allocator handle the assignment process.  However, if the asm uses | 
 | /// features that we can't model on machineinstrs, we have SDISel do the | 
 | /// allocation.  This produces generally horrible, but correct, code. | 
 | /// | 
 | ///   OpInfo describes the operand. | 
 | ///   Input and OutputRegs are the set of already allocated physical registers. | 
 | /// | 
 | void SelectionDAGLowering:: | 
 | GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, | 
 |                      std::set<unsigned> &OutputRegs, | 
 |                      std::set<unsigned> &InputRegs) { | 
 |   LLVMContext &Context = FuncInfo.Fn->getContext(); | 
 |  | 
 |   // Compute whether this value requires an input register, an output register, | 
 |   // or both. | 
 |   bool isOutReg = false; | 
 |   bool isInReg = false; | 
 |   switch (OpInfo.Type) { | 
 |   case InlineAsm::isOutput: | 
 |     isOutReg = true; | 
 |  | 
 |     // If there is an input constraint that matches this, we need to reserve | 
 |     // the input register so no other inputs allocate to it. | 
 |     isInReg = OpInfo.hasMatchingInput(); | 
 |     break; | 
 |   case InlineAsm::isInput: | 
 |     isInReg = true; | 
 |     isOutReg = false; | 
 |     break; | 
 |   case InlineAsm::isClobber: | 
 |     isOutReg = true; | 
 |     isInReg = true; | 
 |     break; | 
 |   } | 
 |  | 
 |  | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   SmallVector<unsigned, 4> Regs; | 
 |  | 
 |   // If this is a constraint for a single physreg, or a constraint for a | 
 |   // register class, find it. | 
 |   std::pair<unsigned, const TargetRegisterClass*> PhysReg = | 
 |     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, | 
 |                                      OpInfo.ConstraintVT); | 
 |  | 
 |   unsigned NumRegs = 1; | 
 |   if (OpInfo.ConstraintVT != MVT::Other) { | 
 |     // If this is a FP input in an integer register (or visa versa) insert a bit | 
 |     // cast of the input value.  More generally, handle any case where the input | 
 |     // value disagrees with the register class we plan to stick this in. | 
 |     if (OpInfo.Type == InlineAsm::isInput && | 
 |         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { | 
 |       // Try to convert to the first EVT that the reg class contains.  If the | 
 |       // types are identical size, use a bitcast to convert (e.g. two differing | 
 |       // vector types). | 
 |       EVT RegVT = *PhysReg.second->vt_begin(); | 
 |       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { | 
 |         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), | 
 |                                          RegVT, OpInfo.CallOperand); | 
 |         OpInfo.ConstraintVT = RegVT; | 
 |       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { | 
 |         // If the input is a FP value and we want it in FP registers, do a | 
 |         // bitcast to the corresponding integer type.  This turns an f64 value | 
 |         // into i64, which can be passed with two i32 values on a 32-bit | 
 |         // machine. | 
 |         RegVT = EVT::getIntegerVT(Context,  | 
 |                                   OpInfo.ConstraintVT.getSizeInBits()); | 
 |         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), | 
 |                                          RegVT, OpInfo.CallOperand); | 
 |         OpInfo.ConstraintVT = RegVT; | 
 |       } | 
 |     } | 
 |  | 
 |     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); | 
 |   } | 
 |  | 
 |   EVT RegVT; | 
 |   EVT ValueVT = OpInfo.ConstraintVT; | 
 |  | 
 |   // If this is a constraint for a specific physical register, like {r17}, | 
 |   // assign it now. | 
 |   if (unsigned AssignedReg = PhysReg.first) { | 
 |     const TargetRegisterClass *RC = PhysReg.second; | 
 |     if (OpInfo.ConstraintVT == MVT::Other) | 
 |       ValueVT = *RC->vt_begin(); | 
 |  | 
 |     // Get the actual register value type.  This is important, because the user | 
 |     // may have asked for (e.g.) the AX register in i32 type.  We need to | 
 |     // remember that AX is actually i16 to get the right extension. | 
 |     RegVT = *RC->vt_begin(); | 
 |  | 
 |     // This is a explicit reference to a physical register. | 
 |     Regs.push_back(AssignedReg); | 
 |  | 
 |     // If this is an expanded reference, add the rest of the regs to Regs. | 
 |     if (NumRegs != 1) { | 
 |       TargetRegisterClass::iterator I = RC->begin(); | 
 |       for (; *I != AssignedReg; ++I) | 
 |         assert(I != RC->end() && "Didn't find reg!"); | 
 |  | 
 |       // Already added the first reg. | 
 |       --NumRegs; ++I; | 
 |       for (; NumRegs; --NumRegs, ++I) { | 
 |         assert(I != RC->end() && "Ran out of registers to allocate!"); | 
 |         Regs.push_back(*I); | 
 |       } | 
 |     } | 
 |     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); | 
 |     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); | 
 |     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, if this was a reference to an LLVM register class, create vregs | 
 |   // for this reference. | 
 |   if (const TargetRegisterClass *RC = PhysReg.second) { | 
 |     RegVT = *RC->vt_begin(); | 
 |     if (OpInfo.ConstraintVT == MVT::Other) | 
 |       ValueVT = RegVT; | 
 |  | 
 |     // Create the appropriate number of virtual registers. | 
 |     MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
 |     for (; NumRegs; --NumRegs) | 
 |       Regs.push_back(RegInfo.createVirtualRegister(RC)); | 
 |  | 
 |     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); | 
 |     return; | 
 |   } | 
 |    | 
 |   // This is a reference to a register class that doesn't directly correspond | 
 |   // to an LLVM register class.  Allocate NumRegs consecutive, available, | 
 |   // registers from the class. | 
 |   std::vector<unsigned> RegClassRegs | 
 |     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, | 
 |                                             OpInfo.ConstraintVT); | 
 |  | 
 |   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); | 
 |   unsigned NumAllocated = 0; | 
 |   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { | 
 |     unsigned Reg = RegClassRegs[i]; | 
 |     // See if this register is available. | 
 |     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used. | 
 |         (isInReg  && InputRegs.count(Reg))) {    // Already used. | 
 |       // Make sure we find consecutive registers. | 
 |       NumAllocated = 0; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check to see if this register is allocatable (i.e. don't give out the | 
 |     // stack pointer). | 
 |     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); | 
 |     if (!RC) {        // Couldn't allocate this register. | 
 |       // Reset NumAllocated to make sure we return consecutive registers. | 
 |       NumAllocated = 0; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Okay, this register is good, we can use it. | 
 |     ++NumAllocated; | 
 |  | 
 |     // If we allocated enough consecutive registers, succeed. | 
 |     if (NumAllocated == NumRegs) { | 
 |       unsigned RegStart = (i-NumAllocated)+1; | 
 |       unsigned RegEnd   = i+1; | 
 |       // Mark all of the allocated registers used. | 
 |       for (unsigned i = RegStart; i != RegEnd; ++i) | 
 |         Regs.push_back(RegClassRegs[i]); | 
 |  | 
 |       OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), | 
 |                                          OpInfo.ConstraintVT); | 
 |       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise, we couldn't allocate enough registers for this. | 
 | } | 
 |  | 
 | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being | 
 | /// processed uses a memory 'm' constraint. | 
 | static bool | 
 | hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, | 
 |                           const TargetLowering &TLI) { | 
 |   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { | 
 |     InlineAsm::ConstraintInfo &CI = CInfos[i]; | 
 |     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { | 
 |       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); | 
 |       if (CType == TargetLowering::C_Memory) | 
 |         return true; | 
 |     } | 
 |      | 
 |     // Indirect operand accesses access memory. | 
 |     if (CI.isIndirect) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// visitInlineAsm - Handle a call to an InlineAsm object. | 
 | /// | 
 | void SelectionDAGLowering::visitInlineAsm(CallSite CS) { | 
 |   InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
 |  | 
 |   /// ConstraintOperands - Information about all of the constraints. | 
 |   std::vector<SDISelAsmOperandInfo> ConstraintOperands; | 
 |  | 
 |   std::set<unsigned> OutputRegs, InputRegs; | 
 |  | 
 |   // Do a prepass over the constraints, canonicalizing them, and building up the | 
 |   // ConstraintOperands list. | 
 |   std::vector<InlineAsm::ConstraintInfo> | 
 |     ConstraintInfos = IA->ParseConstraints(); | 
 |  | 
 |   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); | 
 |    | 
 |   SDValue Chain, Flag; | 
 |    | 
 |   // We won't need to flush pending loads if this asm doesn't touch | 
 |   // memory and is nonvolatile. | 
 |   if (hasMemory || IA->hasSideEffects()) | 
 |     Chain = getRoot(); | 
 |   else | 
 |     Chain = DAG.getRoot(); | 
 |  | 
 |   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst. | 
 |   unsigned ResNo = 0;   // ResNo - The result number of the next output. | 
 |   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { | 
 |     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); | 
 |     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
 |  | 
 |     EVT OpVT = MVT::Other; | 
 |  | 
 |     // Compute the value type for each operand. | 
 |     switch (OpInfo.Type) { | 
 |     case InlineAsm::isOutput: | 
 |       // Indirect outputs just consume an argument. | 
 |       if (OpInfo.isIndirect) { | 
 |         OpInfo.CallOperandVal = CS.getArgument(ArgNo++); | 
 |         break; | 
 |       } | 
 |  | 
 |       // The return value of the call is this value.  As such, there is no | 
 |       // corresponding argument. | 
 |       assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && | 
 |              "Bad inline asm!"); | 
 |       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
 |         OpVT = TLI.getValueType(STy->getElementType(ResNo)); | 
 |       } else { | 
 |         assert(ResNo == 0 && "Asm only has one result!"); | 
 |         OpVT = TLI.getValueType(CS.getType()); | 
 |       } | 
 |       ++ResNo; | 
 |       break; | 
 |     case InlineAsm::isInput: | 
 |       OpInfo.CallOperandVal = CS.getArgument(ArgNo++); | 
 |       break; | 
 |     case InlineAsm::isClobber: | 
 |       // Nothing to do. | 
 |       break; | 
 |     } | 
 |  | 
 |     // If this is an input or an indirect output, process the call argument. | 
 |     // BasicBlocks are labels, currently appearing only in asm's. | 
 |     if (OpInfo.CallOperandVal) { | 
 |       // Strip bitcasts, if any.  This mostly comes up for functions. | 
 |       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); | 
 |  | 
 |       if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { | 
 |         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); | 
 |       } else { | 
 |         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); | 
 |       } | 
 |  | 
 |       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); | 
 |     } | 
 |  | 
 |     OpInfo.ConstraintVT = OpVT; | 
 |   } | 
 |  | 
 |   // Second pass over the constraints: compute which constraint option to use | 
 |   // and assign registers to constraints that want a specific physreg. | 
 |   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { | 
 |     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
 |  | 
 |     // If this is an output operand with a matching input operand, look up the | 
 |     // matching input. If their types mismatch, e.g. one is an integer, the | 
 |     // other is floating point, or their sizes are different, flag it as an | 
 |     // error. | 
 |     if (OpInfo.hasMatchingInput()) { | 
 |       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
 |       if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
 |         if ((OpInfo.ConstraintVT.isInteger() != | 
 |              Input.ConstraintVT.isInteger()) || | 
 |             (OpInfo.ConstraintVT.getSizeInBits() != | 
 |              Input.ConstraintVT.getSizeInBits())) { | 
 |           llvm_report_error("Unsupported asm: input constraint" | 
 |                             " with a matching output constraint of incompatible" | 
 |                             " type!"); | 
 |         } | 
 |         Input.ConstraintVT = OpInfo.ConstraintVT; | 
 |       } | 
 |     } | 
 |  | 
 |     // Compute the constraint code and ConstraintType to use. | 
 |     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); | 
 |  | 
 |     // If this is a memory input, and if the operand is not indirect, do what we | 
 |     // need to to provide an address for the memory input. | 
 |     if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
 |         !OpInfo.isIndirect) { | 
 |       assert(OpInfo.Type == InlineAsm::isInput && | 
 |              "Can only indirectify direct input operands!"); | 
 |  | 
 |       // Memory operands really want the address of the value.  If we don't have | 
 |       // an indirect input, put it in the constpool if we can, otherwise spill | 
 |       // it to a stack slot. | 
 |  | 
 |       // If the operand is a float, integer, or vector constant, spill to a | 
 |       // constant pool entry to get its address. | 
 |       Value *OpVal = OpInfo.CallOperandVal; | 
 |       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || | 
 |           isa<ConstantVector>(OpVal)) { | 
 |         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), | 
 |                                                  TLI.getPointerTy()); | 
 |       } else { | 
 |         // Otherwise, create a stack slot and emit a store to it before the | 
 |         // asm. | 
 |         const Type *Ty = OpVal->getType(); | 
 |         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); | 
 |         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty); | 
 |         MachineFunction &MF = DAG.getMachineFunction(); | 
 |         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align); | 
 |         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); | 
 |         Chain = DAG.getStore(Chain, getCurDebugLoc(), | 
 |                              OpInfo.CallOperand, StackSlot, NULL, 0); | 
 |         OpInfo.CallOperand = StackSlot; | 
 |       } | 
 |  | 
 |       // There is no longer a Value* corresponding to this operand. | 
 |       OpInfo.CallOperandVal = 0; | 
 |       // It is now an indirect operand. | 
 |       OpInfo.isIndirect = true; | 
 |     } | 
 |  | 
 |     // If this constraint is for a specific register, allocate it before | 
 |     // anything else. | 
 |     if (OpInfo.ConstraintType == TargetLowering::C_Register) | 
 |       GetRegistersForValue(OpInfo, OutputRegs, InputRegs); | 
 |   } | 
 |   ConstraintInfos.clear(); | 
 |  | 
 |  | 
 |   // Second pass - Loop over all of the operands, assigning virtual or physregs | 
 |   // to register class operands. | 
 |   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
 |     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
 |  | 
 |     // C_Register operands have already been allocated, Other/Memory don't need | 
 |     // to be. | 
 |     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) | 
 |       GetRegistersForValue(OpInfo, OutputRegs, InputRegs); | 
 |   } | 
 |  | 
 |   // AsmNodeOperands - The operands for the ISD::INLINEASM node. | 
 |   std::vector<SDValue> AsmNodeOperands; | 
 |   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain | 
 |   AsmNodeOperands.push_back( | 
 |           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); | 
 |  | 
 |  | 
 |   // Loop over all of the inputs, copying the operand values into the | 
 |   // appropriate registers and processing the output regs. | 
 |   RegsForValue RetValRegs; | 
 |  | 
 |   // IndirectStoresToEmit - The set of stores to emit after the inline asm node. | 
 |   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; | 
 |  | 
 |   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
 |     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
 |  | 
 |     switch (OpInfo.Type) { | 
 |     case InlineAsm::isOutput: { | 
 |       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && | 
 |           OpInfo.ConstraintType != TargetLowering::C_Register) { | 
 |         // Memory output, or 'other' output (e.g. 'X' constraint). | 
 |         assert(OpInfo.isIndirect && "Memory output must be indirect operand"); | 
 |  | 
 |         // Add information to the INLINEASM node to know about this output. | 
 |         unsigned ResOpType = 4/*MEM*/ | (1<<3); | 
 |         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
 |                                                         TLI.getPointerTy())); | 
 |         AsmNodeOperands.push_back(OpInfo.CallOperand); | 
 |         break; | 
 |       } | 
 |  | 
 |       // Otherwise, this is a register or register class output. | 
 |  | 
 |       // Copy the output from the appropriate register.  Find a register that | 
 |       // we can use. | 
 |       if (OpInfo.AssignedRegs.Regs.empty()) { | 
 |         llvm_report_error("Couldn't allocate output reg for" | 
 |                           " constraint '" + OpInfo.ConstraintCode + "'!"); | 
 |       } | 
 |  | 
 |       // If this is an indirect operand, store through the pointer after the | 
 |       // asm. | 
 |       if (OpInfo.isIndirect) { | 
 |         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, | 
 |                                                       OpInfo.CallOperandVal)); | 
 |       } else { | 
 |         // This is the result value of the call. | 
 |         assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && | 
 |                "Bad inline asm!"); | 
 |         // Concatenate this output onto the outputs list. | 
 |         RetValRegs.append(OpInfo.AssignedRegs); | 
 |       } | 
 |  | 
 |       // Add information to the INLINEASM node to know that this register is | 
 |       // set. | 
 |       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? | 
 |                                                6 /* EARLYCLOBBER REGDEF */ : | 
 |                                                2 /* REGDEF */ , | 
 |                                                false, | 
 |                                                0, | 
 |                                                DAG, AsmNodeOperands); | 
 |       break; | 
 |     } | 
 |     case InlineAsm::isInput: { | 
 |       SDValue InOperandVal = OpInfo.CallOperand; | 
 |  | 
 |       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint? | 
 |         // If this is required to match an output register we have already set, | 
 |         // just use its register. | 
 |         unsigned OperandNo = OpInfo.getMatchedOperand(); | 
 |  | 
 |         // Scan until we find the definition we already emitted of this operand. | 
 |         // When we find it, create a RegsForValue operand. | 
 |         unsigned CurOp = 2;  // The first operand. | 
 |         for (; OperandNo; --OperandNo) { | 
 |           // Advance to the next operand. | 
 |           unsigned OpFlag = | 
 |             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
 |           assert(((OpFlag & 7) == 2 /*REGDEF*/ || | 
 |                   (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || | 
 |                   (OpFlag & 7) == 4 /*MEM*/) && | 
 |                  "Skipped past definitions?"); | 
 |           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; | 
 |         } | 
 |  | 
 |         unsigned OpFlag = | 
 |           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
 |         if ((OpFlag & 7) == 2 /*REGDEF*/ | 
 |             || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { | 
 |           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. | 
 |           if (OpInfo.isIndirect) { | 
 |             llvm_report_error("Don't know how to handle tied indirect " | 
 |                               "register inputs yet!"); | 
 |           } | 
 |           RegsForValue MatchedRegs; | 
 |           MatchedRegs.TLI = &TLI; | 
 |           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); | 
 |           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); | 
 |           MatchedRegs.RegVTs.push_back(RegVT); | 
 |           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); | 
 |           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); | 
 |                i != e; ++i) | 
 |             MatchedRegs.Regs. | 
 |               push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); | 
 |  | 
 |           // Use the produced MatchedRegs object to | 
 |           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), | 
 |                                     Chain, &Flag); | 
 |           MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, | 
 |                                            true, OpInfo.getMatchedOperand(), | 
 |                                            DAG, AsmNodeOperands); | 
 |           break; | 
 |         } else { | 
 |           assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); | 
 |           assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && | 
 |                  "Unexpected number of operands"); | 
 |           // Add information to the INLINEASM node to know about this input. | 
 |           // See InlineAsm.h isUseOperandTiedToDef. | 
 |           OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); | 
 |           AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, | 
 |                                                           TLI.getPointerTy())); | 
 |           AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       if (OpInfo.ConstraintType == TargetLowering::C_Other) { | 
 |         assert(!OpInfo.isIndirect && | 
 |                "Don't know how to handle indirect other inputs yet!"); | 
 |  | 
 |         std::vector<SDValue> Ops; | 
 |         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], | 
 |                                          hasMemory, Ops, DAG); | 
 |         if (Ops.empty()) { | 
 |           llvm_report_error("Invalid operand for inline asm" | 
 |                             " constraint '" + OpInfo.ConstraintCode + "'!"); | 
 |         } | 
 |  | 
 |         // Add information to the INLINEASM node to know about this input. | 
 |         unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); | 
 |         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
 |                                                         TLI.getPointerTy())); | 
 |         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); | 
 |         break; | 
 |       } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { | 
 |         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); | 
 |         assert(InOperandVal.getValueType() == TLI.getPointerTy() && | 
 |                "Memory operands expect pointer values"); | 
 |  | 
 |         // Add information to the INLINEASM node to know about this input. | 
 |         unsigned ResOpType = 4/*MEM*/ | (1<<3); | 
 |         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
 |                                                         TLI.getPointerTy())); | 
 |         AsmNodeOperands.push_back(InOperandVal); | 
 |         break; | 
 |       } | 
 |  | 
 |       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || | 
 |               OpInfo.ConstraintType == TargetLowering::C_Register) && | 
 |              "Unknown constraint type!"); | 
 |       assert(!OpInfo.isIndirect && | 
 |              "Don't know how to handle indirect register inputs yet!"); | 
 |  | 
 |       // Copy the input into the appropriate registers. | 
 |       if (OpInfo.AssignedRegs.Regs.empty()) { | 
 |         llvm_report_error("Couldn't allocate input reg for" | 
 |                           " constraint '"+ OpInfo.ConstraintCode +"'!"); | 
 |       } | 
 |  | 
 |       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), | 
 |                                         Chain, &Flag); | 
 |  | 
 |       OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, | 
 |                                                DAG, AsmNodeOperands); | 
 |       break; | 
 |     } | 
 |     case InlineAsm::isClobber: { | 
 |       // Add the clobbered value to the operand list, so that the register | 
 |       // allocator is aware that the physreg got clobbered. | 
 |       if (!OpInfo.AssignedRegs.Regs.empty()) | 
 |         OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, | 
 |                                                  false, 0, DAG,AsmNodeOperands); | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |  | 
 |   // Finish up input operands. | 
 |   AsmNodeOperands[0] = Chain; | 
 |   if (Flag.getNode()) AsmNodeOperands.push_back(Flag); | 
 |  | 
 |   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), | 
 |                       DAG.getVTList(MVT::Other, MVT::Flag), | 
 |                       &AsmNodeOperands[0], AsmNodeOperands.size()); | 
 |   Flag = Chain.getValue(1); | 
 |  | 
 |   // If this asm returns a register value, copy the result from that register | 
 |   // and set it as the value of the call. | 
 |   if (!RetValRegs.Regs.empty()) { | 
 |     SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), | 
 |                                              Chain, &Flag); | 
 |  | 
 |     // FIXME: Why don't we do this for inline asms with MRVs? | 
 |     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { | 
 |       EVT ResultType = TLI.getValueType(CS.getType()); | 
 |  | 
 |       // If any of the results of the inline asm is a vector, it may have the | 
 |       // wrong width/num elts.  This can happen for register classes that can | 
 |       // contain multiple different value types.  The preg or vreg allocated may | 
 |       // not have the same VT as was expected.  Convert it to the right type | 
 |       // with bit_convert. | 
 |       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { | 
 |         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), | 
 |                           ResultType, Val); | 
 |  | 
 |       } else if (ResultType != Val.getValueType() && | 
 |                  ResultType.isInteger() && Val.getValueType().isInteger()) { | 
 |         // If a result value was tied to an input value, the computed result may | 
 |         // have a wider width than the expected result.  Extract the relevant | 
 |         // portion. | 
 |         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); | 
 |       } | 
 |  | 
 |       assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); | 
 |     } | 
 |  | 
 |     setValue(CS.getInstruction(), Val); | 
 |     // Don't need to use this as a chain in this case. | 
 |     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) | 
 |       return; | 
 |   } | 
 |  | 
 |   std::vector<std::pair<SDValue, Value*> > StoresToEmit; | 
 |  | 
 |   // Process indirect outputs, first output all of the flagged copies out of | 
 |   // physregs. | 
 |   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { | 
 |     RegsForValue &OutRegs = IndirectStoresToEmit[i].first; | 
 |     Value *Ptr = IndirectStoresToEmit[i].second; | 
 |     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), | 
 |                                              Chain, &Flag); | 
 |     StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); | 
 |  | 
 |   } | 
 |  | 
 |   // Emit the non-flagged stores from the physregs. | 
 |   SmallVector<SDValue, 8> OutChains; | 
 |   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) | 
 |     OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), | 
 |                                     StoresToEmit[i].first, | 
 |                                     getValue(StoresToEmit[i].second), | 
 |                                     StoresToEmit[i].second, 0)); | 
 |   if (!OutChains.empty()) | 
 |     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, | 
 |                         &OutChains[0], OutChains.size()); | 
 |   DAG.setRoot(Chain); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVAStart(CallInst &I) { | 
 |   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), | 
 |                           MVT::Other, getRoot(), | 
 |                           getValue(I.getOperand(1)), | 
 |                           DAG.getSrcValue(I.getOperand(1)))); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVAArg(VAArgInst &I) { | 
 |   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), | 
 |                            getRoot(), getValue(I.getOperand(0)), | 
 |                            DAG.getSrcValue(I.getOperand(0))); | 
 |   setValue(&I, V); | 
 |   DAG.setRoot(V.getValue(1)); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVAEnd(CallInst &I) { | 
 |   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), | 
 |                           MVT::Other, getRoot(), | 
 |                           getValue(I.getOperand(1)), | 
 |                           DAG.getSrcValue(I.getOperand(1)))); | 
 | } | 
 |  | 
 | void SelectionDAGLowering::visitVACopy(CallInst &I) { | 
 |   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), | 
 |                           MVT::Other, getRoot(), | 
 |                           getValue(I.getOperand(1)), | 
 |                           getValue(I.getOperand(2)), | 
 |                           DAG.getSrcValue(I.getOperand(1)), | 
 |                           DAG.getSrcValue(I.getOperand(2)))); | 
 | } | 
 |  | 
 | /// TargetLowering::LowerCallTo - This is the default LowerCallTo | 
 | /// implementation, which just calls LowerCall. | 
 | /// FIXME: When all targets are | 
 | /// migrated to using LowerCall, this hook should be integrated into SDISel. | 
 | std::pair<SDValue, SDValue> | 
 | TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, | 
 |                             bool RetSExt, bool RetZExt, bool isVarArg, | 
 |                             bool isInreg, unsigned NumFixedArgs, | 
 |                             CallingConv::ID CallConv, bool isTailCall, | 
 |                             bool isReturnValueUsed, | 
 |                             SDValue Callee, | 
 |                             ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { | 
 |  | 
 |   assert((!isTailCall || PerformTailCallOpt) && | 
 |          "isTailCall set when tail-call optimizations are disabled!"); | 
 |  | 
 |   // Handle all of the outgoing arguments. | 
 |   SmallVector<ISD::OutputArg, 32> Outs; | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |     SmallVector<EVT, 4> ValueVTs; | 
 |     ComputeValueVTs(*this, Args[i].Ty, ValueVTs); | 
 |     for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
 |          Value != NumValues; ++Value) { | 
 |       EVT VT = ValueVTs[Value]; | 
 |       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); | 
 |       SDValue Op = SDValue(Args[i].Node.getNode(), | 
 |                            Args[i].Node.getResNo() + Value); | 
 |       ISD::ArgFlagsTy Flags; | 
 |       unsigned OriginalAlignment = | 
 |         getTargetData()->getABITypeAlignment(ArgTy); | 
 |  | 
 |       if (Args[i].isZExt) | 
 |         Flags.setZExt(); | 
 |       if (Args[i].isSExt) | 
 |         Flags.setSExt(); | 
 |       if (Args[i].isInReg) | 
 |         Flags.setInReg(); | 
 |       if (Args[i].isSRet) | 
 |         Flags.setSRet(); | 
 |       if (Args[i].isByVal) { | 
 |         Flags.setByVal(); | 
 |         const PointerType *Ty = cast<PointerType>(Args[i].Ty); | 
 |         const Type *ElementTy = Ty->getElementType(); | 
 |         unsigned FrameAlign = getByValTypeAlignment(ElementTy); | 
 |         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy); | 
 |         // For ByVal, alignment should come from FE.  BE will guess if this | 
 |         // info is not there but there are cases it cannot get right. | 
 |         if (Args[i].Alignment) | 
 |           FrameAlign = Args[i].Alignment; | 
 |         Flags.setByValAlign(FrameAlign); | 
 |         Flags.setByValSize(FrameSize); | 
 |       } | 
 |       if (Args[i].isNest) | 
 |         Flags.setNest(); | 
 |       Flags.setOrigAlign(OriginalAlignment); | 
 |  | 
 |       EVT PartVT = getRegisterType(RetTy->getContext(), VT); | 
 |       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); | 
 |       SmallVector<SDValue, 4> Parts(NumParts); | 
 |       ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
 |  | 
 |       if (Args[i].isSExt) | 
 |         ExtendKind = ISD::SIGN_EXTEND; | 
 |       else if (Args[i].isZExt) | 
 |         ExtendKind = ISD::ZERO_EXTEND; | 
 |  | 
 |       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); | 
 |  | 
 |       for (unsigned j = 0; j != NumParts; ++j) { | 
 |         // if it isn't first piece, alignment must be 1 | 
 |         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); | 
 |         if (NumParts > 1 && j == 0) | 
 |           MyFlags.Flags.setSplit(); | 
 |         else if (j != 0) | 
 |           MyFlags.Flags.setOrigAlign(1); | 
 |  | 
 |         Outs.push_back(MyFlags); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle the incoming return values from the call. | 
 |   SmallVector<ISD::InputArg, 32> Ins; | 
 |   SmallVector<EVT, 4> RetTys; | 
 |   ComputeValueVTs(*this, RetTy, RetTys); | 
 |   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
 |     EVT VT = RetTys[I]; | 
 |     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); | 
 |     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); | 
 |     for (unsigned i = 0; i != NumRegs; ++i) { | 
 |       ISD::InputArg MyFlags; | 
 |       MyFlags.VT = RegisterVT; | 
 |       MyFlags.Used = isReturnValueUsed; | 
 |       if (RetSExt) | 
 |         MyFlags.Flags.setSExt(); | 
 |       if (RetZExt) | 
 |         MyFlags.Flags.setZExt(); | 
 |       if (isInreg) | 
 |         MyFlags.Flags.setInReg(); | 
 |       Ins.push_back(MyFlags); | 
 |     } | 
 |   } | 
 |  | 
 |   // Check if target-dependent constraints permit a tail call here. | 
 |   // Target-independent constraints should be checked by the caller. | 
 |   if (isTailCall && | 
 |       !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) | 
 |     isTailCall = false; | 
 |  | 
 |   SmallVector<SDValue, 4> InVals; | 
 |   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, | 
 |                     Outs, Ins, dl, DAG, InVals); | 
 |  | 
 |   // Verify that the target's LowerCall behaved as expected. | 
 |   assert(Chain.getNode() && Chain.getValueType() == MVT::Other && | 
 |          "LowerCall didn't return a valid chain!"); | 
 |   assert((!isTailCall || InVals.empty()) && | 
 |          "LowerCall emitted a return value for a tail call!"); | 
 |   assert((isTailCall || InVals.size() == Ins.size()) && | 
 |          "LowerCall didn't emit the correct number of values!"); | 
 |   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
 |           assert(InVals[i].getNode() && | 
 |                  "LowerCall emitted a null value!"); | 
 |           assert(Ins[i].VT == InVals[i].getValueType() && | 
 |                  "LowerCall emitted a value with the wrong type!"); | 
 |         }); | 
 |  | 
 |   // For a tail call, the return value is merely live-out and there aren't | 
 |   // any nodes in the DAG representing it. Return a special value to | 
 |   // indicate that a tail call has been emitted and no more Instructions | 
 |   // should be processed in the current block. | 
 |   if (isTailCall) { | 
 |     DAG.setRoot(Chain); | 
 |     return std::make_pair(SDValue(), SDValue()); | 
 |   } | 
 |  | 
 |   // Collect the legal value parts into potentially illegal values | 
 |   // that correspond to the original function's return values. | 
 |   ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
 |   if (RetSExt) | 
 |     AssertOp = ISD::AssertSext; | 
 |   else if (RetZExt) | 
 |     AssertOp = ISD::AssertZext; | 
 |   SmallVector<SDValue, 4> ReturnValues; | 
 |   unsigned CurReg = 0; | 
 |   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
 |     EVT VT = RetTys[I]; | 
 |     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); | 
 |     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); | 
 |  | 
 |     SDValue ReturnValue = | 
 |       getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, | 
 |                        AssertOp); | 
 |     ReturnValues.push_back(ReturnValue); | 
 |     CurReg += NumRegs; | 
 |   } | 
 |  | 
 |   // For a function returning void, there is no return value. We can't create | 
 |   // such a node, so we just return a null return value in that case. In | 
 |   // that case, nothing will actualy look at the value. | 
 |   if (ReturnValues.empty()) | 
 |     return std::make_pair(SDValue(), Chain); | 
 |  | 
 |   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, | 
 |                             DAG.getVTList(&RetTys[0], RetTys.size()), | 
 |                             &ReturnValues[0], ReturnValues.size()); | 
 |  | 
 |   return std::make_pair(Res, Chain); | 
 | } | 
 |  | 
 | void TargetLowering::LowerOperationWrapper(SDNode *N, | 
 |                                            SmallVectorImpl<SDValue> &Results, | 
 |                                            SelectionDAG &DAG) { | 
 |   SDValue Res = LowerOperation(SDValue(N, 0), DAG); | 
 |   if (Res.getNode()) | 
 |     Results.push_back(Res); | 
 | } | 
 |  | 
 | SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { | 
 |   llvm_unreachable("LowerOperation not implemented for this target!"); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 |  | 
 | void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) { | 
 |   SDValue Op = getValue(V); | 
 |   assert((Op.getOpcode() != ISD::CopyFromReg || | 
 |           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && | 
 |          "Copy from a reg to the same reg!"); | 
 |   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); | 
 |  | 
 |   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); | 
 |   SDValue Chain = DAG.getEntryNode(); | 
 |   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); | 
 |   PendingExports.push_back(Chain); | 
 | } | 
 |  | 
 | #include "llvm/CodeGen/SelectionDAGISel.h" | 
 |  | 
 | void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { | 
 |   // If this is the entry block, emit arguments. | 
 |   Function &F = *LLVMBB->getParent(); | 
 |   SelectionDAG &DAG = SDL->DAG; | 
 |   SDValue OldRoot = DAG.getRoot(); | 
 |   DebugLoc dl = SDL->getCurDebugLoc(); | 
 |   const TargetData *TD = TLI.getTargetData(); | 
 |  | 
 |   // Check whether the function can return without sret-demotion. | 
 |   SmallVector<EVT, 4> OutVTs; | 
 |   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; | 
 |   getReturnInfo(&F, OutVTs, OutsFlags, TLI); | 
 |   // For now, assert and bail out if it can't. | 
 |   assert(TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), OutVTs, OutsFlags, | 
 |          DAG) && "Cannot fit return value in registers!"); | 
 |  | 
 |   // Set up the incoming argument description vector. | 
 |   SmallVector<ISD::InputArg, 16> Ins; | 
 |   unsigned Idx = 1; | 
 |   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
 |        I != E; ++I, ++Idx) { | 
 |     SmallVector<EVT, 4> ValueVTs; | 
 |     ComputeValueVTs(TLI, I->getType(), ValueVTs); | 
 |     bool isArgValueUsed = !I->use_empty(); | 
 |     for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
 |          Value != NumValues; ++Value) { | 
 |       EVT VT = ValueVTs[Value]; | 
 |       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); | 
 |       ISD::ArgFlagsTy Flags; | 
 |       unsigned OriginalAlignment = | 
 |         TD->getABITypeAlignment(ArgTy); | 
 |  | 
 |       if (F.paramHasAttr(Idx, Attribute::ZExt)) | 
 |         Flags.setZExt(); | 
 |       if (F.paramHasAttr(Idx, Attribute::SExt)) | 
 |         Flags.setSExt(); | 
 |       if (F.paramHasAttr(Idx, Attribute::InReg)) | 
 |         Flags.setInReg(); | 
 |       if (F.paramHasAttr(Idx, Attribute::StructRet)) | 
 |         Flags.setSRet(); | 
 |       if (F.paramHasAttr(Idx, Attribute::ByVal)) { | 
 |         Flags.setByVal(); | 
 |         const PointerType *Ty = cast<PointerType>(I->getType()); | 
 |         const Type *ElementTy = Ty->getElementType(); | 
 |         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); | 
 |         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy); | 
 |         // For ByVal, alignment should be passed from FE.  BE will guess if | 
 |         // this info is not there but there are cases it cannot get right. | 
 |         if (F.getParamAlignment(Idx)) | 
 |           FrameAlign = F.getParamAlignment(Idx); | 
 |         Flags.setByValAlign(FrameAlign); | 
 |         Flags.setByValSize(FrameSize); | 
 |       } | 
 |       if (F.paramHasAttr(Idx, Attribute::Nest)) | 
 |         Flags.setNest(); | 
 |       Flags.setOrigAlign(OriginalAlignment); | 
 |  | 
 |       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); | 
 |       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); | 
 |       for (unsigned i = 0; i != NumRegs; ++i) { | 
 |         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); | 
 |         if (NumRegs > 1 && i == 0) | 
 |           MyFlags.Flags.setSplit(); | 
 |         // if it isn't first piece, alignment must be 1 | 
 |         else if (i > 0) | 
 |           MyFlags.Flags.setOrigAlign(1); | 
 |         Ins.push_back(MyFlags); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Call the target to set up the argument values. | 
 |   SmallVector<SDValue, 8> InVals; | 
 |   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), | 
 |                                              F.isVarArg(), Ins, | 
 |                                              dl, DAG, InVals); | 
 |  | 
 |   // Verify that the target's LowerFormalArguments behaved as expected. | 
 |   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && | 
 |          "LowerFormalArguments didn't return a valid chain!"); | 
 |   assert(InVals.size() == Ins.size() && | 
 |          "LowerFormalArguments didn't emit the correct number of values!"); | 
 |   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
 |           assert(InVals[i].getNode() && | 
 |                  "LowerFormalArguments emitted a null value!"); | 
 |           assert(Ins[i].VT == InVals[i].getValueType() && | 
 |                  "LowerFormalArguments emitted a value with the wrong type!"); | 
 |         }); | 
 |  | 
 |   // Update the DAG with the new chain value resulting from argument lowering. | 
 |   DAG.setRoot(NewRoot); | 
 |  | 
 |   // Set up the argument values. | 
 |   unsigned i = 0; | 
 |   Idx = 1; | 
 |   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; | 
 |       ++I, ++Idx) { | 
 |     SmallVector<SDValue, 4> ArgValues; | 
 |     SmallVector<EVT, 4> ValueVTs; | 
 |     ComputeValueVTs(TLI, I->getType(), ValueVTs); | 
 |     unsigned NumValues = ValueVTs.size(); | 
 |     for (unsigned Value = 0; Value != NumValues; ++Value) { | 
 |       EVT VT = ValueVTs[Value]; | 
 |       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); | 
 |       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); | 
 |  | 
 |       if (!I->use_empty()) { | 
 |         ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
 |         if (F.paramHasAttr(Idx, Attribute::SExt)) | 
 |           AssertOp = ISD::AssertSext; | 
 |         else if (F.paramHasAttr(Idx, Attribute::ZExt)) | 
 |           AssertOp = ISD::AssertZext; | 
 |  | 
 |         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, | 
 |                                              PartVT, VT, AssertOp)); | 
 |       } | 
 |       i += NumParts; | 
 |     } | 
 |     if (!I->use_empty()) { | 
 |       SDL->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, | 
 |                                           SDL->getCurDebugLoc())); | 
 |       // If this argument is live outside of the entry block, insert a copy from | 
 |       // whereever we got it to the vreg that other BB's will reference it as. | 
 |       SDL->CopyToExportRegsIfNeeded(I); | 
 |     } | 
 |   } | 
 |   assert(i == InVals.size() && "Argument register count mismatch!"); | 
 |  | 
 |   // Finally, if the target has anything special to do, allow it to do so. | 
 |   // FIXME: this should insert code into the DAG! | 
 |   EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction()); | 
 | } | 
 |  | 
 | /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to | 
 | /// ensure constants are generated when needed.  Remember the virtual registers | 
 | /// that need to be added to the Machine PHI nodes as input.  We cannot just | 
 | /// directly add them, because expansion might result in multiple MBB's for one | 
 | /// BB.  As such, the start of the BB might correspond to a different MBB than | 
 | /// the end. | 
 | /// | 
 | void | 
 | SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { | 
 |   TerminatorInst *TI = LLVMBB->getTerminator(); | 
 |  | 
 |   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
 |  | 
 |   // Check successor nodes' PHI nodes that expect a constant to be available | 
 |   // from this block. | 
 |   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
 |     BasicBlock *SuccBB = TI->getSuccessor(succ); | 
 |     if (!isa<PHINode>(SuccBB->begin())) continue; | 
 |     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; | 
 |  | 
 |     // If this terminator has multiple identical successors (common for | 
 |     // switches), only handle each succ once. | 
 |     if (!SuccsHandled.insert(SuccMBB)) continue; | 
 |  | 
 |     MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
 |     PHINode *PN; | 
 |  | 
 |     // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
 |     // nodes and Machine PHI nodes, but the incoming operands have not been | 
 |     // emitted yet. | 
 |     for (BasicBlock::iterator I = SuccBB->begin(); | 
 |          (PN = dyn_cast<PHINode>(I)); ++I) { | 
 |       // Ignore dead phi's. | 
 |       if (PN->use_empty()) continue; | 
 |  | 
 |       unsigned Reg; | 
 |       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
 |  | 
 |       if (Constant *C = dyn_cast<Constant>(PHIOp)) { | 
 |         unsigned &RegOut = SDL->ConstantsOut[C]; | 
 |         if (RegOut == 0) { | 
 |           RegOut = FuncInfo->CreateRegForValue(C); | 
 |           SDL->CopyValueToVirtualRegister(C, RegOut); | 
 |         } | 
 |         Reg = RegOut; | 
 |       } else { | 
 |         Reg = FuncInfo->ValueMap[PHIOp]; | 
 |         if (Reg == 0) { | 
 |           assert(isa<AllocaInst>(PHIOp) && | 
 |                  FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && | 
 |                  "Didn't codegen value into a register!??"); | 
 |           Reg = FuncInfo->CreateRegForValue(PHIOp); | 
 |           SDL->CopyValueToVirtualRegister(PHIOp, Reg); | 
 |         } | 
 |       } | 
 |  | 
 |       // Remember that this register needs to added to the machine PHI node as | 
 |       // the input for this MBB. | 
 |       SmallVector<EVT, 4> ValueVTs; | 
 |       ComputeValueVTs(TLI, PN->getType(), ValueVTs); | 
 |       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
 |         EVT VT = ValueVTs[vti]; | 
 |         unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); | 
 |         for (unsigned i = 0, e = NumRegisters; i != e; ++i) | 
 |           SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); | 
 |         Reg += NumRegisters; | 
 |       } | 
 |     } | 
 |   } | 
 |   SDL->ConstantsOut.clear(); | 
 | } | 
 |  | 
 | /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only | 
 | /// supports legal types, and it emits MachineInstrs directly instead of | 
 | /// creating SelectionDAG nodes. | 
 | /// | 
 | bool | 
 | SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, | 
 |                                                       FastISel *F) { | 
 |   TerminatorInst *TI = LLVMBB->getTerminator(); | 
 |  | 
 |   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
 |   unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size(); | 
 |  | 
 |   // Check successor nodes' PHI nodes that expect a constant to be available | 
 |   // from this block. | 
 |   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
 |     BasicBlock *SuccBB = TI->getSuccessor(succ); | 
 |     if (!isa<PHINode>(SuccBB->begin())) continue; | 
 |     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; | 
 |  | 
 |     // If this terminator has multiple identical successors (common for | 
 |     // switches), only handle each succ once. | 
 |     if (!SuccsHandled.insert(SuccMBB)) continue; | 
 |  | 
 |     MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
 |     PHINode *PN; | 
 |  | 
 |     // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
 |     // nodes and Machine PHI nodes, but the incoming operands have not been | 
 |     // emitted yet. | 
 |     for (BasicBlock::iterator I = SuccBB->begin(); | 
 |          (PN = dyn_cast<PHINode>(I)); ++I) { | 
 |       // Ignore dead phi's. | 
 |       if (PN->use_empty()) continue; | 
 |  | 
 |       // Only handle legal types. Two interesting things to note here. First, | 
 |       // by bailing out early, we may leave behind some dead instructions, | 
 |       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its | 
 |       // own moves. Second, this check is necessary becuase FastISel doesn't | 
 |       // use CreateRegForValue to create registers, so it always creates | 
 |       // exactly one register for each non-void instruction. | 
 |       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); | 
 |       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { | 
 |         // Promote MVT::i1. | 
 |         if (VT == MVT::i1) | 
 |           VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); | 
 |         else { | 
 |           SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); | 
 |           return false; | 
 |         } | 
 |       } | 
 |  | 
 |       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
 |  | 
 |       unsigned Reg = F->getRegForValue(PHIOp); | 
 |       if (Reg == 0) { | 
 |         SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); | 
 |         return false; | 
 |       } | 
 |       SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } |