| //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the implementation of the scalar evolution analysis | 
 | // engine, which is used primarily to analyze expressions involving induction | 
 | // variables in loops. | 
 | // | 
 | // There are several aspects to this library.  First is the representation of | 
 | // scalar expressions, which are represented as subclasses of the SCEV class. | 
 | // These classes are used to represent certain types of subexpressions that we | 
 | // can handle.  These classes are reference counted, managed by the const SCEV * | 
 | // class.  We only create one SCEV of a particular shape, so pointer-comparisons | 
 | // for equality are legal. | 
 | // | 
 | // One important aspect of the SCEV objects is that they are never cyclic, even | 
 | // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If | 
 | // the PHI node is one of the idioms that we can represent (e.g., a polynomial | 
 | // recurrence) then we represent it directly as a recurrence node, otherwise we | 
 | // represent it as a SCEVUnknown node. | 
 | // | 
 | // In addition to being able to represent expressions of various types, we also | 
 | // have folders that are used to build the *canonical* representation for a | 
 | // particular expression.  These folders are capable of using a variety of | 
 | // rewrite rules to simplify the expressions. | 
 | // | 
 | // Once the folders are defined, we can implement the more interesting | 
 | // higher-level code, such as the code that recognizes PHI nodes of various | 
 | // types, computes the execution count of a loop, etc. | 
 | // | 
 | // TODO: We should use these routines and value representations to implement | 
 | // dependence analysis! | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // There are several good references for the techniques used in this analysis. | 
 | // | 
 | //  Chains of recurrences -- a method to expedite the evaluation | 
 | //  of closed-form functions | 
 | //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima | 
 | // | 
 | //  On computational properties of chains of recurrences | 
 | //  Eugene V. Zima | 
 | // | 
 | //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization | 
 | //  Robert A. van Engelen | 
 | // | 
 | //  Efficient Symbolic Analysis for Optimizing Compilers | 
 | //  Robert A. van Engelen | 
 | // | 
 | //  Using the chains of recurrences algebra for data dependence testing and | 
 | //  induction variable substitution | 
 | //  MS Thesis, Johnie Birch | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "scalar-evolution" | 
 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/Assembly/Writer.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/ConstantRange.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/InstIterator.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumArrayLenItCounts, | 
 |           "Number of trip counts computed with array length"); | 
 | STATISTIC(NumTripCountsComputed, | 
 |           "Number of loops with predictable loop counts"); | 
 | STATISTIC(NumTripCountsNotComputed, | 
 |           "Number of loops without predictable loop counts"); | 
 | STATISTIC(NumBruteForceTripCountsComputed, | 
 |           "Number of loops with trip counts computed by force"); | 
 |  | 
 | static cl::opt<unsigned> | 
 | MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, | 
 |                         cl::desc("Maximum number of iterations SCEV will " | 
 |                                  "symbolically execute a constant " | 
 |                                  "derived loop"), | 
 |                         cl::init(100)); | 
 |  | 
 | static RegisterPass<ScalarEvolution> | 
 | R("scalar-evolution", "Scalar Evolution Analysis", false, true); | 
 | char ScalarEvolution::ID = 0; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           SCEV class definitions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Implementation of the SCEV class. | 
 | // | 
 |  | 
 | SCEV::~SCEV() {} | 
 |  | 
 | void SCEV::dump() const { | 
 |   print(errs()); | 
 |   errs() << '\n'; | 
 | } | 
 |  | 
 | void SCEV::print(std::ostream &o) const { | 
 |   raw_os_ostream OS(o); | 
 |   print(OS); | 
 | } | 
 |  | 
 | bool SCEV::isZero() const { | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | 
 |     return SC->getValue()->isZero(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool SCEV::isOne() const { | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | 
 |     return SC->getValue()->isOne(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool SCEV::isAllOnesValue() const { | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | 
 |     return SC->getValue()->isAllOnesValue(); | 
 |   return false; | 
 | } | 
 |  | 
 | SCEVCouldNotCompute::SCEVCouldNotCompute() : | 
 |   SCEV(FoldingSetNodeID(), scCouldNotCompute) {} | 
 |  | 
 | bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { | 
 |   LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!"); | 
 |   return false; | 
 | } | 
 |  | 
 | const Type *SCEVCouldNotCompute::getType() const { | 
 |   LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!"); | 
 |   return 0; | 
 | } | 
 |  | 
 | bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { | 
 |   LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!"); | 
 |   return false; | 
 | } | 
 |  | 
 | const SCEV * | 
 | SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete( | 
 |                                                     const SCEV *Sym, | 
 |                                                     const SCEV *Conc, | 
 |                                                     ScalarEvolution &SE) const { | 
 |   return this; | 
 | } | 
 |  | 
 | void SCEVCouldNotCompute::print(raw_ostream &OS) const { | 
 |   OS << "***COULDNOTCOMPUTE***"; | 
 | } | 
 |  | 
 | bool SCEVCouldNotCompute::classof(const SCEV *S) { | 
 |   return S->getSCEVType() == scCouldNotCompute; | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scConstant); | 
 |   ID.AddPointer(V); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); | 
 |   new (S) SCEVConstant(ID, V); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getConstant(const APInt& Val) { | 
 |   return getConstant(ConstantInt::get(Val)); | 
 | } | 
 |  | 
 | const SCEV * | 
 | ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { | 
 |   return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); | 
 | } | 
 |  | 
 | const Type *SCEVConstant::getType() const { return V->getType(); } | 
 |  | 
 | void SCEVConstant::print(raw_ostream &OS) const { | 
 |   WriteAsOperand(OS, V, false); | 
 | } | 
 |  | 
 | SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID, | 
 |                            unsigned SCEVTy, const SCEV *op, const Type *ty) | 
 |   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} | 
 |  | 
 | bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { | 
 |   return Op->dominates(BB, DT); | 
 | } | 
 |  | 
 | SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID, | 
 |                                    const SCEV *op, const Type *ty) | 
 |   : SCEVCastExpr(ID, scTruncate, op, ty) { | 
 |   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && | 
 |          (Ty->isInteger() || isa<PointerType>(Ty)) && | 
 |          "Cannot truncate non-integer value!"); | 
 | } | 
 |  | 
 | void SCEVTruncateExpr::print(raw_ostream &OS) const { | 
 |   OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; | 
 | } | 
 |  | 
 | SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID, | 
 |                                        const SCEV *op, const Type *ty) | 
 |   : SCEVCastExpr(ID, scZeroExtend, op, ty) { | 
 |   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && | 
 |          (Ty->isInteger() || isa<PointerType>(Ty)) && | 
 |          "Cannot zero extend non-integer value!"); | 
 | } | 
 |  | 
 | void SCEVZeroExtendExpr::print(raw_ostream &OS) const { | 
 |   OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; | 
 | } | 
 |  | 
 | SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID, | 
 |                                        const SCEV *op, const Type *ty) | 
 |   : SCEVCastExpr(ID, scSignExtend, op, ty) { | 
 |   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && | 
 |          (Ty->isInteger() || isa<PointerType>(Ty)) && | 
 |          "Cannot sign extend non-integer value!"); | 
 | } | 
 |  | 
 | void SCEVSignExtendExpr::print(raw_ostream &OS) const { | 
 |   OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; | 
 | } | 
 |  | 
 | void SCEVCommutativeExpr::print(raw_ostream &OS) const { | 
 |   assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); | 
 |   const char *OpStr = getOperationStr(); | 
 |   OS << "(" << *Operands[0]; | 
 |   for (unsigned i = 1, e = Operands.size(); i != e; ++i) | 
 |     OS << OpStr << *Operands[i]; | 
 |   OS << ")"; | 
 | } | 
 |  | 
 | const SCEV * | 
 | SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete( | 
 |                                                     const SCEV *Sym, | 
 |                                                     const SCEV *Conc, | 
 |                                                     ScalarEvolution &SE) const { | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
 |     const SCEV *H = | 
 |       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); | 
 |     if (H != getOperand(i)) { | 
 |       SmallVector<const SCEV *, 8> NewOps; | 
 |       NewOps.reserve(getNumOperands()); | 
 |       for (unsigned j = 0; j != i; ++j) | 
 |         NewOps.push_back(getOperand(j)); | 
 |       NewOps.push_back(H); | 
 |       for (++i; i != e; ++i) | 
 |         NewOps.push_back(getOperand(i)-> | 
 |                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); | 
 |  | 
 |       if (isa<SCEVAddExpr>(this)) | 
 |         return SE.getAddExpr(NewOps); | 
 |       else if (isa<SCEVMulExpr>(this)) | 
 |         return SE.getMulExpr(NewOps); | 
 |       else if (isa<SCEVSMaxExpr>(this)) | 
 |         return SE.getSMaxExpr(NewOps); | 
 |       else if (isa<SCEVUMaxExpr>(this)) | 
 |         return SE.getUMaxExpr(NewOps); | 
 |       else | 
 |         LLVM_UNREACHABLE("Unknown commutative expr!"); | 
 |     } | 
 |   } | 
 |   return this; | 
 | } | 
 |  | 
 | bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
 |     if (!getOperand(i)->dominates(BB, DT)) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { | 
 |   return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); | 
 | } | 
 |  | 
 | void SCEVUDivExpr::print(raw_ostream &OS) const { | 
 |   OS << "(" << *LHS << " /u " << *RHS << ")"; | 
 | } | 
 |  | 
 | const Type *SCEVUDivExpr::getType() const { | 
 |   // In most cases the types of LHS and RHS will be the same, but in some | 
 |   // crazy cases one or the other may be a pointer. ScalarEvolution doesn't | 
 |   // depend on the type for correctness, but handling types carefully can | 
 |   // avoid extra casts in the SCEVExpander. The LHS is more likely to be | 
 |   // a pointer type than the RHS, so use the RHS' type here. | 
 |   return RHS->getType(); | 
 | } | 
 |  | 
 | const SCEV * | 
 | SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym, | 
 |                                                   const SCEV *Conc, | 
 |                                                   ScalarEvolution &SE) const { | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
 |     const SCEV *H = | 
 |       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); | 
 |     if (H != getOperand(i)) { | 
 |       SmallVector<const SCEV *, 8> NewOps; | 
 |       NewOps.reserve(getNumOperands()); | 
 |       for (unsigned j = 0; j != i; ++j) | 
 |         NewOps.push_back(getOperand(j)); | 
 |       NewOps.push_back(H); | 
 |       for (++i; i != e; ++i) | 
 |         NewOps.push_back(getOperand(i)-> | 
 |                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); | 
 |  | 
 |       return SE.getAddRecExpr(NewOps, L); | 
 |     } | 
 |   } | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { | 
 |   // Add recurrences are never invariant in the function-body (null loop). | 
 |   if (!QueryLoop) | 
 |     return false; | 
 |  | 
 |   // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. | 
 |   if (QueryLoop->contains(L->getHeader())) | 
 |     return false; | 
 |  | 
 |   // This recurrence is variant w.r.t. QueryLoop if any of its operands | 
 |   // are variant. | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
 |     if (!getOperand(i)->isLoopInvariant(QueryLoop)) | 
 |       return false; | 
 |  | 
 |   // Otherwise it's loop-invariant. | 
 |   return true; | 
 | } | 
 |  | 
 | void SCEVAddRecExpr::print(raw_ostream &OS) const { | 
 |   OS << "{" << *Operands[0]; | 
 |   for (unsigned i = 1, e = Operands.size(); i != e; ++i) | 
 |     OS << ",+," << *Operands[i]; | 
 |   OS << "}<" << L->getHeader()->getName() + ">"; | 
 | } | 
 |  | 
 | bool SCEVUnknown::isLoopInvariant(const Loop *L) const { | 
 |   // All non-instruction values are loop invariant.  All instructions are loop | 
 |   // invariant if they are not contained in the specified loop. | 
 |   // Instructions are never considered invariant in the function body | 
 |   // (null loop) because they are defined within the "loop". | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return L && !L->contains(I->getParent()); | 
 |   return true; | 
 | } | 
 |  | 
 | bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { | 
 |   if (Instruction *I = dyn_cast<Instruction>(getValue())) | 
 |     return DT->dominates(I->getParent(), BB); | 
 |   return true; | 
 | } | 
 |  | 
 | const Type *SCEVUnknown::getType() const { | 
 |   return V->getType(); | 
 | } | 
 |  | 
 | void SCEVUnknown::print(raw_ostream &OS) const { | 
 |   WriteAsOperand(OS, V, false); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                               SCEV Utilities | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less | 
 |   /// than the complexity of the RHS.  This comparator is used to canonicalize | 
 |   /// expressions. | 
 |   class VISIBILITY_HIDDEN SCEVComplexityCompare { | 
 |     LoopInfo *LI; | 
 |   public: | 
 |     explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} | 
 |  | 
 |     bool operator()(const SCEV *LHS, const SCEV *RHS) const { | 
 |       // Primarily, sort the SCEVs by their getSCEVType(). | 
 |       if (LHS->getSCEVType() != RHS->getSCEVType()) | 
 |         return LHS->getSCEVType() < RHS->getSCEVType(); | 
 |  | 
 |       // Aside from the getSCEVType() ordering, the particular ordering | 
 |       // isn't very important except that it's beneficial to be consistent, | 
 |       // so that (a + b) and (b + a) don't end up as different expressions. | 
 |  | 
 |       // Sort SCEVUnknown values with some loose heuristics. TODO: This is | 
 |       // not as complete as it could be. | 
 |       if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { | 
 |         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); | 
 |  | 
 |         // Order pointer values after integer values. This helps SCEVExpander | 
 |         // form GEPs. | 
 |         if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) | 
 |           return false; | 
 |         if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) | 
 |           return true; | 
 |  | 
 |         // Compare getValueID values. | 
 |         if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) | 
 |           return LU->getValue()->getValueID() < RU->getValue()->getValueID(); | 
 |  | 
 |         // Sort arguments by their position. | 
 |         if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { | 
 |           const Argument *RA = cast<Argument>(RU->getValue()); | 
 |           return LA->getArgNo() < RA->getArgNo(); | 
 |         } | 
 |  | 
 |         // For instructions, compare their loop depth, and their opcode. | 
 |         // This is pretty loose. | 
 |         if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { | 
 |           Instruction *RV = cast<Instruction>(RU->getValue()); | 
 |  | 
 |           // Compare loop depths. | 
 |           if (LI->getLoopDepth(LV->getParent()) != | 
 |               LI->getLoopDepth(RV->getParent())) | 
 |             return LI->getLoopDepth(LV->getParent()) < | 
 |                    LI->getLoopDepth(RV->getParent()); | 
 |  | 
 |           // Compare opcodes. | 
 |           if (LV->getOpcode() != RV->getOpcode()) | 
 |             return LV->getOpcode() < RV->getOpcode(); | 
 |  | 
 |           // Compare the number of operands. | 
 |           if (LV->getNumOperands() != RV->getNumOperands()) | 
 |             return LV->getNumOperands() < RV->getNumOperands(); | 
 |         } | 
 |  | 
 |         return false; | 
 |       } | 
 |  | 
 |       // Compare constant values. | 
 |       if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { | 
 |         const SCEVConstant *RC = cast<SCEVConstant>(RHS); | 
 |         if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) | 
 |           return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); | 
 |         return LC->getValue()->getValue().ult(RC->getValue()->getValue()); | 
 |       } | 
 |  | 
 |       // Compare addrec loop depths. | 
 |       if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { | 
 |         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); | 
 |         if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) | 
 |           return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); | 
 |       } | 
 |  | 
 |       // Lexicographically compare n-ary expressions. | 
 |       if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { | 
 |         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); | 
 |         for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { | 
 |           if (i >= RC->getNumOperands()) | 
 |             return false; | 
 |           if (operator()(LC->getOperand(i), RC->getOperand(i))) | 
 |             return true; | 
 |           if (operator()(RC->getOperand(i), LC->getOperand(i))) | 
 |             return false; | 
 |         } | 
 |         return LC->getNumOperands() < RC->getNumOperands(); | 
 |       } | 
 |  | 
 |       // Lexicographically compare udiv expressions. | 
 |       if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { | 
 |         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); | 
 |         if (operator()(LC->getLHS(), RC->getLHS())) | 
 |           return true; | 
 |         if (operator()(RC->getLHS(), LC->getLHS())) | 
 |           return false; | 
 |         if (operator()(LC->getRHS(), RC->getRHS())) | 
 |           return true; | 
 |         if (operator()(RC->getRHS(), LC->getRHS())) | 
 |           return false; | 
 |         return false; | 
 |       } | 
 |  | 
 |       // Compare cast expressions by operand. | 
 |       if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { | 
 |         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); | 
 |         return operator()(LC->getOperand(), RC->getOperand()); | 
 |       } | 
 |  | 
 |       LLVM_UNREACHABLE("Unknown SCEV kind!"); | 
 |       return false; | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// GroupByComplexity - Given a list of SCEV objects, order them by their | 
 | /// complexity, and group objects of the same complexity together by value. | 
 | /// When this routine is finished, we know that any duplicates in the vector are | 
 | /// consecutive and that complexity is monotonically increasing. | 
 | /// | 
 | /// Note that we go take special precautions to ensure that we get determinstic | 
 | /// results from this routine.  In other words, we don't want the results of | 
 | /// this to depend on where the addresses of various SCEV objects happened to | 
 | /// land in memory. | 
 | /// | 
 | static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, | 
 |                               LoopInfo *LI) { | 
 |   if (Ops.size() < 2) return;  // Noop | 
 |   if (Ops.size() == 2) { | 
 |     // This is the common case, which also happens to be trivially simple. | 
 |     // Special case it. | 
 |     if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) | 
 |       std::swap(Ops[0], Ops[1]); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Do the rough sort by complexity. | 
 |   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); | 
 |  | 
 |   // Now that we are sorted by complexity, group elements of the same | 
 |   // complexity.  Note that this is, at worst, N^2, but the vector is likely to | 
 |   // be extremely short in practice.  Note that we take this approach because we | 
 |   // do not want to depend on the addresses of the objects we are grouping. | 
 |   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { | 
 |     const SCEV *S = Ops[i]; | 
 |     unsigned Complexity = S->getSCEVType(); | 
 |  | 
 |     // If there are any objects of the same complexity and same value as this | 
 |     // one, group them. | 
 |     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { | 
 |       if (Ops[j] == S) { // Found a duplicate. | 
 |         // Move it to immediately after i'th element. | 
 |         std::swap(Ops[i+1], Ops[j]); | 
 |         ++i;   // no need to rescan it. | 
 |         if (i == e-2) return;  // Done! | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                      Simple SCEV method implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// BinomialCoefficient - Compute BC(It, K).  The result has width W. | 
 | /// Assume, K > 0. | 
 | static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, | 
 |                                       ScalarEvolution &SE, | 
 |                                       const Type* ResultTy) { | 
 |   // Handle the simplest case efficiently. | 
 |   if (K == 1) | 
 |     return SE.getTruncateOrZeroExtend(It, ResultTy); | 
 |  | 
 |   // We are using the following formula for BC(It, K): | 
 |   // | 
 |   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! | 
 |   // | 
 |   // Suppose, W is the bitwidth of the return value.  We must be prepared for | 
 |   // overflow.  Hence, we must assure that the result of our computation is | 
 |   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't | 
 |   // safe in modular arithmetic. | 
 |   // | 
 |   // However, this code doesn't use exactly that formula; the formula it uses | 
 |   // is something like the following, where T is the number of factors of 2 in | 
 |   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is | 
 |   // exponentiation: | 
 |   // | 
 |   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) | 
 |   // | 
 |   // This formula is trivially equivalent to the previous formula.  However, | 
 |   // this formula can be implemented much more efficiently.  The trick is that | 
 |   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular | 
 |   // arithmetic.  To do exact division in modular arithmetic, all we have | 
 |   // to do is multiply by the inverse.  Therefore, this step can be done at | 
 |   // width W. | 
 |   // | 
 |   // The next issue is how to safely do the division by 2^T.  The way this | 
 |   // is done is by doing the multiplication step at a width of at least W + T | 
 |   // bits.  This way, the bottom W+T bits of the product are accurate. Then, | 
 |   // when we perform the division by 2^T (which is equivalent to a right shift | 
 |   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get | 
 |   // truncated out after the division by 2^T. | 
 |   // | 
 |   // In comparison to just directly using the first formula, this technique | 
 |   // is much more efficient; using the first formula requires W * K bits, | 
 |   // but this formula less than W + K bits. Also, the first formula requires | 
 |   // a division step, whereas this formula only requires multiplies and shifts. | 
 |   // | 
 |   // It doesn't matter whether the subtraction step is done in the calculation | 
 |   // width or the input iteration count's width; if the subtraction overflows, | 
 |   // the result must be zero anyway.  We prefer here to do it in the width of | 
 |   // the induction variable because it helps a lot for certain cases; CodeGen | 
 |   // isn't smart enough to ignore the overflow, which leads to much less | 
 |   // efficient code if the width of the subtraction is wider than the native | 
 |   // register width. | 
 |   // | 
 |   // (It's possible to not widen at all by pulling out factors of 2 before | 
 |   // the multiplication; for example, K=2 can be calculated as | 
 |   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires | 
 |   // extra arithmetic, so it's not an obvious win, and it gets | 
 |   // much more complicated for K > 3.) | 
 |  | 
 |   // Protection from insane SCEVs; this bound is conservative, | 
 |   // but it probably doesn't matter. | 
 |   if (K > 1000) | 
 |     return SE.getCouldNotCompute(); | 
 |  | 
 |   unsigned W = SE.getTypeSizeInBits(ResultTy); | 
 |  | 
 |   // Calculate K! / 2^T and T; we divide out the factors of two before | 
 |   // multiplying for calculating K! / 2^T to avoid overflow. | 
 |   // Other overflow doesn't matter because we only care about the bottom | 
 |   // W bits of the result. | 
 |   APInt OddFactorial(W, 1); | 
 |   unsigned T = 1; | 
 |   for (unsigned i = 3; i <= K; ++i) { | 
 |     APInt Mult(W, i); | 
 |     unsigned TwoFactors = Mult.countTrailingZeros(); | 
 |     T += TwoFactors; | 
 |     Mult = Mult.lshr(TwoFactors); | 
 |     OddFactorial *= Mult; | 
 |   } | 
 |  | 
 |   // We need at least W + T bits for the multiplication step | 
 |   unsigned CalculationBits = W + T; | 
 |  | 
 |   // Calcuate 2^T, at width T+W. | 
 |   APInt DivFactor = APInt(CalculationBits, 1).shl(T); | 
 |  | 
 |   // Calculate the multiplicative inverse of K! / 2^T; | 
 |   // this multiplication factor will perform the exact division by | 
 |   // K! / 2^T. | 
 |   APInt Mod = APInt::getSignedMinValue(W+1); | 
 |   APInt MultiplyFactor = OddFactorial.zext(W+1); | 
 |   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); | 
 |   MultiplyFactor = MultiplyFactor.trunc(W); | 
 |  | 
 |   // Calculate the product, at width T+W | 
 |   const IntegerType *CalculationTy = IntegerType::get(CalculationBits); | 
 |   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); | 
 |   for (unsigned i = 1; i != K; ++i) { | 
 |     const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); | 
 |     Dividend = SE.getMulExpr(Dividend, | 
 |                              SE.getTruncateOrZeroExtend(S, CalculationTy)); | 
 |   } | 
 |  | 
 |   // Divide by 2^T | 
 |   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); | 
 |  | 
 |   // Truncate the result, and divide by K! / 2^T. | 
 |  | 
 |   return SE.getMulExpr(SE.getConstant(MultiplyFactor), | 
 |                        SE.getTruncateOrZeroExtend(DivResult, ResultTy)); | 
 | } | 
 |  | 
 | /// evaluateAtIteration - Return the value of this chain of recurrences at | 
 | /// the specified iteration number.  We can evaluate this recurrence by | 
 | /// multiplying each element in the chain by the binomial coefficient | 
 | /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as: | 
 | /// | 
 | ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) | 
 | /// | 
 | /// where BC(It, k) stands for binomial coefficient. | 
 | /// | 
 | const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, | 
 |                                                ScalarEvolution &SE) const { | 
 |   const SCEV *Result = getStart(); | 
 |   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { | 
 |     // The computation is correct in the face of overflow provided that the | 
 |     // multiplication is performed _after_ the evaluation of the binomial | 
 |     // coefficient. | 
 |     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); | 
 |     if (isa<SCEVCouldNotCompute>(Coeff)) | 
 |       return Coeff; | 
 |  | 
 |     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                    SCEV Expression folder implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, | 
 |                                             const Type *Ty) { | 
 |   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && | 
 |          "This is not a truncating conversion!"); | 
 |   assert(isSCEVable(Ty) && | 
 |          "This is not a conversion to a SCEVable type!"); | 
 |   Ty = getEffectiveSCEVType(Ty); | 
 |  | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scTruncate); | 
 |   ID.AddPointer(Op); | 
 |   ID.AddPointer(Ty); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |  | 
 |   // Fold if the operand is constant. | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | 
 |     return getConstant( | 
 |       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); | 
 |  | 
 |   // trunc(trunc(x)) --> trunc(x) | 
 |   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) | 
 |     return getTruncateExpr(ST->getOperand(), Ty); | 
 |  | 
 |   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing | 
 |   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) | 
 |     return getTruncateOrSignExtend(SS->getOperand(), Ty); | 
 |  | 
 |   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing | 
 |   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | 
 |     return getTruncateOrZeroExtend(SZ->getOperand(), Ty); | 
 |  | 
 |   // If the input value is a chrec scev, truncate the chrec's operands. | 
 |   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { | 
 |     SmallVector<const SCEV *, 4> Operands; | 
 |     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) | 
 |       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); | 
 |     return getAddRecExpr(Operands, AddRec->getLoop()); | 
 |   } | 
 |  | 
 |   // The cast wasn't folded; create an explicit cast node. | 
 |   // Recompute the insert position, as it may have been invalidated. | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); | 
 |   new (S) SCEVTruncateExpr(ID, Op, Ty); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, | 
 |                                               const Type *Ty) { | 
 |   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && | 
 |          "This is not an extending conversion!"); | 
 |   assert(isSCEVable(Ty) && | 
 |          "This is not a conversion to a SCEVable type!"); | 
 |   Ty = getEffectiveSCEVType(Ty); | 
 |  | 
 |   // Fold if the operand is constant. | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { | 
 |     const Type *IntTy = getEffectiveSCEVType(Ty); | 
 |     Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); | 
 |     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); | 
 |     return getConstant(cast<ConstantInt>(C)); | 
 |   } | 
 |  | 
 |   // zext(zext(x)) --> zext(x) | 
 |   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | 
 |     return getZeroExtendExpr(SZ->getOperand(), Ty); | 
 |  | 
 |   // If the input value is a chrec scev, and we can prove that the value | 
 |   // did not overflow the old, smaller, value, we can zero extend all of the | 
 |   // operands (often constants).  This allows analysis of something like | 
 |   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; } | 
 |   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) | 
 |     if (AR->isAffine()) { | 
 |       // Check whether the backedge-taken count is SCEVCouldNotCompute. | 
 |       // Note that this serves two purposes: It filters out loops that are | 
 |       // simply not analyzable, and it covers the case where this code is | 
 |       // being called from within backedge-taken count analysis, such that | 
 |       // attempting to ask for the backedge-taken count would likely result | 
 |       // in infinite recursion. In the later case, the analysis code will | 
 |       // cope with a conservative value, and it will take care to purge | 
 |       // that value once it has finished. | 
 |       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); | 
 |       if (!isa<SCEVCouldNotCompute>(MaxBECount)) { | 
 |         // Manually compute the final value for AR, checking for | 
 |         // overflow. | 
 |         const SCEV *Start = AR->getStart(); | 
 |         const SCEV *Step = AR->getStepRecurrence(*this); | 
 |  | 
 |         // Check whether the backedge-taken count can be losslessly casted to | 
 |         // the addrec's type. The count is always unsigned. | 
 |         const SCEV *CastedMaxBECount = | 
 |           getTruncateOrZeroExtend(MaxBECount, Start->getType()); | 
 |         const SCEV *RecastedMaxBECount = | 
 |           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); | 
 |         if (MaxBECount == RecastedMaxBECount) { | 
 |           const Type *WideTy = | 
 |             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); | 
 |           // Check whether Start+Step*MaxBECount has no unsigned overflow. | 
 |           const SCEV *ZMul = | 
 |             getMulExpr(CastedMaxBECount, | 
 |                        getTruncateOrZeroExtend(Step, Start->getType())); | 
 |           const SCEV *Add = getAddExpr(Start, ZMul); | 
 |           const SCEV *OperandExtendedAdd = | 
 |             getAddExpr(getZeroExtendExpr(Start, WideTy), | 
 |                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), | 
 |                                   getZeroExtendExpr(Step, WideTy))); | 
 |           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) | 
 |             // Return the expression with the addrec on the outside. | 
 |             return getAddRecExpr(getZeroExtendExpr(Start, Ty), | 
 |                                  getZeroExtendExpr(Step, Ty), | 
 |                                  AR->getLoop()); | 
 |  | 
 |           // Similar to above, only this time treat the step value as signed. | 
 |           // This covers loops that count down. | 
 |           const SCEV *SMul = | 
 |             getMulExpr(CastedMaxBECount, | 
 |                        getTruncateOrSignExtend(Step, Start->getType())); | 
 |           Add = getAddExpr(Start, SMul); | 
 |           OperandExtendedAdd = | 
 |             getAddExpr(getZeroExtendExpr(Start, WideTy), | 
 |                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), | 
 |                                   getSignExtendExpr(Step, WideTy))); | 
 |           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) | 
 |             // Return the expression with the addrec on the outside. | 
 |             return getAddRecExpr(getZeroExtendExpr(Start, Ty), | 
 |                                  getSignExtendExpr(Step, Ty), | 
 |                                  AR->getLoop()); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scZeroExtend); | 
 |   ID.AddPointer(Op); | 
 |   ID.AddPointer(Ty); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); | 
 |   new (S) SCEVZeroExtendExpr(ID, Op, Ty); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, | 
 |                                               const Type *Ty) { | 
 |   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && | 
 |          "This is not an extending conversion!"); | 
 |   assert(isSCEVable(Ty) && | 
 |          "This is not a conversion to a SCEVable type!"); | 
 |   Ty = getEffectiveSCEVType(Ty); | 
 |  | 
 |   // Fold if the operand is constant. | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { | 
 |     const Type *IntTy = getEffectiveSCEVType(Ty); | 
 |     Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); | 
 |     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); | 
 |     return getConstant(cast<ConstantInt>(C)); | 
 |   } | 
 |  | 
 |   // sext(sext(x)) --> sext(x) | 
 |   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) | 
 |     return getSignExtendExpr(SS->getOperand(), Ty); | 
 |  | 
 |   // If the input value is a chrec scev, and we can prove that the value | 
 |   // did not overflow the old, smaller, value, we can sign extend all of the | 
 |   // operands (often constants).  This allows analysis of something like | 
 |   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; } | 
 |   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) | 
 |     if (AR->isAffine()) { | 
 |       // Check whether the backedge-taken count is SCEVCouldNotCompute. | 
 |       // Note that this serves two purposes: It filters out loops that are | 
 |       // simply not analyzable, and it covers the case where this code is | 
 |       // being called from within backedge-taken count analysis, such that | 
 |       // attempting to ask for the backedge-taken count would likely result | 
 |       // in infinite recursion. In the later case, the analysis code will | 
 |       // cope with a conservative value, and it will take care to purge | 
 |       // that value once it has finished. | 
 |       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); | 
 |       if (!isa<SCEVCouldNotCompute>(MaxBECount)) { | 
 |         // Manually compute the final value for AR, checking for | 
 |         // overflow. | 
 |         const SCEV *Start = AR->getStart(); | 
 |         const SCEV *Step = AR->getStepRecurrence(*this); | 
 |  | 
 |         // Check whether the backedge-taken count can be losslessly casted to | 
 |         // the addrec's type. The count is always unsigned. | 
 |         const SCEV *CastedMaxBECount = | 
 |           getTruncateOrZeroExtend(MaxBECount, Start->getType()); | 
 |         const SCEV *RecastedMaxBECount = | 
 |           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); | 
 |         if (MaxBECount == RecastedMaxBECount) { | 
 |           const Type *WideTy = | 
 |             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); | 
 |           // Check whether Start+Step*MaxBECount has no signed overflow. | 
 |           const SCEV *SMul = | 
 |             getMulExpr(CastedMaxBECount, | 
 |                        getTruncateOrSignExtend(Step, Start->getType())); | 
 |           const SCEV *Add = getAddExpr(Start, SMul); | 
 |           const SCEV *OperandExtendedAdd = | 
 |             getAddExpr(getSignExtendExpr(Start, WideTy), | 
 |                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), | 
 |                                   getSignExtendExpr(Step, WideTy))); | 
 |           if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) | 
 |             // Return the expression with the addrec on the outside. | 
 |             return getAddRecExpr(getSignExtendExpr(Start, Ty), | 
 |                                  getSignExtendExpr(Step, Ty), | 
 |                                  AR->getLoop()); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scSignExtend); | 
 |   ID.AddPointer(Op); | 
 |   ID.AddPointer(Ty); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); | 
 |   new (S) SCEVSignExtendExpr(ID, Op, Ty); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | /// getAnyExtendExpr - Return a SCEV for the given operand extended with | 
 | /// unspecified bits out to the given type. | 
 | /// | 
 | const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, | 
 |                                              const Type *Ty) { | 
 |   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && | 
 |          "This is not an extending conversion!"); | 
 |   assert(isSCEVable(Ty) && | 
 |          "This is not a conversion to a SCEVable type!"); | 
 |   Ty = getEffectiveSCEVType(Ty); | 
 |  | 
 |   // Sign-extend negative constants. | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | 
 |     if (SC->getValue()->getValue().isNegative()) | 
 |       return getSignExtendExpr(Op, Ty); | 
 |  | 
 |   // Peel off a truncate cast. | 
 |   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { | 
 |     const SCEV *NewOp = T->getOperand(); | 
 |     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) | 
 |       return getAnyExtendExpr(NewOp, Ty); | 
 |     return getTruncateOrNoop(NewOp, Ty); | 
 |   } | 
 |  | 
 |   // Next try a zext cast. If the cast is folded, use it. | 
 |   const SCEV *ZExt = getZeroExtendExpr(Op, Ty); | 
 |   if (!isa<SCEVZeroExtendExpr>(ZExt)) | 
 |     return ZExt; | 
 |  | 
 |   // Next try a sext cast. If the cast is folded, use it. | 
 |   const SCEV *SExt = getSignExtendExpr(Op, Ty); | 
 |   if (!isa<SCEVSignExtendExpr>(SExt)) | 
 |     return SExt; | 
 |  | 
 |   // If the expression is obviously signed, use the sext cast value. | 
 |   if (isa<SCEVSMaxExpr>(Op)) | 
 |     return SExt; | 
 |  | 
 |   // Absent any other information, use the zext cast value. | 
 |   return ZExt; | 
 | } | 
 |  | 
 | /// CollectAddOperandsWithScales - Process the given Ops list, which is | 
 | /// a list of operands to be added under the given scale, update the given | 
 | /// map. This is a helper function for getAddRecExpr. As an example of | 
 | /// what it does, given a sequence of operands that would form an add | 
 | /// expression like this: | 
 | /// | 
 | ///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) | 
 | /// | 
 | /// where A and B are constants, update the map with these values: | 
 | /// | 
 | ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) | 
 | /// | 
 | /// and add 13 + A*B*29 to AccumulatedConstant. | 
 | /// This will allow getAddRecExpr to produce this: | 
 | /// | 
 | ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) | 
 | /// | 
 | /// This form often exposes folding opportunities that are hidden in | 
 | /// the original operand list. | 
 | /// | 
 | /// Return true iff it appears that any interesting folding opportunities | 
 | /// may be exposed. This helps getAddRecExpr short-circuit extra work in | 
 | /// the common case where no interesting opportunities are present, and | 
 | /// is also used as a check to avoid infinite recursion. | 
 | /// | 
 | static bool | 
 | CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, | 
 |                              SmallVector<const SCEV *, 8> &NewOps, | 
 |                              APInt &AccumulatedConstant, | 
 |                              const SmallVectorImpl<const SCEV *> &Ops, | 
 |                              const APInt &Scale, | 
 |                              ScalarEvolution &SE) { | 
 |   bool Interesting = false; | 
 |  | 
 |   // Iterate over the add operands. | 
 |   for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
 |     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); | 
 |     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { | 
 |       APInt NewScale = | 
 |         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); | 
 |       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { | 
 |         // A multiplication of a constant with another add; recurse. | 
 |         Interesting |= | 
 |           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, | 
 |                                        cast<SCEVAddExpr>(Mul->getOperand(1)) | 
 |                                          ->getOperands(), | 
 |                                        NewScale, SE); | 
 |       } else { | 
 |         // A multiplication of a constant with some other value. Update | 
 |         // the map. | 
 |         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); | 
 |         const SCEV *Key = SE.getMulExpr(MulOps); | 
 |         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = | 
 |           M.insert(std::make_pair(Key, NewScale)); | 
 |         if (Pair.second) { | 
 |           NewOps.push_back(Pair.first->first); | 
 |         } else { | 
 |           Pair.first->second += NewScale; | 
 |           // The map already had an entry for this value, which may indicate | 
 |           // a folding opportunity. | 
 |           Interesting = true; | 
 |         } | 
 |       } | 
 |     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { | 
 |       // Pull a buried constant out to the outside. | 
 |       if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) | 
 |         Interesting = true; | 
 |       AccumulatedConstant += Scale * C->getValue()->getValue(); | 
 |     } else { | 
 |       // An ordinary operand. Update the map. | 
 |       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = | 
 |         M.insert(std::make_pair(Ops[i], Scale)); | 
 |       if (Pair.second) { | 
 |         NewOps.push_back(Pair.first->first); | 
 |       } else { | 
 |         Pair.first->second += Scale; | 
 |         // The map already had an entry for this value, which may indicate | 
 |         // a folding opportunity. | 
 |         Interesting = true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return Interesting; | 
 | } | 
 |  | 
 | namespace { | 
 |   struct APIntCompare { | 
 |     bool operator()(const APInt &LHS, const APInt &RHS) const { | 
 |       return LHS.ult(RHS); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// getAddExpr - Get a canonical add expression, or something simpler if | 
 | /// possible. | 
 | const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
 |   assert(!Ops.empty() && "Cannot get empty add!"); | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
 |     assert(getEffectiveSCEVType(Ops[i]->getType()) == | 
 |            getEffectiveSCEVType(Ops[0]->getType()) && | 
 |            "SCEVAddExpr operand types don't match!"); | 
 | #endif | 
 |  | 
 |   // Sort by complexity, this groups all similar expression types together. | 
 |   GroupByComplexity(Ops, LI); | 
 |  | 
 |   // If there are any constants, fold them together. | 
 |   unsigned Idx = 0; | 
 |   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
 |     ++Idx; | 
 |     assert(Idx < Ops.size()); | 
 |     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
 |       // We found two constants, fold them together! | 
 |       Ops[0] = getConstant(LHSC->getValue()->getValue() + | 
 |                            RHSC->getValue()->getValue()); | 
 |       if (Ops.size() == 2) return Ops[0]; | 
 |       Ops.erase(Ops.begin()+1);  // Erase the folded element | 
 |       LHSC = cast<SCEVConstant>(Ops[0]); | 
 |     } | 
 |  | 
 |     // If we are left with a constant zero being added, strip it off. | 
 |     if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { | 
 |       Ops.erase(Ops.begin()); | 
 |       --Idx; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 |  | 
 |   // Okay, check to see if the same value occurs in the operand list twice.  If | 
 |   // so, merge them together into an multiply expression.  Since we sorted the | 
 |   // list, these values are required to be adjacent. | 
 |   const Type *Ty = Ops[0]->getType(); | 
 |   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) | 
 |     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2 | 
 |       // Found a match, merge the two values into a multiply, and add any | 
 |       // remaining values to the result. | 
 |       const SCEV *Two = getIntegerSCEV(2, Ty); | 
 |       const SCEV *Mul = getMulExpr(Ops[i], Two); | 
 |       if (Ops.size() == 2) | 
 |         return Mul; | 
 |       Ops.erase(Ops.begin()+i, Ops.begin()+i+2); | 
 |       Ops.push_back(Mul); | 
 |       return getAddExpr(Ops); | 
 |     } | 
 |  | 
 |   // Check for truncates. If all the operands are truncated from the same | 
 |   // type, see if factoring out the truncate would permit the result to be | 
 |   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) | 
 |   // if the contents of the resulting outer trunc fold to something simple. | 
 |   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { | 
 |     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); | 
 |     const Type *DstType = Trunc->getType(); | 
 |     const Type *SrcType = Trunc->getOperand()->getType(); | 
 |     SmallVector<const SCEV *, 8> LargeOps; | 
 |     bool Ok = true; | 
 |     // Check all the operands to see if they can be represented in the | 
 |     // source type of the truncate. | 
 |     for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
 |       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { | 
 |         if (T->getOperand()->getType() != SrcType) { | 
 |           Ok = false; | 
 |           break; | 
 |         } | 
 |         LargeOps.push_back(T->getOperand()); | 
 |       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { | 
 |         // This could be either sign or zero extension, but sign extension | 
 |         // is much more likely to be foldable here. | 
 |         LargeOps.push_back(getSignExtendExpr(C, SrcType)); | 
 |       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { | 
 |         SmallVector<const SCEV *, 8> LargeMulOps; | 
 |         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { | 
 |           if (const SCEVTruncateExpr *T = | 
 |                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { | 
 |             if (T->getOperand()->getType() != SrcType) { | 
 |               Ok = false; | 
 |               break; | 
 |             } | 
 |             LargeMulOps.push_back(T->getOperand()); | 
 |           } else if (const SCEVConstant *C = | 
 |                        dyn_cast<SCEVConstant>(M->getOperand(j))) { | 
 |             // This could be either sign or zero extension, but sign extension | 
 |             // is much more likely to be foldable here. | 
 |             LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); | 
 |           } else { | 
 |             Ok = false; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (Ok) | 
 |           LargeOps.push_back(getMulExpr(LargeMulOps)); | 
 |       } else { | 
 |         Ok = false; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (Ok) { | 
 |       // Evaluate the expression in the larger type. | 
 |       const SCEV *Fold = getAddExpr(LargeOps); | 
 |       // If it folds to something simple, use it. Otherwise, don't. | 
 |       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) | 
 |         return getTruncateExpr(Fold, DstType); | 
 |     } | 
 |   } | 
 |  | 
 |   // Skip past any other cast SCEVs. | 
 |   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) | 
 |     ++Idx; | 
 |  | 
 |   // If there are add operands they would be next. | 
 |   if (Idx < Ops.size()) { | 
 |     bool DeletedAdd = false; | 
 |     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { | 
 |       // If we have an add, expand the add operands onto the end of the operands | 
 |       // list. | 
 |       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); | 
 |       Ops.erase(Ops.begin()+Idx); | 
 |       DeletedAdd = true; | 
 |     } | 
 |  | 
 |     // If we deleted at least one add, we added operands to the end of the list, | 
 |     // and they are not necessarily sorted.  Recurse to resort and resimplify | 
 |     // any operands we just aquired. | 
 |     if (DeletedAdd) | 
 |       return getAddExpr(Ops); | 
 |   } | 
 |  | 
 |   // Skip over the add expression until we get to a multiply. | 
 |   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) | 
 |     ++Idx; | 
 |  | 
 |   // Check to see if there are any folding opportunities present with | 
 |   // operands multiplied by constant values. | 
 |   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { | 
 |     uint64_t BitWidth = getTypeSizeInBits(Ty); | 
 |     DenseMap<const SCEV *, APInt> M; | 
 |     SmallVector<const SCEV *, 8> NewOps; | 
 |     APInt AccumulatedConstant(BitWidth, 0); | 
 |     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, | 
 |                                      Ops, APInt(BitWidth, 1), *this)) { | 
 |       // Some interesting folding opportunity is present, so its worthwhile to | 
 |       // re-generate the operands list. Group the operands by constant scale, | 
 |       // to avoid multiplying by the same constant scale multiple times. | 
 |       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; | 
 |       for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), | 
 |            E = NewOps.end(); I != E; ++I) | 
 |         MulOpLists[M.find(*I)->second].push_back(*I); | 
 |       // Re-generate the operands list. | 
 |       Ops.clear(); | 
 |       if (AccumulatedConstant != 0) | 
 |         Ops.push_back(getConstant(AccumulatedConstant)); | 
 |       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator | 
 |            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) | 
 |         if (I->first != 0) | 
 |           Ops.push_back(getMulExpr(getConstant(I->first), | 
 |                                    getAddExpr(I->second))); | 
 |       if (Ops.empty()) | 
 |         return getIntegerSCEV(0, Ty); | 
 |       if (Ops.size() == 1) | 
 |         return Ops[0]; | 
 |       return getAddExpr(Ops); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we are adding something to a multiply expression, make sure the | 
 |   // something is not already an operand of the multiply.  If so, merge it into | 
 |   // the multiply. | 
 |   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { | 
 |     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); | 
 |     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { | 
 |       const SCEV *MulOpSCEV = Mul->getOperand(MulOp); | 
 |       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) | 
 |         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { | 
 |           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1)) | 
 |           const SCEV *InnerMul = Mul->getOperand(MulOp == 0); | 
 |           if (Mul->getNumOperands() != 2) { | 
 |             // If the multiply has more than two operands, we must get the | 
 |             // Y*Z term. | 
 |             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); | 
 |             MulOps.erase(MulOps.begin()+MulOp); | 
 |             InnerMul = getMulExpr(MulOps); | 
 |           } | 
 |           const SCEV *One = getIntegerSCEV(1, Ty); | 
 |           const SCEV *AddOne = getAddExpr(InnerMul, One); | 
 |           const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); | 
 |           if (Ops.size() == 2) return OuterMul; | 
 |           if (AddOp < Idx) { | 
 |             Ops.erase(Ops.begin()+AddOp); | 
 |             Ops.erase(Ops.begin()+Idx-1); | 
 |           } else { | 
 |             Ops.erase(Ops.begin()+Idx); | 
 |             Ops.erase(Ops.begin()+AddOp-1); | 
 |           } | 
 |           Ops.push_back(OuterMul); | 
 |           return getAddExpr(Ops); | 
 |         } | 
 |  | 
 |       // Check this multiply against other multiplies being added together. | 
 |       for (unsigned OtherMulIdx = Idx+1; | 
 |            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); | 
 |            ++OtherMulIdx) { | 
 |         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); | 
 |         // If MulOp occurs in OtherMul, we can fold the two multiplies | 
 |         // together. | 
 |         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); | 
 |              OMulOp != e; ++OMulOp) | 
 |           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { | 
 |             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) | 
 |             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); | 
 |             if (Mul->getNumOperands() != 2) { | 
 |               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), | 
 |                                                   Mul->op_end()); | 
 |               MulOps.erase(MulOps.begin()+MulOp); | 
 |               InnerMul1 = getMulExpr(MulOps); | 
 |             } | 
 |             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); | 
 |             if (OtherMul->getNumOperands() != 2) { | 
 |               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), | 
 |                                                   OtherMul->op_end()); | 
 |               MulOps.erase(MulOps.begin()+OMulOp); | 
 |               InnerMul2 = getMulExpr(MulOps); | 
 |             } | 
 |             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); | 
 |             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); | 
 |             if (Ops.size() == 2) return OuterMul; | 
 |             Ops.erase(Ops.begin()+Idx); | 
 |             Ops.erase(Ops.begin()+OtherMulIdx-1); | 
 |             Ops.push_back(OuterMul); | 
 |             return getAddExpr(Ops); | 
 |           } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If there are any add recurrences in the operands list, see if any other | 
 |   // added values are loop invariant.  If so, we can fold them into the | 
 |   // recurrence. | 
 |   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) | 
 |     ++Idx; | 
 |  | 
 |   // Scan over all recurrences, trying to fold loop invariants into them. | 
 |   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { | 
 |     // Scan all of the other operands to this add and add them to the vector if | 
 |     // they are loop invariant w.r.t. the recurrence. | 
 |     SmallVector<const SCEV *, 8> LIOps; | 
 |     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); | 
 |     for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { | 
 |         LIOps.push_back(Ops[i]); | 
 |         Ops.erase(Ops.begin()+i); | 
 |         --i; --e; | 
 |       } | 
 |  | 
 |     // If we found some loop invariants, fold them into the recurrence. | 
 |     if (!LIOps.empty()) { | 
 |       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step} | 
 |       LIOps.push_back(AddRec->getStart()); | 
 |  | 
 |       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), | 
 |                                            AddRec->op_end()); | 
 |       AddRecOps[0] = getAddExpr(LIOps); | 
 |  | 
 |       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); | 
 |       // If all of the other operands were loop invariant, we are done. | 
 |       if (Ops.size() == 1) return NewRec; | 
 |  | 
 |       // Otherwise, add the folded AddRec by the non-liv parts. | 
 |       for (unsigned i = 0;; ++i) | 
 |         if (Ops[i] == AddRec) { | 
 |           Ops[i] = NewRec; | 
 |           break; | 
 |         } | 
 |       return getAddExpr(Ops); | 
 |     } | 
 |  | 
 |     // Okay, if there weren't any loop invariants to be folded, check to see if | 
 |     // there are multiple AddRec's with the same loop induction variable being | 
 |     // added together.  If so, we can fold them. | 
 |     for (unsigned OtherIdx = Idx+1; | 
 |          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) | 
 |       if (OtherIdx != Idx) { | 
 |         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); | 
 |         if (AddRec->getLoop() == OtherAddRec->getLoop()) { | 
 |           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D} | 
 |           SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), | 
 |                                               AddRec->op_end()); | 
 |           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { | 
 |             if (i >= NewOps.size()) { | 
 |               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, | 
 |                             OtherAddRec->op_end()); | 
 |               break; | 
 |             } | 
 |             NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); | 
 |           } | 
 |           const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); | 
 |  | 
 |           if (Ops.size() == 2) return NewAddRec; | 
 |  | 
 |           Ops.erase(Ops.begin()+Idx); | 
 |           Ops.erase(Ops.begin()+OtherIdx-1); | 
 |           Ops.push_back(NewAddRec); | 
 |           return getAddExpr(Ops); | 
 |         } | 
 |       } | 
 |  | 
 |     // Otherwise couldn't fold anything into this recurrence.  Move onto the | 
 |     // next one. | 
 |   } | 
 |  | 
 |   // Okay, it looks like we really DO need an add expr.  Check to see if we | 
 |   // already have one, otherwise create a new one. | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scAddExpr); | 
 |   ID.AddInteger(Ops.size()); | 
 |   for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |     ID.AddPointer(Ops[i]); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>(); | 
 |   new (S) SCEVAddExpr(ID, Ops); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 |  | 
 | /// getMulExpr - Get a canonical multiply expression, or something simpler if | 
 | /// possible. | 
 | const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
 |   assert(!Ops.empty() && "Cannot get empty mul!"); | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
 |     assert(getEffectiveSCEVType(Ops[i]->getType()) == | 
 |            getEffectiveSCEVType(Ops[0]->getType()) && | 
 |            "SCEVMulExpr operand types don't match!"); | 
 | #endif | 
 |  | 
 |   // Sort by complexity, this groups all similar expression types together. | 
 |   GroupByComplexity(Ops, LI); | 
 |  | 
 |   // If there are any constants, fold them together. | 
 |   unsigned Idx = 0; | 
 |   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
 |  | 
 |     // C1*(C2+V) -> C1*C2 + C1*V | 
 |     if (Ops.size() == 2) | 
 |       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) | 
 |         if (Add->getNumOperands() == 2 && | 
 |             isa<SCEVConstant>(Add->getOperand(0))) | 
 |           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), | 
 |                             getMulExpr(LHSC, Add->getOperand(1))); | 
 |  | 
 |  | 
 |     ++Idx; | 
 |     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
 |       // We found two constants, fold them together! | 
 |       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * | 
 |                                            RHSC->getValue()->getValue()); | 
 |       Ops[0] = getConstant(Fold); | 
 |       Ops.erase(Ops.begin()+1);  // Erase the folded element | 
 |       if (Ops.size() == 1) return Ops[0]; | 
 |       LHSC = cast<SCEVConstant>(Ops[0]); | 
 |     } | 
 |  | 
 |     // If we are left with a constant one being multiplied, strip it off. | 
 |     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { | 
 |       Ops.erase(Ops.begin()); | 
 |       --Idx; | 
 |     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { | 
 |       // If we have a multiply of zero, it will always be zero. | 
 |       return Ops[0]; | 
 |     } | 
 |   } | 
 |  | 
 |   // Skip over the add expression until we get to a multiply. | 
 |   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) | 
 |     ++Idx; | 
 |  | 
 |   if (Ops.size() == 1) | 
 |     return Ops[0]; | 
 |  | 
 |   // If there are mul operands inline them all into this expression. | 
 |   if (Idx < Ops.size()) { | 
 |     bool DeletedMul = false; | 
 |     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { | 
 |       // If we have an mul, expand the mul operands onto the end of the operands | 
 |       // list. | 
 |       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); | 
 |       Ops.erase(Ops.begin()+Idx); | 
 |       DeletedMul = true; | 
 |     } | 
 |  | 
 |     // If we deleted at least one mul, we added operands to the end of the list, | 
 |     // and they are not necessarily sorted.  Recurse to resort and resimplify | 
 |     // any operands we just aquired. | 
 |     if (DeletedMul) | 
 |       return getMulExpr(Ops); | 
 |   } | 
 |  | 
 |   // If there are any add recurrences in the operands list, see if any other | 
 |   // added values are loop invariant.  If so, we can fold them into the | 
 |   // recurrence. | 
 |   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) | 
 |     ++Idx; | 
 |  | 
 |   // Scan over all recurrences, trying to fold loop invariants into them. | 
 |   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { | 
 |     // Scan all of the other operands to this mul and add them to the vector if | 
 |     // they are loop invariant w.r.t. the recurrence. | 
 |     SmallVector<const SCEV *, 8> LIOps; | 
 |     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); | 
 |     for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { | 
 |         LIOps.push_back(Ops[i]); | 
 |         Ops.erase(Ops.begin()+i); | 
 |         --i; --e; | 
 |       } | 
 |  | 
 |     // If we found some loop invariants, fold them into the recurrence. | 
 |     if (!LIOps.empty()) { | 
 |       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step} | 
 |       SmallVector<const SCEV *, 4> NewOps; | 
 |       NewOps.reserve(AddRec->getNumOperands()); | 
 |       if (LIOps.size() == 1) { | 
 |         const SCEV *Scale = LIOps[0]; | 
 |         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) | 
 |           NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); | 
 |       } else { | 
 |         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { | 
 |           SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end()); | 
 |           MulOps.push_back(AddRec->getOperand(i)); | 
 |           NewOps.push_back(getMulExpr(MulOps)); | 
 |         } | 
 |       } | 
 |  | 
 |       const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); | 
 |  | 
 |       // If all of the other operands were loop invariant, we are done. | 
 |       if (Ops.size() == 1) return NewRec; | 
 |  | 
 |       // Otherwise, multiply the folded AddRec by the non-liv parts. | 
 |       for (unsigned i = 0;; ++i) | 
 |         if (Ops[i] == AddRec) { | 
 |           Ops[i] = NewRec; | 
 |           break; | 
 |         } | 
 |       return getMulExpr(Ops); | 
 |     } | 
 |  | 
 |     // Okay, if there weren't any loop invariants to be folded, check to see if | 
 |     // there are multiple AddRec's with the same loop induction variable being | 
 |     // multiplied together.  If so, we can fold them. | 
 |     for (unsigned OtherIdx = Idx+1; | 
 |          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) | 
 |       if (OtherIdx != Idx) { | 
 |         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); | 
 |         if (AddRec->getLoop() == OtherAddRec->getLoop()) { | 
 |           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D} | 
 |           const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; | 
 |           const SCEV *NewStart = getMulExpr(F->getStart(), | 
 |                                                  G->getStart()); | 
 |           const SCEV *B = F->getStepRecurrence(*this); | 
 |           const SCEV *D = G->getStepRecurrence(*this); | 
 |           const SCEV *NewStep = getAddExpr(getMulExpr(F, D), | 
 |                                           getMulExpr(G, B), | 
 |                                           getMulExpr(B, D)); | 
 |           const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, | 
 |                                                F->getLoop()); | 
 |           if (Ops.size() == 2) return NewAddRec; | 
 |  | 
 |           Ops.erase(Ops.begin()+Idx); | 
 |           Ops.erase(Ops.begin()+OtherIdx-1); | 
 |           Ops.push_back(NewAddRec); | 
 |           return getMulExpr(Ops); | 
 |         } | 
 |       } | 
 |  | 
 |     // Otherwise couldn't fold anything into this recurrence.  Move onto the | 
 |     // next one. | 
 |   } | 
 |  | 
 |   // Okay, it looks like we really DO need an mul expr.  Check to see if we | 
 |   // already have one, otherwise create a new one. | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scMulExpr); | 
 |   ID.AddInteger(Ops.size()); | 
 |   for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |     ID.AddPointer(Ops[i]); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>(); | 
 |   new (S) SCEVMulExpr(ID, Ops); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | /// getUDivExpr - Get a canonical multiply expression, or something simpler if | 
 | /// possible. | 
 | const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, | 
 |                                          const SCEV *RHS) { | 
 |   assert(getEffectiveSCEVType(LHS->getType()) == | 
 |          getEffectiveSCEVType(RHS->getType()) && | 
 |          "SCEVUDivExpr operand types don't match!"); | 
 |  | 
 |   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { | 
 |     if (RHSC->getValue()->equalsInt(1)) | 
 |       return LHS;                            // X udiv 1 --> x | 
 |     if (RHSC->isZero()) | 
 |       return getIntegerSCEV(0, LHS->getType()); // value is undefined | 
 |  | 
 |     // Determine if the division can be folded into the operands of | 
 |     // its operands. | 
 |     // TODO: Generalize this to non-constants by using known-bits information. | 
 |     const Type *Ty = LHS->getType(); | 
 |     unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); | 
 |     unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; | 
 |     // For non-power-of-two values, effectively round the value up to the | 
 |     // nearest power of two. | 
 |     if (!RHSC->getValue()->getValue().isPowerOf2()) | 
 |       ++MaxShiftAmt; | 
 |     const IntegerType *ExtTy = | 
 |       IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); | 
 |     // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. | 
 |     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) | 
 |       if (const SCEVConstant *Step = | 
 |             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) | 
 |         if (!Step->getValue()->getValue() | 
 |               .urem(RHSC->getValue()->getValue()) && | 
 |             getZeroExtendExpr(AR, ExtTy) == | 
 |             getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), | 
 |                           getZeroExtendExpr(Step, ExtTy), | 
 |                           AR->getLoop())) { | 
 |           SmallVector<const SCEV *, 4> Operands; | 
 |           for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) | 
 |             Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); | 
 |           return getAddRecExpr(Operands, AR->getLoop()); | 
 |         } | 
 |     // (A*B)/C --> A*(B/C) if safe and B/C can be folded. | 
 |     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { | 
 |       SmallVector<const SCEV *, 4> Operands; | 
 |       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) | 
 |         Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); | 
 |       if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) | 
 |         // Find an operand that's safely divisible. | 
 |         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { | 
 |           const SCEV *Op = M->getOperand(i); | 
 |           const SCEV *Div = getUDivExpr(Op, RHSC); | 
 |           if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { | 
 |             const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); | 
 |             Operands = SmallVector<const SCEV *, 4>(MOperands.begin(), | 
 |                                                   MOperands.end()); | 
 |             Operands[i] = Div; | 
 |             return getMulExpr(Operands); | 
 |           } | 
 |         } | 
 |     } | 
 |     // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. | 
 |     if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { | 
 |       SmallVector<const SCEV *, 4> Operands; | 
 |       for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) | 
 |         Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); | 
 |       if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { | 
 |         Operands.clear(); | 
 |         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { | 
 |           const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); | 
 |           if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) | 
 |             break; | 
 |           Operands.push_back(Op); | 
 |         } | 
 |         if (Operands.size() == A->getNumOperands()) | 
 |           return getAddExpr(Operands); | 
 |       } | 
 |     } | 
 |  | 
 |     // Fold if both operands are constant. | 
 |     if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { | 
 |       Constant *LHSCV = LHSC->getValue(); | 
 |       Constant *RHSCV = RHSC->getValue(); | 
 |       return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, | 
 |                                                                  RHSCV))); | 
 |     } | 
 |   } | 
 |  | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scUDivExpr); | 
 |   ID.AddPointer(LHS); | 
 |   ID.AddPointer(RHS); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); | 
 |   new (S) SCEVUDivExpr(ID, LHS, RHS); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 |  | 
 | /// getAddRecExpr - Get an add recurrence expression for the specified loop. | 
 | /// Simplify the expression as much as possible. | 
 | const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, | 
 |                                const SCEV *Step, const Loop *L) { | 
 |   SmallVector<const SCEV *, 4> Operands; | 
 |   Operands.push_back(Start); | 
 |   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) | 
 |     if (StepChrec->getLoop() == L) { | 
 |       Operands.insert(Operands.end(), StepChrec->op_begin(), | 
 |                       StepChrec->op_end()); | 
 |       return getAddRecExpr(Operands, L); | 
 |     } | 
 |  | 
 |   Operands.push_back(Step); | 
 |   return getAddRecExpr(Operands, L); | 
 | } | 
 |  | 
 | /// getAddRecExpr - Get an add recurrence expression for the specified loop. | 
 | /// Simplify the expression as much as possible. | 
 | const SCEV * | 
 | ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, | 
 |                                const Loop *L) { | 
 |   if (Operands.size() == 1) return Operands[0]; | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 1, e = Operands.size(); i != e; ++i) | 
 |     assert(getEffectiveSCEVType(Operands[i]->getType()) == | 
 |            getEffectiveSCEVType(Operands[0]->getType()) && | 
 |            "SCEVAddRecExpr operand types don't match!"); | 
 | #endif | 
 |  | 
 |   if (Operands.back()->isZero()) { | 
 |     Operands.pop_back(); | 
 |     return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X | 
 |   } | 
 |  | 
 |   // Canonicalize nested AddRecs in by nesting them in order of loop depth. | 
 |   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { | 
 |     const Loop* NestedLoop = NestedAR->getLoop(); | 
 |     if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { | 
 |       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), | 
 |                                                 NestedAR->op_end()); | 
 |       Operands[0] = NestedAR->getStart(); | 
 |       // AddRecs require their operands be loop-invariant with respect to their | 
 |       // loops. Don't perform this transformation if it would break this | 
 |       // requirement. | 
 |       bool AllInvariant = true; | 
 |       for (unsigned i = 0, e = Operands.size(); i != e; ++i) | 
 |         if (!Operands[i]->isLoopInvariant(L)) { | 
 |           AllInvariant = false; | 
 |           break; | 
 |         } | 
 |       if (AllInvariant) { | 
 |         NestedOperands[0] = getAddRecExpr(Operands, L); | 
 |         AllInvariant = true; | 
 |         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) | 
 |           if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { | 
 |             AllInvariant = false; | 
 |             break; | 
 |           } | 
 |         if (AllInvariant) | 
 |           // Ok, both add recurrences are valid after the transformation. | 
 |           return getAddRecExpr(NestedOperands, NestedLoop); | 
 |       } | 
 |       // Reset Operands to its original state. | 
 |       Operands[0] = NestedAR; | 
 |     } | 
 |   } | 
 |  | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scAddRecExpr); | 
 |   ID.AddInteger(Operands.size()); | 
 |   for (unsigned i = 0, e = Operands.size(); i != e; ++i) | 
 |     ID.AddPointer(Operands[i]); | 
 |   ID.AddPointer(L); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); | 
 |   new (S) SCEVAddRecExpr(ID, Operands, L); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, | 
 |                                          const SCEV *RHS) { | 
 |   SmallVector<const SCEV *, 2> Ops; | 
 |   Ops.push_back(LHS); | 
 |   Ops.push_back(RHS); | 
 |   return getSMaxExpr(Ops); | 
 | } | 
 |  | 
 | const SCEV * | 
 | ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
 |   assert(!Ops.empty() && "Cannot get empty smax!"); | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
 |     assert(getEffectiveSCEVType(Ops[i]->getType()) == | 
 |            getEffectiveSCEVType(Ops[0]->getType()) && | 
 |            "SCEVSMaxExpr operand types don't match!"); | 
 | #endif | 
 |  | 
 |   // Sort by complexity, this groups all similar expression types together. | 
 |   GroupByComplexity(Ops, LI); | 
 |  | 
 |   // If there are any constants, fold them together. | 
 |   unsigned Idx = 0; | 
 |   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
 |     ++Idx; | 
 |     assert(Idx < Ops.size()); | 
 |     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
 |       // We found two constants, fold them together! | 
 |       ConstantInt *Fold = ConstantInt::get( | 
 |                               APIntOps::smax(LHSC->getValue()->getValue(), | 
 |                                              RHSC->getValue()->getValue())); | 
 |       Ops[0] = getConstant(Fold); | 
 |       Ops.erase(Ops.begin()+1);  // Erase the folded element | 
 |       if (Ops.size() == 1) return Ops[0]; | 
 |       LHSC = cast<SCEVConstant>(Ops[0]); | 
 |     } | 
 |  | 
 |     // If we are left with a constant minimum-int, strip it off. | 
 |     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { | 
 |       Ops.erase(Ops.begin()); | 
 |       --Idx; | 
 |     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { | 
 |       // If we have an smax with a constant maximum-int, it will always be | 
 |       // maximum-int. | 
 |       return Ops[0]; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 |  | 
 |   // Find the first SMax | 
 |   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) | 
 |     ++Idx; | 
 |  | 
 |   // Check to see if one of the operands is an SMax. If so, expand its operands | 
 |   // onto our operand list, and recurse to simplify. | 
 |   if (Idx < Ops.size()) { | 
 |     bool DeletedSMax = false; | 
 |     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { | 
 |       Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); | 
 |       Ops.erase(Ops.begin()+Idx); | 
 |       DeletedSMax = true; | 
 |     } | 
 |  | 
 |     if (DeletedSMax) | 
 |       return getSMaxExpr(Ops); | 
 |   } | 
 |  | 
 |   // Okay, check to see if the same value occurs in the operand list twice.  If | 
 |   // so, delete one.  Since we sorted the list, these values are required to | 
 |   // be adjacent. | 
 |   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) | 
 |     if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y | 
 |       Ops.erase(Ops.begin()+i, Ops.begin()+i+1); | 
 |       --i; --e; | 
 |     } | 
 |  | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 |  | 
 |   assert(!Ops.empty() && "Reduced smax down to nothing!"); | 
 |  | 
 |   // Okay, it looks like we really DO need an smax expr.  Check to see if we | 
 |   // already have one, otherwise create a new one. | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scSMaxExpr); | 
 |   ID.AddInteger(Ops.size()); | 
 |   for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |     ID.AddPointer(Ops[i]); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); | 
 |   new (S) SCEVSMaxExpr(ID, Ops); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, | 
 |                                          const SCEV *RHS) { | 
 |   SmallVector<const SCEV *, 2> Ops; | 
 |   Ops.push_back(LHS); | 
 |   Ops.push_back(RHS); | 
 |   return getUMaxExpr(Ops); | 
 | } | 
 |  | 
 | const SCEV * | 
 | ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { | 
 |   assert(!Ops.empty() && "Cannot get empty umax!"); | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 1, e = Ops.size(); i != e; ++i) | 
 |     assert(getEffectiveSCEVType(Ops[i]->getType()) == | 
 |            getEffectiveSCEVType(Ops[0]->getType()) && | 
 |            "SCEVUMaxExpr operand types don't match!"); | 
 | #endif | 
 |  | 
 |   // Sort by complexity, this groups all similar expression types together. | 
 |   GroupByComplexity(Ops, LI); | 
 |  | 
 |   // If there are any constants, fold them together. | 
 |   unsigned Idx = 0; | 
 |   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | 
 |     ++Idx; | 
 |     assert(Idx < Ops.size()); | 
 |     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | 
 |       // We found two constants, fold them together! | 
 |       ConstantInt *Fold = ConstantInt::get( | 
 |                               APIntOps::umax(LHSC->getValue()->getValue(), | 
 |                                              RHSC->getValue()->getValue())); | 
 |       Ops[0] = getConstant(Fold); | 
 |       Ops.erase(Ops.begin()+1);  // Erase the folded element | 
 |       if (Ops.size() == 1) return Ops[0]; | 
 |       LHSC = cast<SCEVConstant>(Ops[0]); | 
 |     } | 
 |  | 
 |     // If we are left with a constant minimum-int, strip it off. | 
 |     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { | 
 |       Ops.erase(Ops.begin()); | 
 |       --Idx; | 
 |     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { | 
 |       // If we have an umax with a constant maximum-int, it will always be | 
 |       // maximum-int. | 
 |       return Ops[0]; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 |  | 
 |   // Find the first UMax | 
 |   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) | 
 |     ++Idx; | 
 |  | 
 |   // Check to see if one of the operands is a UMax. If so, expand its operands | 
 |   // onto our operand list, and recurse to simplify. | 
 |   if (Idx < Ops.size()) { | 
 |     bool DeletedUMax = false; | 
 |     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { | 
 |       Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); | 
 |       Ops.erase(Ops.begin()+Idx); | 
 |       DeletedUMax = true; | 
 |     } | 
 |  | 
 |     if (DeletedUMax) | 
 |       return getUMaxExpr(Ops); | 
 |   } | 
 |  | 
 |   // Okay, check to see if the same value occurs in the operand list twice.  If | 
 |   // so, delete one.  Since we sorted the list, these values are required to | 
 |   // be adjacent. | 
 |   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) | 
 |     if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y | 
 |       Ops.erase(Ops.begin()+i, Ops.begin()+i+1); | 
 |       --i; --e; | 
 |     } | 
 |  | 
 |   if (Ops.size() == 1) return Ops[0]; | 
 |  | 
 |   assert(!Ops.empty() && "Reduced umax down to nothing!"); | 
 |  | 
 |   // Okay, it looks like we really DO need a umax expr.  Check to see if we | 
 |   // already have one, otherwise create a new one. | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scUMaxExpr); | 
 |   ID.AddInteger(Ops.size()); | 
 |   for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |     ID.AddPointer(Ops[i]); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); | 
 |   new (S) SCEVUMaxExpr(ID, Ops); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, | 
 |                                          const SCEV *RHS) { | 
 |   // ~smax(~x, ~y) == smin(x, y). | 
 |   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, | 
 |                                          const SCEV *RHS) { | 
 |   // ~umax(~x, ~y) == umin(x, y) | 
 |   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getUnknown(Value *V) { | 
 |   // Don't attempt to do anything other than create a SCEVUnknown object | 
 |   // here.  createSCEV only calls getUnknown after checking for all other | 
 |   // interesting possibilities, and any other code that calls getUnknown | 
 |   // is doing so in order to hide a value from SCEV canonicalization. | 
 |  | 
 |   FoldingSetNodeID ID; | 
 |   ID.AddInteger(scUnknown); | 
 |   ID.AddPointer(V); | 
 |   void *IP = 0; | 
 |   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | 
 |   SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); | 
 |   new (S) SCEVUnknown(ID, V); | 
 |   UniqueSCEVs.InsertNode(S, IP); | 
 |   return S; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //            Basic SCEV Analysis and PHI Idiom Recognition Code | 
 | // | 
 |  | 
 | /// isSCEVable - Test if values of the given type are analyzable within | 
 | /// the SCEV framework. This primarily includes integer types, and it | 
 | /// can optionally include pointer types if the ScalarEvolution class | 
 | /// has access to target-specific information. | 
 | bool ScalarEvolution::isSCEVable(const Type *Ty) const { | 
 |   // Integers are always SCEVable. | 
 |   if (Ty->isInteger()) | 
 |     return true; | 
 |  | 
 |   // Pointers are SCEVable if TargetData information is available | 
 |   // to provide pointer size information. | 
 |   if (isa<PointerType>(Ty)) | 
 |     return TD != NULL; | 
 |  | 
 |   // Otherwise it's not SCEVable. | 
 |   return false; | 
 | } | 
 |  | 
 | /// getTypeSizeInBits - Return the size in bits of the specified type, | 
 | /// for which isSCEVable must return true. | 
 | uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { | 
 |   assert(isSCEVable(Ty) && "Type is not SCEVable!"); | 
 |  | 
 |   // If we have a TargetData, use it! | 
 |   if (TD) | 
 |     return TD->getTypeSizeInBits(Ty); | 
 |  | 
 |   // Otherwise, we support only integer types. | 
 |   assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); | 
 |   return Ty->getPrimitiveSizeInBits(); | 
 | } | 
 |  | 
 | /// getEffectiveSCEVType - Return a type with the same bitwidth as | 
 | /// the given type and which represents how SCEV will treat the given | 
 | /// type, for which isSCEVable must return true. For pointer types, | 
 | /// this is the pointer-sized integer type. | 
 | const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { | 
 |   assert(isSCEVable(Ty) && "Type is not SCEVable!"); | 
 |  | 
 |   if (Ty->isInteger()) | 
 |     return Ty; | 
 |  | 
 |   assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); | 
 |   return TD->getIntPtrType(); | 
 | } | 
 |  | 
 | const SCEV *ScalarEvolution::getCouldNotCompute() { | 
 |   return &CouldNotCompute; | 
 | } | 
 |  | 
 | /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the | 
 | /// expression and create a new one. | 
 | const SCEV *ScalarEvolution::getSCEV(Value *V) { | 
 |   assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); | 
 |  | 
 |   std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); | 
 |   if (I != Scalars.end()) return I->second; | 
 |   const SCEV *S = createSCEV(V); | 
 |   Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); | 
 |   return S; | 
 | } | 
 |  | 
 | /// getIntegerSCEV - Given a SCEVable type, create a constant for the | 
 | /// specified signed integer value and return a SCEV for the constant. | 
 | const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { | 
 |   const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); | 
 |   return getConstant(ConstantInt::get(ITy, Val)); | 
 | } | 
 |  | 
 | /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V | 
 | /// | 
 | const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { | 
 |   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) | 
 |     return getConstant( | 
 |                cast<ConstantInt>(Context->getConstantExprNeg(VC->getValue()))); | 
 |  | 
 |   const Type *Ty = V->getType(); | 
 |   Ty = getEffectiveSCEVType(Ty); | 
 |   return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); | 
 | } | 
 |  | 
 | /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V | 
 | const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { | 
 |   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) | 
 |     return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); | 
 |  | 
 |   const Type *Ty = V->getType(); | 
 |   Ty = getEffectiveSCEVType(Ty); | 
 |   const SCEV *AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); | 
 |   return getMinusSCEV(AllOnes, V); | 
 | } | 
 |  | 
 | /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. | 
 | /// | 
 | const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, | 
 |                                           const SCEV *RHS) { | 
 |   // X - Y --> X + -Y | 
 |   return getAddExpr(LHS, getNegativeSCEV(RHS)); | 
 | } | 
 |  | 
 | /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the | 
 | /// input value to the specified type.  If the type must be extended, it is zero | 
 | /// extended. | 
 | const SCEV * | 
 | ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, | 
 |                                          const Type *Ty) { | 
 |   const Type *SrcTy = V->getType(); | 
 |   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && | 
 |          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && | 
 |          "Cannot truncate or zero extend with non-integer arguments!"); | 
 |   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
 |     return V;  // No conversion | 
 |   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) | 
 |     return getTruncateExpr(V, Ty); | 
 |   return getZeroExtendExpr(V, Ty); | 
 | } | 
 |  | 
 | /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the | 
 | /// input value to the specified type.  If the type must be extended, it is sign | 
 | /// extended. | 
 | const SCEV * | 
 | ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, | 
 |                                          const Type *Ty) { | 
 |   const Type *SrcTy = V->getType(); | 
 |   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && | 
 |          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && | 
 |          "Cannot truncate or zero extend with non-integer arguments!"); | 
 |   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
 |     return V;  // No conversion | 
 |   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) | 
 |     return getTruncateExpr(V, Ty); | 
 |   return getSignExtendExpr(V, Ty); | 
 | } | 
 |  | 
 | /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the | 
 | /// input value to the specified type.  If the type must be extended, it is zero | 
 | /// extended.  The conversion must not be narrowing. | 
 | const SCEV * | 
 | ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { | 
 |   const Type *SrcTy = V->getType(); | 
 |   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && | 
 |          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && | 
 |          "Cannot noop or zero extend with non-integer arguments!"); | 
 |   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && | 
 |          "getNoopOrZeroExtend cannot truncate!"); | 
 |   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
 |     return V;  // No conversion | 
 |   return getZeroExtendExpr(V, Ty); | 
 | } | 
 |  | 
 | /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the | 
 | /// input value to the specified type.  If the type must be extended, it is sign | 
 | /// extended.  The conversion must not be narrowing. | 
 | const SCEV * | 
 | ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { | 
 |   const Type *SrcTy = V->getType(); | 
 |   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && | 
 |          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && | 
 |          "Cannot noop or sign extend with non-integer arguments!"); | 
 |   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && | 
 |          "getNoopOrSignExtend cannot truncate!"); | 
 |   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
 |     return V;  // No conversion | 
 |   return getSignExtendExpr(V, Ty); | 
 | } | 
 |  | 
 | /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of | 
 | /// the input value to the specified type. If the type must be extended, | 
 | /// it is extended with unspecified bits. The conversion must not be | 
 | /// narrowing. | 
 | const SCEV * | 
 | ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { | 
 |   const Type *SrcTy = V->getType(); | 
 |   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && | 
 |          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && | 
 |          "Cannot noop or any extend with non-integer arguments!"); | 
 |   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && | 
 |          "getNoopOrAnyExtend cannot truncate!"); | 
 |   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
 |     return V;  // No conversion | 
 |   return getAnyExtendExpr(V, Ty); | 
 | } | 
 |  | 
 | /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the | 
 | /// input value to the specified type.  The conversion must not be widening. | 
 | const SCEV * | 
 | ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { | 
 |   const Type *SrcTy = V->getType(); | 
 |   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && | 
 |          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && | 
 |          "Cannot truncate or noop with non-integer arguments!"); | 
 |   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && | 
 |          "getTruncateOrNoop cannot extend!"); | 
 |   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | 
 |     return V;  // No conversion | 
 |   return getTruncateExpr(V, Ty); | 
 | } | 
 |  | 
 | /// getUMaxFromMismatchedTypes - Promote the operands to the wider of | 
 | /// the types using zero-extension, and then perform a umax operation | 
 | /// with them. | 
 | const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, | 
 |                                                         const SCEV *RHS) { | 
 |   const SCEV *PromotedLHS = LHS; | 
 |   const SCEV *PromotedRHS = RHS; | 
 |  | 
 |   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) | 
 |     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); | 
 |   else | 
 |     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); | 
 |  | 
 |   return getUMaxExpr(PromotedLHS, PromotedRHS); | 
 | } | 
 |  | 
 | /// getUMinFromMismatchedTypes - Promote the operands to the wider of | 
 | /// the types using zero-extension, and then perform a umin operation | 
 | /// with them. | 
 | const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, | 
 |                                                         const SCEV *RHS) { | 
 |   const SCEV *PromotedLHS = LHS; | 
 |   const SCEV *PromotedRHS = RHS; | 
 |  | 
 |   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) | 
 |     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); | 
 |   else | 
 |     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); | 
 |  | 
 |   return getUMinExpr(PromotedLHS, PromotedRHS); | 
 | } | 
 |  | 
 | /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for | 
 | /// the specified instruction and replaces any references to the symbolic value | 
 | /// SymName with the specified value.  This is used during PHI resolution. | 
 | void | 
 | ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I, | 
 |                                                   const SCEV *SymName, | 
 |                                                   const SCEV *NewVal) { | 
 |   std::map<SCEVCallbackVH, const SCEV *>::iterator SI = | 
 |     Scalars.find(SCEVCallbackVH(I, this)); | 
 |   if (SI == Scalars.end()) return; | 
 |  | 
 |   const SCEV *NV = | 
 |     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); | 
 |   if (NV == SI->second) return;  // No change. | 
 |  | 
 |   SI->second = NV;       // Update the scalars map! | 
 |  | 
 |   // Any instruction values that use this instruction might also need to be | 
 |   // updated! | 
 |   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
 |        UI != E; ++UI) | 
 |     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); | 
 | } | 
 |  | 
 | /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in | 
 | /// a loop header, making it a potential recurrence, or it doesn't. | 
 | /// | 
 | const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { | 
 |   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized. | 
 |     if (const Loop *L = LI->getLoopFor(PN->getParent())) | 
 |       if (L->getHeader() == PN->getParent()) { | 
 |         // If it lives in the loop header, it has two incoming values, one | 
 |         // from outside the loop, and one from inside. | 
 |         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); | 
 |         unsigned BackEdge     = IncomingEdge^1; | 
 |  | 
 |         // While we are analyzing this PHI node, handle its value symbolically. | 
 |         const SCEV *SymbolicName = getUnknown(PN); | 
 |         assert(Scalars.find(PN) == Scalars.end() && | 
 |                "PHI node already processed?"); | 
 |         Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); | 
 |  | 
 |         // Using this symbolic name for the PHI, analyze the value coming around | 
 |         // the back-edge. | 
 |         const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge)); | 
 |  | 
 |         // NOTE: If BEValue is loop invariant, we know that the PHI node just | 
 |         // has a special value for the first iteration of the loop. | 
 |  | 
 |         // If the value coming around the backedge is an add with the symbolic | 
 |         // value we just inserted, then we found a simple induction variable! | 
 |         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { | 
 |           // If there is a single occurrence of the symbolic value, replace it | 
 |           // with a recurrence. | 
 |           unsigned FoundIndex = Add->getNumOperands(); | 
 |           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | 
 |             if (Add->getOperand(i) == SymbolicName) | 
 |               if (FoundIndex == e) { | 
 |                 FoundIndex = i; | 
 |                 break; | 
 |               } | 
 |  | 
 |           if (FoundIndex != Add->getNumOperands()) { | 
 |             // Create an add with everything but the specified operand. | 
 |             SmallVector<const SCEV *, 8> Ops; | 
 |             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | 
 |               if (i != FoundIndex) | 
 |                 Ops.push_back(Add->getOperand(i)); | 
 |             const SCEV *Accum = getAddExpr(Ops); | 
 |  | 
 |             // This is not a valid addrec if the step amount is varying each | 
 |             // loop iteration, but is not itself an addrec in this loop. | 
 |             if (Accum->isLoopInvariant(L) || | 
 |                 (isa<SCEVAddRecExpr>(Accum) && | 
 |                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { | 
 |               const SCEV *StartVal = | 
 |                 getSCEV(PN->getIncomingValue(IncomingEdge)); | 
 |               const SCEV *PHISCEV = | 
 |                 getAddRecExpr(StartVal, Accum, L); | 
 |  | 
 |               // Okay, for the entire analysis of this edge we assumed the PHI | 
 |               // to be symbolic.  We now need to go back and update all of the | 
 |               // entries for the scalars that use the PHI (except for the PHI | 
 |               // itself) to use the new analyzed value instead of the "symbolic" | 
 |               // value. | 
 |               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); | 
 |               return PHISCEV; | 
 |             } | 
 |           } | 
 |         } else if (const SCEVAddRecExpr *AddRec = | 
 |                      dyn_cast<SCEVAddRecExpr>(BEValue)) { | 
 |           // Otherwise, this could be a loop like this: | 
 |           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; } | 
 |           // In this case, j = {1,+,1}  and BEValue is j. | 
 |           // Because the other in-value of i (0) fits the evolution of BEValue | 
 |           // i really is an addrec evolution. | 
 |           if (AddRec->getLoop() == L && AddRec->isAffine()) { | 
 |             const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); | 
 |  | 
 |             // If StartVal = j.start - j.stride, we can use StartVal as the | 
 |             // initial step of the addrec evolution. | 
 |             if (StartVal == getMinusSCEV(AddRec->getOperand(0), | 
 |                                             AddRec->getOperand(1))) { | 
 |               const SCEV *PHISCEV = | 
 |                  getAddRecExpr(StartVal, AddRec->getOperand(1), L); | 
 |  | 
 |               // Okay, for the entire analysis of this edge we assumed the PHI | 
 |               // to be symbolic.  We now need to go back and update all of the | 
 |               // entries for the scalars that use the PHI (except for the PHI | 
 |               // itself) to use the new analyzed value instead of the "symbolic" | 
 |               // value. | 
 |               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); | 
 |               return PHISCEV; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         return SymbolicName; | 
 |       } | 
 |  | 
 |   // If it's not a loop phi, we can't handle it yet. | 
 |   return getUnknown(PN); | 
 | } | 
 |  | 
 | /// createNodeForGEP - Expand GEP instructions into add and multiply | 
 | /// operations. This allows them to be analyzed by regular SCEV code. | 
 | /// | 
 | const SCEV *ScalarEvolution::createNodeForGEP(User *GEP) { | 
 |  | 
 |   const Type *IntPtrTy = TD->getIntPtrType(); | 
 |   Value *Base = GEP->getOperand(0); | 
 |   // Don't attempt to analyze GEPs over unsized objects. | 
 |   if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) | 
 |     return getUnknown(GEP); | 
 |   const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy); | 
 |   gep_type_iterator GTI = gep_type_begin(GEP); | 
 |   for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), | 
 |                                       E = GEP->op_end(); | 
 |        I != E; ++I) { | 
 |     Value *Index = *I; | 
 |     // Compute the (potentially symbolic) offset in bytes for this index. | 
 |     if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { | 
 |       // For a struct, add the member offset. | 
 |       const StructLayout &SL = *TD->getStructLayout(STy); | 
 |       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); | 
 |       uint64_t Offset = SL.getElementOffset(FieldNo); | 
 |       TotalOffset = getAddExpr(TotalOffset, | 
 |                                   getIntegerSCEV(Offset, IntPtrTy)); | 
 |     } else { | 
 |       // For an array, add the element offset, explicitly scaled. | 
 |       const SCEV *LocalOffset = getSCEV(Index); | 
 |       if (!isa<PointerType>(LocalOffset->getType())) | 
 |         // Getelementptr indicies are signed. | 
 |         LocalOffset = getTruncateOrSignExtend(LocalOffset, | 
 |                                               IntPtrTy); | 
 |       LocalOffset = | 
 |         getMulExpr(LocalOffset, | 
 |                    getIntegerSCEV(TD->getTypeAllocSize(*GTI), | 
 |                                   IntPtrTy)); | 
 |       TotalOffset = getAddExpr(TotalOffset, LocalOffset); | 
 |     } | 
 |   } | 
 |   return getAddExpr(getSCEV(Base), TotalOffset); | 
 | } | 
 |  | 
 | /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is | 
 | /// guaranteed to end in (at every loop iteration).  It is, at the same time, | 
 | /// the minimum number of times S is divisible by 2.  For example, given {4,+,8} | 
 | /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S. | 
 | uint32_t | 
 | ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { | 
 |   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) | 
 |     return C->getValue()->getValue().countTrailingZeros(); | 
 |  | 
 |   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) | 
 |     return std::min(GetMinTrailingZeros(T->getOperand()), | 
 |                     (uint32_t)getTypeSizeInBits(T->getType())); | 
 |  | 
 |   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { | 
 |     uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); | 
 |     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? | 
 |              getTypeSizeInBits(E->getType()) : OpRes; | 
 |   } | 
 |  | 
 |   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { | 
 |     uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); | 
 |     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? | 
 |              getTypeSizeInBits(E->getType()) : OpRes; | 
 |   } | 
 |  | 
 |   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { | 
 |     // The result is the min of all operands results. | 
 |     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); | 
 |     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) | 
 |       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); | 
 |     return MinOpRes; | 
 |   } | 
 |  | 
 |   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { | 
 |     // The result is the sum of all operands results. | 
 |     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); | 
 |     uint32_t BitWidth = getTypeSizeInBits(M->getType()); | 
 |     for (unsigned i = 1, e = M->getNumOperands(); | 
 |          SumOpRes != BitWidth && i != e; ++i) | 
 |       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), | 
 |                           BitWidth); | 
 |     return SumOpRes; | 
 |   } | 
 |  | 
 |   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { | 
 |     // The result is the min of all operands results. | 
 |     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); | 
 |     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) | 
 |       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); | 
 |     return MinOpRes; | 
 |   } | 
 |  | 
 |   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { | 
 |     // The result is the min of all operands results. | 
 |     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); | 
 |     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) | 
 |       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); | 
 |     return MinOpRes; | 
 |   } | 
 |  | 
 |   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { | 
 |     // The result is the min of all operands results. | 
 |     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); | 
 |     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) | 
 |       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); | 
 |     return MinOpRes; | 
 |   } | 
 |  | 
 |   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
 |     // For a SCEVUnknown, ask ValueTracking. | 
 |     unsigned BitWidth = getTypeSizeInBits(U->getType()); | 
 |     APInt Mask = APInt::getAllOnesValue(BitWidth); | 
 |     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); | 
 |     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); | 
 |     return Zeros.countTrailingOnes(); | 
 |   } | 
 |  | 
 |   // SCEVUDivExpr | 
 |   return 0; | 
 | } | 
 |  | 
 | uint32_t | 
 | ScalarEvolution::GetMinLeadingZeros(const SCEV *S) { | 
 |   // TODO: Handle other SCEV expression types here. | 
 |  | 
 |   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) | 
 |     return C->getValue()->getValue().countLeadingZeros(); | 
 |  | 
 |   if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) { | 
 |     // A zero-extension cast adds zero bits. | 
 |     return GetMinLeadingZeros(C->getOperand()) + | 
 |            (getTypeSizeInBits(C->getType()) - | 
 |             getTypeSizeInBits(C->getOperand()->getType())); | 
 |   } | 
 |  | 
 |   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
 |     // For a SCEVUnknown, ask ValueTracking. | 
 |     unsigned BitWidth = getTypeSizeInBits(U->getType()); | 
 |     APInt Mask = APInt::getAllOnesValue(BitWidth); | 
 |     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); | 
 |     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); | 
 |     return Zeros.countLeadingOnes(); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | uint32_t | 
 | ScalarEvolution::GetMinSignBits(const SCEV *S) { | 
 |   // TODO: Handle other SCEV expression types here. | 
 |  | 
 |   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { | 
 |     const APInt &A = C->getValue()->getValue(); | 
 |     return A.isNegative() ? A.countLeadingOnes() : | 
 |                             A.countLeadingZeros(); | 
 |   } | 
 |  | 
 |   if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) { | 
 |     // A sign-extension cast adds sign bits. | 
 |     return GetMinSignBits(C->getOperand()) + | 
 |            (getTypeSizeInBits(C->getType()) - | 
 |             getTypeSizeInBits(C->getOperand()->getType())); | 
 |   } | 
 |  | 
 |   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { | 
 |     unsigned BitWidth = getTypeSizeInBits(A->getType()); | 
 |  | 
 |     // Special case decrementing a value (ADD X, -1): | 
 |     if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0))) | 
 |       if (CRHS->isAllOnesValue()) { | 
 |         SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end()); | 
 |         const SCEV *OtherOpsAdd = getAddExpr(OtherOps); | 
 |         unsigned LZ = GetMinLeadingZeros(OtherOpsAdd); | 
 |  | 
 |         // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
 |         // sign bits set. | 
 |         if (LZ == BitWidth - 1) | 
 |           return BitWidth; | 
 |  | 
 |         // If we are subtracting one from a positive number, there is no carry | 
 |         // out of the result. | 
 |         if (LZ > 0) | 
 |           return GetMinSignBits(OtherOpsAdd); | 
 |       } | 
 |  | 
 |     // Add can have at most one carry bit.  Thus we know that the output | 
 |     // is, at worst, one more bit than the inputs. | 
 |     unsigned Min = BitWidth; | 
 |     for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { | 
 |       unsigned N = GetMinSignBits(A->getOperand(i)); | 
 |       Min = std::min(Min, N) - 1; | 
 |       if (Min == 0) return 1; | 
 |     } | 
 |     return 1; | 
 |   } | 
 |  | 
 |   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
 |     // For a SCEVUnknown, ask ValueTracking. | 
 |     return ComputeNumSignBits(U->getValue(), TD); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /// createSCEV - We know that there is no SCEV for the specified value. | 
 | /// Analyze the expression. | 
 | /// | 
 | const SCEV *ScalarEvolution::createSCEV(Value *V) { | 
 |   if (!isSCEVable(V->getType())) | 
 |     return getUnknown(V); | 
 |  | 
 |   unsigned Opcode = Instruction::UserOp1; | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     Opcode = I->getOpcode(); | 
 |   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
 |     Opcode = CE->getOpcode(); | 
 |   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | 
 |     return getConstant(CI); | 
 |   else if (isa<ConstantPointerNull>(V)) | 
 |     return getIntegerSCEV(0, V->getType()); | 
 |   else if (isa<UndefValue>(V)) | 
 |     return getIntegerSCEV(0, V->getType()); | 
 |   else | 
 |     return getUnknown(V); | 
 |  | 
 |   User *U = cast<User>(V); | 
 |   switch (Opcode) { | 
 |   case Instruction::Add: | 
 |     return getAddExpr(getSCEV(U->getOperand(0)), | 
 |                       getSCEV(U->getOperand(1))); | 
 |   case Instruction::Mul: | 
 |     return getMulExpr(getSCEV(U->getOperand(0)), | 
 |                       getSCEV(U->getOperand(1))); | 
 |   case Instruction::UDiv: | 
 |     return getUDivExpr(getSCEV(U->getOperand(0)), | 
 |                        getSCEV(U->getOperand(1))); | 
 |   case Instruction::Sub: | 
 |     return getMinusSCEV(getSCEV(U->getOperand(0)), | 
 |                         getSCEV(U->getOperand(1))); | 
 |   case Instruction::And: | 
 |     // For an expression like x&255 that merely masks off the high bits, | 
 |     // use zext(trunc(x)) as the SCEV expression. | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
 |       if (CI->isNullValue()) | 
 |         return getSCEV(U->getOperand(1)); | 
 |       if (CI->isAllOnesValue()) | 
 |         return getSCEV(U->getOperand(0)); | 
 |       const APInt &A = CI->getValue(); | 
 |  | 
 |       // Instcombine's ShrinkDemandedConstant may strip bits out of | 
 |       // constants, obscuring what would otherwise be a low-bits mask. | 
 |       // Use ComputeMaskedBits to compute what ShrinkDemandedConstant | 
 |       // knew about to reconstruct a low-bits mask value. | 
 |       unsigned LZ = A.countLeadingZeros(); | 
 |       unsigned BitWidth = A.getBitWidth(); | 
 |       APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
 |       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
 |       ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); | 
 |  | 
 |       APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); | 
 |  | 
 |       if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) | 
 |         return | 
 |           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), | 
 |                                             IntegerType::get(BitWidth - LZ)), | 
 |                             U->getType()); | 
 |     } | 
 |     break; | 
 |  | 
 |   case Instruction::Or: | 
 |     // If the RHS of the Or is a constant, we may have something like: | 
 |     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop | 
 |     // optimizations will transparently handle this case. | 
 |     // | 
 |     // In order for this transformation to be safe, the LHS must be of the | 
 |     // form X*(2^n) and the Or constant must be less than 2^n. | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
 |       const SCEV *LHS = getSCEV(U->getOperand(0)); | 
 |       const APInt &CIVal = CI->getValue(); | 
 |       if (GetMinTrailingZeros(LHS) >= | 
 |           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) | 
 |         return getAddExpr(LHS, getSCEV(U->getOperand(1))); | 
 |     } | 
 |     break; | 
 |   case Instruction::Xor: | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
 |       // If the RHS of the xor is a signbit, then this is just an add. | 
 |       // Instcombine turns add of signbit into xor as a strength reduction step. | 
 |       if (CI->getValue().isSignBit()) | 
 |         return getAddExpr(getSCEV(U->getOperand(0)), | 
 |                           getSCEV(U->getOperand(1))); | 
 |  | 
 |       // If the RHS of xor is -1, then this is a not operation. | 
 |       if (CI->isAllOnesValue()) | 
 |         return getNotSCEV(getSCEV(U->getOperand(0))); | 
 |  | 
 |       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. | 
 |       // This is a variant of the check for xor with -1, and it handles | 
 |       // the case where instcombine has trimmed non-demanded bits out | 
 |       // of an xor with -1. | 
 |       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) | 
 |         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) | 
 |           if (BO->getOpcode() == Instruction::And && | 
 |               LCI->getValue() == CI->getValue()) | 
 |             if (const SCEVZeroExtendExpr *Z = | 
 |                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { | 
 |               const Type *UTy = U->getType(); | 
 |               const SCEV *Z0 = Z->getOperand(); | 
 |               const Type *Z0Ty = Z0->getType(); | 
 |               unsigned Z0TySize = getTypeSizeInBits(Z0Ty); | 
 |  | 
 |               // If C is a low-bits mask, the zero extend is zerving to | 
 |               // mask off the high bits. Complement the operand and | 
 |               // re-apply the zext. | 
 |               if (APIntOps::isMask(Z0TySize, CI->getValue())) | 
 |                 return getZeroExtendExpr(getNotSCEV(Z0), UTy); | 
 |  | 
 |               // If C is a single bit, it may be in the sign-bit position | 
 |               // before the zero-extend. In this case, represent the xor | 
 |               // using an add, which is equivalent, and re-apply the zext. | 
 |               APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); | 
 |               if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && | 
 |                   Trunc.isSignBit()) | 
 |                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), | 
 |                                          UTy); | 
 |             } | 
 |     } | 
 |     break; | 
 |  | 
 |   case Instruction::Shl: | 
 |     // Turn shift left of a constant amount into a multiply. | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
 |       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); | 
 |       Constant *X = ConstantInt::get( | 
 |         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); | 
 |       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); | 
 |     } | 
 |     break; | 
 |  | 
 |   case Instruction::LShr: | 
 |     // Turn logical shift right of a constant into a unsigned divide. | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { | 
 |       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); | 
 |       Constant *X = ConstantInt::get( | 
 |         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); | 
 |       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); | 
 |     } | 
 |     break; | 
 |  | 
 |   case Instruction::AShr: | 
 |     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) | 
 |       if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) | 
 |         if (L->getOpcode() == Instruction::Shl && | 
 |             L->getOperand(1) == U->getOperand(1)) { | 
 |           unsigned BitWidth = getTypeSizeInBits(U->getType()); | 
 |           uint64_t Amt = BitWidth - CI->getZExtValue(); | 
 |           if (Amt == BitWidth) | 
 |             return getSCEV(L->getOperand(0));       // shift by zero --> noop | 
 |           if (Amt > BitWidth) | 
 |             return getIntegerSCEV(0, U->getType()); // value is undefined | 
 |           return | 
 |             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), | 
 |                                                       IntegerType::get(Amt)), | 
 |                                  U->getType()); | 
 |         } | 
 |     break; | 
 |  | 
 |   case Instruction::Trunc: | 
 |     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); | 
 |  | 
 |   case Instruction::ZExt: | 
 |     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); | 
 |  | 
 |   case Instruction::SExt: | 
 |     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); | 
 |  | 
 |   case Instruction::BitCast: | 
 |     // BitCasts are no-op casts so we just eliminate the cast. | 
 |     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) | 
 |       return getSCEV(U->getOperand(0)); | 
 |     break; | 
 |  | 
 |   case Instruction::IntToPtr: | 
 |     if (!TD) break; // Without TD we can't analyze pointers. | 
 |     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), | 
 |                                    TD->getIntPtrType()); | 
 |  | 
 |   case Instruction::PtrToInt: | 
 |     if (!TD) break; // Without TD we can't analyze pointers. | 
 |     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), | 
 |                                    U->getType()); | 
 |  | 
 |   case Instruction::GetElementPtr: | 
 |     if (!TD) break; // Without TD we can't analyze pointers. | 
 |     return createNodeForGEP(U); | 
 |  | 
 |   case Instruction::PHI: | 
 |     return createNodeForPHI(cast<PHINode>(U)); | 
 |  | 
 |   case Instruction::Select: | 
 |     // This could be a smax or umax that was lowered earlier. | 
 |     // Try to recover it. | 
 |     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { | 
 |       Value *LHS = ICI->getOperand(0); | 
 |       Value *RHS = ICI->getOperand(1); | 
 |       switch (ICI->getPredicate()) { | 
 |       case ICmpInst::ICMP_SLT: | 
 |       case ICmpInst::ICMP_SLE: | 
 |         std::swap(LHS, RHS); | 
 |         // fall through | 
 |       case ICmpInst::ICMP_SGT: | 
 |       case ICmpInst::ICMP_SGE: | 
 |         if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) | 
 |           return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); | 
 |         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) | 
 |           return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); | 
 |         break; | 
 |       case ICmpInst::ICMP_ULT: | 
 |       case ICmpInst::ICMP_ULE: | 
 |         std::swap(LHS, RHS); | 
 |         // fall through | 
 |       case ICmpInst::ICMP_UGT: | 
 |       case ICmpInst::ICMP_UGE: | 
 |         if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) | 
 |           return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); | 
 |         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) | 
 |           return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); | 
 |         break; | 
 |       case ICmpInst::ICMP_NE: | 
 |         // n != 0 ? n : 1  ->  umax(n, 1) | 
 |         if (LHS == U->getOperand(1) && | 
 |             isa<ConstantInt>(U->getOperand(2)) && | 
 |             cast<ConstantInt>(U->getOperand(2))->isOne() && | 
 |             isa<ConstantInt>(RHS) && | 
 |             cast<ConstantInt>(RHS)->isZero()) | 
 |           return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); | 
 |         break; | 
 |       case ICmpInst::ICMP_EQ: | 
 |         // n == 0 ? 1 : n  ->  umax(n, 1) | 
 |         if (LHS == U->getOperand(2) && | 
 |             isa<ConstantInt>(U->getOperand(1)) && | 
 |             cast<ConstantInt>(U->getOperand(1))->isOne() && | 
 |             isa<ConstantInt>(RHS) && | 
 |             cast<ConstantInt>(RHS)->isZero()) | 
 |           return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); | 
 |         break; | 
 |       default: | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |   default: // We cannot analyze this expression. | 
 |     break; | 
 |   } | 
 |  | 
 |   return getUnknown(V); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                   Iteration Count Computation Code | 
 | // | 
 |  | 
 | /// getBackedgeTakenCount - If the specified loop has a predictable | 
 | /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute | 
 | /// object. The backedge-taken count is the number of times the loop header | 
 | /// will be branched to from within the loop. This is one less than the | 
 | /// trip count of the loop, since it doesn't count the first iteration, | 
 | /// when the header is branched to from outside the loop. | 
 | /// | 
 | /// Note that it is not valid to call this method on a loop without a | 
 | /// loop-invariant backedge-taken count (see | 
 | /// hasLoopInvariantBackedgeTakenCount). | 
 | /// | 
 | const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { | 
 |   return getBackedgeTakenInfo(L).Exact; | 
 | } | 
 |  | 
 | /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except | 
 | /// return the least SCEV value that is known never to be less than the | 
 | /// actual backedge taken count. | 
 | const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { | 
 |   return getBackedgeTakenInfo(L).Max; | 
 | } | 
 |  | 
 | /// PushLoopPHIs - Push PHI nodes in the header of the given loop | 
 | /// onto the given Worklist. | 
 | static void | 
 | PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { | 
 |   BasicBlock *Header = L->getHeader(); | 
 |  | 
 |   // Push all Loop-header PHIs onto the Worklist stack. | 
 |   for (BasicBlock::iterator I = Header->begin(); | 
 |        PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
 |     Worklist.push_back(PN); | 
 | } | 
 |  | 
 | /// PushDefUseChildren - Push users of the given Instruction | 
 | /// onto the given Worklist. | 
 | static void | 
 | PushDefUseChildren(Instruction *I, | 
 |                    SmallVectorImpl<Instruction *> &Worklist) { | 
 |   // Push the def-use children onto the Worklist stack. | 
 |   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); | 
 |        UI != UE; ++UI) | 
 |     Worklist.push_back(cast<Instruction>(UI)); | 
 | } | 
 |  | 
 | const ScalarEvolution::BackedgeTakenInfo & | 
 | ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { | 
 |   // Initially insert a CouldNotCompute for this loop. If the insertion | 
 |   // succeeds, procede to actually compute a backedge-taken count and | 
 |   // update the value. The temporary CouldNotCompute value tells SCEV | 
 |   // code elsewhere that it shouldn't attempt to request a new | 
 |   // backedge-taken count, which could result in infinite recursion. | 
 |   std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = | 
 |     BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); | 
 |   if (Pair.second) { | 
 |     BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); | 
 |     if (ItCount.Exact != getCouldNotCompute()) { | 
 |       assert(ItCount.Exact->isLoopInvariant(L) && | 
 |              ItCount.Max->isLoopInvariant(L) && | 
 |              "Computed trip count isn't loop invariant for loop!"); | 
 |       ++NumTripCountsComputed; | 
 |  | 
 |       // Update the value in the map. | 
 |       Pair.first->second = ItCount; | 
 |     } else { | 
 |       if (ItCount.Max != getCouldNotCompute()) | 
 |         // Update the value in the map. | 
 |         Pair.first->second = ItCount; | 
 |       if (isa<PHINode>(L->getHeader()->begin())) | 
 |         // Only count loops that have phi nodes as not being computable. | 
 |         ++NumTripCountsNotComputed; | 
 |     } | 
 |  | 
 |     // Now that we know more about the trip count for this loop, forget any | 
 |     // existing SCEV values for PHI nodes in this loop since they are only | 
 |     // conservative estimates made without the benefit of trip count | 
 |     // information. This is similar to the code in | 
 |     // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI | 
 |     // nodes specially. | 
 |     if (ItCount.hasAnyInfo()) { | 
 |       SmallVector<Instruction *, 16> Worklist; | 
 |       PushLoopPHIs(L, Worklist); | 
 |  | 
 |       SmallPtrSet<Instruction *, 8> Visited; | 
 |       while (!Worklist.empty()) { | 
 |         Instruction *I = Worklist.pop_back_val(); | 
 |         if (!Visited.insert(I)) continue; | 
 |  | 
 |         std::map<SCEVCallbackVH, const SCEV*>::iterator It = | 
 |           Scalars.find(static_cast<Value *>(I)); | 
 |         if (It != Scalars.end()) { | 
 |           // SCEVUnknown for a PHI either means that it has an unrecognized | 
 |           // structure, or it's a PHI that's in the progress of being computed | 
 |           // by createNodeForPHI.  In the former case, additional loop trip count | 
 |           // information isn't going to change anything. In the later case, | 
 |           // createNodeForPHI will perform the necessary updates on its own when | 
 |           // it gets to that point. | 
 |           if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) | 
 |             Scalars.erase(It); | 
 |           ValuesAtScopes.erase(I); | 
 |           if (PHINode *PN = dyn_cast<PHINode>(I)) | 
 |             ConstantEvolutionLoopExitValue.erase(PN); | 
 |         } | 
 |  | 
 |         PushDefUseChildren(I, Worklist); | 
 |       } | 
 |     } | 
 |   } | 
 |   return Pair.first->second; | 
 | } | 
 |  | 
 | /// forgetLoopBackedgeTakenCount - This method should be called by the | 
 | /// client when it has changed a loop in a way that may effect | 
 | /// ScalarEvolution's ability to compute a trip count, or if the loop | 
 | /// is deleted. | 
 | void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { | 
 |   BackedgeTakenCounts.erase(L); | 
 |  | 
 |   SmallVector<Instruction *, 16> Worklist; | 
 |   PushLoopPHIs(L, Worklist); | 
 |  | 
 |   SmallPtrSet<Instruction *, 8> Visited; | 
 |   while (!Worklist.empty()) { | 
 |     Instruction *I = Worklist.pop_back_val(); | 
 |     if (!Visited.insert(I)) continue; | 
 |  | 
 |     std::map<SCEVCallbackVH, const SCEV*>::iterator It = | 
 |       Scalars.find(static_cast<Value *>(I)); | 
 |     if (It != Scalars.end()) { | 
 |       Scalars.erase(It); | 
 |       ValuesAtScopes.erase(I); | 
 |       if (PHINode *PN = dyn_cast<PHINode>(I)) | 
 |         ConstantEvolutionLoopExitValue.erase(PN); | 
 |     } | 
 |  | 
 |     PushDefUseChildren(I, Worklist); | 
 |   } | 
 | } | 
 |  | 
 | /// ComputeBackedgeTakenCount - Compute the number of times the backedge | 
 | /// of the specified loop will execute. | 
 | ScalarEvolution::BackedgeTakenInfo | 
 | ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { | 
 |   SmallVector<BasicBlock*, 8> ExitingBlocks; | 
 |   L->getExitingBlocks(ExitingBlocks); | 
 |  | 
 |   // Examine all exits and pick the most conservative values. | 
 |   const SCEV *BECount = getCouldNotCompute(); | 
 |   const SCEV *MaxBECount = getCouldNotCompute(); | 
 |   bool CouldNotComputeBECount = false; | 
 |   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { | 
 |     BackedgeTakenInfo NewBTI = | 
 |       ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); | 
 |  | 
 |     if (NewBTI.Exact == getCouldNotCompute()) { | 
 |       // We couldn't compute an exact value for this exit, so | 
 |       // we won't be able to compute an exact value for the loop. | 
 |       CouldNotComputeBECount = true; | 
 |       BECount = getCouldNotCompute(); | 
 |     } else if (!CouldNotComputeBECount) { | 
 |       if (BECount == getCouldNotCompute()) | 
 |         BECount = NewBTI.Exact; | 
 |       else | 
 |         BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); | 
 |     } | 
 |     if (MaxBECount == getCouldNotCompute()) | 
 |       MaxBECount = NewBTI.Max; | 
 |     else if (NewBTI.Max != getCouldNotCompute()) | 
 |       MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); | 
 |   } | 
 |  | 
 |   return BackedgeTakenInfo(BECount, MaxBECount); | 
 | } | 
 |  | 
 | /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge | 
 | /// of the specified loop will execute if it exits via the specified block. | 
 | ScalarEvolution::BackedgeTakenInfo | 
 | ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, | 
 |                                                    BasicBlock *ExitingBlock) { | 
 |  | 
 |   // Okay, we've chosen an exiting block.  See what condition causes us to | 
 |   // exit at this block. | 
 |   // | 
 |   // FIXME: we should be able to handle switch instructions (with a single exit) | 
 |   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); | 
 |   if (ExitBr == 0) return getCouldNotCompute(); | 
 |   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); | 
 |  | 
 |   // At this point, we know we have a conditional branch that determines whether | 
 |   // the loop is exited.  However, we don't know if the branch is executed each | 
 |   // time through the loop.  If not, then the execution count of the branch will | 
 |   // not be equal to the trip count of the loop. | 
 |   // | 
 |   // Currently we check for this by checking to see if the Exit branch goes to | 
 |   // the loop header.  If so, we know it will always execute the same number of | 
 |   // times as the loop.  We also handle the case where the exit block *is* the | 
 |   // loop header.  This is common for un-rotated loops. | 
 |   // | 
 |   // If both of those tests fail, walk up the unique predecessor chain to the | 
 |   // header, stopping if there is an edge that doesn't exit the loop. If the | 
 |   // header is reached, the execution count of the branch will be equal to the | 
 |   // trip count of the loop. | 
 |   // | 
 |   //  More extensive analysis could be done to handle more cases here. | 
 |   // | 
 |   if (ExitBr->getSuccessor(0) != L->getHeader() && | 
 |       ExitBr->getSuccessor(1) != L->getHeader() && | 
 |       ExitBr->getParent() != L->getHeader()) { | 
 |     // The simple checks failed, try climbing the unique predecessor chain | 
 |     // up to the header. | 
 |     bool Ok = false; | 
 |     for (BasicBlock *BB = ExitBr->getParent(); BB; ) { | 
 |       BasicBlock *Pred = BB->getUniquePredecessor(); | 
 |       if (!Pred) | 
 |         return getCouldNotCompute(); | 
 |       TerminatorInst *PredTerm = Pred->getTerminator(); | 
 |       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { | 
 |         BasicBlock *PredSucc = PredTerm->getSuccessor(i); | 
 |         if (PredSucc == BB) | 
 |           continue; | 
 |         // If the predecessor has a successor that isn't BB and isn't | 
 |         // outside the loop, assume the worst. | 
 |         if (L->contains(PredSucc)) | 
 |           return getCouldNotCompute(); | 
 |       } | 
 |       if (Pred == L->getHeader()) { | 
 |         Ok = true; | 
 |         break; | 
 |       } | 
 |       BB = Pred; | 
 |     } | 
 |     if (!Ok) | 
 |       return getCouldNotCompute(); | 
 |   } | 
 |  | 
 |   // Procede to the next level to examine the exit condition expression. | 
 |   return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), | 
 |                                                ExitBr->getSuccessor(0), | 
 |                                                ExitBr->getSuccessor(1)); | 
 | } | 
 |  | 
 | /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the | 
 | /// backedge of the specified loop will execute if its exit condition | 
 | /// were a conditional branch of ExitCond, TBB, and FBB. | 
 | ScalarEvolution::BackedgeTakenInfo | 
 | ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, | 
 |                                                        Value *ExitCond, | 
 |                                                        BasicBlock *TBB, | 
 |                                                        BasicBlock *FBB) { | 
 |   // Check if the controlling expression for this loop is an And or Or. | 
 |   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { | 
 |     if (BO->getOpcode() == Instruction::And) { | 
 |       // Recurse on the operands of the and. | 
 |       BackedgeTakenInfo BTI0 = | 
 |         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); | 
 |       BackedgeTakenInfo BTI1 = | 
 |         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); | 
 |       const SCEV *BECount = getCouldNotCompute(); | 
 |       const SCEV *MaxBECount = getCouldNotCompute(); | 
 |       if (L->contains(TBB)) { | 
 |         // Both conditions must be true for the loop to continue executing. | 
 |         // Choose the less conservative count. | 
 |         if (BTI0.Exact == getCouldNotCompute() || | 
 |             BTI1.Exact == getCouldNotCompute()) | 
 |           BECount = getCouldNotCompute(); | 
 |         else | 
 |           BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); | 
 |         if (BTI0.Max == getCouldNotCompute()) | 
 |           MaxBECount = BTI1.Max; | 
 |         else if (BTI1.Max == getCouldNotCompute()) | 
 |           MaxBECount = BTI0.Max; | 
 |         else | 
 |           MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); | 
 |       } else { | 
 |         // Both conditions must be true for the loop to exit. | 
 |         assert(L->contains(FBB) && "Loop block has no successor in loop!"); | 
 |         if (BTI0.Exact != getCouldNotCompute() && | 
 |             BTI1.Exact != getCouldNotCompute()) | 
 |           BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); | 
 |         if (BTI0.Max != getCouldNotCompute() && | 
 |             BTI1.Max != getCouldNotCompute()) | 
 |           MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); | 
 |       } | 
 |  | 
 |       return BackedgeTakenInfo(BECount, MaxBECount); | 
 |     } | 
 |     if (BO->getOpcode() == Instruction::Or) { | 
 |       // Recurse on the operands of the or. | 
 |       BackedgeTakenInfo BTI0 = | 
 |         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); | 
 |       BackedgeTakenInfo BTI1 = | 
 |         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); | 
 |       const SCEV *BECount = getCouldNotCompute(); | 
 |       const SCEV *MaxBECount = getCouldNotCompute(); | 
 |       if (L->contains(FBB)) { | 
 |         // Both conditions must be false for the loop to continue executing. | 
 |         // Choose the less conservative count. | 
 |         if (BTI0.Exact == getCouldNotCompute() || | 
 |             BTI1.Exact == getCouldNotCompute()) | 
 |           BECount = getCouldNotCompute(); | 
 |         else | 
 |           BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); | 
 |         if (BTI0.Max == getCouldNotCompute()) | 
 |           MaxBECount = BTI1.Max; | 
 |         else if (BTI1.Max == getCouldNotCompute()) | 
 |           MaxBECount = BTI0.Max; | 
 |         else | 
 |           MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); | 
 |       } else { | 
 |         // Both conditions must be false for the loop to exit. | 
 |         assert(L->contains(TBB) && "Loop block has no successor in loop!"); | 
 |         if (BTI0.Exact != getCouldNotCompute() && | 
 |             BTI1.Exact != getCouldNotCompute()) | 
 |           BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); | 
 |         if (BTI0.Max != getCouldNotCompute() && | 
 |             BTI1.Max != getCouldNotCompute()) | 
 |           MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); | 
 |       } | 
 |  | 
 |       return BackedgeTakenInfo(BECount, MaxBECount); | 
 |     } | 
 |   } | 
 |  | 
 |   // With an icmp, it may be feasible to compute an exact backedge-taken count. | 
 |   // Procede to the next level to examine the icmp. | 
 |   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) | 
 |     return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); | 
 |  | 
 |   // If it's not an integer or pointer comparison then compute it the hard way. | 
 |   return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); | 
 | } | 
 |  | 
 | /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the | 
 | /// backedge of the specified loop will execute if its exit condition | 
 | /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. | 
 | ScalarEvolution::BackedgeTakenInfo | 
 | ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, | 
 |                                                            ICmpInst *ExitCond, | 
 |                                                            BasicBlock *TBB, | 
 |                                                            BasicBlock *FBB) { | 
 |  | 
 |   // If the condition was exit on true, convert the condition to exit on false | 
 |   ICmpInst::Predicate Cond; | 
 |   if (!L->contains(FBB)) | 
 |     Cond = ExitCond->getPredicate(); | 
 |   else | 
 |     Cond = ExitCond->getInversePredicate(); | 
 |  | 
 |   // Handle common loops like: for (X = "string"; *X; ++X) | 
 |   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) | 
 |     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { | 
 |       const SCEV *ItCnt = | 
 |         ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); | 
 |       if (!isa<SCEVCouldNotCompute>(ItCnt)) { | 
 |         unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); | 
 |         return BackedgeTakenInfo(ItCnt, | 
 |                                  isa<SCEVConstant>(ItCnt) ? ItCnt : | 
 |                                    getConstant(APInt::getMaxValue(BitWidth)-1)); | 
 |       } | 
 |     } | 
 |  | 
 |   const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); | 
 |   const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); | 
 |  | 
 |   // Try to evaluate any dependencies out of the loop. | 
 |   LHS = getSCEVAtScope(LHS, L); | 
 |   RHS = getSCEVAtScope(RHS, L); | 
 |  | 
 |   // At this point, we would like to compute how many iterations of the | 
 |   // loop the predicate will return true for these inputs. | 
 |   if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { | 
 |     // If there is a loop-invariant, force it into the RHS. | 
 |     std::swap(LHS, RHS); | 
 |     Cond = ICmpInst::getSwappedPredicate(Cond); | 
 |   } | 
 |  | 
 |   // If we have a comparison of a chrec against a constant, try to use value | 
 |   // ranges to answer this query. | 
 |   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) | 
 |     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) | 
 |       if (AddRec->getLoop() == L) { | 
 |         // Form the constant range. | 
 |         ConstantRange CompRange( | 
 |             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); | 
 |  | 
 |         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); | 
 |         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; | 
 |       } | 
 |  | 
 |   switch (Cond) { | 
 |   case ICmpInst::ICMP_NE: {                     // while (X != Y) | 
 |     // Convert to: while (X-Y != 0) | 
 |     const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); | 
 |     if (!isa<SCEVCouldNotCompute>(TC)) return TC; | 
 |     break; | 
 |   } | 
 |   case ICmpInst::ICMP_EQ: { | 
 |     // Convert to: while (X-Y == 0)           // while (X == Y) | 
 |     const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); | 
 |     if (!isa<SCEVCouldNotCompute>(TC)) return TC; | 
 |     break; | 
 |   } | 
 |   case ICmpInst::ICMP_SLT: { | 
 |     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); | 
 |     if (BTI.hasAnyInfo()) return BTI; | 
 |     break; | 
 |   } | 
 |   case ICmpInst::ICMP_SGT: { | 
 |     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), | 
 |                                              getNotSCEV(RHS), L, true); | 
 |     if (BTI.hasAnyInfo()) return BTI; | 
 |     break; | 
 |   } | 
 |   case ICmpInst::ICMP_ULT: { | 
 |     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); | 
 |     if (BTI.hasAnyInfo()) return BTI; | 
 |     break; | 
 |   } | 
 |   case ICmpInst::ICMP_UGT: { | 
 |     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), | 
 |                                              getNotSCEV(RHS), L, false); | 
 |     if (BTI.hasAnyInfo()) return BTI; | 
 |     break; | 
 |   } | 
 |   default: | 
 | #if 0 | 
 |     errs() << "ComputeBackedgeTakenCount "; | 
 |     if (ExitCond->getOperand(0)->getType()->isUnsigned()) | 
 |       errs() << "[unsigned] "; | 
 |     errs() << *LHS << "   " | 
 |          << Instruction::getOpcodeName(Instruction::ICmp) | 
 |          << "   " << *RHS << "\n"; | 
 | #endif | 
 |     break; | 
 |   } | 
 |   return | 
 |     ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); | 
 | } | 
 |  | 
 | static ConstantInt * | 
 | EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, | 
 |                                 ScalarEvolution &SE) { | 
 |   const SCEV *InVal = SE.getConstant(C); | 
 |   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); | 
 |   assert(isa<SCEVConstant>(Val) && | 
 |          "Evaluation of SCEV at constant didn't fold correctly?"); | 
 |   return cast<SCEVConstant>(Val)->getValue(); | 
 | } | 
 |  | 
 | /// GetAddressedElementFromGlobal - Given a global variable with an initializer | 
 | /// and a GEP expression (missing the pointer index) indexing into it, return | 
 | /// the addressed element of the initializer or null if the index expression is | 
 | /// invalid. | 
 | static Constant * | 
 | GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV, | 
 |                               const std::vector<ConstantInt*> &Indices) { | 
 |   Constant *Init = GV->getInitializer(); | 
 |   for (unsigned i = 0, e = Indices.size(); i != e; ++i) { | 
 |     uint64_t Idx = Indices[i]->getZExtValue(); | 
 |     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { | 
 |       assert(Idx < CS->getNumOperands() && "Bad struct index!"); | 
 |       Init = cast<Constant>(CS->getOperand(Idx)); | 
 |     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { | 
 |       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program | 
 |       Init = cast<Constant>(CA->getOperand(Idx)); | 
 |     } else if (isa<ConstantAggregateZero>(Init)) { | 
 |       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { | 
 |         assert(Idx < STy->getNumElements() && "Bad struct index!"); | 
 |         Init = Context->getNullValue(STy->getElementType(Idx)); | 
 |       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { | 
 |         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program | 
 |         Init = Context->getNullValue(ATy->getElementType()); | 
 |       } else { | 
 |         LLVM_UNREACHABLE("Unknown constant aggregate type!"); | 
 |       } | 
 |       return 0; | 
 |     } else { | 
 |       return 0; // Unknown initializer type | 
 |     } | 
 |   } | 
 |   return Init; | 
 | } | 
 |  | 
 | /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of | 
 | /// 'icmp op load X, cst', try to see if we can compute the backedge | 
 | /// execution count. | 
 | const SCEV * | 
 | ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( | 
 |                                                 LoadInst *LI, | 
 |                                                 Constant *RHS, | 
 |                                                 const Loop *L, | 
 |                                                 ICmpInst::Predicate predicate) { | 
 |   if (LI->isVolatile()) return getCouldNotCompute(); | 
 |  | 
 |   // Check to see if the loaded pointer is a getelementptr of a global. | 
 |   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); | 
 |   if (!GEP) return getCouldNotCompute(); | 
 |  | 
 |   // Make sure that it is really a constant global we are gepping, with an | 
 |   // initializer, and make sure the first IDX is really 0. | 
 |   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); | 
 |   if (!GV || !GV->isConstant() || !GV->hasInitializer() || | 
 |       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || | 
 |       !cast<Constant>(GEP->getOperand(1))->isNullValue()) | 
 |     return getCouldNotCompute(); | 
 |  | 
 |   // Okay, we allow one non-constant index into the GEP instruction. | 
 |   Value *VarIdx = 0; | 
 |   std::vector<ConstantInt*> Indexes; | 
 |   unsigned VarIdxNum = 0; | 
 |   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) | 
 |     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { | 
 |       Indexes.push_back(CI); | 
 |     } else if (!isa<ConstantInt>(GEP->getOperand(i))) { | 
 |       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's. | 
 |       VarIdx = GEP->getOperand(i); | 
 |       VarIdxNum = i-2; | 
 |       Indexes.push_back(0); | 
 |     } | 
 |  | 
 |   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. | 
 |   // Check to see if X is a loop variant variable value now. | 
 |   const SCEV *Idx = getSCEV(VarIdx); | 
 |   Idx = getSCEVAtScope(Idx, L); | 
 |  | 
 |   // We can only recognize very limited forms of loop index expressions, in | 
 |   // particular, only affine AddRec's like {C1,+,C2}. | 
 |   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); | 
 |   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || | 
 |       !isa<SCEVConstant>(IdxExpr->getOperand(0)) || | 
 |       !isa<SCEVConstant>(IdxExpr->getOperand(1))) | 
 |     return getCouldNotCompute(); | 
 |  | 
 |   unsigned MaxSteps = MaxBruteForceIterations; | 
 |   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { | 
 |     ConstantInt *ItCst = | 
 |       ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum); | 
 |     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); | 
 |  | 
 |     // Form the GEP offset. | 
 |     Indexes[VarIdxNum] = Val; | 
 |  | 
 |     Constant *Result = GetAddressedElementFromGlobal(Context, GV, Indexes); | 
 |     if (Result == 0) break;  // Cannot compute! | 
 |  | 
 |     // Evaluate the condition for this iteration. | 
 |     Result = ConstantExpr::getICmp(predicate, Result, RHS); | 
 |     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure | 
 |     if (cast<ConstantInt>(Result)->getValue().isMinValue()) { | 
 | #if 0 | 
 |       errs() << "\n***\n*** Computed loop count " << *ItCst | 
 |              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() | 
 |              << "***\n"; | 
 | #endif | 
 |       ++NumArrayLenItCounts; | 
 |       return getConstant(ItCst);   // Found terminating iteration! | 
 |     } | 
 |   } | 
 |   return getCouldNotCompute(); | 
 | } | 
 |  | 
 |  | 
 | /// CanConstantFold - Return true if we can constant fold an instruction of the | 
 | /// specified type, assuming that all operands were constants. | 
 | static bool CanConstantFold(const Instruction *I) { | 
 |   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || | 
 |       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) | 
 |     return true; | 
 |  | 
 |   if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
 |     if (const Function *F = CI->getCalledFunction()) | 
 |       return canConstantFoldCallTo(F); | 
 |   return false; | 
 | } | 
 |  | 
 | /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node | 
 | /// in the loop that V is derived from.  We allow arbitrary operations along the | 
 | /// way, but the operands of an operation must either be constants or a value | 
 | /// derived from a constant PHI.  If this expression does not fit with these | 
 | /// constraints, return null. | 
 | static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { | 
 |   // If this is not an instruction, or if this is an instruction outside of the | 
 |   // loop, it can't be derived from a loop PHI. | 
 |   Instruction *I = dyn_cast<Instruction>(V); | 
 |   if (I == 0 || !L->contains(I->getParent())) return 0; | 
 |  | 
 |   if (PHINode *PN = dyn_cast<PHINode>(I)) { | 
 |     if (L->getHeader() == I->getParent()) | 
 |       return PN; | 
 |     else | 
 |       // We don't currently keep track of the control flow needed to evaluate | 
 |       // PHIs, so we cannot handle PHIs inside of loops. | 
 |       return 0; | 
 |   } | 
 |  | 
 |   // If we won't be able to constant fold this expression even if the operands | 
 |   // are constants, return early. | 
 |   if (!CanConstantFold(I)) return 0; | 
 |  | 
 |   // Otherwise, we can evaluate this instruction if all of its operands are | 
 |   // constant or derived from a PHI node themselves. | 
 |   PHINode *PHI = 0; | 
 |   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) | 
 |     if (!(isa<Constant>(I->getOperand(Op)) || | 
 |           isa<GlobalValue>(I->getOperand(Op)))) { | 
 |       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); | 
 |       if (P == 0) return 0;  // Not evolving from PHI | 
 |       if (PHI == 0) | 
 |         PHI = P; | 
 |       else if (PHI != P) | 
 |         return 0;  // Evolving from multiple different PHIs. | 
 |     } | 
 |  | 
 |   // This is a expression evolving from a constant PHI! | 
 |   return PHI; | 
 | } | 
 |  | 
 | /// EvaluateExpression - Given an expression that passes the | 
 | /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node | 
 | /// in the loop has the value PHIVal.  If we can't fold this expression for some | 
 | /// reason, return null. | 
 | static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { | 
 |   if (isa<PHINode>(V)) return PHIVal; | 
 |   if (Constant *C = dyn_cast<Constant>(V)) return C; | 
 |   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; | 
 |   Instruction *I = cast<Instruction>(V); | 
 |   LLVMContext *Context = I->getParent()->getContext(); | 
 |  | 
 |   std::vector<Constant*> Operands; | 
 |   Operands.resize(I->getNumOperands()); | 
 |  | 
 |   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
 |     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); | 
 |     if (Operands[i] == 0) return 0; | 
 |   } | 
 |  | 
 |   if (const CmpInst *CI = dyn_cast<CmpInst>(I)) | 
 |     return ConstantFoldCompareInstOperands(CI->getPredicate(), | 
 |                                            &Operands[0], Operands.size(), | 
 |                                            Context); | 
 |   else | 
 |     return ConstantFoldInstOperands(I->getOpcode(), I->getType(), | 
 |                                     &Operands[0], Operands.size(), | 
 |                                     Context); | 
 | } | 
 |  | 
 | /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is | 
 | /// in the header of its containing loop, we know the loop executes a | 
 | /// constant number of times, and the PHI node is just a recurrence | 
 | /// involving constants, fold it. | 
 | Constant * | 
 | ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, | 
 |                                                    const APInt& BEs, | 
 |                                                    const Loop *L) { | 
 |   std::map<PHINode*, Constant*>::iterator I = | 
 |     ConstantEvolutionLoopExitValue.find(PN); | 
 |   if (I != ConstantEvolutionLoopExitValue.end()) | 
 |     return I->second; | 
 |  | 
 |   if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) | 
 |     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it. | 
 |  | 
 |   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; | 
 |  | 
 |   // Since the loop is canonicalized, the PHI node must have two entries.  One | 
 |   // entry must be a constant (coming in from outside of the loop), and the | 
 |   // second must be derived from the same PHI. | 
 |   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); | 
 |   Constant *StartCST = | 
 |     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); | 
 |   if (StartCST == 0) | 
 |     return RetVal = 0;  // Must be a constant. | 
 |  | 
 |   Value *BEValue = PN->getIncomingValue(SecondIsBackedge); | 
 |   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); | 
 |   if (PN2 != PN) | 
 |     return RetVal = 0;  // Not derived from same PHI. | 
 |  | 
 |   // Execute the loop symbolically to determine the exit value. | 
 |   if (BEs.getActiveBits() >= 32) | 
 |     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! | 
 |  | 
 |   unsigned NumIterations = BEs.getZExtValue(); // must be in range | 
 |   unsigned IterationNum = 0; | 
 |   for (Constant *PHIVal = StartCST; ; ++IterationNum) { | 
 |     if (IterationNum == NumIterations) | 
 |       return RetVal = PHIVal;  // Got exit value! | 
 |  | 
 |     // Compute the value of the PHI node for the next iteration. | 
 |     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); | 
 |     if (NextPHI == PHIVal) | 
 |       return RetVal = NextPHI;  // Stopped evolving! | 
 |     if (NextPHI == 0) | 
 |       return 0;        // Couldn't evaluate! | 
 |     PHIVal = NextPHI; | 
 |   } | 
 | } | 
 |  | 
 | /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a | 
 | /// constant number of times (the condition evolves only from constants), | 
 | /// try to evaluate a few iterations of the loop until we get the exit | 
 | /// condition gets a value of ExitWhen (true or false).  If we cannot | 
 | /// evaluate the trip count of the loop, return getCouldNotCompute(). | 
 | const SCEV * | 
 | ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, | 
 |                                                        Value *Cond, | 
 |                                                        bool ExitWhen) { | 
 |   PHINode *PN = getConstantEvolvingPHI(Cond, L); | 
 |   if (PN == 0) return getCouldNotCompute(); | 
 |  | 
 |   // Since the loop is canonicalized, the PHI node must have two entries.  One | 
 |   // entry must be a constant (coming in from outside of the loop), and the | 
 |   // second must be derived from the same PHI. | 
 |   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); | 
 |   Constant *StartCST = | 
 |     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); | 
 |   if (StartCST == 0) return getCouldNotCompute();  // Must be a constant. | 
 |  | 
 |   Value *BEValue = PN->getIncomingValue(SecondIsBackedge); | 
 |   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); | 
 |   if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI. | 
 |  | 
 |   // Okay, we find a PHI node that defines the trip count of this loop.  Execute | 
 |   // the loop symbolically to determine when the condition gets a value of | 
 |   // "ExitWhen". | 
 |   unsigned IterationNum = 0; | 
 |   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis. | 
 |   for (Constant *PHIVal = StartCST; | 
 |        IterationNum != MaxIterations; ++IterationNum) { | 
 |     ConstantInt *CondVal = | 
 |       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); | 
 |  | 
 |     // Couldn't symbolically evaluate. | 
 |     if (!CondVal) return getCouldNotCompute(); | 
 |  | 
 |     if (CondVal->getValue() == uint64_t(ExitWhen)) { | 
 |       ++NumBruteForceTripCountsComputed; | 
 |       return getConstant(Type::Int32Ty, IterationNum); | 
 |     } | 
 |  | 
 |     // Compute the value of the PHI node for the next iteration. | 
 |     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); | 
 |     if (NextPHI == 0 || NextPHI == PHIVal) | 
 |       return getCouldNotCompute();// Couldn't evaluate or not making progress... | 
 |     PHIVal = NextPHI; | 
 |   } | 
 |  | 
 |   // Too many iterations were needed to evaluate. | 
 |   return getCouldNotCompute(); | 
 | } | 
 |  | 
 | /// getSCEVAtScope - Return a SCEV expression handle for the specified value | 
 | /// at the specified scope in the program.  The L value specifies a loop | 
 | /// nest to evaluate the expression at, where null is the top-level or a | 
 | /// specified loop is immediately inside of the loop. | 
 | /// | 
 | /// This method can be used to compute the exit value for a variable defined | 
 | /// in a loop by querying what the value will hold in the parent loop. | 
 | /// | 
 | /// In the case that a relevant loop exit value cannot be computed, the | 
 | /// original value V is returned. | 
 | const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { | 
 |   // FIXME: this should be turned into a virtual method on SCEV! | 
 |  | 
 |   if (isa<SCEVConstant>(V)) return V; | 
 |  | 
 |   // If this instruction is evolved from a constant-evolving PHI, compute the | 
 |   // exit value from the loop without using SCEVs. | 
 |   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { | 
 |     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { | 
 |       const Loop *LI = (*this->LI)[I->getParent()]; | 
 |       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value. | 
 |         if (PHINode *PN = dyn_cast<PHINode>(I)) | 
 |           if (PN->getParent() == LI->getHeader()) { | 
 |             // Okay, there is no closed form solution for the PHI node.  Check | 
 |             // to see if the loop that contains it has a known backedge-taken | 
 |             // count.  If so, we may be able to force computation of the exit | 
 |             // value. | 
 |             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); | 
 |             if (const SCEVConstant *BTCC = | 
 |                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) { | 
 |               // Okay, we know how many times the containing loop executes.  If | 
 |               // this is a constant evolving PHI node, get the final value at | 
 |               // the specified iteration number. | 
 |               Constant *RV = getConstantEvolutionLoopExitValue(PN, | 
 |                                                    BTCC->getValue()->getValue(), | 
 |                                                                LI); | 
 |               if (RV) return getSCEV(RV); | 
 |             } | 
 |           } | 
 |  | 
 |       // Okay, this is an expression that we cannot symbolically evaluate | 
 |       // into a SCEV.  Check to see if it's possible to symbolically evaluate | 
 |       // the arguments into constants, and if so, try to constant propagate the | 
 |       // result.  This is particularly useful for computing loop exit values. | 
 |       if (CanConstantFold(I)) { | 
 |         // Check to see if we've folded this instruction at this loop before. | 
 |         std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; | 
 |         std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = | 
 |           Values.insert(std::make_pair(L, static_cast<Constant *>(0))); | 
 |         if (!Pair.second) | 
 |           return Pair.first->second ? &*getSCEV(Pair.first->second) : V; | 
 |  | 
 |         std::vector<Constant*> Operands; | 
 |         Operands.reserve(I->getNumOperands()); | 
 |         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
 |           Value *Op = I->getOperand(i); | 
 |           if (Constant *C = dyn_cast<Constant>(Op)) { | 
 |             Operands.push_back(C); | 
 |           } else { | 
 |             // If any of the operands is non-constant and if they are | 
 |             // non-integer and non-pointer, don't even try to analyze them | 
 |             // with scev techniques. | 
 |             if (!isSCEVable(Op->getType())) | 
 |               return V; | 
 |  | 
 |             const SCEV *OpV = getSCEVAtScope(getSCEV(Op), L); | 
 |             if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { | 
 |               Constant *C = SC->getValue(); | 
 |               if (C->getType() != Op->getType()) | 
 |                 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
 |                                                                   Op->getType(), | 
 |                                                                   false), | 
 |                                           C, Op->getType()); | 
 |               Operands.push_back(C); | 
 |             } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { | 
 |               if (Constant *C = dyn_cast<Constant>(SU->getValue())) { | 
 |                 if (C->getType() != Op->getType()) | 
 |                   C = | 
 |                     ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
 |                                                                   Op->getType(), | 
 |                                                                   false), | 
 |                                           C, Op->getType()); | 
 |                 Operands.push_back(C); | 
 |               } else | 
 |                 return V; | 
 |             } else { | 
 |               return V; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         Constant *C; | 
 |         if (const CmpInst *CI = dyn_cast<CmpInst>(I)) | 
 |           C = ConstantFoldCompareInstOperands(CI->getPredicate(), | 
 |                                               &Operands[0], Operands.size(), | 
 |                                               Context); | 
 |         else | 
 |           C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), | 
 |                                        &Operands[0], Operands.size(), Context); | 
 |         Pair.first->second = C; | 
 |         return getSCEV(C); | 
 |       } | 
 |     } | 
 |  | 
 |     // This is some other type of SCEVUnknown, just return it. | 
 |     return V; | 
 |   } | 
 |  | 
 |   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { | 
 |     // Avoid performing the look-up in the common case where the specified | 
 |     // expression has no loop-variant portions. | 
 |     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { | 
 |       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); | 
 |       if (OpAtScope != Comm->getOperand(i)) { | 
 |         // Okay, at least one of these operands is loop variant but might be | 
 |         // foldable.  Build a new instance of the folded commutative expression. | 
 |         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), | 
 |                                             Comm->op_begin()+i); | 
 |         NewOps.push_back(OpAtScope); | 
 |  | 
 |         for (++i; i != e; ++i) { | 
 |           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); | 
 |           NewOps.push_back(OpAtScope); | 
 |         } | 
 |         if (isa<SCEVAddExpr>(Comm)) | 
 |           return getAddExpr(NewOps); | 
 |         if (isa<SCEVMulExpr>(Comm)) | 
 |           return getMulExpr(NewOps); | 
 |         if (isa<SCEVSMaxExpr>(Comm)) | 
 |           return getSMaxExpr(NewOps); | 
 |         if (isa<SCEVUMaxExpr>(Comm)) | 
 |           return getUMaxExpr(NewOps); | 
 |         LLVM_UNREACHABLE("Unknown commutative SCEV type!"); | 
 |       } | 
 |     } | 
 |     // If we got here, all operands are loop invariant. | 
 |     return Comm; | 
 |   } | 
 |  | 
 |   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { | 
 |     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); | 
 |     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); | 
 |     if (LHS == Div->getLHS() && RHS == Div->getRHS()) | 
 |       return Div;   // must be loop invariant | 
 |     return getUDivExpr(LHS, RHS); | 
 |   } | 
 |  | 
 |   // If this is a loop recurrence for a loop that does not contain L, then we | 
 |   // are dealing with the final value computed by the loop. | 
 |   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { | 
 |     if (!L || !AddRec->getLoop()->contains(L->getHeader())) { | 
 |       // To evaluate this recurrence, we need to know how many times the AddRec | 
 |       // loop iterates.  Compute this now. | 
 |       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); | 
 |       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; | 
 |  | 
 |       // Then, evaluate the AddRec. | 
 |       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); | 
 |     } | 
 |     return AddRec; | 
 |   } | 
 |  | 
 |   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { | 
 |     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); | 
 |     if (Op == Cast->getOperand()) | 
 |       return Cast;  // must be loop invariant | 
 |     return getZeroExtendExpr(Op, Cast->getType()); | 
 |   } | 
 |  | 
 |   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { | 
 |     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); | 
 |     if (Op == Cast->getOperand()) | 
 |       return Cast;  // must be loop invariant | 
 |     return getSignExtendExpr(Op, Cast->getType()); | 
 |   } | 
 |  | 
 |   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { | 
 |     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); | 
 |     if (Op == Cast->getOperand()) | 
 |       return Cast;  // must be loop invariant | 
 |     return getTruncateExpr(Op, Cast->getType()); | 
 |   } | 
 |  | 
 |   LLVM_UNREACHABLE("Unknown SCEV type!"); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// getSCEVAtScope - This is a convenience function which does | 
 | /// getSCEVAtScope(getSCEV(V), L). | 
 | const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { | 
 |   return getSCEVAtScope(getSCEV(V), L); | 
 | } | 
 |  | 
 | /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the | 
 | /// following equation: | 
 | /// | 
 | ///     A * X = B (mod N) | 
 | /// | 
 | /// where N = 2^BW and BW is the common bit width of A and B. The signedness of | 
 | /// A and B isn't important. | 
 | /// | 
 | /// If the equation does not have a solution, SCEVCouldNotCompute is returned. | 
 | static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, | 
 |                                                ScalarEvolution &SE) { | 
 |   uint32_t BW = A.getBitWidth(); | 
 |   assert(BW == B.getBitWidth() && "Bit widths must be the same."); | 
 |   assert(A != 0 && "A must be non-zero."); | 
 |  | 
 |   // 1. D = gcd(A, N) | 
 |   // | 
 |   // The gcd of A and N may have only one prime factor: 2. The number of | 
 |   // trailing zeros in A is its multiplicity | 
 |   uint32_t Mult2 = A.countTrailingZeros(); | 
 |   // D = 2^Mult2 | 
 |  | 
 |   // 2. Check if B is divisible by D. | 
 |   // | 
 |   // B is divisible by D if and only if the multiplicity of prime factor 2 for B | 
 |   // is not less than multiplicity of this prime factor for D. | 
 |   if (B.countTrailingZeros() < Mult2) | 
 |     return SE.getCouldNotCompute(); | 
 |  | 
 |   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic | 
 |   // modulo (N / D). | 
 |   // | 
 |   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this | 
 |   // bit width during computations. | 
 |   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D | 
 |   APInt Mod(BW + 1, 0); | 
 |   Mod.set(BW - Mult2);  // Mod = N / D | 
 |   APInt I = AD.multiplicativeInverse(Mod); | 
 |  | 
 |   // 4. Compute the minimum unsigned root of the equation: | 
 |   // I * (B / D) mod (N / D) | 
 |   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); | 
 |  | 
 |   // The result is guaranteed to be less than 2^BW so we may truncate it to BW | 
 |   // bits. | 
 |   return SE.getConstant(Result.trunc(BW)); | 
 | } | 
 |  | 
 | /// SolveQuadraticEquation - Find the roots of the quadratic equation for the | 
 | /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which | 
 | /// might be the same) or two SCEVCouldNotCompute objects. | 
 | /// | 
 | static std::pair<const SCEV *,const SCEV *> | 
 | SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { | 
 |   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); | 
 |   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); | 
 |   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); | 
 |   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); | 
 |  | 
 |   // We currently can only solve this if the coefficients are constants. | 
 |   if (!LC || !MC || !NC) { | 
 |     const SCEV *CNC = SE.getCouldNotCompute(); | 
 |     return std::make_pair(CNC, CNC); | 
 |   } | 
 |  | 
 |   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); | 
 |   const APInt &L = LC->getValue()->getValue(); | 
 |   const APInt &M = MC->getValue()->getValue(); | 
 |   const APInt &N = NC->getValue()->getValue(); | 
 |   APInt Two(BitWidth, 2); | 
 |   APInt Four(BitWidth, 4); | 
 |  | 
 |   { | 
 |     using namespace APIntOps; | 
 |     const APInt& C = L; | 
 |     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C | 
 |     // The B coefficient is M-N/2 | 
 |     APInt B(M); | 
 |     B -= sdiv(N,Two); | 
 |  | 
 |     // The A coefficient is N/2 | 
 |     APInt A(N.sdiv(Two)); | 
 |  | 
 |     // Compute the B^2-4ac term. | 
 |     APInt SqrtTerm(B); | 
 |     SqrtTerm *= B; | 
 |     SqrtTerm -= Four * (A * C); | 
 |  | 
 |     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest | 
 |     // integer value or else APInt::sqrt() will assert. | 
 |     APInt SqrtVal(SqrtTerm.sqrt()); | 
 |  | 
 |     // Compute the two solutions for the quadratic formula. | 
 |     // The divisions must be performed as signed divisions. | 
 |     APInt NegB(-B); | 
 |     APInt TwoA( A << 1 ); | 
 |     if (TwoA.isMinValue()) { | 
 |       const SCEV *CNC = SE.getCouldNotCompute(); | 
 |       return std::make_pair(CNC, CNC); | 
 |     } | 
 |  | 
 |     LLVMContext *Context = SE.getContext(); | 
 |  | 
 |     ConstantInt *Solution1 = | 
 |       Context->getConstantInt((NegB + SqrtVal).sdiv(TwoA)); | 
 |     ConstantInt *Solution2 = | 
 |       Context->getConstantInt((NegB - SqrtVal).sdiv(TwoA)); | 
 |  | 
 |     return std::make_pair(SE.getConstant(Solution1), | 
 |                           SE.getConstant(Solution2)); | 
 |     } // end APIntOps namespace | 
 | } | 
 |  | 
 | /// HowFarToZero - Return the number of times a backedge comparing the specified | 
 | /// value to zero will execute.  If not computable, return CouldNotCompute. | 
 | const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { | 
 |   // If the value is a constant | 
 |   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { | 
 |     // If the value is already zero, the branch will execute zero times. | 
 |     if (C->getValue()->isZero()) return C; | 
 |     return getCouldNotCompute();  // Otherwise it will loop infinitely. | 
 |   } | 
 |  | 
 |   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); | 
 |   if (!AddRec || AddRec->getLoop() != L) | 
 |     return getCouldNotCompute(); | 
 |  | 
 |   if (AddRec->isAffine()) { | 
 |     // If this is an affine expression, the execution count of this branch is | 
 |     // the minimum unsigned root of the following equation: | 
 |     // | 
 |     //     Start + Step*N = 0 (mod 2^BW) | 
 |     // | 
 |     // equivalent to: | 
 |     // | 
 |     //             Step*N = -Start (mod 2^BW) | 
 |     // | 
 |     // where BW is the common bit width of Start and Step. | 
 |  | 
 |     // Get the initial value for the loop. | 
 |     const SCEV *Start = getSCEVAtScope(AddRec->getStart(), | 
 |                                        L->getParentLoop()); | 
 |     const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), | 
 |                                       L->getParentLoop()); | 
 |  | 
 |     if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { | 
 |       // For now we handle only constant steps. | 
 |  | 
 |       // First, handle unitary steps. | 
 |       if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so: | 
 |         return getNegativeSCEV(Start);       //   N = -Start (as unsigned) | 
 |       if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so: | 
 |         return Start;                           //    N = Start (as unsigned) | 
 |  | 
 |       // Then, try to solve the above equation provided that Start is constant. | 
 |       if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) | 
 |         return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), | 
 |                                             -StartC->getValue()->getValue(), | 
 |                                             *this); | 
 |     } | 
 |   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { | 
 |     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of | 
 |     // the quadratic equation to solve it. | 
 |     std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, | 
 |                                                                     *this); | 
 |     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); | 
 |     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); | 
 |     if (R1) { | 
 | #if 0 | 
 |       errs() << "HFTZ: " << *V << " - sol#1: " << *R1 | 
 |              << "  sol#2: " << *R2 << "\n"; | 
 | #endif | 
 |       // Pick the smallest positive root value. | 
 |       if (ConstantInt *CB = | 
 |           dyn_cast<ConstantInt>(Context->getConstantExprICmp(ICmpInst::ICMP_ULT, | 
 |                                    R1->getValue(), R2->getValue()))) { | 
 |         if (CB->getZExtValue() == false) | 
 |           std::swap(R1, R2);   // R1 is the minimum root now. | 
 |  | 
 |         // We can only use this value if the chrec ends up with an exact zero | 
 |         // value at this index.  When solving for "X*X != 5", for example, we | 
 |         // should not accept a root of 2. | 
 |         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); | 
 |         if (Val->isZero()) | 
 |           return R1;  // We found a quadratic root! | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return getCouldNotCompute(); | 
 | } | 
 |  | 
 | /// HowFarToNonZero - Return the number of times a backedge checking the | 
 | /// specified value for nonzero will execute.  If not computable, return | 
 | /// CouldNotCompute | 
 | const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { | 
 |   // Loops that look like: while (X == 0) are very strange indeed.  We don't | 
 |   // handle them yet except for the trivial case.  This could be expanded in the | 
 |   // future as needed. | 
 |  | 
 |   // If the value is a constant, check to see if it is known to be non-zero | 
 |   // already.  If so, the backedge will execute zero times. | 
 |   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { | 
 |     if (!C->getValue()->isNullValue()) | 
 |       return getIntegerSCEV(0, C->getType()); | 
 |     return getCouldNotCompute();  // Otherwise it will loop infinitely. | 
 |   } | 
 |  | 
 |   // We could implement others, but I really doubt anyone writes loops like | 
 |   // this, and if they did, they would already be constant folded. | 
 |   return getCouldNotCompute(); | 
 | } | 
 |  | 
 | /// getLoopPredecessor - If the given loop's header has exactly one unique | 
 | /// predecessor outside the loop, return it. Otherwise return null. | 
 | /// | 
 | BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { | 
 |   BasicBlock *Header = L->getHeader(); | 
 |   BasicBlock *Pred = 0; | 
 |   for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); | 
 |        PI != E; ++PI) | 
 |     if (!L->contains(*PI)) { | 
 |       if (Pred && Pred != *PI) return 0; // Multiple predecessors. | 
 |       Pred = *PI; | 
 |     } | 
 |   return Pred; | 
 | } | 
 |  | 
 | /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB | 
 | /// (which may not be an immediate predecessor) which has exactly one | 
 | /// successor from which BB is reachable, or null if no such block is | 
 | /// found. | 
 | /// | 
 | BasicBlock * | 
 | ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { | 
 |   // If the block has a unique predecessor, then there is no path from the | 
 |   // predecessor to the block that does not go through the direct edge | 
 |   // from the predecessor to the block. | 
 |   if (BasicBlock *Pred = BB->getSinglePredecessor()) | 
 |     return Pred; | 
 |  | 
 |   // A loop's header is defined to be a block that dominates the loop. | 
 |   // If the header has a unique predecessor outside the loop, it must be | 
 |   // a block that has exactly one successor that can reach the loop. | 
 |   if (Loop *L = LI->getLoopFor(BB)) | 
 |     return getLoopPredecessor(L); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /// HasSameValue - SCEV structural equivalence is usually sufficient for | 
 | /// testing whether two expressions are equal, however for the purposes of | 
 | /// looking for a condition guarding a loop, it can be useful to be a little | 
 | /// more general, since a front-end may have replicated the controlling | 
 | /// expression. | 
 | /// | 
 | static bool HasSameValue(const SCEV *A, const SCEV *B) { | 
 |   // Quick check to see if they are the same SCEV. | 
 |   if (A == B) return true; | 
 |  | 
 |   // Otherwise, if they're both SCEVUnknown, it's possible that they hold | 
 |   // two different instructions with the same value. Check for this case. | 
 |   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) | 
 |     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) | 
 |       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) | 
 |         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) | 
 |           if (AI->isIdenticalTo(BI)) | 
 |             return true; | 
 |  | 
 |   // Otherwise assume they may have a different value. | 
 |   return false; | 
 | } | 
 |  | 
 | /// isLoopGuardedByCond - Test whether entry to the loop is protected by | 
 | /// a conditional between LHS and RHS.  This is used to help avoid max | 
 | /// expressions in loop trip counts. | 
 | bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, | 
 |                                           ICmpInst::Predicate Pred, | 
 |                                           const SCEV *LHS, const SCEV *RHS) { | 
 |   // Interpret a null as meaning no loop, where there is obviously no guard | 
 |   // (interprocedural conditions notwithstanding). | 
 |   if (!L) return false; | 
 |  | 
 |   BasicBlock *Predecessor = getLoopPredecessor(L); | 
 |   BasicBlock *PredecessorDest = L->getHeader(); | 
 |  | 
 |   // Starting at the loop predecessor, climb up the predecessor chain, as long | 
 |   // as there are predecessors that can be found that have unique successors | 
 |   // leading to the original header. | 
 |   for (; Predecessor; | 
 |        PredecessorDest = Predecessor, | 
 |        Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { | 
 |  | 
 |     BranchInst *LoopEntryPredicate = | 
 |       dyn_cast<BranchInst>(Predecessor->getTerminator()); | 
 |     if (!LoopEntryPredicate || | 
 |         LoopEntryPredicate->isUnconditional()) | 
 |       continue; | 
 |  | 
 |     if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, | 
 |                         LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// isNecessaryCond - Test whether the given CondValue value is a condition | 
 | /// which is at least as strict as the one described by Pred, LHS, and RHS. | 
 | bool ScalarEvolution::isNecessaryCond(Value *CondValue, | 
 |                                       ICmpInst::Predicate Pred, | 
 |                                       const SCEV *LHS, const SCEV *RHS, | 
 |                                       bool Inverse) { | 
 |   // Recursivly handle And and Or conditions. | 
 |   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { | 
 |     if (BO->getOpcode() == Instruction::And) { | 
 |       if (!Inverse) | 
 |         return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || | 
 |                isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); | 
 |     } else if (BO->getOpcode() == Instruction::Or) { | 
 |       if (Inverse) | 
 |         return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || | 
 |                isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); | 
 |     } | 
 |   } | 
 |  | 
 |   ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); | 
 |   if (!ICI) return false; | 
 |  | 
 |   // Now that we found a conditional branch that dominates the loop, check to | 
 |   // see if it is the comparison we are looking for. | 
 |   Value *PreCondLHS = ICI->getOperand(0); | 
 |   Value *PreCondRHS = ICI->getOperand(1); | 
 |   ICmpInst::Predicate Cond; | 
 |   if (Inverse) | 
 |     Cond = ICI->getInversePredicate(); | 
 |   else | 
 |     Cond = ICI->getPredicate(); | 
 |  | 
 |   if (Cond == Pred) | 
 |     ; // An exact match. | 
 |   else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) | 
 |     ; // The actual condition is beyond sufficient. | 
 |   else | 
 |     // Check a few special cases. | 
 |     switch (Cond) { | 
 |     case ICmpInst::ICMP_UGT: | 
 |       if (Pred == ICmpInst::ICMP_ULT) { | 
 |         std::swap(PreCondLHS, PreCondRHS); | 
 |         Cond = ICmpInst::ICMP_ULT; | 
 |         break; | 
 |       } | 
 |       return false; | 
 |     case ICmpInst::ICMP_SGT: | 
 |       if (Pred == ICmpInst::ICMP_SLT) { | 
 |         std::swap(PreCondLHS, PreCondRHS); | 
 |         Cond = ICmpInst::ICMP_SLT; | 
 |         break; | 
 |       } | 
 |       return false; | 
 |     case ICmpInst::ICMP_NE: | 
 |       // Expressions like (x >u 0) are often canonicalized to (x != 0), | 
 |       // so check for this case by checking if the NE is comparing against | 
 |       // a minimum or maximum constant. | 
 |       if (!ICmpInst::isTrueWhenEqual(Pred)) | 
 |         if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { | 
 |           const APInt &A = CI->getValue(); | 
 |           switch (Pred) { | 
 |           case ICmpInst::ICMP_SLT: | 
 |             if (A.isMaxSignedValue()) break; | 
 |             return false; | 
 |           case ICmpInst::ICMP_SGT: | 
 |             if (A.isMinSignedValue()) break; | 
 |             return false; | 
 |           case ICmpInst::ICMP_ULT: | 
 |             if (A.isMaxValue()) break; | 
 |             return false; | 
 |           case ICmpInst::ICMP_UGT: | 
 |             if (A.isMinValue()) break; | 
 |             return false; | 
 |           default: | 
 |             return false; | 
 |           } | 
 |           Cond = ICmpInst::ICMP_NE; | 
 |           // NE is symmetric but the original comparison may not be. Swap | 
 |           // the operands if necessary so that they match below. | 
 |           if (isa<SCEVConstant>(LHS)) | 
 |             std::swap(PreCondLHS, PreCondRHS); | 
 |           break; | 
 |         } | 
 |       return false; | 
 |     default: | 
 |       // We weren't able to reconcile the condition. | 
 |       return false; | 
 |     } | 
 |  | 
 |   if (!PreCondLHS->getType()->isInteger()) return false; | 
 |  | 
 |   const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS); | 
 |   const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS); | 
 |   return (HasSameValue(LHS, PreCondLHSSCEV) && | 
 |           HasSameValue(RHS, PreCondRHSSCEV)) || | 
 |          (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) && | 
 |           HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV))); | 
 | } | 
 |  | 
 | /// getBECount - Subtract the end and start values and divide by the step, | 
 | /// rounding up, to get the number of times the backedge is executed. Return | 
 | /// CouldNotCompute if an intermediate computation overflows. | 
 | const SCEV *ScalarEvolution::getBECount(const SCEV *Start, | 
 |                                        const SCEV *End, | 
 |                                        const SCEV *Step) { | 
 |   const Type *Ty = Start->getType(); | 
 |   const SCEV *NegOne = getIntegerSCEV(-1, Ty); | 
 |   const SCEV *Diff = getMinusSCEV(End, Start); | 
 |   const SCEV *RoundUp = getAddExpr(Step, NegOne); | 
 |  | 
 |   // Add an adjustment to the difference between End and Start so that | 
 |   // the division will effectively round up. | 
 |   const SCEV *Add = getAddExpr(Diff, RoundUp); | 
 |  | 
 |   // Check Add for unsigned overflow. | 
 |   // TODO: More sophisticated things could be done here. | 
 |   const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1); | 
 |   const SCEV *OperandExtendedAdd = | 
 |     getAddExpr(getZeroExtendExpr(Diff, WideTy), | 
 |                getZeroExtendExpr(RoundUp, WideTy)); | 
 |   if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) | 
 |     return getCouldNotCompute(); | 
 |  | 
 |   return getUDivExpr(Add, Step); | 
 | } | 
 |  | 
 | /// HowManyLessThans - Return the number of times a backedge containing the | 
 | /// specified less-than comparison will execute.  If not computable, return | 
 | /// CouldNotCompute. | 
 | ScalarEvolution::BackedgeTakenInfo | 
 | ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, | 
 |                                   const Loop *L, bool isSigned) { | 
 |   // Only handle:  "ADDREC < LoopInvariant". | 
 |   if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); | 
 |  | 
 |   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); | 
 |   if (!AddRec || AddRec->getLoop() != L) | 
 |     return getCouldNotCompute(); | 
 |  | 
 |   if (AddRec->isAffine()) { | 
 |     // FORNOW: We only support unit strides. | 
 |     unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); | 
 |     const SCEV *Step = AddRec->getStepRecurrence(*this); | 
 |  | 
 |     // TODO: handle non-constant strides. | 
 |     const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); | 
 |     if (!CStep || CStep->isZero()) | 
 |       return getCouldNotCompute(); | 
 |     if (CStep->isOne()) { | 
 |       // With unit stride, the iteration never steps past the limit value. | 
 |     } else if (CStep->getValue()->getValue().isStrictlyPositive()) { | 
 |       if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { | 
 |         // Test whether a positive iteration iteration can step past the limit | 
 |         // value and past the maximum value for its type in a single step. | 
 |         if (isSigned) { | 
 |           APInt Max = APInt::getSignedMaxValue(BitWidth); | 
 |           if ((Max - CStep->getValue()->getValue()) | 
 |                 .slt(CLimit->getValue()->getValue())) | 
 |             return getCouldNotCompute(); | 
 |         } else { | 
 |           APInt Max = APInt::getMaxValue(BitWidth); | 
 |           if ((Max - CStep->getValue()->getValue()) | 
 |                 .ult(CLimit->getValue()->getValue())) | 
 |             return getCouldNotCompute(); | 
 |         } | 
 |       } else | 
 |         // TODO: handle non-constant limit values below. | 
 |         return getCouldNotCompute(); | 
 |     } else | 
 |       // TODO: handle negative strides below. | 
 |       return getCouldNotCompute(); | 
 |  | 
 |     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant | 
 |     // m.  So, we count the number of iterations in which {n,+,s} < m is true. | 
 |     // Note that we cannot simply return max(m-n,0)/s because it's not safe to | 
 |     // treat m-n as signed nor unsigned due to overflow possibility. | 
 |  | 
 |     // First, we get the value of the LHS in the first iteration: n | 
 |     const SCEV *Start = AddRec->getOperand(0); | 
 |  | 
 |     // Determine the minimum constant start value. | 
 |     const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start : | 
 |       getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : | 
 |                              APInt::getMinValue(BitWidth)); | 
 |  | 
 |     // If we know that the condition is true in order to enter the loop, | 
 |     // then we know that it will run exactly (m-n)/s times. Otherwise, we | 
 |     // only know that it will execute (max(m,n)-n)/s times. In both cases, | 
 |     // the division must round up. | 
 |     const SCEV *End = RHS; | 
 |     if (!isLoopGuardedByCond(L, | 
 |                              isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, | 
 |                              getMinusSCEV(Start, Step), RHS)) | 
 |       End = isSigned ? getSMaxExpr(RHS, Start) | 
 |                      : getUMaxExpr(RHS, Start); | 
 |  | 
 |     // Determine the maximum constant end value. | 
 |     const SCEV *MaxEnd = | 
 |       isa<SCEVConstant>(End) ? End : | 
 |       getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) | 
 |                                .ashr(GetMinSignBits(End) - 1) : | 
 |                              APInt::getMaxValue(BitWidth) | 
 |                                .lshr(GetMinLeadingZeros(End))); | 
 |  | 
 |     // Finally, we subtract these two values and divide, rounding up, to get | 
 |     // the number of times the backedge is executed. | 
 |     const SCEV *BECount = getBECount(Start, End, Step); | 
 |  | 
 |     // The maximum backedge count is similar, except using the minimum start | 
 |     // value and the maximum end value. | 
 |     const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step); | 
 |  | 
 |     return BackedgeTakenInfo(BECount, MaxBECount); | 
 |   } | 
 |  | 
 |   return getCouldNotCompute(); | 
 | } | 
 |  | 
 | /// getNumIterationsInRange - Return the number of iterations of this loop that | 
 | /// produce values in the specified constant range.  Another way of looking at | 
 | /// this is that it returns the first iteration number where the value is not in | 
 | /// the condition, thus computing the exit count. If the iteration count can't | 
 | /// be computed, an instance of SCEVCouldNotCompute is returned. | 
 | const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, | 
 |                                                     ScalarEvolution &SE) const { | 
 |   if (Range.isFullSet())  // Infinite loop. | 
 |     return SE.getCouldNotCompute(); | 
 |  | 
 |   // If the start is a non-zero constant, shift the range to simplify things. | 
 |   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) | 
 |     if (!SC->getValue()->isZero()) { | 
 |       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); | 
 |       Operands[0] = SE.getIntegerSCEV(0, SC->getType()); | 
 |       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); | 
 |       if (const SCEVAddRecExpr *ShiftedAddRec = | 
 |             dyn_cast<SCEVAddRecExpr>(Shifted)) | 
 |         return ShiftedAddRec->getNumIterationsInRange( | 
 |                            Range.subtract(SC->getValue()->getValue()), SE); | 
 |       // This is strange and shouldn't happen. | 
 |       return SE.getCouldNotCompute(); | 
 |     } | 
 |  | 
 |   // The only time we can solve this is when we have all constant indices. | 
 |   // Otherwise, we cannot determine the overflow conditions. | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
 |     if (!isa<SCEVConstant>(getOperand(i))) | 
 |       return SE.getCouldNotCompute(); | 
 |  | 
 |  | 
 |   // Okay at this point we know that all elements of the chrec are constants and | 
 |   // that the start element is zero. | 
 |  | 
 |   // First check to see if the range contains zero.  If not, the first | 
 |   // iteration exits. | 
 |   unsigned BitWidth = SE.getTypeSizeInBits(getType()); | 
 |   if (!Range.contains(APInt(BitWidth, 0))) | 
 |     return SE.getIntegerSCEV(0, getType()); | 
 |  | 
 |   if (isAffine()) { | 
 |     // If this is an affine expression then we have this situation: | 
 |     //   Solve {0,+,A} in Range  ===  Ax in Range | 
 |  | 
 |     // We know that zero is in the range.  If A is positive then we know that | 
 |     // the upper value of the range must be the first possible exit value. | 
 |     // If A is negative then the lower of the range is the last possible loop | 
 |     // value.  Also note that we already checked for a full range. | 
 |     APInt One(BitWidth,1); | 
 |     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); | 
 |     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); | 
 |  | 
 |     // The exit value should be (End+A)/A. | 
 |     APInt ExitVal = (End + A).udiv(A); | 
 |     ConstantInt *ExitValue = SE.getContext()->getConstantInt(ExitVal); | 
 |  | 
 |     // Evaluate at the exit value.  If we really did fall out of the valid | 
 |     // range, then we computed our trip count, otherwise wrap around or other | 
 |     // things must have happened. | 
 |     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); | 
 |     if (Range.contains(Val->getValue())) | 
 |       return SE.getCouldNotCompute();  // Something strange happened | 
 |  | 
 |     // Ensure that the previous value is in the range.  This is a sanity check. | 
 |     assert(Range.contains( | 
 |            EvaluateConstantChrecAtConstant(this, | 
 |            SE.getContext()->getConstantInt(ExitVal - One), SE)->getValue()) && | 
 |            "Linear scev computation is off in a bad way!"); | 
 |     return SE.getConstant(ExitValue); | 
 |   } else if (isQuadratic()) { | 
 |     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the | 
 |     // quadratic equation to solve it.  To do this, we must frame our problem in | 
 |     // terms of figuring out when zero is crossed, instead of when | 
 |     // Range.getUpper() is crossed. | 
 |     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); | 
 |     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); | 
 |     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); | 
 |  | 
 |     // Next, solve the constructed addrec | 
 |     std::pair<const SCEV *,const SCEV *> Roots = | 
 |       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); | 
 |     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); | 
 |     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); | 
 |     if (R1) { | 
 |       // Pick the smallest positive root value. | 
 |       if (ConstantInt *CB = | 
 |           dyn_cast<ConstantInt>( | 
 |                        SE.getContext()->getConstantExprICmp(ICmpInst::ICMP_ULT, | 
 |                          R1->getValue(), R2->getValue()))) { | 
 |         if (CB->getZExtValue() == false) | 
 |           std::swap(R1, R2);   // R1 is the minimum root now. | 
 |  | 
 |         // Make sure the root is not off by one.  The returned iteration should | 
 |         // not be in the range, but the previous one should be.  When solving | 
 |         // for "X*X < 5", for example, we should not return a root of 2. | 
 |         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, | 
 |                                                              R1->getValue(), | 
 |                                                              SE); | 
 |         if (Range.contains(R1Val->getValue())) { | 
 |           // The next iteration must be out of the range... | 
 |           ConstantInt *NextVal = | 
 |                  SE.getContext()->getConstantInt(R1->getValue()->getValue()+1); | 
 |  | 
 |           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); | 
 |           if (!Range.contains(R1Val->getValue())) | 
 |             return SE.getConstant(NextVal); | 
 |           return SE.getCouldNotCompute();  // Something strange happened | 
 |         } | 
 |  | 
 |         // If R1 was not in the range, then it is a good return value.  Make | 
 |         // sure that R1-1 WAS in the range though, just in case. | 
 |         ConstantInt *NextVal = | 
 |                  SE.getContext()->getConstantInt(R1->getValue()->getValue()-1); | 
 |         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); | 
 |         if (Range.contains(R1Val->getValue())) | 
 |           return R1; | 
 |         return SE.getCouldNotCompute();  // Something strange happened | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return SE.getCouldNotCompute(); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                   SCEVCallbackVH Class Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void ScalarEvolution::SCEVCallbackVH::deleted() { | 
 |   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); | 
 |   if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) | 
 |     SE->ConstantEvolutionLoopExitValue.erase(PN); | 
 |   if (Instruction *I = dyn_cast<Instruction>(getValPtr())) | 
 |     SE->ValuesAtScopes.erase(I); | 
 |   SE->Scalars.erase(getValPtr()); | 
 |   // this now dangles! | 
 | } | 
 |  | 
 | void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { | 
 |   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); | 
 |  | 
 |   // Forget all the expressions associated with users of the old value, | 
 |   // so that future queries will recompute the expressions using the new | 
 |   // value. | 
 |   SmallVector<User *, 16> Worklist; | 
 |   Value *Old = getValPtr(); | 
 |   bool DeleteOld = false; | 
 |   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); | 
 |        UI != UE; ++UI) | 
 |     Worklist.push_back(*UI); | 
 |   while (!Worklist.empty()) { | 
 |     User *U = Worklist.pop_back_val(); | 
 |     // Deleting the Old value will cause this to dangle. Postpone | 
 |     // that until everything else is done. | 
 |     if (U == Old) { | 
 |       DeleteOld = true; | 
 |       continue; | 
 |     } | 
 |     if (PHINode *PN = dyn_cast<PHINode>(U)) | 
 |       SE->ConstantEvolutionLoopExitValue.erase(PN); | 
 |     if (Instruction *I = dyn_cast<Instruction>(U)) | 
 |       SE->ValuesAtScopes.erase(I); | 
 |     if (SE->Scalars.erase(U)) | 
 |       for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); | 
 |            UI != UE; ++UI) | 
 |         Worklist.push_back(*UI); | 
 |   } | 
 |   if (DeleteOld) { | 
 |     if (PHINode *PN = dyn_cast<PHINode>(Old)) | 
 |       SE->ConstantEvolutionLoopExitValue.erase(PN); | 
 |     if (Instruction *I = dyn_cast<Instruction>(Old)) | 
 |       SE->ValuesAtScopes.erase(I); | 
 |     SE->Scalars.erase(Old); | 
 |     // this now dangles! | 
 |   } | 
 |   // this may dangle! | 
 | } | 
 |  | 
 | ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) | 
 |   : CallbackVH(V), SE(se) {} | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                   ScalarEvolution Class Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | ScalarEvolution::ScalarEvolution() | 
 |   : FunctionPass(&ID) { | 
 | } | 
 |  | 
 | bool ScalarEvolution::runOnFunction(Function &F) { | 
 |   this->F = &F; | 
 |   LI = &getAnalysis<LoopInfo>(); | 
 |   TD = getAnalysisIfAvailable<TargetData>(); | 
 |   return false; | 
 | } | 
 |  | 
 | void ScalarEvolution::releaseMemory() { | 
 |   Scalars.clear(); | 
 |   BackedgeTakenCounts.clear(); | 
 |   ConstantEvolutionLoopExitValue.clear(); | 
 |   ValuesAtScopes.clear(); | 
 |   UniqueSCEVs.clear(); | 
 |   SCEVAllocator.Reset(); | 
 | } | 
 |  | 
 | void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequiredTransitive<LoopInfo>(); | 
 | } | 
 |  | 
 | bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { | 
 |   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); | 
 | } | 
 |  | 
 | static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, | 
 |                           const Loop *L) { | 
 |   // Print all inner loops first | 
 |   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) | 
 |     PrintLoopInfo(OS, SE, *I); | 
 |  | 
 |   OS << "Loop " << L->getHeader()->getName() << ": "; | 
 |  | 
 |   SmallVector<BasicBlock*, 8> ExitBlocks; | 
 |   L->getExitBlocks(ExitBlocks); | 
 |   if (ExitBlocks.size() != 1) | 
 |     OS << "<multiple exits> "; | 
 |  | 
 |   if (SE->hasLoopInvariantBackedgeTakenCount(L)) { | 
 |     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); | 
 |   } else { | 
 |     OS << "Unpredictable backedge-taken count. "; | 
 |   } | 
 |  | 
 |   OS << "\n"; | 
 |   OS << "Loop " << L->getHeader()->getName() << ": "; | 
 |  | 
 |   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { | 
 |     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); | 
 |   } else { | 
 |     OS << "Unpredictable max backedge-taken count. "; | 
 |   } | 
 |  | 
 |   OS << "\n"; | 
 | } | 
 |  | 
 | void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { | 
 |   // ScalarEvolution's implementaiton of the print method is to print | 
 |   // out SCEV values of all instructions that are interesting. Doing | 
 |   // this potentially causes it to create new SCEV objects though, | 
 |   // which technically conflicts with the const qualifier. This isn't | 
 |   // observable from outside the class though, so casting away the | 
 |   // const isn't dangerous. | 
 |   ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); | 
 |  | 
 |   OS << "Classifying expressions for: " << F->getName() << "\n"; | 
 |   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) | 
 |     if (isSCEVable(I->getType())) { | 
 |       OS << *I; | 
 |       OS << "  -->  "; | 
 |       const SCEV *SV = SE.getSCEV(&*I); | 
 |       SV->print(OS); | 
 |  | 
 |       const Loop *L = LI->getLoopFor((*I).getParent()); | 
 |  | 
 |       const SCEV *AtUse = SE.getSCEVAtScope(SV, L); | 
 |       if (AtUse != SV) { | 
 |         OS << "  -->  "; | 
 |         AtUse->print(OS); | 
 |       } | 
 |  | 
 |       if (L) { | 
 |         OS << "\t\t" "Exits: "; | 
 |         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); | 
 |         if (!ExitValue->isLoopInvariant(L)) { | 
 |           OS << "<<Unknown>>"; | 
 |         } else { | 
 |           OS << *ExitValue; | 
 |         } | 
 |       } | 
 |  | 
 |       OS << "\n"; | 
 |     } | 
 |  | 
 |   OS << "Determining loop execution counts for: " << F->getName() << "\n"; | 
 |   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) | 
 |     PrintLoopInfo(OS, &SE, *I); | 
 | } | 
 |  | 
 | void ScalarEvolution::print(std::ostream &o, const Module *M) const { | 
 |   raw_os_ostream OS(o); | 
 |   print(OS, M); | 
 | } |