| //===- SparcV9BurgISel.cpp - SparcV9 BURG-based Instruction Selector ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // SparcV9 BURG-based instruction selector. It uses the SSA graph to |
| // construct a forest of BURG instruction trees (class InstrForest) and then |
| // uses the BURG-generated tree grammar (BURM) to find the optimal instruction |
| // sequences for the SparcV9. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MachineInstrAnnot.h" |
| #include "SparcV9BurgISel.h" |
| #include "SparcV9InstrForest.h" |
| #include "SparcV9Internals.h" |
| #include "SparcV9TmpInstr.h" |
| #include "SparcV9FrameInfo.h" |
| #include "SparcV9RegisterInfo.h" |
| #include "MachineFunctionInfo.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Type.h" |
| #include "llvm/Config/alloca.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/LeakDetector.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/hash_map" |
| #include <algorithm> |
| #include <cmath> |
| #include <iostream> |
| using namespace llvm; |
| |
| //==------------------------------------------------------------------------==// |
| // InstrForest (V9ISel BURG instruction trees) implementation |
| //==------------------------------------------------------------------------==// |
| |
| namespace llvm { |
| |
| class InstructionNode : public InstrTreeNode { |
| bool codeIsFoldedIntoParent; |
| |
| public: |
| InstructionNode(Instruction *_instr); |
| |
| Instruction *getInstruction() const { |
| assert(treeNodeType == NTInstructionNode); |
| return cast<Instruction>(val); |
| } |
| |
| void markFoldedIntoParent() { codeIsFoldedIntoParent = true; } |
| bool isFoldedIntoParent() { return codeIsFoldedIntoParent; } |
| |
| // Methods to support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const InstructionNode *N) { return true; } |
| static inline bool classof(const InstrTreeNode *N) { |
| return N->getNodeType() == InstrTreeNode::NTInstructionNode; |
| } |
| |
| protected: |
| virtual void dumpNode(int indent) const; |
| }; |
| |
| class VRegListNode : public InstrTreeNode { |
| public: |
| VRegListNode() : InstrTreeNode(NTVRegListNode, 0) { opLabel = VRegListOp; } |
| // Methods to support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const VRegListNode *N) { return true; } |
| static inline bool classof(const InstrTreeNode *N) { |
| return N->getNodeType() == InstrTreeNode::NTVRegListNode; |
| } |
| protected: |
| virtual void dumpNode(int indent) const; |
| }; |
| |
| class VRegNode : public InstrTreeNode { |
| public: |
| VRegNode(Value* _val) : InstrTreeNode(NTVRegNode, _val) { |
| opLabel = VRegNodeOp; |
| } |
| // Methods to support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const VRegNode *N) { return true; } |
| static inline bool classof(const InstrTreeNode *N) { |
| return N->getNodeType() == InstrTreeNode::NTVRegNode; |
| } |
| protected: |
| virtual void dumpNode(int indent) const; |
| }; |
| |
| class ConstantNode : public InstrTreeNode { |
| public: |
| ConstantNode(Constant *constVal) |
| : InstrTreeNode(NTConstNode, (Value*)constVal) { |
| opLabel = ConstantNodeOp; |
| } |
| Constant *getConstVal() const { return (Constant*) val;} |
| // Methods to support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const ConstantNode *N) { return true; } |
| static inline bool classof(const InstrTreeNode *N) { |
| return N->getNodeType() == InstrTreeNode::NTConstNode; |
| } |
| protected: |
| virtual void dumpNode(int indent) const; |
| }; |
| |
| class LabelNode : public InstrTreeNode { |
| public: |
| LabelNode(BasicBlock* BB) : InstrTreeNode(NTLabelNode, (Value*)BB) { |
| opLabel = LabelNodeOp; |
| } |
| BasicBlock *getBasicBlock() const { return (BasicBlock*)val;} |
| // Methods to support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const LabelNode *N) { return true; } |
| static inline bool classof(const InstrTreeNode *N) { |
| return N->getNodeType() == InstrTreeNode::NTLabelNode; |
| } |
| protected: |
| virtual void dumpNode(int indent) const; |
| }; |
| |
| /// InstrForest - A forest of instruction trees for a single function. |
| /// The goal of InstrForest is to group instructions into a single |
| /// tree if one or more of them might be potentially combined into a |
| /// single complex instruction in the target machine. We group two |
| /// instructions O and I if: (1) Instruction O computes an operand used |
| /// by instruction I, and (2) O and I are part of the same basic block, |
| /// and (3) O has only a single use, viz., I. |
| /// |
| class InstrForest : private hash_map<const Instruction *, InstructionNode*> { |
| public: |
| // Use a vector for the root set to get a deterministic iterator |
| // for stable code generation. Even though we need to erase nodes |
| // during forest construction, a vector should still be efficient |
| // because the elements to erase are nearly always near the end. |
| typedef std::vector<InstructionNode*> RootSet; |
| typedef RootSet:: iterator root_iterator; |
| typedef RootSet::const_iterator const_root_iterator; |
| |
| private: |
| RootSet treeRoots; |
| |
| public: |
| /*ctor*/ InstrForest (Function *F); |
| /*dtor*/ ~InstrForest (); |
| |
| /// getTreeNodeForInstr - Returns the tree node for an Instruction. |
| /// |
| inline InstructionNode *getTreeNodeForInstr(Instruction* instr) { |
| return (*this)[instr]; |
| } |
| |
| /// Iterators for the root nodes for all the trees. |
| /// |
| const_root_iterator roots_begin() const { return treeRoots.begin(); } |
| root_iterator roots_begin() { return treeRoots.begin(); } |
| const_root_iterator roots_end () const { return treeRoots.end(); } |
| root_iterator roots_end () { return treeRoots.end(); } |
| |
| void dump() const; |
| |
| private: |
| // Methods used to build the instruction forest. |
| void eraseRoot (InstructionNode* node); |
| void setLeftChild (InstrTreeNode* parent, InstrTreeNode* child); |
| void setRightChild(InstrTreeNode* parent, InstrTreeNode* child); |
| void setParent (InstrTreeNode* child, InstrTreeNode* parent); |
| void noteTreeNodeForInstr(Instruction* instr, InstructionNode* treeNode); |
| InstructionNode* buildTreeForInstruction(Instruction* instr); |
| }; |
| |
| void InstrTreeNode::dump(int dumpChildren, int indent) const { |
| dumpNode(indent); |
| |
| if (dumpChildren) { |
| if (LeftChild) |
| LeftChild->dump(dumpChildren, indent+1); |
| if (RightChild) |
| RightChild->dump(dumpChildren, indent+1); |
| } |
| } |
| |
| InstructionNode::InstructionNode(Instruction* I) |
| : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false) { |
| opLabel = I->getOpcode(); |
| |
| // Distinguish special cases of some instructions such as Ret and Br |
| // |
| if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) { |
| opLabel = RetValueOp; // ret(value) operation |
| } |
| else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional()) |
| { |
| opLabel = BrCondOp; // br(cond) operation |
| } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) { |
| opLabel = SetCCOp; // common label for all SetCC ops |
| } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) { |
| opLabel = AllocaN; // Alloca(ptr, N) operation |
| } else if (opLabel == Instruction::GetElementPtr && |
| cast<GetElementPtrInst>(I)->hasIndices()) { |
| opLabel = opLabel + 100; // getElem with index vector |
| } else if (opLabel == Instruction::Xor && |
| BinaryOperator::isNot(I)) { |
| opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator |
| : BNotOp; // bitwise Not operator |
| } else if (opLabel == Instruction::And || opLabel == Instruction::Or || |
| opLabel == Instruction::Xor) { |
| // Distinguish bitwise operators from logical operators! |
| if (I->getType() != Type::BoolTy) |
| opLabel = opLabel + 100; // bitwise operator |
| } else if (opLabel == Instruction::Cast) { |
| const Type *ITy = I->getType(); |
| switch(ITy->getTypeID()) |
| { |
| case Type::BoolTyID: opLabel = ToBoolTy; break; |
| case Type::UByteTyID: opLabel = ToUByteTy; break; |
| case Type::SByteTyID: opLabel = ToSByteTy; break; |
| case Type::UShortTyID: opLabel = ToUShortTy; break; |
| case Type::ShortTyID: opLabel = ToShortTy; break; |
| case Type::UIntTyID: opLabel = ToUIntTy; break; |
| case Type::IntTyID: opLabel = ToIntTy; break; |
| case Type::ULongTyID: opLabel = ToULongTy; break; |
| case Type::LongTyID: opLabel = ToLongTy; break; |
| case Type::FloatTyID: opLabel = ToFloatTy; break; |
| case Type::DoubleTyID: opLabel = ToDoubleTy; break; |
| case Type::ArrayTyID: opLabel = ToArrayTy; break; |
| case Type::PointerTyID: opLabel = ToPointerTy; break; |
| default: |
| // Just use `Cast' opcode otherwise. It's probably ignored. |
| break; |
| } |
| } |
| } |
| |
| void InstructionNode::dumpNode(int indent) const { |
| for (int i=0; i < indent; i++) |
| std::cerr << " "; |
| std::cerr << getInstruction()->getOpcodeName() |
| << " [label " << getOpLabel() << "]" << "\n"; |
| } |
| |
| void VRegListNode::dumpNode(int indent) const { |
| for (int i=0; i < indent; i++) |
| std::cerr << " "; |
| |
| std::cerr << "List" << "\n"; |
| } |
| |
| void VRegNode::dumpNode(int indent) const { |
| for (int i=0; i < indent; i++) |
| std::cerr << " "; |
| std::cerr << "VReg " << *getValue() << "\n"; |
| } |
| |
| void ConstantNode::dumpNode(int indent) const { |
| for (int i=0; i < indent; i++) |
| std::cerr << " "; |
| std::cerr << "Constant " << *getValue() << "\n"; |
| } |
| |
| void LabelNode::dumpNode(int indent) const { |
| for (int i=0; i < indent; i++) |
| std::cerr << " "; |
| |
| std::cerr << "Label " << *getValue() << "\n"; |
| } |
| |
| /// InstrForest ctor - Create a forest of instruction trees for a |
| /// single function. |
| /// |
| InstrForest::InstrForest(Function *F) { |
| for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) { |
| for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| buildTreeForInstruction(I); |
| } |
| } |
| |
| InstrForest::~InstrForest() { |
| for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>); |
| } |
| |
| void InstrForest::dump() const { |
| for (const_root_iterator I = roots_begin(); I != roots_end(); ++I) |
| (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0); |
| } |
| |
| inline void InstrForest::eraseRoot(InstructionNode* node) { |
| for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend(); |
| RI != RE; ++RI) |
| if (*RI == node) |
| treeRoots.erase(RI.base()-1); |
| } |
| |
| inline void InstrForest::noteTreeNodeForInstr(Instruction *instr, |
| InstructionNode *treeNode) { |
| (*this)[instr] = treeNode; |
| treeRoots.push_back(treeNode); // mark node as root of a new tree |
| } |
| |
| inline void InstrForest::setLeftChild(InstrTreeNode *parent, |
| InstrTreeNode *child) { |
| parent->LeftChild = child; |
| child->Parent = parent; |
| if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child)) |
| eraseRoot(instrNode); // no longer a tree root |
| } |
| |
| inline void InstrForest::setRightChild(InstrTreeNode *parent, |
| InstrTreeNode *child) { |
| parent->RightChild = child; |
| child->Parent = parent; |
| if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child)) |
| eraseRoot(instrNode); // no longer a tree root |
| } |
| |
| InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) { |
| InstructionNode *treeNode = getTreeNodeForInstr(instr); |
| if (treeNode) { |
| // treeNode has already been constructed for this instruction |
| assert(treeNode->getInstruction() == instr); |
| return treeNode; |
| } |
| |
| // Otherwise, create a new tree node for this instruction. |
| treeNode = new InstructionNode(instr); |
| noteTreeNodeForInstr(instr, treeNode); |
| |
| if (instr->getOpcode() == Instruction::Call) { |
| // Operands of call instruction |
| return treeNode; |
| } |
| |
| // If the instruction has more than 2 instruction operands, |
| // then we need to create artificial list nodes to hold them. |
| // (Note that we only count operands that get tree nodes, and not |
| // others such as branch labels for a branch or switch instruction.) |
| // To do this efficiently, we'll walk all operands, build treeNodes |
| // for all appropriate operands and save them in an array. We then |
| // insert children at the end, creating list nodes where needed. |
| // As a performance optimization, allocate a child array only |
| // if a fixed array is too small. |
| int numChildren = 0; |
| InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()]; |
| |
| // Walk the operands of the instruction |
| for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); |
| ++O) { |
| Value* operand = *O; |
| |
| // Check if the operand is a data value, not an branch label, type, |
| // method or module. If the operand is an address type (i.e., label |
| // or method) that is used in an non-branching operation, e.g., `add'. |
| // that should be considered a data value. |
| // Check latter condition here just to simplify the next IF. |
| bool includeAddressOperand = |
| (isa<BasicBlock>(operand) || isa<Function>(operand)) |
| && !instr->isTerminator(); |
| |
| if (includeAddressOperand || isa<Instruction>(operand) || |
| isa<Constant>(operand) || isa<Argument>(operand)) { |
| // This operand is a data value. |
| // An instruction that computes the incoming value is added as a |
| // child of the current instruction if: |
| // the value has only a single use |
| // AND both instructions are in the same basic block. |
| // AND the current instruction is not a PHI (because the incoming |
| // value is conceptually in a predecessor block, |
| // even though it may be in the same static block) |
| // (Note that if the value has only a single use (viz., `instr'), |
| // the def of the value can be safely moved just before instr |
| // and therefore it is safe to combine these two instructions.) |
| // In all other cases, the virtual register holding the value |
| // is used directly, i.e., made a child of the instruction node. |
| InstrTreeNode* opTreeNode; |
| if (isa<Instruction>(operand) && operand->hasOneUse() && |
| cast<Instruction>(operand)->getParent() == instr->getParent() && |
| instr->getOpcode() != Instruction::PHI && |
| instr->getOpcode() != Instruction::Call) { |
| // Recursively create a treeNode for it. |
| opTreeNode = buildTreeForInstruction((Instruction*)operand); |
| } else if (Constant *CPV = dyn_cast<Constant>(operand)) { |
| if (isa<GlobalValue>(CPV)) |
| opTreeNode = new VRegNode(operand); |
| else if (isa<UndefValue>(CPV)) { |
| opTreeNode = new |
| ConstantNode(Constant::getNullValue(CPV->getType())); |
| } else { |
| // Create a leaf node for a constant |
| opTreeNode = new ConstantNode(CPV); |
| } |
| } else { |
| // Create a leaf node for the virtual register |
| opTreeNode = new VRegNode(operand); |
| } |
| |
| childArray[numChildren++] = opTreeNode; |
| } |
| } |
| |
| // Add any selected operands as children in the tree. |
| // Certain instructions can have more than 2 in some instances (viz., |
| // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an |
| // array or struct). Make the operands of every such instruction into |
| // a right-leaning binary tree with the operand nodes at the leaves |
| // and VRegList nodes as internal nodes. |
| InstrTreeNode *parent = treeNode; |
| |
| if (numChildren > 2) { |
| unsigned instrOpcode = treeNode->getInstruction()->getOpcode(); |
| assert(instrOpcode == Instruction::PHI || |
| instrOpcode == Instruction::Call || |
| instrOpcode == Instruction::Load || |
| instrOpcode == Instruction::Store || |
| instrOpcode == Instruction::GetElementPtr); |
| } |
| |
| // Insert the first child as a direct child |
| if (numChildren >= 1) |
| setLeftChild(parent, childArray[0]); |
| |
| int n; |
| |
| // Create a list node for children 2 .. N-1, if any |
| for (n = numChildren-1; n >= 2; n--) { |
| // We have more than two children |
| InstrTreeNode *listNode = new VRegListNode(); |
| setRightChild(parent, listNode); |
| setLeftChild(listNode, childArray[numChildren - n]); |
| parent = listNode; |
| } |
| |
| // Now insert the last remaining child (if any). |
| if (numChildren >= 2) { |
| assert(n == 1); |
| setRightChild(parent, childArray[numChildren - 1]); |
| } |
| |
| delete [] childArray; |
| return treeNode; |
| } |
| //==------------------------------------------------------------------------==// |
| // V9ISel Command-line options and declarations |
| //==------------------------------------------------------------------------==// |
| |
| namespace { |
| /// Allow the user to select the amount of debugging information printed |
| /// out by V9ISel. |
| /// |
| enum SelectDebugLevel_t { |
| Select_NoDebugInfo, |
| Select_PrintMachineCode, |
| Select_DebugInstTrees, |
| Select_DebugBurgTrees, |
| }; |
| cl::opt<SelectDebugLevel_t> |
| SelectDebugLevel("dselect", cl::Hidden, |
| cl::desc("enable instruction selection debug information"), |
| cl::values( |
| clEnumValN(Select_NoDebugInfo, "n", "disable debug output"), |
| clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"), |
| clEnumValN(Select_DebugInstTrees, "i", |
| "print debugging info for instruction selection"), |
| clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"), |
| clEnumValEnd)); |
| |
| |
| /// V9ISel - This is the FunctionPass that drives the instruction selection |
| /// process on the SparcV9 target. |
| /// |
| class V9ISel : public FunctionPass { |
| TargetMachine &Target; |
| void InsertCodeForPhis(Function &F); |
| void InsertPhiElimInstructions(BasicBlock *BB, |
| const std::vector<MachineInstr*>& CpVec); |
| void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt); |
| void PostprocessMachineCodeForTree(InstructionNode* instrNode, |
| int ruleForNode, short* nts); |
| public: |
| V9ISel(TargetMachine &TM) : Target(TM) {} |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| } |
| |
| bool runOnFunction(Function &F); |
| virtual const char *getPassName() const { |
| return "SparcV9 BURG Instruction Selector"; |
| } |
| }; |
| } |
| |
| |
| //==------------------------------------------------------------------------==// |
| // Various V9ISel helper functions |
| //==------------------------------------------------------------------------==// |
| |
| static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*) |
| static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR |
| |
| /// ConvertConstantToIntType - Function to get the value of an integral |
| /// constant in the form that must be put into the machine register. The |
| /// specified constant is interpreted as (i.e., converted if necessary to) the |
| /// specified destination type. The result is always returned as an uint64_t, |
| /// since the representation of int64_t and uint64_t are identical. The |
| /// argument can be any known const. isValidConstant is set to true if a valid |
| /// constant was found. |
| /// |
| uint64_t ConvertConstantToIntType(const TargetMachine &target, const Value *V, |
| const Type *destType, bool &isValidConstant) { |
| isValidConstant = false; |
| uint64_t C = 0; |
| |
| if (! destType->isIntegral() && ! isa<PointerType>(destType)) |
| return C; |
| |
| if (! isa<Constant>(V) || isa<GlobalValue>(V)) |
| return C; |
| |
| // GlobalValue: no conversions needed: get value and return it |
| if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) { |
| isValidConstant = true; // may be overwritten by recursive call |
| return ConvertConstantToIntType(target, GV, destType, isValidConstant); |
| } |
| |
| // ConstantBool: no conversions needed: get value and return it |
| if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) { |
| isValidConstant = true; |
| return (uint64_t) CB->getValue(); |
| } |
| |
| // ConstantPointerNull: it's really just a big, shiny version of zero. |
| if (isa<ConstantPointerNull>(V)) { |
| isValidConstant = true; |
| return 0; |
| } |
| |
| // For other types of constants, some conversion may be needed. |
| // First, extract the constant operand according to its own type |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| switch(CE->getOpcode()) { |
| case Instruction::Cast: // recursively get the value as cast |
| C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(), |
| isValidConstant); |
| break; |
| default: // not simplifying other ConstantExprs |
| break; |
| } |
| else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| isValidConstant = true; |
| C = CI->getRawValue(); |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { |
| isValidConstant = true; |
| double fC = CFP->getValue(); |
| C = (destType->isSigned()? (uint64_t) (int64_t) fC |
| : (uint64_t) fC); |
| } else if (isa<UndefValue>(V)) { |
| isValidConstant = true; |
| C = 0; |
| } |
| |
| // Now if a valid value was found, convert it to destType. |
| if (isValidConstant) { |
| unsigned opSize = target.getTargetData().getTypeSize(V->getType()); |
| unsigned destSize = target.getTargetData().getTypeSize(destType); |
| uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0; |
| assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected"); |
| |
| if (destType->isSigned()) { |
| if (opSize > destSize) // operand is larger than dest: |
| C = C & maskHi; // mask high bits |
| |
| if (opSize > destSize || |
| (opSize == destSize && ! V->getType()->isSigned())) |
| if (C & (1U << (8*destSize - 1))) |
| C = C | ~maskHi; // sign-extend from destSize to 64 bits |
| } |
| else { |
| if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) { |
| // operand is larger than dest, |
| // OR both are equal but smaller than the full register size |
| // AND operand is signed, so it may have extra sign bits: |
| // mask high bits |
| C = C & maskHi; |
| } |
| } |
| } |
| |
| return C; |
| } |
| |
| /// CreateSETUWConst - Copy a 32-bit unsigned constant into the register |
| /// `dest', using SETHI, OR in the worst case. This function correctly emulates |
| /// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). The |
| /// isSigned=true case is used to implement SETSW without duplicating code. It |
| /// optimizes some common cases: |
| /// (1) Small value that fits in simm13 field of OR: don't need SETHI. |
| /// (2) isSigned = true and C is a small negative signed value, i.e., |
| /// high bits are 1, and the remaining bits fit in simm13(OR). |
| static inline void |
| CreateSETUWConst(uint32_t C, |
| Instruction* dest, std::vector<MachineInstr*>& mvec, |
| bool isSigned = false) { |
| MachineInstr *miSETHI = NULL, *miOR = NULL; |
| |
| // In order to get efficient code, we should not generate the SETHI if |
| // all high bits are 1 (i.e., this is a small signed value that fits in |
| // the simm13 field of OR). So we check for and handle that case specially. |
| // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0. |
| // In fact, sC == -sC, so we have to check for this explicitly. |
| int32_t sC = (int32_t) C; |
| bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM; |
| |
| // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough |
| if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) { |
| miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest); |
| miSETHI->getOperand(0).markHi32(); |
| mvec.push_back(miSETHI); |
| } |
| |
| // Set the low 10 or 12 bits in dest. This is necessary if no SETHI |
| // was generated, or if the low 10 bits are non-zero. |
| if (miSETHI==NULL || C & MAXLO) { |
| if (miSETHI) { |
| // unsigned value with high-order bits set using SETHI |
| miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest); |
| miOR->getOperand(1).markLo32(); |
| } else { |
| // unsigned or small signed value that fits in simm13 field of OR |
| assert(smallNegValue || (C & ~MAXSIMM) == 0); |
| miOR = BuildMI(V9::ORi, 3).addMReg(SparcV9::g0) |
| .addSImm(sC).addRegDef(dest); |
| } |
| mvec.push_back(miOR); |
| } |
| |
| assert((miSETHI || miOR) && "Oops, no code was generated!"); |
| } |
| |
| /// CreateSETSWConst - Set a 32-bit signed constant in the register `dest', |
| /// with sign-extension to 64 bits. This uses SETHI, OR, SRA in the worst case. |
| /// This function correctly emulates the SETSW pseudo-op for SPARC v9. It |
| /// optimizes the same cases as SETUWConst, plus: |
| /// (1) SRA is not needed for positive or small negative values. |
| /// |
| static inline void |
| CreateSETSWConst(int32_t C, |
| Instruction* dest, std::vector<MachineInstr*>& mvec) { |
| // Set the low 32 bits of dest |
| CreateSETUWConst((uint32_t) C, dest, mvec, /*isSigned*/true); |
| |
| // Sign-extend to the high 32 bits if needed. |
| // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM |
| if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM)) |
| mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest)); |
| } |
| |
| /// CreateSETXConst - Set a 64-bit signed or unsigned constant in the |
| /// register `dest'. Use SETUWConst for each 32 bit word, plus a |
| /// left-shift-by-32 in between. This function correctly emulates the SETX |
| /// pseudo-op for SPARC v9. It optimizes the same cases as SETUWConst for each |
| /// 32 bit word. |
| /// |
| static inline void |
| CreateSETXConst(uint64_t C, |
| Instruction* tmpReg, Instruction* dest, |
| std::vector<MachineInstr*>& mvec) { |
| assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!"); |
| |
| MachineInstr* MI; |
| |
| // Code to set the upper 32 bits of the value in register `tmpReg' |
| CreateSETUWConst((C >> 32), tmpReg, mvec); |
| |
| // Shift tmpReg left by 32 bits |
| mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) |
| .addRegDef(tmpReg)); |
| |
| // Code to set the low 32 bits of the value in register `dest' |
| CreateSETUWConst(C, dest, mvec); |
| |
| // dest = OR(tmpReg, dest) |
| mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest)); |
| } |
| |
| /// CreateSETUWLabel - Set a 32-bit constant (given by a symbolic label) in |
| /// the register `dest'. |
| /// |
| static inline void |
| CreateSETUWLabel(Value* val, |
| Instruction* dest, std::vector<MachineInstr*>& mvec) { |
| MachineInstr* MI; |
| |
| // Set the high 22 bits in dest |
| MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest); |
| MI->getOperand(0).markHi32(); |
| mvec.push_back(MI); |
| |
| // Set the low 10 bits in dest |
| MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest); |
| MI->getOperand(1).markLo32(); |
| mvec.push_back(MI); |
| } |
| |
| /// CreateSETXLabel - Set a 64-bit constant (given by a symbolic label) in the |
| /// register `dest'. |
| /// |
| static inline void |
| CreateSETXLabel(Value* val, Instruction* tmpReg, |
| Instruction* dest, std::vector<MachineInstr*>& mvec) { |
| assert(isa<Constant>(val) && |
| "I only know about constant values and global addresses"); |
| |
| MachineInstr* MI; |
| |
| MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg); |
| MI->getOperand(0).markHi64(); |
| mvec.push_back(MI); |
| |
| MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg); |
| MI->getOperand(1).markLo64(); |
| mvec.push_back(MI); |
| |
| mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) |
| .addRegDef(tmpReg)); |
| MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest); |
| MI->getOperand(0).markHi32(); |
| mvec.push_back(MI); |
| |
| MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest); |
| mvec.push_back(MI); |
| |
| MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest); |
| MI->getOperand(1).markLo32(); |
| mvec.push_back(MI); |
| } |
| |
| /// CreateUIntSetInstruction - Create code to Set an unsigned constant in the |
| /// register `dest'. Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst |
| /// as needed. CreateSETSWConst is an optimization for the case that the |
| /// unsigned value has all ones in the 33 high bits (so that sign-extension sets |
| /// them all). |
| /// |
| static inline void |
| CreateUIntSetInstruction(uint64_t C, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| static const uint64_t lo32 = (uint32_t) ~0; |
| if (C <= lo32) // High 32 bits are 0. Set low 32 bits. |
| CreateSETUWConst((uint32_t) C, dest, mvec); |
| else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) { |
| // All high 33 (not 32) bits are 1s: sign-extension will take care |
| // of high 32 bits, so use the sequence for signed int |
| CreateSETSWConst((int32_t) C, dest, mvec); |
| } else if (C > lo32) { |
| // C does not fit in 32 bits |
| TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy); |
| CreateSETXConst(C, tmpReg, dest, mvec); |
| } |
| } |
| |
| /// CreateIntSetInstruction - Create code to Set a signed constant in the |
| /// register `dest'. Really the same as CreateUIntSetInstruction. |
| /// |
| static inline void |
| CreateIntSetInstruction(int64_t C, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| CreateUIntSetInstruction((uint64_t) C, dest, mvec, mcfi); |
| } |
| |
| /// MaxConstantsTableTy - Table mapping LLVM opcodes to the max. immediate |
| /// constant usable for that operation in the SparcV9 backend. Used by |
| /// ConstantMayNotFitInImmedField(). |
| /// |
| struct MaxConstantsTableTy { |
| // Entry == 0 ==> no immediate constant field exists at all. |
| // Entry > 0 ==> abs(immediate constant) <= Entry |
| std::vector<int> tbl; |
| |
| int getMaxConstantForInstr (unsigned llvmOpCode); |
| MaxConstantsTableTy (); |
| unsigned size() const { return tbl.size (); } |
| int &operator[] (unsigned index) { return tbl[index]; } |
| }; |
| |
| int MaxConstantsTableTy::getMaxConstantForInstr(unsigned llvmOpCode) { |
| int modelOpCode = -1; |
| |
| if (llvmOpCode >= Instruction::BinaryOpsBegin && |
| llvmOpCode < Instruction::BinaryOpsEnd) |
| modelOpCode = V9::ADDi; |
| else |
| switch(llvmOpCode) { |
| case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break; |
| |
| case Instruction::Malloc: |
| case Instruction::Alloca: |
| case Instruction::GetElementPtr: |
| case Instruction::PHI: |
| case Instruction::Cast: |
| case Instruction::Call: modelOpCode = V9::ADDi; break; |
| |
| case Instruction::Shl: |
| case Instruction::Shr: modelOpCode = V9::SLLXi6; break; |
| |
| default: break; |
| }; |
| |
| return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst; |
| } |
| |
| MaxConstantsTableTy::MaxConstantsTableTy () : tbl (Instruction::OtherOpsEnd) { |
| unsigned op; |
| assert(tbl.size() == Instruction::OtherOpsEnd && |
| "assignments below will be illegal!"); |
| for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op) |
| tbl[op] = getMaxConstantForInstr(op); |
| for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op) |
| tbl[op] = getMaxConstantForInstr(op); |
| for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op) |
| tbl[op] = getMaxConstantForInstr(op); |
| for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op) |
| tbl[op] = getMaxConstantForInstr(op); |
| } |
| |
| bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) { |
| // The one and only MaxConstantsTable, used only by this function. |
| static MaxConstantsTableTy MaxConstantsTable; |
| |
| if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!) |
| return true; |
| |
| // can always use %g0 |
| if (isa<ConstantPointerNull>(CV) || isa<UndefValue>(CV)) |
| return false; |
| |
| if (isa<SwitchInst>(I)) // Switch instructions will be lowered! |
| return false; |
| |
| if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV)) |
| return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()]; |
| |
| if (isa<ConstantBool>(CV)) |
| return 1 > MaxConstantsTable[I->getOpcode()]; |
| |
| return true; |
| } |
| |
| /// ChooseLoadInstruction - Return the appropriate load instruction opcode |
| /// based on the given LLVM value type. |
| /// |
| static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) { |
| switch (DestTy->getTypeID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: return V9::LDUBr; |
| case Type::SByteTyID: return V9::LDSBr; |
| case Type::UShortTyID: return V9::LDUHr; |
| case Type::ShortTyID: return V9::LDSHr; |
| case Type::UIntTyID: return V9::LDUWr; |
| case Type::IntTyID: return V9::LDSWr; |
| case Type::PointerTyID: |
| case Type::ULongTyID: |
| case Type::LongTyID: return V9::LDXr; |
| case Type::FloatTyID: return V9::LDFr; |
| case Type::DoubleTyID: return V9::LDDFr; |
| default: assert(0 && "Invalid type for Load instruction"); |
| } |
| return 0; |
| } |
| |
| /// ChooseStoreInstruction - Return the appropriate store instruction opcode |
| /// based on the given LLVM value type. |
| /// |
| static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) { |
| switch (DestTy->getTypeID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: return V9::STBr; |
| case Type::UShortTyID: |
| case Type::ShortTyID: return V9::STHr; |
| case Type::UIntTyID: |
| case Type::IntTyID: return V9::STWr; |
| case Type::PointerTyID: |
| case Type::ULongTyID: |
| case Type::LongTyID: return V9::STXr; |
| case Type::FloatTyID: return V9::STFr; |
| case Type::DoubleTyID: return V9::STDFr; |
| default: assert(0 && "Invalid type for Store instruction"); |
| } |
| return 0; |
| } |
| |
| static inline MachineOpCode ChooseAddInstructionByType(const Type* resultType) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| if (resultType->isIntegral() || isa<PointerType>(resultType) |
| || isa<FunctionType>(resultType) || resultType == Type::LabelTy) { |
| opCode = V9::ADDr; |
| } else |
| switch(resultType->getTypeID()) { |
| case Type::FloatTyID: opCode = V9::FADDS; break; |
| case Type::DoubleTyID: opCode = V9::FADDD; break; |
| default: assert(0 && "Invalid type for ADD instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| /// convertOpcodeFromRegToImm - Because the SparcV9 instruction selector likes |
| /// to re-write operands to instructions, making them change from a Value* |
| /// (virtual register) to a Constant* (making an immediate field), we need to |
| /// change the opcode from a register-based instruction to an immediate-based |
| /// instruction, hence this mapping. |
| /// |
| static unsigned convertOpcodeFromRegToImm(unsigned Opcode) { |
| switch (Opcode) { |
| /* arithmetic */ |
| case V9::ADDr: return V9::ADDi; |
| case V9::ADDccr: return V9::ADDcci; |
| case V9::ADDCr: return V9::ADDCi; |
| case V9::ADDCccr: return V9::ADDCcci; |
| case V9::SUBr: return V9::SUBi; |
| case V9::SUBccr: return V9::SUBcci; |
| case V9::SUBCr: return V9::SUBCi; |
| case V9::SUBCccr: return V9::SUBCcci; |
| case V9::MULXr: return V9::MULXi; |
| case V9::SDIVXr: return V9::SDIVXi; |
| case V9::UDIVXr: return V9::UDIVXi; |
| |
| /* logical */ |
| case V9::ANDr: return V9::ANDi; |
| case V9::ANDccr: return V9::ANDcci; |
| case V9::ANDNr: return V9::ANDNi; |
| case V9::ANDNccr: return V9::ANDNcci; |
| case V9::ORr: return V9::ORi; |
| case V9::ORccr: return V9::ORcci; |
| case V9::ORNr: return V9::ORNi; |
| case V9::ORNccr: return V9::ORNcci; |
| case V9::XORr: return V9::XORi; |
| case V9::XORccr: return V9::XORcci; |
| case V9::XNORr: return V9::XNORi; |
| case V9::XNORccr: return V9::XNORcci; |
| |
| /* shift */ |
| case V9::SLLr5: return V9::SLLi5; |
| case V9::SRLr5: return V9::SRLi5; |
| case V9::SRAr5: return V9::SRAi5; |
| case V9::SLLXr6: return V9::SLLXi6; |
| case V9::SRLXr6: return V9::SRLXi6; |
| case V9::SRAXr6: return V9::SRAXi6; |
| |
| /* Conditional move on int comparison with zero */ |
| case V9::MOVRZr: return V9::MOVRZi; |
| case V9::MOVRLEZr: return V9::MOVRLEZi; |
| case V9::MOVRLZr: return V9::MOVRLZi; |
| case V9::MOVRNZr: return V9::MOVRNZi; |
| case V9::MOVRGZr: return V9::MOVRGZi; |
| case V9::MOVRGEZr: return V9::MOVRGEZi; |
| |
| |
| /* Conditional move on int condition code */ |
| case V9::MOVAr: return V9::MOVAi; |
| case V9::MOVNr: return V9::MOVNi; |
| case V9::MOVNEr: return V9::MOVNEi; |
| case V9::MOVEr: return V9::MOVEi; |
| case V9::MOVGr: return V9::MOVGi; |
| case V9::MOVLEr: return V9::MOVLEi; |
| case V9::MOVGEr: return V9::MOVGEi; |
| case V9::MOVLr: return V9::MOVLi; |
| case V9::MOVGUr: return V9::MOVGUi; |
| case V9::MOVLEUr: return V9::MOVLEUi; |
| case V9::MOVCCr: return V9::MOVCCi; |
| case V9::MOVCSr: return V9::MOVCSi; |
| case V9::MOVPOSr: return V9::MOVPOSi; |
| case V9::MOVNEGr: return V9::MOVNEGi; |
| case V9::MOVVCr: return V9::MOVVCi; |
| case V9::MOVVSr: return V9::MOVVSi; |
| |
| /* Conditional move of int reg on fp condition code */ |
| case V9::MOVFAr: return V9::MOVFAi; |
| case V9::MOVFNr: return V9::MOVFNi; |
| case V9::MOVFUr: return V9::MOVFUi; |
| case V9::MOVFGr: return V9::MOVFGi; |
| case V9::MOVFUGr: return V9::MOVFUGi; |
| case V9::MOVFLr: return V9::MOVFLi; |
| case V9::MOVFULr: return V9::MOVFULi; |
| case V9::MOVFLGr: return V9::MOVFLGi; |
| case V9::MOVFNEr: return V9::MOVFNEi; |
| case V9::MOVFEr: return V9::MOVFEi; |
| case V9::MOVFUEr: return V9::MOVFUEi; |
| case V9::MOVFGEr: return V9::MOVFGEi; |
| case V9::MOVFUGEr: return V9::MOVFUGEi; |
| case V9::MOVFLEr: return V9::MOVFLEi; |
| case V9::MOVFULEr: return V9::MOVFULEi; |
| case V9::MOVFOr: return V9::MOVFOi; |
| |
| /* load */ |
| case V9::LDSBr: return V9::LDSBi; |
| case V9::LDSHr: return V9::LDSHi; |
| case V9::LDSWr: return V9::LDSWi; |
| case V9::LDUBr: return V9::LDUBi; |
| case V9::LDUHr: return V9::LDUHi; |
| case V9::LDUWr: return V9::LDUWi; |
| case V9::LDXr: return V9::LDXi; |
| case V9::LDFr: return V9::LDFi; |
| case V9::LDDFr: return V9::LDDFi; |
| case V9::LDQFr: return V9::LDQFi; |
| case V9::LDFSRr: return V9::LDFSRi; |
| case V9::LDXFSRr: return V9::LDXFSRi; |
| |
| /* store */ |
| case V9::STBr: return V9::STBi; |
| case V9::STHr: return V9::STHi; |
| case V9::STWr: return V9::STWi; |
| case V9::STXr: return V9::STXi; |
| case V9::STFr: return V9::STFi; |
| case V9::STDFr: return V9::STDFi; |
| case V9::STFSRr: return V9::STFSRi; |
| case V9::STXFSRr: return V9::STXFSRi; |
| |
| /* jump & return */ |
| case V9::JMPLCALLr: return V9::JMPLCALLi; |
| case V9::JMPLRETr: return V9::JMPLRETi; |
| |
| /* save and restore */ |
| case V9::SAVEr: return V9::SAVEi; |
| case V9::RESTOREr: return V9::RESTOREi; |
| |
| default: |
| // It's already in correct format |
| // Or, it's just not handled yet, but an assert() would break LLC |
| #if 0 |
| std::cerr << "Unhandled opcode in convertOpcodeFromRegToImm(): " << Opcode |
| << "\n"; |
| #endif |
| return Opcode; |
| } |
| } |
| |
| /// CreateCodeToLoadConst - Create an instruction sequence to put the |
| /// constant `val' into the virtual register `dest'. `val' may be a Constant or |
| /// a GlobalValue, viz., the constant address of a global variable or function. |
| /// The generated instructions are returned in `mvec'. Any temp. registers |
| /// (TmpInstruction) created are recorded in mcfi. Any stack space required is |
| /// allocated via MachineFunction. |
| /// |
| void CreateCodeToLoadConst(const TargetMachine& target, Function* F, |
| Value* val, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| assert(isa<Constant>(val) && |
| "I only know about constant values and global addresses"); |
| |
| // Use a "set" instruction for known constants or symbolic constants (labels) |
| // that can go in an integer reg. |
| // We have to use a "load" instruction for all other constants, |
| // in particular, floating point constants. |
| const Type* valType = val->getType(); |
| |
| if (isa<GlobalValue>(val)) { |
| TmpInstruction* tmpReg = |
| new TmpInstruction(mcfi, PointerType::get(val->getType()), val); |
| CreateSETXLabel(val, tmpReg, dest, mvec); |
| return; |
| } |
| |
| bool isValid; |
| uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid); |
| if (isValid) { |
| if (dest->getType()->isSigned()) |
| CreateUIntSetInstruction(C, dest, mvec, mcfi); |
| else |
| CreateIntSetInstruction((int64_t) C, dest, mvec, mcfi); |
| |
| } else { |
| // Make an instruction sequence to load the constant, viz: |
| // SETX <addr-of-constant>, tmpReg, addrReg |
| // LOAD /*addr*/ addrReg, /*offset*/ 0, dest |
| // First, create a tmp register to be used by the SETX sequence. |
| TmpInstruction* tmpReg = |
| new TmpInstruction(mcfi, PointerType::get(val->getType())); |
| |
| // Create another TmpInstruction for the address register |
| TmpInstruction* addrReg = |
| new TmpInstruction(mcfi, PointerType::get(val->getType())); |
| |
| // Get the constant pool index for this constant |
| MachineConstantPool *CP = MachineFunction::get(F).getConstantPool(); |
| Constant *C = cast<Constant>(val); |
| unsigned CPI = CP->getConstantPoolIndex(C); |
| |
| // Put the address of the constant into a register |
| MachineInstr* MI; |
| |
| MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg); |
| MI->getOperand(0).markHi64(); |
| mvec.push_back(MI); |
| |
| //Create another tmp register for the SETX sequence to preserve SSA |
| TmpInstruction* tmpReg2 = |
| new TmpInstruction(mcfi, PointerType::get(val->getType())); |
| |
| MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI) |
| .addRegDef(tmpReg2); |
| MI->getOperand(1).markLo64(); |
| mvec.push_back(MI); |
| |
| //Create another tmp register for the SETX sequence to preserve SSA |
| TmpInstruction* tmpReg3 = |
| new TmpInstruction(mcfi, PointerType::get(val->getType())); |
| |
| mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg2).addZImm(32) |
| .addRegDef(tmpReg3)); |
| MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg); |
| MI->getOperand(0).markHi32(); |
| mvec.push_back(MI); |
| |
| // Create another TmpInstruction for the address register |
| TmpInstruction* addrReg2 = |
| new TmpInstruction(mcfi, PointerType::get(val->getType())); |
| |
| |
| MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg3).addRegDef(addrReg2); |
| mvec.push_back(MI); |
| |
| // Create another TmpInstruction for the address register |
| TmpInstruction* addrReg3 = |
| new TmpInstruction(mcfi, PointerType::get(val->getType())); |
| |
| MI = BuildMI(V9::ORi, 3).addReg(addrReg2).addConstantPoolIndex(CPI) |
| .addRegDef(addrReg3); |
| MI->getOperand(1).markLo32(); |
| mvec.push_back(MI); |
| |
| // Now load the constant from out ConstantPool label |
| unsigned Opcode = ChooseLoadInstruction(val->getType()); |
| Opcode = convertOpcodeFromRegToImm(Opcode); |
| mvec.push_back(BuildMI(Opcode, 3) |
| .addReg(addrReg3).addSImm((int64_t)0).addRegDef(dest)); |
| } |
| } |
| |
| /// CreateCodeToCopyFloatToInt - Similarly, create an instruction sequence |
| /// to copy an FP register `val' to an integer register `dest' by copying to |
| /// memory and back. The generated instructions are returned in `mvec'. Any |
| /// temp. virtual registers (TmpInstruction) created are recorded in mcfi. |
| /// Temporary stack space required is allocated via MachineFunction. |
| /// |
| void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F, |
| Value* val, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| const Type* opTy = val->getType(); |
| const Type* destTy = dest->getType(); |
| assert(opTy->isFloatingPoint() && "Source type must be float/double"); |
| assert((destTy->isIntegral() || isa<PointerType>(destTy)) |
| && "Dest type must be integer, bool or pointer"); |
| |
| // FIXME: For now, we allocate permanent space because the stack frame |
| // manager does not allow locals to be allocated (e.g., for alloca) after |
| // a temp is allocated! |
| int offset = MachineFunction::get(F).getInfo<SparcV9FunctionInfo>()->allocateLocalVar(val); |
| |
| unsigned FPReg = target.getRegInfo()->getFramePointer(); |
| |
| // Store instruction stores `val' to [%fp+offset]. |
| // The store opCode is based only the source value being copied. |
| unsigned StoreOpcode = ChooseStoreInstruction(opTy); |
| StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); |
| mvec.push_back(BuildMI(StoreOpcode, 3) |
| .addReg(val).addMReg(FPReg).addSImm(offset)); |
| |
| // Load instruction loads [%fp+offset] to `dest'. |
| // The type of the load opCode is the integer type that matches the |
| // source type in size: |
| // On SparcV9: int for float, long for double. |
| // Note that we *must* use signed loads even for unsigned dest types, to |
| // ensure correct sign-extension for UByte, UShort or UInt: |
| const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy; |
| unsigned LoadOpcode = ChooseLoadInstruction(loadTy); |
| LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); |
| mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg) |
| .addSImm(offset).addRegDef(dest)); |
| } |
| |
| /// CreateBitExtensionInstructions - Helper function for sign-extension and |
| /// zero-extension. For SPARC v9, we sign-extend the given operand using SLL; |
| /// SRA/SRL. |
| /// |
| inline void |
| CreateBitExtensionInstructions(bool signExtend, const TargetMachine& target, |
| Function* F, Value* srcVal, Value* destVal, |
| unsigned int numLowBits, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| MachineInstr* M; |
| |
| assert(numLowBits <= 32 && "Otherwise, nothing should be done here!"); |
| |
| if (numLowBits < 32) { |
| // SLL is needed since operand size is < 32 bits. |
| TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(), |
| srcVal, destVal, "make32"); |
| mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal) |
| .addZImm(32-numLowBits).addRegDef(tmpI)); |
| srcVal = tmpI; |
| } |
| |
| mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3) |
| .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal)); |
| } |
| |
| /// CreateSignExtensionInstructions - Create instruction sequence to produce |
| /// a sign-extended register value from an arbitrary-sized integer value (sized |
| /// in bits, not bytes). The generated instructions are returned in `mvec'. Any |
| /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack |
| /// space required is allocated via MachineFunction. |
| /// |
| void CreateSignExtensionInstructions(const TargetMachine& target, |
| Function* F, Value* srcVal, Value* destVal, |
| unsigned int numLowBits, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal, |
| destVal, numLowBits, mvec, mcfi); |
| } |
| |
| /// CreateZeroExtensionInstructions - Create instruction sequence to produce |
| /// a zero-extended register value from an arbitrary-sized integer value (sized |
| /// in bits, not bytes). For SPARC v9, we sign-extend the given operand using |
| /// SLL; SRL. The generated instructions are returned in `mvec'. Any temp. |
| /// registers (TmpInstruction) created are recorded in mcfi. Any stack space |
| /// required is allocated via MachineFunction. |
| /// |
| void CreateZeroExtensionInstructions(const TargetMachine& target, |
| Function* F, Value* srcVal, Value* destVal, |
| unsigned int numLowBits, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal, |
| destVal, numLowBits, mvec, mcfi); |
| } |
| |
| /// CreateCodeToCopyIntToFloat - Create an instruction sequence to copy an |
| /// integer register `val' to a floating point register `dest' by copying to |
| /// memory and back. val must be an integral type. dest must be a Float or |
| /// Double. The generated instructions are returned in `mvec'. Any temp. |
| /// registers (TmpInstruction) created are recorded in mcfi. Any stack space |
| /// required is allocated via MachineFunction. |
| /// |
| void CreateCodeToCopyIntToFloat(const TargetMachine& target, |
| Function* F, Value* val, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| assert((val->getType()->isIntegral() || isa<PointerType>(val->getType())) |
| && "Source type must be integral (integer or bool) or pointer"); |
| assert(dest->getType()->isFloatingPoint() |
| && "Dest type must be float/double"); |
| |
| // Get a stack slot to use for the copy |
| int offset = MachineFunction::get(F).getInfo<SparcV9FunctionInfo>()->allocateLocalVar(val); |
| |
| // Get the size of the source value being copied. |
| size_t srcSize = target.getTargetData().getTypeSize(val->getType()); |
| |
| // Store instruction stores `val' to [%fp+offset]. |
| // The store and load opCodes are based on the size of the source value. |
| // If the value is smaller than 32 bits, we must sign- or zero-extend it |
| // to 32 bits since the load-float will load 32 bits. |
| // Note that the store instruction is the same for signed and unsigned ints. |
| const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy; |
| Value* storeVal = val; |
| if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) { |
| // sign- or zero-extend respectively |
| storeVal = new TmpInstruction(mcfi, storeType, val); |
| if (val->getType()->isSigned()) |
| CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize, |
| mvec, mcfi); |
| else |
| CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize, |
| mvec, mcfi); |
| } |
| |
| unsigned FPReg = target.getRegInfo()->getFramePointer(); |
| unsigned StoreOpcode = ChooseStoreInstruction(storeType); |
| StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); |
| mvec.push_back(BuildMI(StoreOpcode, 3) |
| .addReg(storeVal).addMReg(FPReg).addSImm(offset)); |
| |
| // Load instruction loads [%fp+offset] to `dest'. |
| // The type of the load opCode is the floating point type that matches the |
| // stored type in size: |
| // On SparcV9: float for int or smaller, double for long. |
| const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; |
| unsigned LoadOpcode = ChooseLoadInstruction(loadType); |
| LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); |
| mvec.push_back(BuildMI(LoadOpcode, 3) |
| .addMReg(FPReg).addSImm(offset).addRegDef(dest)); |
| } |
| |
| /// InsertCodeToLoadConstant - Generates code to load the constant |
| /// into a TmpInstruction (virtual reg) and returns the virtual register. |
| /// |
| static TmpInstruction* |
| InsertCodeToLoadConstant(Function *F, Value* opValue, Instruction* vmInstr, |
| std::vector<MachineInstr*>& loadConstVec, |
| TargetMachine& target) { |
| // Create a tmp virtual register to hold the constant. |
| MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr); |
| TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue); |
| |
| CreateCodeToLoadConst(target, F, opValue, tmpReg, loadConstVec, mcfi); |
| |
| // Record the mapping from the tmp VM instruction to machine instruction. |
| // Do this for all machine instructions that were not mapped to any |
| // other temp values created by |
| // tmpReg->addMachineInstruction(loadConstVec.back()); |
| return tmpReg; |
| } |
| |
| MachineOperand::MachineOperandType |
| ChooseRegOrImmed(int64_t intValue, bool isSigned, |
| MachineOpCode opCode, const TargetMachine& target, |
| bool canUseImmed, unsigned int& getMachineRegNum, |
| int64_t& getImmedValue) { |
| MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister; |
| getMachineRegNum = 0; |
| getImmedValue = 0; |
| |
| if (canUseImmed && |
| target.getInstrInfo()->constantFitsInImmedField(opCode, intValue)) { |
| opType = isSigned? MachineOperand::MO_SignExtendedImmed |
| : MachineOperand::MO_UnextendedImmed; |
| getImmedValue = intValue; |
| } else if (intValue == 0 && |
| target.getRegInfo()->getZeroRegNum() != (unsigned)-1) { |
| opType = MachineOperand::MO_MachineRegister; |
| getMachineRegNum = target.getRegInfo()->getZeroRegNum(); |
| } |
| |
| return opType; |
| } |
| |
| MachineOperand::MachineOperandType |
| ChooseRegOrImmed(Value* val, |
| MachineOpCode opCode, const TargetMachine& target, |
| bool canUseImmed, unsigned int& getMachineRegNum, |
| int64_t& getImmedValue) { |
| getMachineRegNum = 0; |
| getImmedValue = 0; |
| |
| // To use reg or immed, constant needs to be integer, bool, or a NULL pointer. |
| // ConvertConstantToIntType() does the right conversions. |
| bool isValidConstant; |
| uint64_t valueToUse = |
| ConvertConstantToIntType(target, val, val->getType(), isValidConstant); |
| if (! isValidConstant) |
| return MachineOperand::MO_VirtualRegister; |
| |
| // Now check if the constant value fits in the IMMED field. |
| return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(), |
| opCode, target, canUseImmed, |
| getMachineRegNum, getImmedValue); |
| } |
| |
| /// CreateCopyInstructionsByType - Create instruction(s) to copy src to dest, |
| /// for arbitrary types. The generated instructions are returned in `mvec'. Any |
| /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack |
| /// space required is allocated via MachineFunction. |
| /// |
| void CreateCopyInstructionsByType(const TargetMachine& target, |
| Function *F, Value* src, Instruction* dest, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| bool loadConstantToReg = false; |
| const Type* resultType = dest->getType(); |
| MachineOpCode opCode = ChooseAddInstructionByType(resultType); |
| assert (opCode != V9::INVALID_OPCODE |
| && "Unsupported result type in CreateCopyInstructionsByType()"); |
| |
| // If `src' is a constant that doesn't fit in the immed field or if it is |
| // a global variable (i.e., a constant address), generate a load |
| // instruction instead of an add. |
| if (isa<GlobalValue>(src)) |
| loadConstantToReg = true; |
| else if (isa<Constant>(src)) { |
| unsigned int machineRegNum; |
| int64_t immedValue; |
| MachineOperand::MachineOperandType opType = |
| ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, |
| machineRegNum, immedValue); |
| |
| if (opType == MachineOperand::MO_VirtualRegister) |
| loadConstantToReg = true; |
| } |
| |
| if (loadConstantToReg) { |
| // `src' is constant and cannot fit in immed field for the ADD. |
| // Insert instructions to "load" the constant into a register. |
| CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi); |
| } else { |
| // Create a reg-to-reg copy instruction for the given type: |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction (opCode as above) |
| // Make `src' the second operand, in case it is a small constant! |
| MachineInstr* MI; |
| if (resultType->isFloatingPoint()) |
| MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(src).addRegDef(dest)); |
| else { |
| const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType; |
| MI = (BuildMI(opCode, 3) |
| .addSImm((int64_t) 0).addReg(src).addRegDef(dest)); |
| } |
| mvec.push_back(MI); |
| } |
| } |
| |
| /// FixConstantOperandsForInstr - Make a machine instruction use its constant |
| /// operands more efficiently. If the constant is 0, then use the hardwired 0 |
| /// register, if any. Else, if the constant fits in the IMMEDIATE field, then |
| /// use that field. Otherwise, else create instructions to put the constant |
| /// into a register, either directly or by loading explicitly from the constant |
| /// pool. In the first 2 cases, the operand of `minstr' is modified in place. |
| /// Returns a vector of machine instructions generated for operands that fall |
| /// under case 3; these must be inserted before `minstr'. |
| /// |
| std::vector<MachineInstr*> |
| FixConstantOperandsForInstr(Instruction* vmInstr, MachineInstr* minstr, |
| TargetMachine& target) { |
| std::vector<MachineInstr*> MVec; |
| |
| MachineOpCode opCode = minstr->getOpcode(); |
| const TargetInstrInfo& instrInfo = *target.getInstrInfo(); |
| int resultPos = instrInfo.get(opCode).resultPos; |
| int immedPos = instrInfo.getImmedConstantPos(opCode); |
| |
| Function *F = vmInstr->getParent()->getParent(); |
| |
| for (unsigned op=0; op < minstr->getNumOperands(); op++) { |
| const MachineOperand& mop = minstr->getOperand(op); |
| |
| // Skip the result position, preallocated machine registers, or operands |
| // that cannot be constants (CC regs or PC-relative displacements) |
| if (resultPos == (int)op || |
| mop.getType() == MachineOperand::MO_MachineRegister || |
| mop.getType() == MachineOperand::MO_CCRegister || |
| mop.getType() == MachineOperand::MO_PCRelativeDisp) |
| continue; |
| |
| bool constantThatMustBeLoaded = false; |
| unsigned int machineRegNum = 0; |
| int64_t immedValue = 0; |
| Value* opValue = NULL; |
| MachineOperand::MachineOperandType opType = |
| MachineOperand::MO_VirtualRegister; |
| |
| // Operand may be a virtual register or a compile-time constant |
| if (mop.getType() == MachineOperand::MO_VirtualRegister) { |
| assert(mop.getVRegValue() != NULL); |
| opValue = mop.getVRegValue(); |
| if (Constant *opConst = dyn_cast<Constant>(opValue)) |
| if (!isa<GlobalValue>(opConst)) { |
| opType = ChooseRegOrImmed(opConst, opCode, target, |
| (immedPos == (int)op), machineRegNum, |
| immedValue); |
| if (opType == MachineOperand::MO_VirtualRegister) |
| constantThatMustBeLoaded = true; |
| } |
| } else { |
| // If the operand is from the constant pool, don't try to change it. |
| if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) { |
| continue; |
| } |
| assert(mop.isImmediate()); |
| bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed; |
| |
| // Bit-selection flags indicate an instruction that is extracting |
| // bits from its operand so ignore this even if it is a big constant. |
| if (mop.isHiBits32() || mop.isLoBits32() || |
| mop.isHiBits64() || mop.isLoBits64()) |
| continue; |
| |
| opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned, |
| opCode, target, (immedPos == (int)op), |
| machineRegNum, immedValue); |
| |
| if (opType == MachineOperand::MO_SignExtendedImmed || |
| opType == MachineOperand::MO_UnextendedImmed) { |
| // The optype is an immediate value |
| // This means we need to change the opcode, e.g. ADDr -> ADDi |
| unsigned newOpcode = convertOpcodeFromRegToImm(opCode); |
| minstr->setOpcode(newOpcode); |
| } |
| |
| if (opType == mop.getType()) |
| continue; // no change: this is the most common case |
| |
| if (opType == MachineOperand::MO_VirtualRegister) { |
| constantThatMustBeLoaded = true; |
| opValue = isSigned |
| ? (Value*)ConstantSInt::get(Type::LongTy, immedValue) |
| : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue); |
| } |
| } |
| |
| if (opType == MachineOperand::MO_MachineRegister) |
| minstr->SetMachineOperandReg(op, machineRegNum); |
| else if (opType == MachineOperand::MO_SignExtendedImmed || |
| opType == MachineOperand::MO_UnextendedImmed) { |
| minstr->SetMachineOperandConst(op, opType, immedValue); |
| // The optype is or has become an immediate |
| // This means we need to change the opcode, e.g. ADDr -> ADDi |
| unsigned newOpcode = convertOpcodeFromRegToImm(opCode); |
| minstr->setOpcode(newOpcode); |
| } else if (constantThatMustBeLoaded || |
| (opValue && isa<GlobalValue>(opValue))) |
| { // opValue is a constant that must be explicitly loaded into a reg |
| assert(opValue); |
| TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr, |
| MVec, target); |
| minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister, |
| tmpReg); |
| } |
| } |
| |
| // Also, check for implicit operands used by the machine instruction |
| // (no need to check those defined since they cannot be constants). |
| // These include: |
| // -- arguments to a Call |
| // -- return value of a Return |
| // Any such operand that is a constant value needs to be fixed also. |
| // The current instructions with implicit refs (viz., Call and Return) |
| // have no immediate fields, so the constant always needs to be loaded |
| // into a register. |
| bool isCall = instrInfo.isCall(opCode); |
| unsigned lastCallArgNum = 0; // unused if not a call |
| CallArgsDescriptor* argDesc = NULL; // unused if not a call |
| if (isCall) |
| argDesc = CallArgsDescriptor::get(minstr); |
| |
| for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i) |
| if (isa<Constant>(minstr->getImplicitRef(i))) { |
| Value* oldVal = minstr->getImplicitRef(i); |
| TmpInstruction* tmpReg = |
| InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target); |
| minstr->setImplicitRef(i, tmpReg); |
| |
| if (isCall) { |
| // find and replace the argument in the CallArgsDescriptor |
| unsigned i=lastCallArgNum; |
| while (argDesc->getArgInfo(i).getArgVal() != oldVal) |
| ++i; |
| assert(i < argDesc->getNumArgs() && |
| "Constant operands to a call *must* be in the arg list"); |
| lastCallArgNum = i; |
| argDesc->getArgInfo(i).replaceArgVal(tmpReg); |
| } |
| } |
| |
| return MVec; |
| } |
| |
| static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node, |
| std::vector<MachineInstr*>& mvec) { |
| mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue()) |
| .addReg(Node->rightChild()->getValue()) |
| .addRegDef(Node->getValue())); |
| } |
| |
| /// IsZero - Check for a constant 0. |
| /// |
| static inline bool IsZero(Value* idx) { |
| return (isa<Constant>(idx) && cast<Constant>(idx)->isNullValue()) || |
| isa<UndefValue>(idx); |
| } |
| |
| /// FoldGetElemChain - Fold a chain of GetElementPtr instructions containing |
| /// only constant offsets into an equivalent (Pointer, IndexVector) pair. |
| /// Returns the pointer Value, and stores the resulting IndexVector in argument |
| /// chainIdxVec. This is a helper function for FoldConstantIndices that does the |
| /// actual folding. |
| // |
| static Value* |
| FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec, |
| bool lastInstHasLeadingNonZero) { |
| InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode); |
| GetElementPtrInst* gepInst = |
| dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0); |
| |
| // ptr value is not computed in this tree or ptr value does not come from GEP |
| // instruction |
| if (gepInst == NULL) |
| return NULL; |
| |
| // Return NULL if we don't fold any instructions in. |
| Value* ptrVal = NULL; |
| |
| // Now chase the chain of getElementInstr instructions, if any. |
| // Check for any non-constant indices and stop there. |
| // Also, stop if the first index of child is a non-zero array index |
| // and the last index of the current node is a non-array index: |
| // in that case, a non-array declared type is being accessed as an array |
| // which is not type-safe, but could be legal. |
| InstructionNode* ptrChild = gepNode; |
| while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr || |
| ptrChild->getOpLabel() == GetElemPtrIdx)) { |
| // Child is a GetElemPtr instruction |
| gepInst = cast<GetElementPtrInst>(ptrChild->getValue()); |
| User::op_iterator OI, firstIdx = gepInst->idx_begin(); |
| User::op_iterator lastIdx = gepInst->idx_end(); |
| bool allConstantOffsets = true; |
| |
| // The first index of every GEP must be an array index. |
| assert((*firstIdx)->getType() == Type::LongTy && |
| "INTERNAL ERROR: Structure index for a pointer type!"); |
| |
| // If the last instruction had a leading non-zero index, check if the |
| // current one references a sequential (i.e., indexable) type. |
| // If not, the code is not type-safe and we would create an illegal GEP |
| // by folding them, so don't fold any more instructions. |
| if (lastInstHasLeadingNonZero) |
| if (! isa<SequentialType>(gepInst->getType()->getElementType())) |
| break; // cannot fold in any preceding getElementPtr instrs. |
| |
| // Check that all offsets are constant for this instruction |
| for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI) |
| allConstantOffsets = isa<ConstantInt>(*OI); |
| |
| if (allConstantOffsets) { |
| // Get pointer value out of ptrChild. |
| ptrVal = gepInst->getPointerOperand(); |
| |
| // Insert its index vector at the start, skipping any leading [0] |
| // Remember the old size to check if anything was inserted. |
| unsigned oldSize = chainIdxVec.size(); |
| int firstIsZero = IsZero(*firstIdx); |
| chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx); |
| |
| // Remember if it has leading zero index: it will be discarded later. |
| if (oldSize < chainIdxVec.size()) |
| lastInstHasLeadingNonZero = !firstIsZero; |
| |
| // Mark the folded node so no code is generated for it. |
| ((InstructionNode*) ptrChild)->markFoldedIntoParent(); |
| |
| // Get the previous GEP instruction and continue trying to fold |
| ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild()); |
| } else // cannot fold this getElementPtr instr. or any preceding ones |
| break; |
| } |
| |
| // If the first getElementPtr instruction had a leading [0], add it back. |
| // Note that this instruction is the *last* one that was successfully |
| // folded *and* contributed any indices, in the loop above. |
| if (ptrVal && ! lastInstHasLeadingNonZero) |
| chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0)); |
| |
| return ptrVal; |
| } |
| |
| /// GetGEPInstArgs - Helper function for GetMemInstArgs that handles the |
| /// final getElementPtr instruction used by (or same as) the memory operation. |
| /// Extracts the indices of the current instruction and tries to fold in |
| /// preceding ones if all indices of the current one are constant. |
| /// |
| static Value *GetGEPInstArgs(InstructionNode *gepNode, |
| std::vector<Value *> &idxVec, |
| bool &allConstantIndices) { |
| allConstantIndices = true; |
| GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction()); |
| |
| // Default pointer is the one from the current instruction. |
| Value* ptrVal = gepI->getPointerOperand(); |
| InstrTreeNode* ptrChild = gepNode->leftChild(); |
| |
| // Extract the index vector of the GEP instruction. |
| // If all indices are constant and first index is zero, try to fold |
| // in preceding GEPs with all constant indices. |
| for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end(); |
| allConstantIndices && OI != OE; ++OI) |
| if (! isa<Constant>(*OI)) |
| allConstantIndices = false; // note: this also terminates loop! |
| |
| // If we have only constant indices, fold chains of constant indices |
| // in this and any preceding GetElemPtr instructions. |
| bool foldedGEPs = false; |
| bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin()); |
| if (allConstantIndices) |
| if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) { |
| ptrVal = newPtr; |
| foldedGEPs = true; |
| } |
| |
| // Append the index vector of the current instruction. |
| // Skip the leading [0] index if preceding GEPs were folded into this. |
| idxVec.insert(idxVec.end(), |
| gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx), |
| gepI->idx_end()); |
| |
| return ptrVal; |
| } |
| |
| /// GetMemInstArgs - Get the pointer value and the index vector for a memory |
| /// operation (GetElementPtr, Load, or Store). If all indices of the given |
| /// memory operation are constant, fold in constant indices in a chain of |
| /// preceding GetElementPtr instructions (if any), and return the pointer value |
| /// of the first instruction in the chain. All folded instructions are marked so |
| /// no code is generated for them. Returns the pointer Value to use, and |
| /// returns the resulting IndexVector in idxVec. Sets allConstantIndices |
| /// to true/false if all indices are/aren't const. |
| /// |
| static Value *GetMemInstArgs(InstructionNode *memInstrNode, |
| std::vector<Value*> &idxVec, |
| bool& allConstantIndices) { |
| allConstantIndices = false; |
| Instruction* memInst = memInstrNode->getInstruction(); |
| assert(idxVec.size() == 0 && "Need empty vector to return indices"); |
| |
| // If there is a GetElemPtr instruction to fold in to this instr, |
| // it must be in the left child for Load and GetElemPtr, and in the |
| // right child for Store instructions. |
| InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store |
| ? memInstrNode->rightChild() |
| : memInstrNode->leftChild()); |
| |
| // Default pointer is the one from the current instruction. |
| Value* ptrVal = ptrChild->getValue(); |
| |
| // Find the "last" GetElemPtr instruction: this one or the immediate child. |
| // There will be none if this is a load or a store from a scalar pointer. |
| InstructionNode* gepNode = NULL; |
| if (isa<GetElementPtrInst>(memInst)) |
| gepNode = memInstrNode; |
| else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) { |
| // Child of load/store is a GEP and memInst is its only use. |
| // Use its indices and mark it as folded. |
| gepNode = cast<InstructionNode>(ptrChild); |
| gepNode->markFoldedIntoParent(); |
| } |
| |
| // If there are no indices, return the current pointer. |
| // Else extract the pointer from the GEP and fold the indices. |
| return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices) |
| : ptrVal; |
| } |
| |
| static inline MachineOpCode |
| ChooseBprInstruction(const InstructionNode* instrNode) { |
| MachineOpCode opCode; |
| |
| Instruction* setCCInstr = |
| ((InstructionNode*) instrNode->leftChild())->getInstruction(); |
| |
| switch(setCCInstr->getOpcode()) { |
| case Instruction::SetEQ: opCode = V9::BRZ; break; |
| case Instruction::SetNE: opCode = V9::BRNZ; break; |
| case Instruction::SetLE: opCode = V9::BRLEZ; break; |
| case Instruction::SetGE: opCode = V9::BRGEZ; break; |
| case Instruction::SetLT: opCode = V9::BRLZ; break; |
| case Instruction::SetGT: opCode = V9::BRGZ; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| opCode = V9::INVALID_OPCODE; |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseBpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); |
| |
| if (isSigned) { |
| switch(setCCInstr->getOpcode()) { |
| case Instruction::SetEQ: opCode = V9::BE; break; |
| case Instruction::SetNE: opCode = V9::BNE; break; |
| case Instruction::SetLE: opCode = V9::BLE; break; |
| case Instruction::SetGE: opCode = V9::BGE; break; |
| case Instruction::SetLT: opCode = V9::BL; break; |
| case Instruction::SetGT: opCode = V9::BG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } else { |
| switch(setCCInstr->getOpcode()) { |
| case Instruction::SetEQ: opCode = V9::BE; break; |
| case Instruction::SetNE: opCode = V9::BNE; break; |
| case Instruction::SetLE: opCode = V9::BLEU; break; |
| case Instruction::SetGE: opCode = V9::BCC; break; |
| case Instruction::SetLT: opCode = V9::BCS; break; |
| case Instruction::SetGT: opCode = V9::BGU; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseBFpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(setCCInstr->getOpcode()) { |
| case Instruction::SetEQ: opCode = V9::FBE; break; |
| case Instruction::SetNE: opCode = V9::FBNE; break; |
| case Instruction::SetLE: opCode = V9::FBLE; break; |
| case Instruction::SetGE: opCode = V9::FBGE; break; |
| case Instruction::SetLT: opCode = V9::FBL; break; |
| case Instruction::SetGT: opCode = V9::FBG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| // GetTmpForCC - Create a unique TmpInstruction for a boolean value, |
| // representing the CC register used by a branch on that value. |
| // For now, hack this using a little static cache of TmpInstructions. |
| // Eventually the entire BURG instruction selection should be put |
| // into a separate class that can hold such information. |
| // The static cache is not too bad because the memory for these |
| // TmpInstructions will be freed along with the rest of the Function anyway. |
| // |
| static TmpInstruction *GetTmpForCC (Value* boolVal, const Function *F, |
| const Type* ccType, |
| MachineCodeForInstruction& mcfi) { |
| typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache; |
| static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* |
| static const Function *lastFunction = 0;// Use to flush cache between funcs |
| |
| assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); |
| |
| if (lastFunction != F) { |
| lastFunction = F; |
| boolToTmpCache.clear(); |
| } |
| |
| // Look for tmpI and create a new one otherwise. The new value is |
| // directly written to map using the ref returned by operator[]. |
| TmpInstruction*& tmpI = boolToTmpCache[boolVal]; |
| if (tmpI == NULL) |
| tmpI = new TmpInstruction(mcfi, ccType, boolVal); |
| |
| return tmpI; |
| } |
| |
| static inline MachineOpCode |
| ChooseBccInstruction(const InstructionNode* instrNode, const Type*& setCCType) { |
| InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); |
| assert(setCCNode->getOpLabel() == SetCCOp); |
| BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction()); |
| setCCType = setCCInstr->getOperand(0)->getType(); |
| |
| if (setCCType->isFloatingPoint()) |
| return ChooseBFpccInstruction(instrNode, setCCInstr); |
| else |
| return ChooseBpccInstruction(instrNode, setCCInstr); |
| } |
| |
| /// ChooseMovFpcciInstruction - WARNING: since this function has only one |
| /// caller, it always returns the opcode that expects an immediate and a |
| /// register. If this function is ever used in cases where an opcode that takes |
| /// two registers is required, then modify this function and use |
| /// convertOpcodeFromRegToImm() where required. It will be necessary to expand |
| /// convertOpcodeFromRegToImm() to handle the new cases of opcodes. |
| /// |
| static inline MachineOpCode |
| ChooseMovFpcciInstruction(const InstructionNode* instrNode) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(instrNode->getInstruction()->getOpcode()) { |
| case Instruction::SetEQ: opCode = V9::MOVFEi; break; |
| case Instruction::SetNE: opCode = V9::MOVFNEi; break; |
| case Instruction::SetLE: opCode = V9::MOVFLEi; break; |
| case Instruction::SetGE: opCode = V9::MOVFGEi; break; |
| case Instruction::SetLT: opCode = V9::MOVFLi; break; |
| case Instruction::SetGT: opCode = V9::MOVFGi; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| /// ChooseMovpcciForSetCC -- Choose a conditional-move instruction |
| /// based on the type of SetCC operation. |
| /// |
| /// WARNING: like the previous function, this function always returns |
| /// the opcode that expects an immediate and a register. See above. |
| /// |
| static MachineOpCode ChooseMovpcciForSetCC(const InstructionNode* instrNode) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| const Type* opType = instrNode->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || isa<PointerType>(opType)); |
| bool noSign = opType->isUnsigned() || isa<PointerType>(opType); |
| |
| switch(instrNode->getInstruction()->getOpcode()) { |
| case Instruction::SetEQ: opCode = V9::MOVEi; break; |
| case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break; |
| case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break; |
| case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break; |
| case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break; |
| case Instruction::SetNE: opCode = V9::MOVNEi; break; |
| default: assert(0 && "Unrecognized LLVM instr!"); break; |
| } |
| |
| return opCode; |
| } |
| |
| /// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value |
| /// instruction based on the type of SetCC operation. These instructions |
| /// compare a register with 0 and perform the move is the comparison is true. |
| /// |
| /// WARNING: like the previous function, this function it always returns |
| /// the opcode that expects an immediate and a register. See above. |
| /// |
| static MachineOpCode ChooseMovpregiForSetCC(const InstructionNode* instrNode) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(instrNode->getInstruction()->getOpcode()) { |
| case Instruction::SetEQ: opCode = V9::MOVRZi; break; |
| case Instruction::SetLE: opCode = V9::MOVRLEZi; break; |
| case Instruction::SetGE: opCode = V9::MOVRGEZi; break; |
| case Instruction::SetLT: opCode = V9::MOVRLZi; break; |
| case Instruction::SetGT: opCode = V9::MOVRGZi; break; |
| case Instruction::SetNE: opCode = V9::MOVRNZi; break; |
| default: assert(0 && "Unrecognized VM instr!"); break; |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseConvertToFloatInstr(const TargetMachine& target, |
| OpLabel vopCode, const Type* opType) { |
| assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) && |
| "Unrecognized convert-to-float opcode!"); |
| assert((opType->isIntegral() || opType->isFloatingPoint() || |
| isa<PointerType>(opType)) |
| && "Trying to convert a non-scalar type to FLOAT/DOUBLE?"); |
| |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| |
| if (opType == Type::FloatTy) |
| opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD); |
| else if (opType == Type::DoubleTy) |
| opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP); |
| else if (opSize <= 4) |
| opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD); |
| else { |
| assert(opSize == 8 && "Unrecognized type size > 4 and < 8!"); |
| opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD); |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseConvertFPToIntInstr(const TargetMachine& target, |
| const Type* destType, const Type* opType) { |
| assert((opType == Type::FloatTy || opType == Type::DoubleTy) |
| && "This function should only be called for FLOAT or DOUBLE"); |
| assert((destType->isIntegral() || isa<PointerType>(destType)) |
| && "Trying to convert FLOAT/DOUBLE to a non-scalar type?"); |
| |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| unsigned destSize = target.getTargetData().getTypeSize(destType); |
| |
| if (destType == Type::UIntTy) |
| assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand."); |
| else if (destSize <= 4) |
| opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI; |
| else { |
| assert(destSize == 8 && "Unrecognized type size > 4 and < 8!"); |
| opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX; |
| } |
| |
| return opCode; |
| } |
| |
| static MachineInstr* |
| CreateConvertFPToIntInstr(const TargetMachine& target, Value* srcVal, |
| Value* destVal, const Type* destType) { |
| MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType, |
| srcVal->getType()); |
| assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!"); |
| return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal); |
| } |
| |
| /// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned |
| /// integer. The FP value must be converted to the dest type in an FP register, |
| /// and the result is then copied from FP to int register via memory. SPARC |
| /// does not have a float-to-uint conversion, only a float-to-int (fdtoi). |
| /// Since fdtoi converts to signed integers, any FP value V between MAXINT+1 and |
| /// MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly. |
| /// Therefore, for converting an FP value to uint32_t, we first need to convert |
| /// to uint64_t and then to uint32_t. |
| /// |
| static void |
| CreateCodeToConvertFloatToInt(const TargetMachine& target, |
| Value* opVal, Instruction* destI, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| Function* F = destI->getParent()->getParent(); |
| |
| // Create a temporary to represent the FP register into which the |
| // int value will placed after conversion. The type of this temporary |
| // depends on the type of FP register to use: single-prec for a 32-bit |
| // int or smaller; double-prec for a 64-bit int. |
| size_t destSize = target.getTargetData().getTypeSize(destI->getType()); |
| |
| const Type* castDestType = destI->getType(); // type for the cast instr result |
| const Type* castDestRegType; // type for cast instruction result reg |
| TmpInstruction* destForCast; // dest for cast instruction |
| Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr |
| |
| // For converting an FP value to uint32_t, we first need to convert to |
| // uint64_t and then to uint32_t, as explained above. |
| if (destI->getType() == Type::UIntTy) { |
| castDestType = Type::ULongTy; // use this instead of type of destI |
| castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register. |
| destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); |
| fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast); |
| } else { |
| castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy; |
| destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); |
| } |
| |
| // Create the fp-to-int conversion instruction (src and dest regs are FP regs) |
| mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast, |
| castDestType)); |
| |
| // Create the fpreg-to-intreg copy code |
| CreateCodeToCopyFloatToInt(target, F, destForCast, fpToIntCopyDest, mvec, |
| mcfi); |
| |
| // Create the uint64_t to uint32_t conversion, if needed |
| if (destI->getType() == Type::UIntTy) |
| CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI, |
| /*numLowBits*/ 32, mvec, mcfi); |
| } |
| |
| static inline MachineOpCode |
| ChooseAddInstruction(const InstructionNode* instrNode) { |
| return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); |
| } |
| |
| static inline MachineInstr* |
| CreateMovFloatInstruction(const InstructionNode* instrNode, |
| const Type* resultType) { |
| return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(instrNode->leftChild()->getValue()) |
| .addRegDef(instrNode->getValue()); |
| } |
| |
| static inline MachineInstr* |
| CreateAddConstInstruction(const InstructionNode* instrNode) { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Add with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FADD (1 vs 3 cycles). There is no integer MOV. |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, |
| instrNode->getInstruction()->getType()); |
| } |
| |
| return minstr; |
| } |
| |
| static inline MachineOpCode ChooseSubInstructionByType(const Type* resultType) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| if (resultType->isInteger() || isa<PointerType>(resultType)) { |
| opCode = V9::SUBr; |
| } else { |
| switch(resultType->getTypeID()) { |
| case Type::FloatTyID: opCode = V9::FSUBS; break; |
| case Type::DoubleTyID: opCode = V9::FSUBD; break; |
| default: assert(0 && "Invalid type for SUB instruction"); break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineInstr* |
| CreateSubConstInstruction(const InstructionNode* instrNode) { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Sub with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, |
| instrNode->getInstruction()->getType()); |
| } |
| |
| return minstr; |
| } |
| |
| static inline MachineOpCode |
| ChooseFcmpInstruction(const InstructionNode* instrNode) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getTypeID()) { |
| case Type::FloatTyID: opCode = V9::FCMPS; break; |
| case Type::DoubleTyID: opCode = V9::FCMPD; break; |
| default: assert(0 && "Invalid type for FCMP instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| /// BothFloatToDouble - Assumes that leftArg and rightArg of instrNode are both |
| /// cast instructions. Returns true if both are floats cast to double. |
| /// |
| static inline bool BothFloatToDouble(const InstructionNode* instrNode) { |
| InstrTreeNode* leftArg = instrNode->leftChild(); |
| InstrTreeNode* rightArg = instrNode->rightChild(); |
| InstrTreeNode* leftArgArg = leftArg->leftChild(); |
| InstrTreeNode* rightArgArg = rightArg->leftChild(); |
| assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); |
| return (leftArg->getValue()->getType() == Type::DoubleTy && |
| leftArgArg->getValue()->getType() == Type::FloatTy && |
| rightArgArg->getValue()->getType() == Type::FloatTy); |
| } |
| |
| static inline MachineOpCode ChooseMulInstructionByType(const Type* resultType) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| if (resultType->isInteger()) |
| opCode = V9::MULXr; |
| else |
| switch(resultType->getTypeID()) { |
| case Type::FloatTyID: opCode = V9::FMULS; break; |
| case Type::DoubleTyID: opCode = V9::FMULD; break; |
| default: assert(0 && "Invalid type for MUL instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineInstr* |
| CreateIntNegInstruction(const TargetMachine& target, Value* vreg) { |
| return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo()->getZeroRegNum()) |
| .addReg(vreg).addRegDef(vreg); |
| } |
| |
| /// CreateShiftInstructions - Create instruction sequence for any shift |
| /// operation. SLL or SLLX on an operand smaller than the integer reg. size |
| /// (64bits) requires a second instruction for explicit sign-extension. Note |
| /// that we only have to worry about a sign-bit appearing in the most |
| /// significant bit of the operand after shifting (e.g., bit 32 of Int or bit 16 |
| /// of Short), so we do not have to worry about results that are as large as a |
| /// normal integer register. |
| /// |
| static inline void |
| CreateShiftInstructions(const TargetMachine& target, Function* F, |
| MachineOpCode shiftOpCode, Value* argVal1, |
| Value* optArgVal2, /* Use optArgVal2 if not NULL */ |
| unsigned optShiftNum, /* else use optShiftNum */ |
| Instruction* destVal, std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| assert((optArgVal2 != NULL || optShiftNum <= 64) && |
| "Large shift sizes unexpected, but can be handled below: " |
| "You need to check whether or not it fits in immed field below"); |
| |
| // If this is a logical left shift of a type smaller than the standard |
| // integer reg. size, we have to extend the sign-bit into upper bits |
| // of dest, so we need to put the result of the SLL into a temporary. |
| Value* shiftDest = destVal; |
| unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType()); |
| |
| if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) { |
| // put SLL result into a temporary |
| shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp"); |
| } |
| |
| MachineInstr* M = (optArgVal2 != NULL) |
| ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2) |
| .addReg(shiftDest, MachineOperand::Def) |
| : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum) |
| .addReg(shiftDest, MachineOperand::Def); |
| mvec.push_back(M); |
| |
| if (shiftDest != destVal) { |
| // extend the sign-bit of the result into all upper bits of dest |
| assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?"); |
| CreateSignExtensionInstructions(target, F, shiftDest, destVal, 8*opSize, |
| mvec, mcfi); |
| } |
| } |
| |
| /// CreateMulConstInstruction - Does not create any instructions if we |
| /// cannot exploit constant to create a cheaper instruction. This returns the |
| /// approximate cost of the instructions generated, which is used to pick the |
| /// cheapest when both operands are constant. |
| /// |
| static unsigned |
| CreateMulConstInstruction(const TargetMachine &target, Function* F, |
| Value* lval, Value* rval, Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| // Use max. multiply cost, viz., cost of MULX |
| unsigned cost = target.getInstrInfo()->minLatency(V9::MULXr); |
| unsigned firstNewInstr = mvec.size(); |
| |
| Value* constOp = rval; |
| if (! isa<Constant>(constOp)) |
| return cost; |
| |
| // Cases worth optimizing are: |
| // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Multiply by 2^x for integer types: replace with Shift |
| const Type* resultType = destVal->getType(); |
| |
| if (resultType->isInteger() || isa<PointerType>(resultType)) { |
| bool isValidConst; |
| int64_t C = (int64_t) ConvertConstantToIntType(target, constOp, |
| constOp->getType(), |
| isValidConst); |
| if (isValidConst) { |
| unsigned pow; |
| bool needNeg = false; |
| if (C < 0) { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 0 || C == 1) { |
| cost = target.getInstrInfo()->minLatency(V9::ADDr); |
| unsigned Zero = target.getRegInfo()->getZeroRegNum(); |
| MachineInstr* M; |
| if (C == 0) |
| M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal); |
| else |
| M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal); |
| mvec.push_back(M); |
| } else if (isPowerOf2(C, pow)) { |
| unsigned opSize = target.getTargetData().getTypeSize(resultType); |
| MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6; |
| CreateShiftInstructions(target, F, opCode, lval, NULL, pow, |
| destVal, mvec, mcfi); |
| } |
| |
| if (mvec.size() > 0 && needNeg) { |
| // insert <reg = SUB 0, reg> after the instr to flip the sign |
| MachineInstr* M = CreateIntNegInstruction(target, destVal); |
| mvec.push_back(M); |
| } |
| } |
| } else { |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (fabs(dval) == 1) { |
| MachineOpCode opCode = (dval < 0) |
| ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) |
| : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); |
| mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal)); |
| } |
| } |
| } |
| |
| if (firstNewInstr < mvec.size()) { |
| cost = 0; |
| for (unsigned i=firstNewInstr; i < mvec.size(); ++i) |
| cost += target.getInstrInfo()->minLatency(mvec[i]->getOpcode()); |
| } |
| |
| return cost; |
| } |
| |
| /// CreateCheapestMulConstInstruction - Does not create any instructions |
| /// if we cannot exploit constant to create a cheaper instruction. |
| /// |
| static inline void |
| CreateCheapestMulConstInstruction(const TargetMachine &target, Function* F, |
| Value* lval, Value* rval, |
| Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) { |
| Value* constOp; |
| if (isa<Constant>(lval) && isa<Constant>(rval)) { |
| // both operands are constant: evaluate and "set" in dest |
| Constant* P = ConstantExpr::get(Instruction::Mul, |
| cast<Constant>(lval), |
| cast<Constant>(rval)); |
| CreateCodeToLoadConst (target, F, P, destVal, mvec, mcfi); |
| } |
| else if (isa<Constant>(rval)) // rval is constant, but not lval |
| CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); |
| else if (isa<Constant>(lval)) // lval is constant, but not rval |
| CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); |
| |
| // else neither is constant |
| return; |
| } |
| |
| /// CreateMulInstruction - Returns NULL if we cannot exploit constant |
| /// to create a cheaper instruction. |
| /// |
| static inline void |
| CreateMulInstruction(const TargetMachine &target, Function* F, |
| Value* lval, Value* rval, Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi, |
| MachineOpCode forceMulOp = -1) { |
| unsigned L = mvec.size(); |
| CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi); |
| if (mvec.size() == L) { |
| // no instructions were added so create MUL reg, reg, reg. |
| // Use FSMULD if both operands are actually floats cast to doubles. |
| // Otherwise, use the default opcode for the appropriate type. |
| MachineOpCode mulOp = ((forceMulOp != -1) |
| ? forceMulOp |
| : ChooseMulInstructionByType(destVal->getType())); |
| mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval) |
| .addRegDef(destVal)); |
| } |
| } |
| |
| /// ChooseDivInstruction - Generate a divide instruction for Div or Rem. |
| /// For Rem, this assumes that the operand type will be signed if the result |
| /// type is signed. This is correct because they must have the same sign. |
| /// |
| static inline MachineOpCode |
| ChooseDivInstruction(TargetMachine &target, const InstructionNode* instrNode) { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isInteger()) |
| opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr; |
| else |
| switch(resultType->getTypeID()) { |
| case Type::FloatTyID: opCode = V9::FDIVS; break; |
| case Type::DoubleTyID: opCode = V9::FDIVD; break; |
| default: assert(0 && "Invalid type for DIV instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| /// CreateDivConstInstruction - Return if we cannot exploit constant to create |
| /// a cheaper instruction. |
| /// |
| static void CreateDivConstInstruction(TargetMachine &target, |
| const InstructionNode* instrNode, |
| std::vector<MachineInstr*>& mvec) { |
| Value* LHS = instrNode->leftChild()->getValue(); |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| if (!isa<Constant>(constOp)) |
| return; |
| |
| Instruction* destVal = instrNode->getInstruction(); |
| unsigned ZeroReg = target.getRegInfo()->getZeroRegNum(); |
| |
| // Cases worth optimizing are: |
| // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isInteger()) { |
| unsigned pow; |
| bool isValidConst; |
| int64_t C = (int64_t) ConvertConstantToIntType(target, constOp, |
| constOp->getType(), |
| isValidConst); |
| if (isValidConst) { |
| bool needNeg = false; |
| if (C < 0) { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 1) { |
| mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg) |
| .addRegDef(destVal)); |
| } else if (isPowerOf2(C, pow)) { |
| unsigned opCode; |
| Value* shiftOperand; |
| unsigned opSize = target.getTargetData().getTypeSize(resultType); |
| |
| if (resultType->isSigned()) { |
| // For N / 2^k, if the operand N is negative, |
| // we need to add (2^k - 1) before right-shifting by k, i.e., |
| // |
| // (N / 2^k) = N >> k, if N >= 0; |
| // (N + 2^k - 1) >> k, if N < 0 |
| // |
| // If N is <= 32 bits, use: |
| // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else |
| // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else |
| // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else |
| // sra t3, k, result // result = N / 2^k |
| // |
| // If N is 64 bits, use: |
| // srax N, k-1, t1 // t1 = sign bit in high k positions |
| // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else |
| // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else |
| // sra t3, k, result // result = N / 2^k |
| TmpInstruction *sraTmp, *srlTmp, *addTmp; |
| MachineCodeForInstruction& mcfi |
| = MachineCodeForInstruction::get(destVal); |
| sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign"); |
| srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1"); |
| addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg"); |
| |
| // Create the SRA or SRAX instruction to get the sign bit |
| mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3) |
| .addReg(LHS) |
| .addSImm((resultType==Type::LongTy)? pow-1 : 31) |
| .addRegDef(sraTmp)); |
| |
| // Create the SRL or SRLX instruction to get the sign bit |
| mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3) |
| .addReg(sraTmp) |
| .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow) |
| .addRegDef(srlTmp)); |
| |
| // Create the ADD instruction to add 2^pow-1 for negative values |
| mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp) |
| .addRegDef(addTmp)); |
| |
| // Get the shift operand and "right-shift" opcode to do the divide |
| shiftOperand = addTmp; |
| opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5; |
| } else { |
| // Get the shift operand and "right-shift" opcode to do the divide |
| shiftOperand = LHS; |
| opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5; |
| } |
| |
| // Now do the actual shift! |
| mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow) |
| .addRegDef(destVal)); |
| } |
| |
| if (needNeg && (C == 1 || isPowerOf2(C, pow))) { |
| // insert <reg = SUB 0, reg> after the instr to flip the sign |
| mvec.push_back(CreateIntNegInstruction(target, destVal)); |
| } |
| } |
| } else { |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (fabs(dval) == 1) { |
| unsigned opCode = |
| (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) |
| : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); |
| |
| mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal)); |
| } |
| } |
| } |
| } |
| |
| static void CreateCodeForVariableSizeAlloca(const TargetMachine& target, |
| Instruction* result, unsigned tsize, |
| Value* numElementsVal, |
| std::vector<MachineInstr*>& getMvec) |
| { |
| Value* totalSizeVal; |
| MachineInstr* M; |
| MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result); |
| Function *F = result->getParent()->getParent(); |
| |
| // Enforce the alignment constraints on the stack pointer at |
| // compile time if the total size is a known constant. |
| if (isa<Constant>(numElementsVal)) { |
| bool isValid; |
| int64_t numElem = (int64_t) |
| ConvertConstantToIntType(target, numElementsVal, |
| numElementsVal->getType(), isValid); |
| assert(isValid && "Unexpectedly large array dimension in alloca!"); |
| int64_t total = numElem * tsize; |
| if (int extra= total % SparcV9FrameInfo::StackFrameSizeAlignment) |
| total += SparcV9FrameInfo::StackFrameSizeAlignment - extra; |
| totalSizeVal = ConstantSInt::get(Type::IntTy, total); |
| } else { |
| // The size is not a constant. Generate code to compute it and |
| // code to pad the size for stack alignment. |
| // Create a Value to hold the (constant) element size |
| Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); |
| |
| // Create temporary values to hold the result of MUL, SLL, SRL |
| // To pad `size' to next smallest multiple of 16: |
| // size = (size + 15) & (-16 = 0xfffffffffffffff0) |
| TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal); |
| TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd); |
| TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15); |
| |
| // Instruction 1: mul numElements, typeSize -> tmpProd |
| // This will optimize the MUL as far as possible. |
| CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec, |
| mcfi, -1); |
| |
| // Instruction 2: andn tmpProd, 0x0f -> tmpAndn |
| getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15) |
| .addReg(tmpAdd15, MachineOperand::Def)); |
| |
| // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16 |
| getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16) |
| .addReg(tmpAndf0, MachineOperand::Def)); |
| |
| totalSizeVal = tmpAndf0; |
| } |
| |
| // Get the constant offset from SP for dynamically allocated storage |
| // and create a temporary Value to hold it. |
| MachineFunction& mcInfo = MachineFunction::get(F); |
| bool growUp; |
| ConstantSInt* dynamicAreaOffset = |
| ConstantSInt::get(Type::IntTy, |
| target.getFrameInfo()->getDynamicAreaOffset(mcInfo,growUp)); |
| assert(! growUp && "Has SPARC v9 stack frame convention changed?"); |
| |
| unsigned SPReg = target.getRegInfo()->getStackPointer(); |
| |
| // Instruction 2: sub %sp, totalSizeVal -> %sp |
| getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal) |
| .addMReg(SPReg,MachineOperand::Def)); |
| |
| // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result |
| getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset) |
| .addRegDef(result)); |
| } |
| |
| static void |
| CreateCodeForFixedSizeAlloca(const TargetMachine& target, |
| Instruction* result, unsigned tsize, |
| unsigned numElements, |
| std::vector<MachineInstr*>& getMvec) { |
| assert(result && result->getParent() && |
| "Result value is not part of a function?"); |
| Function *F = result->getParent()->getParent(); |
| MachineFunction &mcInfo = MachineFunction::get(F); |
| |
| // If the alloca is of zero bytes (which is perfectly legal) we bump it up to |
| // one byte. This is unnecessary, but I really don't want to break any |
| // fragile logic in this code. FIXME. |
| if (tsize == 0) |
| tsize = 1; |
| |
| // Put the variable in the dynamically sized area of the frame if either: |
| // (a) The offset is too large to use as an immediate in load/stores |
| // (check LDX because all load/stores have the same-size immed. field). |
| // (b) The object is "large", so it could cause many other locals, |
| // spills, and temporaries to have large offsets. |
| // NOTE: We use LARGE = 8 * argSlotSize = 64 bytes. |
| // You've gotta love having only 13 bits for constant offset values :-|. |
| // |
| unsigned paddedSize; |
| int offsetFromFP = mcInfo.getInfo<SparcV9FunctionInfo>()->computeOffsetforLocalVar(result, |
| paddedSize, |
| tsize * numElements); |
| |
| if (((int)paddedSize) > 8 * SparcV9FrameInfo::SizeOfEachArgOnStack || |
| !target.getInstrInfo()->constantFitsInImmedField(V9::LDXi,offsetFromFP)) { |
| CreateCodeForVariableSizeAlloca(target, result, tsize, |
| ConstantSInt::get(Type::IntTy,numElements), |
| getMvec); |
| return; |
| } |
| |
| // else offset fits in immediate field so go ahead and allocate it. |
| offsetFromFP = mcInfo.getInfo<SparcV9FunctionInfo>()->allocateLocalVar(result, tsize *numElements); |
| |
| // Create a temporary Value to hold the constant offset. |
| // This is needed because it may not fit in the immediate field. |
| ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); |
| |
| // Instruction 1: add %fp, offsetFromFP -> result |
| unsigned FPReg = target.getRegInfo()->getFramePointer(); |
| getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal) |
| .addRegDef(result)); |
| } |
| |
| /// SetOperandsForMemInstr - Choose addressing mode for the given load or store |
| /// instruction. Use [reg+reg] if it is an indexed reference, and the index |
| /// offset is not a constant or if it cannot fit in the offset field. Use |
| /// [reg+offset] in all other cases. This assumes that all array refs are |
| /// "lowered" to one of these forms: |
| /// %x = load (subarray*) ptr, constant ; single constant offset |
| /// %x = load (subarray*) ptr, offsetVal ; single non-constant offset |
| /// Generally, this should happen via strength reduction + LICM. Also, strength |
| /// reduction should take care of using the same register for the loop index |
| /// variable and an array index, when that is profitable. |
| /// |
| static void SetOperandsForMemInstr(unsigned Opcode, |
| std::vector<MachineInstr*>& mvec, |
| InstructionNode* vmInstrNode, |
| const TargetMachine& target) { |
| Instruction* memInst = vmInstrNode->getInstruction(); |
| // Index vector, ptr value, and flag if all indices are const. |
| std::vector<Value*> idxVec; |
| bool allConstantIndices; |
| Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices); |
| |
| // Now create the appropriate operands for the machine instruction. |
| // First, initialize so we default to storing the offset in a register. |
| int64_t smallConstOffset = 0; |
| Value* valueForRegOffset = NULL; |
| MachineOperand::MachineOperandType offsetOpType = |
| MachineOperand::MO_VirtualRegister; |
| |
| // Check if there is an index vector and if so, compute the |
| // right offset for structures and for arrays |
| if (!idxVec.empty()) { |
| const PointerType* ptrType = cast<PointerType>(ptrVal->getType()); |
| |
| // If all indices are constant, compute the combined offset directly. |
| if (allConstantIndices) { |
| // Compute the offset value using the index vector. Create a |
| // virtual reg. for it since it may not fit in the immed field. |
| uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec); |
| valueForRegOffset = ConstantSInt::get(Type::LongTy, offset); |
| } else { |
| // There is at least one non-constant offset. Therefore, this must |
| // be an array ref, and must have been lowered to a single non-zero |
| // offset. (An extra leading zero offset, if any, can be ignored.) |
| // Generate code sequence to compute address from index. |
| bool firstIdxIsZero = IsZero(idxVec[0]); |
| assert(idxVec.size() == 1U + firstIdxIsZero |
| && "Array refs must be lowered before Instruction Selection"); |
| |
| Value* idxVal = idxVec[firstIdxIsZero]; |
| |
| std::vector<MachineInstr*> mulVec; |
| Instruction* addr = |
| new TmpInstruction(MachineCodeForInstruction::get(memInst), |
| Type::ULongTy, memInst); |
| |
| // Get the array type indexed by idxVal, and compute its element size. |
| // The call to getTypeSize() will fail if size is not constant. |
| const Type* vecType = (firstIdxIsZero |
| ? GetElementPtrInst::getIndexedType(ptrType, |
| std::vector<Value*>(1U, idxVec[0]), |
| /*AllowCompositeLeaf*/ true) |
| : ptrType); |
| const Type* eltType = cast<SequentialType>(vecType)->getElementType(); |
| ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy, |
| target.getTargetData().getTypeSize(eltType)); |
| |
| // CreateMulInstruction() folds constants intelligently enough. |
| CreateMulInstruction(target, memInst->getParent()->getParent(), |
| idxVal, /* lval, not likely to be const*/ |
| eltSizeVal, /* rval, likely to be constant */ |
| addr, /* result */ |
| mulVec, MachineCodeForInstruction::get(memInst), |
| -1); |
| |
| assert(mulVec.size() > 0 && "No multiply code created?"); |
| mvec.insert(mvec.end(), mulVec.begin(), mulVec.end()); |
| |
| valueForRegOffset = addr; |
| } |
| } else { |
| offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| smallConstOffset = 0; |
| } |
| |
| // For STORE: |
| // Operand 0 is value, operand 1 is ptr, operand 2 is offset |
| // For LOAD or GET_ELEMENT_PTR, |
| // Operand 0 is ptr, operand 1 is offset, operand 2 is result. |
| unsigned offsetOpNum, ptrOpNum; |
| MachineInstr *MI; |
| if (memInst->getOpcode() == Instruction::Store) { |
| if (offsetOpType == MachineOperand::MO_VirtualRegister) { |
| MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) |
| .addReg(ptrVal).addReg(valueForRegOffset); |
| } else { |
| Opcode = convertOpcodeFromRegToImm(Opcode); |
| MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) |
| .addReg(ptrVal).addSImm(smallConstOffset); |
| } |
| } else { |
| if (offsetOpType == MachineOperand::MO_VirtualRegister) { |
| MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset) |
| .addRegDef(memInst); |
| } else { |
| Opcode = convertOpcodeFromRegToImm(Opcode); |
| MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset) |
| .addRegDef(memInst); |
| } |
| } |
| mvec.push_back(MI); |
| } |
| |
| /// ForwardOperand - Substitute operand `operandNum' of the instruction in |
| /// node `treeNode' in place of the use(s) of that instruction in node `parent'. |
| /// Check both explicit and implicit operands! Also make sure to skip over a |
| /// parent who: (1) is a list node in the Burg tree, or (2) itself had its |
| /// results forwarded to its parent. |
| /// |
| static void ForwardOperand (InstructionNode *treeNode, InstrTreeNode *parent, |
| int operandNum) { |
| assert(treeNode && parent && "Invalid invocation of ForwardOperand"); |
| |
| Instruction* unusedOp = treeNode->getInstruction(); |
| Value* fwdOp = unusedOp->getOperand(operandNum); |
| |
| // The parent itself may be a list node, so find the real parent instruction |
| while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) { |
| parent = parent->parent(); |
| assert(parent && "ERROR: Non-instruction node has no parent in tree."); |
| } |
| InstructionNode* parentInstrNode = (InstructionNode*) parent; |
| |
| Instruction* userInstr = parentInstrNode->getInstruction(); |
| MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr); |
| |
| // The parent's mvec would be empty if it was itself forwarded. |
| // Recursively call ForwardOperand in that case... |
| // |
| if (mvec.size() == 0) { |
| assert(parent->parent() != NULL && |
| "Parent could not have been forwarded, yet has no instructions?"); |
| ForwardOperand(treeNode, parent->parent(), operandNum); |
| } else { |
| for (unsigned i=0, N=mvec.size(); i < N; i++) { |
| MachineInstr* minstr = mvec[i]; |
| for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) { |
| const MachineOperand& mop = minstr->getOperand(i); |
| if (mop.getType() == MachineOperand::MO_VirtualRegister && |
| mop.getVRegValue() == unusedOp) { |
| minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister, |
| fwdOp); |
| } |
| } |
| |
| for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i) |
| if (minstr->getImplicitRef(i) == unusedOp) |
| minstr->setImplicitRef(i, fwdOp); |
| } |
| } |
| } |
| |
| /// AllUsesAreBranches - Returns true if all the uses of I are |
| /// Branch instructions, false otherwise. |
| /// |
| inline bool AllUsesAreBranches(const Instruction* I) { |
| for (Value::use_const_iterator UI=I->use_begin(), UE=I->use_end(); |
| UI != UE; ++UI) |
| if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here |
| && cast<Instruction>(*UI)->getOpcode() != Instruction::Br) |
| return false; |
| return true; |
| } |
| |
| /// CodeGenIntrinsic - Generate code for any intrinsic that needs a special |
| /// code sequence instead of a regular call. If not that kind of intrinsic, do |
| /// nothing. Returns true if code was generated, otherwise false. |
| /// |
| static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr, |
| TargetMachine &target, |
| std::vector<MachineInstr*>& mvec) { |
| switch (iid) { |
| default: |
| assert(0 && "Unknown intrinsic function call should have been lowered!"); |
| case Intrinsic::vastart: { |
| // Get the address of the first incoming vararg argument on the stack |
| Function* func = cast<Function>(callInstr.getParent()->getParent()); |
| int numFixedArgs = func->getFunctionType()->getNumParams(); |
| int fpReg = SparcV9::i6; |
| int firstVarArgOff = numFixedArgs * 8 + |
| SparcV9FrameInfo::FirstIncomingArgOffsetFromFP; |
| mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff). |
| addRegDef(&callInstr)); |
| return true; |
| } |
| |
| case Intrinsic::vaend: |
| return true; // no-op on SparcV9 |
| |
| case Intrinsic::vacopy: |
| // Simple copy of current va_list (arg1) to new va_list (result) |
| mvec.push_back(BuildMI(V9::ORr, 3). |
| addMReg(target.getRegInfo()->getZeroRegNum()). |
| addReg(callInstr.getOperand(1)). |
| addRegDef(&callInstr)); |
| return true; |
| } |
| } |
| |
| /// ThisIsAChainRule - returns true if the given BURG rule is a chain rule. |
| /// |
| extern bool ThisIsAChainRule(int eruleno) { |
| switch(eruleno) { |
| case 111: // stmt: reg |
| case 123: |
| case 124: |
| case 125: |
| case 126: |
| case 127: |
| case 128: |
| case 129: |
| case 130: |
| case 131: |
| case 132: |
| case 133: |
| case 155: |
| case 221: |
| case 222: |
| case 241: |
| case 242: |
| case 243: |
| case 244: |
| case 245: |
| case 321: |
| return true; break; |
| |
| default: |
| return false; break; |
| } |
| } |
| |
| /// GetInstructionsByRule - Choose machine instructions for the |
| /// SPARC V9 according to the patterns chosen by the BURG-generated parser. |
| /// This is where most of the work in the V9 instruction selector gets done. |
| /// |
| void GetInstructionsByRule(InstructionNode* subtreeRoot, int ruleForNode, |
| short* nts, TargetMachine &target, |
| std::vector<MachineInstr*>& mvec) { |
| bool checkCast = false; // initialize here to use fall-through |
| bool maskUnsignedResult = false; |
| int nextRule; |
| int forwardOperandNum = -1; |
| unsigned allocaSize = 0; |
| MachineInstr* M, *M2; |
| unsigned L; |
| bool foldCase = false; |
| |
| mvec.clear(); |
| |
| // If the code for this instruction was folded into the parent (user), |
| // then do nothing! |
| if (subtreeRoot->isFoldedIntoParent()) |
| return; |
| |
| // Let's check for chain rules outside the switch so that we don't have |
| // to duplicate the list of chain rule production numbers here again |
| if (ThisIsAChainRule(ruleForNode)) { |
| // Chain rules have a single nonterminal on the RHS. |
| // Get the rule that matches the RHS non-terminal and use that instead. |
| assert(nts[0] && ! nts[1] |
| && "A chain rule should have only one RHS non-terminal!"); |
| nextRule = burm_rule(subtreeRoot->state, nts[0]); |
| nts = burm_nts[nextRule]; |
| GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec); |
| } else { |
| switch(ruleForNode) { |
| case 1: // stmt: Ret |
| case 2: // stmt: RetValue(reg) |
| { // NOTE: Prepass of register allocation is responsible |
| // for moving return value to appropriate register. |
| // Copy the return value to the required return register. |
| // Mark the return Value as an implicit ref of the RET instr.. |
| // Mark the return-address register as a hidden virtual reg. |
| // Finally put a NOP in the delay slot. |
| ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction()); |
| Value* retVal = returnInstr->getReturnValue(); |
| MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get(returnInstr); |
| |
| // Create a hidden virtual reg to represent the return address register |
| // used by the machine instruction but not represented in LLVM. |
| Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr); |
| |
| MachineInstr* retMI = |
| BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8) |
| .addMReg(target.getRegInfo()->getZeroRegNum(), MachineOperand::Def); |
| |
| // If there is a value to return, we need to: |
| // (a) Sign-extend the value if it is smaller than 8 bytes (reg size) |
| // (b) Insert a copy to copy the return value to the appropriate reg. |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| if (retVal != NULL) { |
| const SparcV9RegInfo& regInfo = |
| (SparcV9RegInfo&) *target.getRegInfo(); |
| const Type* retType = retVal->getType(); |
| unsigned regClassID = regInfo.getRegClassIDOfType(retType); |
| unsigned retRegNum = (retType->isFloatingPoint() |
| ? (unsigned) SparcV9FloatRegClass::f0 |
| : (unsigned) SparcV9IntRegClass::i0); |
| retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum); |
| |
| // Insert sign-extension instructions for small signed values. |
| Value* retValToUse = retVal; |
| if (retType->isIntegral() && retType->isSigned()) { |
| unsigned retSize = target.getTargetData().getTypeSize(retType); |
| if (retSize <= 4) { |
| // Create a temporary virtual reg. to hold the sign-extension. |
| retValToUse = new TmpInstruction(mcfi, retVal); |
| |
| // Sign-extend retVal and put the result in the temporary reg. |
| CreateSignExtensionInstructions |
| (target, returnInstr->getParent()->getParent(), |
| retVal, retValToUse, 8*retSize, mvec, mcfi); |
| } |
| } |
| |
| // (b) Now, insert a copy to to the appropriate register: |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| // First, create a virtual register to represent the register and |
| // mark this vreg as being an implicit operand of the ret MI. |
| TmpInstruction* retVReg = |
| new TmpInstruction(mcfi, retValToUse, NULL, "argReg"); |
| |
| retMI->addImplicitRef(retVReg); |
| |
| if (retType->isFloatingPoint()) |
| M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(retValToUse).addReg(retVReg, MachineOperand::Def)); |
| else |
| M = (BuildMI(ChooseAddInstructionByType(retType), 3) |
| .addReg(retValToUse).addSImm((int64_t) 0) |
| .addReg(retVReg, MachineOperand::Def)); |
| |
| // Mark the operand with the register it should be assigned |
| M->SetRegForOperand(M->getNumOperands()-1, retRegNum); |
| retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum); |
| |
| mvec.push_back(M); |
| } |
| |
| // Now insert the RET instruction and a NOP for the delay slot |
| mvec.push_back(retMI); |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| break; |
| } |
| |
| case 3: // stmt: Store(reg,reg) |
| case 4: // stmt: Store(reg,ptrreg) |
| SetOperandsForMemInstr(ChooseStoreInstruction( |
| subtreeRoot->leftChild()->getValue()->getType()), |
| mvec, subtreeRoot, target); |
| break; |
| |
| case 5: // stmt: BrUncond |
| { |
| BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 206: // stmt: BrCond(setCCconst) |
| { // setCCconst => boolean was computed with `%b = setCC type reg1 const' |
| // If the constant is ZERO, we can use the branch-on-integer-register |
| // instructions and avoid the SUBcc instruction entirely. |
| // Otherwise this is just the same as case 5, so just fall through. |
| // |
| InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); |
| assert(constNode && |
| constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| Constant *constVal = cast<Constant>(constNode->getValue()); |
| bool isValidConst; |
| |
| if ((constVal->getType()->isInteger() |
| || isa<PointerType>(constVal->getType())) |
| && ConvertConstantToIntType(target, |
| constVal, constVal->getType(), isValidConst) == 0 |
| && isValidConst) |
| { |
| // That constant is a zero after all... |
| // Use the left child of setCC as the first argument! |
| // Mark the setCC node so that no code is generated for it. |
| InstructionNode* setCCNode = (InstructionNode*) |
| subtreeRoot->leftChild(); |
| assert(setCCNode->getOpLabel() == SetCCOp); |
| setCCNode->markFoldedIntoParent(); |
| |
| BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction()); |
| |
| M = BuildMI(ChooseBprInstruction(subtreeRoot), 2) |
| .addReg(setCCNode->leftChild()->getValue()) |
| .addPCDisp(brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1) |
| .addPCDisp(brInst->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| // ELSE FALL THROUGH |
| } |
| |
| case 6: // stmt: BrCond(setCC) |
| { // bool => boolean was computed with SetCC. |
| // The branch to use depends on whether it is FP, signed, or unsigned. |
| // If it is an integer CC, we also need to find the unique |
| // TmpInstruction representing that CC. |
| // |
| BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction()); |
| const Type* setCCType; |
| unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType); |
| Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), |
| brInst->getParent()->getParent(), |
| setCCType, |
| MachineCodeForInstruction::get(brInst)); |
| M = BuildMI(Opcode, 2).addCCReg(ccValue) |
| .addPCDisp(brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 208: // stmt: BrCond(boolconst) |
| { |
| // boolconst => boolean is a constant; use BA to first or second label |
| Constant* constVal = |
| cast<Constant>(subtreeRoot->leftChild()->getValue()); |
| unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1; |
| |
| M = BuildMI(V9::BA, 1).addPCDisp( |
| cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 8: // stmt: BrCond(boolreg) |
| { // boolreg => boolean is recorded in an integer register. |
| // Use branch-on-integer-register instruction. |
| // |
| BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); |
| M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue()) |
| .addPCDisp(BI->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 9: // stmt: Switch(reg) |
| assert(0 && "*** SWITCH instruction is not implemented yet."); |
| break; |
| |
| case 10: // reg: VRegList(reg, reg) |
| assert(0 && "VRegList should never be the topmost non-chain rule"); |
| break; |
| |
| case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg |
| { // First find the unary operand. It may be left or right, usually right. |
| Instruction* notI = subtreeRoot->getInstruction(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(subtreeRoot->getInstruction())); |
| unsigned ZeroReg = target.getRegInfo()->getZeroRegNum(); |
| |
| // Unconditionally set register to 0 |
| mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI)); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1) |
| .addReg(notI, MachineOperand::UseAndDef)); |
| |
| break; |
| } |
| |
| case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0 |
| { // First find the unary operand. It may be left or right, usually right. |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(subtreeRoot->getInstruction())); |
| unsigned ZeroReg = target.getRegInfo()->getZeroRegNum(); |
| mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg) |
| .addRegDef(subtreeRoot->getValue())); |
| break; |
| } |
| |
| case 322: // reg: Not(tobool, reg): |
| // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool |
| foldCase = true; |
| // Just fall through! |
| |
| case 22: // reg: ToBoolTy(reg): |
| { |
| Instruction* castI = subtreeRoot->getInstruction(); |
| Value* opVal = subtreeRoot->leftChild()->getValue(); |
| assert(opVal->getType()->isIntegral() || |
| isa<PointerType>(opVal->getType())); |
| |
| // Unconditionally set register to 0 |
| mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI)); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi; |
| mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1) |
| .addReg(castI, MachineOperand::UseAndDef)); |
| |
| break; |
| } |
| |
| case 23: // reg: ToUByteTy(reg) |
| case 24: // reg: ToSByteTy(reg) |
| case 25: // reg: ToUShortTy(reg) |
| case 26: // reg: ToShortTy(reg) |
| case 27: // reg: ToUIntTy(reg) |
| case 28: // reg: ToIntTy(reg) |
| case 29: // reg: ToULongTy(reg) |
| case 30: // reg: ToLongTy(reg) |
| { |
| //====================================================================== |
| // Rules for integer conversions: |
| // |
| //-------- |
| // From ISO 1998 C++ Standard, Sec. 4.7: |
| // |
| // 2. If the destination type is unsigned, the resulting value is |
| // the least unsigned integer congruent to the source integer |
| // (modulo 2n where n is the number of bits used to represent the |
| // unsigned type). [Note: In a two s complement representation, |
| // this conversion is conceptual and there is no change in the |
| // bit pattern (if there is no truncation). ] |
| // |
| // 3. If the destination type is signed, the value is unchanged if |
| // it can be represented in the destination type (and bitfield width); |
| // otherwise, the value is implementation-defined. |
| //-------- |
| // |
| // Since we assume 2s complement representations, this implies: |
| // |
| // -- If operand is smaller than destination, zero-extend or sign-extend |
| // according to the signedness of the *operand*: source decides: |
| // (1) If operand is signed, sign-extend it. |
| // If dest is unsigned, zero-ext the result! |
| // (2) If operand is unsigned, our current invariant is that |
| // it's high bits are correct, so zero-extension is not needed. |
| // |
| // -- If operand is same size as or larger than destination, |
| // zero-extend or sign-extend according to the signedness of |
| // the *destination*: destination decides: |
| // (1) If destination is signed, sign-extend (truncating if needed) |
| // This choice is implementation defined. We sign-extend the |
| // operand, which matches both Sun's cc and gcc3.2. |
| // (2) If destination is unsigned, zero-extend (truncating if needed) |
| //====================================================================== |
| |
| Instruction* destI = subtreeRoot->getInstruction(); |
| Function* currentFunc = destI->getParent()->getParent(); |
| MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI); |
| |
| Value* opVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = opVal->getType(); |
| const Type* destType = destI->getType(); |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| unsigned destSize = target.getTargetData().getTypeSize(destType); |
| |
| bool isIntegral = opType->isIntegral() || isa<PointerType>(opType); |
| |
| if (opType == Type::BoolTy || |
| opType == destType || |
| isIntegral && opSize == destSize && opSize == 8) { |
| // nothing to do in all these cases |
| forwardOperandNum = 0; // forward first operand to user |
| |
| } else if (opType->isFloatingPoint()) { |
| |
| CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi); |
| if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy) |
| maskUnsignedResult = true; // not handled by fp->int code |
| |
| } else if (isIntegral) { |
| |
| bool opSigned = opType->isSigned(); |
| bool destSigned = destType->isSigned(); |
| unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize); |
| |
| assert(! (opSize == destSize && opSigned == destSigned) && |
| "How can different int types have same size and signedness?"); |
| |
| bool signExtend = (opSize < destSize && opSigned || |
| opSize >= destSize && destSigned); |
| |
| bool signAndZeroExtend = (opSize < destSize && destSize < 8u && |
| opSigned && !destSigned); |
| assert(!signAndZeroExtend || signExtend); |
| |
| bool zeroExtendOnly = opSize >= destSize && !destSigned; |
| assert(!zeroExtendOnly || !signExtend); |
| |
| if (signExtend) { |
| Value* signExtDest = (signAndZeroExtend |
| ? new TmpInstruction(mcfi, destType, opVal) |
| : destI); |
| |
| CreateSignExtensionInstructions |
| (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi); |
| |
| if (signAndZeroExtend) |
| CreateZeroExtensionInstructions |
| (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi); |
| } |
| else if (zeroExtendOnly) { |
| CreateZeroExtensionInstructions |
| (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi); |
| } |
| else |
| forwardOperandNum = 0; // forward first operand to user |
| |
| } else |
| assert(0 && "Unrecognized operand type for convert-to-integer"); |
| |
| break; |
| } |
| |
| case 31: // reg: ToFloatTy(reg): |
| case 32: // reg: ToDoubleTy(reg): |
| case 232: // reg: ToDoubleTy(Constant): |
| |
| // If this instruction has a parent (a user) in the tree |
| // and the user is translated as an FsMULd instruction, |
| // then the cast is unnecessary. So check that first. |
| // In the future, we'll want to do the same for the FdMULq instruction, |
| // so do the check here instead of only for ToFloatTy(reg). |
| // |
| if (subtreeRoot->parent() != NULL) { |
| const MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get( |
| cast<InstructionNode>(subtreeRoot->parent())->getInstruction()); |
| if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD) |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| |
| if (forwardOperandNum != 0) { // we do need the cast |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = leftVal->getType(); |
| MachineOpCode opCode=ChooseConvertToFloatInstr(target, |
| subtreeRoot->getOpLabel(), opType); |
| if (opCode == V9::NOP) { // no conversion needed |
| forwardOperandNum = 0; // forward first operand to user |
| } else { |
| // If the source operand is a non-FP type it must be |
| // first copied from int to float register via memory! |
| Instruction *dest = subtreeRoot->getInstruction(); |
| Value* srcForCast; |
| int n = 0; |
| if (! opType->isFloatingPoint()) { |
| // Create a temporary to represent the FP register |
| // into which the integer will be copied via memory. |
| // The type of this temporary will determine the FP |
| // register used: single-prec for a 32-bit int or smaller, |
| // double-prec for a 64-bit int. |
| // |
| uint64_t srcSize = |
| target.getTargetData().getTypeSize(leftVal->getType()); |
| Type* tmpTypeToUse = |
| (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; |
| MachineCodeForInstruction &destMCFI = |
| MachineCodeForInstruction::get(dest); |
| srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest); |
| |
| CreateCodeToCopyIntToFloat(target, |
| dest->getParent()->getParent(), |
| leftVal, cast<Instruction>(srcForCast), |
| mvec, destMCFI); |
| } else |
| srcForCast = leftVal; |
| |
| M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest); |
| mvec.push_back(M); |
| } |
| } |
| break; |
| |
| case 19: // reg: ToArrayTy(reg): |
| case 20: // reg: ToPointerTy(reg): |
| forwardOperandNum = 0; // forward first operand to user |
| break; |
| |
| case 233: // reg: Add(reg, Constant) |
| maskUnsignedResult = true; |
| M = CreateAddConstInstruction(subtreeRoot); |
| if (M != NULL) { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 33: // reg: Add(reg, reg) |
| maskUnsignedResult = true; |
| Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec); |
| break; |
| |
| case 234: // reg: Sub(reg, Constant) |
| maskUnsignedResult = true; |
| M = CreateSubConstInstruction(subtreeRoot); |
| if (M != NULL) { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 34: // reg: Sub(reg, reg) |
| maskUnsignedResult = true; |
| Add3OperandInstr(ChooseSubInstructionByType( |
| subtreeRoot->getInstruction()->getType()), |
| subtreeRoot, mvec); |
| break; |
| |
| case 135: // reg: Mul(todouble, todouble) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 35: // reg: Mul(reg, reg) |
| { |
| maskUnsignedResult = true; |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? (MachineOpCode)V9::FSMULD |
| : -1); |
| Instruction* mulInstr = subtreeRoot->getInstruction(); |
| CreateMulInstruction(target, mulInstr->getParent()->getParent(), |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| mulInstr, mvec, |
| MachineCodeForInstruction::get(mulInstr),forceOp); |
| break; |
| } |
| case 335: // reg: Mul(todouble, todoubleConst) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 235: // reg: Mul(reg, Constant) |
| { |
| maskUnsignedResult = true; |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? (MachineOpCode)V9::FSMULD |
| : -1); |
| Instruction* mulInstr = subtreeRoot->getInstruction(); |
| CreateMulInstruction(target, mulInstr->getParent()->getParent(), |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| mulInstr, mvec, |
| MachineCodeForInstruction::get(mulInstr), |
| forceOp); |
| break; |
| } |
| case 236: // reg: Div(reg, Constant) |
| maskUnsignedResult = true; |
| L = mvec.size(); |
| CreateDivConstInstruction(target, subtreeRoot, mvec); |
| if (mvec.size() > L) |
| break; |
| // ELSE FALL THROUGH |
| |
| case 36: // reg: Div(reg, reg) |
| { |
| maskUnsignedResult = true; |
| |
| // If either operand of divide is smaller than 64 bits, we have |
| // to make sure the unused top bits are correct because they affect |
| // the result. These bits are already correct for unsigned values. |
| // They may be incorrect for signed values, so sign extend to fill in. |
| Instruction* divI = subtreeRoot->getInstruction(); |
| Value* divOp1 = subtreeRoot->leftChild()->getValue(); |
| Value* divOp2 = subtreeRoot->rightChild()->getValue(); |
| Value* divOp1ToUse = divOp1; |
| Value* divOp2ToUse = divOp2; |
| if (divI->getType()->isSigned()) { |
| unsigned opSize=target.getTargetData().getTypeSize(divI->getType()); |
| if (opSize < 8) { |
| MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI); |
| divOp1ToUse = new TmpInstruction(mcfi, divOp1); |
| divOp2ToUse = new TmpInstruction(mcfi, divOp2); |
| CreateSignExtensionInstructions(target, |
| divI->getParent()->getParent(), |
| divOp1, divOp1ToUse, |
| 8*opSize, mvec, mcfi); |
| CreateSignExtensionInstructions(target, |
| divI->getParent()->getParent(), |
| divOp2, divOp2ToUse, |
| 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) |
| .addReg(divOp1ToUse) |
| .addReg(divOp2ToUse) |
| .addRegDef(divI)); |
| |
| break; |
| } |
| |
| case 37: // reg: Rem(reg, reg) |
| case 237: // reg: Rem(reg, Constant) |
| { |
| maskUnsignedResult = true; |
| |
| Instruction* remI = subtreeRoot->getInstruction(); |
| Value* divOp1 = subtreeRoot->leftChild()->getValue(); |
| Value* divOp2 = subtreeRoot->rightChild()->getValue(); |
| |
| MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI); |
| |
| // If second operand of divide is smaller than 64 bits, we have |
| // to make sure the unused top bits are correct because they affect |
| // the result. These bits are already correct for unsigned values. |
| // They may be incorrect for signed values, so sign extend to fill in. |
| // |
| Value* divOpToUse = divOp2; |
| if (divOp2->getType()->isSigned()) { |
| unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType()); |
| if (opSize < 8) { |
| divOpToUse = new TmpInstruction(mcfi, divOp2); |
| CreateSignExtensionInstructions(target, |
| remI->getParent()->getParent(), |
| divOp2, divOpToUse, |
| 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| // Now compute: result = rem V1, V2 as: |
| // result = V1 - (V1 / signExtend(V2)) * signExtend(V2) |
| // |
| TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse); |
| TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse); |
| |
| mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) |
| .addReg(divOp1).addReg(divOpToUse).addRegDef(quot)); |
| |
| mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3) |
| .addReg(quot).addReg(divOpToUse).addRegDef(prod)); |
| |
| mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3) |
| .addReg(divOp1).addReg(prod).addRegDef(remI)); |
| |
| break; |
| } |
| |
| case 38: // bool: And(bool, bool) |
| case 138: // bool: And(bool, not) |
| case 238: // bool: And(bool, boolconst) |
| case 338: // reg : BAnd(reg, reg) |
| case 538: // reg : BAnd(reg, Constant) |
| Add3OperandInstr(V9::ANDr, subtreeRoot, mvec); |
| break; |
| |
| case 438: // bool: BAnd(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| // If the type is boolean, set 1 or 0 in the result register. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *lhs = subtreeRoot->leftChild()->getValue(); |
| Value *dest = subtreeRoot->getValue(); |
| mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg) |
| .addReg(dest, MachineOperand::Def)); |
| |
| if (notArg->getType() == Type::BoolTy) { |
| // set 1 in result register if result of above is non-zero |
| mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) |
| .addReg(dest, MachineOperand::UseAndDef)); |
| } |
| |
| break; |
| } |
| |
| case 39: // bool: Or(bool, bool) |
| case 139: // bool: Or(bool, not) |
| case 239: // bool: Or(bool, boolconst) |
| case 339: // reg : BOr(reg, reg) |
| case 539: // reg : BOr(reg, Constant) |
| Add3OperandInstr(V9::ORr, subtreeRoot, mvec); |
| break; |
| |
| case 439: // bool: BOr(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| // If the type is boolean, set 1 or 0 in the result register. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *lhs = subtreeRoot->leftChild()->getValue(); |
| Value *dest = subtreeRoot->getValue(); |
| |
| mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg) |
| .addReg(dest, MachineOperand::Def)); |
| |
| if (notArg->getType() == Type::BoolTy) { |
| // set 1 in result register if result of above is non-zero |
| mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) |
| .addReg(dest, MachineOperand::UseAndDef)); |
| } |
| |
| break; |
| } |
| |
| case 40: // bool: Xor(bool, bool) |
| case 140: // bool: Xor(bool, not) |
| case 240: // bool: Xor(bool, boolconst) |
| case 340: // reg : BXor(reg, reg) |
| case 540: // reg : BXor(reg, Constant) |
| Add3OperandInstr(V9::XORr, subtreeRoot, mvec); |
| break; |
| |
| case 440: // bool: BXor(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| // If the type is boolean, set 1 or 0 in the result register. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *lhs = subtreeRoot->leftChild()->getValue(); |
| Value *dest = subtreeRoot->getValue(); |
| mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg) |
| .addReg(dest, MachineOperand::Def)); |
| |
| if (notArg->getType() == Type::BoolTy) { |
| // set 1 in result register if result of above is non-zero |
| mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) |
| .addReg(dest, MachineOperand::UseAndDef)); |
| } |
| break; |
| } |
| |
| case 41: // setCCconst: SetCC(reg, Constant) |
| { // Comparison is with a constant: |
| // |
| // If the bool result must be computed into a register (see below), |
| // and the constant is int ZERO, we can use the MOVR[op] instructions |
| // and avoid the SUBcc instruction entirely. |
| // Otherwise this is just the same as case 42, so just fall through. |
| // |
| // The result of the SetCC must be computed and stored in a register if |
| // it is used outside the current basic block (so it must be computed |
| // as a boolreg) or it is used by anything other than a branch. |
| // We will use a conditional move to do this. |
| // |
| Instruction* setCCInstr = subtreeRoot->getInstruction(); |
| bool computeBoolVal = (subtreeRoot->parent() == NULL || |
| ! AllUsesAreBranches(setCCInstr)); |
| |
| if (computeBoolVal) { |
| InstrTreeNode* constNode = subtreeRoot->rightChild(); |
| assert(constNode && |
| constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| Constant *constVal = cast<Constant>(constNode->getValue()); |
| bool isValidConst; |
| |
| if ((constVal->getType()->isInteger() |
| || isa<PointerType>(constVal->getType())) |
| && ConvertConstantToIntType(target, |
| constVal, constVal->getType(), isValidConst) == 0 |
| && isValidConst) |
| { |
| // That constant is an integer zero after all... |
| // Use a MOVR[op] to compute the boolean result |
| // Unconditionally set register to 0 |
| mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0) |
| .addRegDef(setCCInstr)); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot); |
| mvec.push_back(BuildMI(movOpCode, 3) |
| .addReg(subtreeRoot->leftChild()->getValue()) |
| .addZImm(1) |
| .addReg(setCCInstr, MachineOperand::UseAndDef)); |
| |
| break; |
| } |
| } |
| // ELSE FALL THROUGH |
| } |
| |
| case 42: // bool: SetCC(reg, reg): |
| { |
| // This generates a SUBCC instruction, putting the difference in a |
| // result reg. if needed, and/or setting a condition code if needed. |
| // |
| Instruction* setCCInstr = subtreeRoot->getInstruction(); |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| Value* rightVal = subtreeRoot->rightChild()->getValue(); |
| const Type* opType = leftVal->getType(); |
| bool isFPCompare = opType->isFloatingPoint(); |
| |
| // If the boolean result of the SetCC is used outside the current basic |
| // block (so it must be computed as a boolreg) or is used by anything |
| // other than a branch, the boolean must be computed and stored |
| // in a result register. We will use a conditional move to do this. |
| // |
| bool computeBoolVal = (subtreeRoot->parent() == NULL || |
| ! AllUsesAreBranches(setCCInstr)); |
| |
| // A TmpInstruction is created to represent the CC "result". |
| // Unlike other instances of TmpInstruction, this one is used |
| // by machine code of multiple LLVM instructions, viz., |
| // the SetCC and the branch. Make sure to get the same one! |
| // Note that we do this even for FP CC registers even though they |
| // are explicit operands, because the type of the operand |
| // needs to be a floating point condition code, not an integer |
| // condition code. Think of this as casting the bool result to |
| // a FP condition code register. |
| // Later, we mark the 4th operand as being a CC register, and as a def. |
| // |
| TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, |
| setCCInstr->getParent()->getParent(), |
| leftVal->getType(), |
| MachineCodeForInstruction::get(setCCInstr)); |
| |
| // If the operands are signed values smaller than 4 bytes, then they |
| // must be sign-extended in order to do a valid 32-bit comparison |
| // and get the right result in the 32-bit CC register (%icc). |
| // |
| Value* leftOpToUse = leftVal; |
| Value* rightOpToUse = rightVal; |
| if (opType->isIntegral() && opType->isSigned()) { |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| if (opSize < 4) { |
| MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get(setCCInstr); |
| |
| // create temporary virtual regs. to hold the sign-extensions |
| leftOpToUse = new TmpInstruction(mcfi, leftVal); |
| rightOpToUse = new TmpInstruction(mcfi, rightVal); |
| |
| // sign-extend each operand and put the result in the temporary reg. |
| CreateSignExtensionInstructions |
| (target, setCCInstr->getParent()->getParent(), |
| leftVal, leftOpToUse, 8*opSize, mvec, mcfi); |
| CreateSignExtensionInstructions |
| (target, setCCInstr->getParent()->getParent(), |
| rightVal, rightOpToUse, 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| if (! isFPCompare) { |
| // Integer condition: set CC and discard result. |
| mvec.push_back(BuildMI(V9::SUBccr, 4) |
| .addReg(leftOpToUse) |
| .addReg(rightOpToUse) |
| .addMReg(target.getRegInfo()-> |
| getZeroRegNum(), MachineOperand::Def) |
| .addCCReg(tmpForCC, MachineOperand::Def)); |
| } else { |
| // FP condition: dest of FCMP should be some FCCn register |
| mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3) |
| .addCCReg(tmpForCC, MachineOperand::Def) |
| .addReg(leftOpToUse) |
| .addReg(rightOpToUse)); |
| } |
| |
| if (computeBoolVal) { |
| MachineOpCode movOpCode = (isFPCompare |
| ? ChooseMovFpcciInstruction(subtreeRoot) |
| : ChooseMovpcciForSetCC(subtreeRoot)); |
| |
| // Unconditionally set register to 0 |
| M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr); |
| mvec.push_back(M); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1) |
| .addReg(setCCInstr, MachineOperand::UseAndDef)); |
| mvec.push_back(M); |
| } |
| break; |
| } |
| |
| case 51: // reg: Load(reg) |
| case 52: // reg: Load(ptrreg) |
| SetOperandsForMemInstr(ChooseLoadInstruction( |
| subtreeRoot->getValue()->getType()), |
| mvec, subtreeRoot, target); |
| break; |
| |
| case 55: // reg: GetElemPtr(reg) |
| case 56: // reg: GetElemPtrIdx(reg,reg) |
| // If the GetElemPtr was folded into the user (parent), it will be |
| // caught above. For other cases, we have to compute the address. |
| SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target); |
| break; |
| |
| case 57: // reg: Alloca: Implement as 1 instruction: |
| { // add %fp, offsetFromFP -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| unsigned tsize = |
| target.getTargetData().getTypeSize(instr->getAllocatedType()); |
| assert(tsize != 0); |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec); |
| break; |
| } |
| |
| case 58: // reg: Alloca(reg): Implement as 3 instructions: |
| // mul num, typeSz -> tmp |
| // sub %sp, tmp -> %sp |
| { // add %sp, frameSizeBelowDynamicArea -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| const Type* eltType = instr->getAllocatedType(); |
| |
| // If #elements is constant, use simpler code for fixed-size allocas |
| int tsize = (int) target.getTargetData().getTypeSize(eltType); |
| Value* numElementsVal = NULL; |
| bool isArray = instr->isArrayAllocation(); |
| |
| if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) { |
| // total size is constant: generate code for fixed-size alloca |
| unsigned numElements = isArray? |
| cast<ConstantUInt>(numElementsVal)->getValue() : 1; |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, |
| numElements, mvec); |
| } else { |
| // total size is not constant. |
| CreateCodeForVariableSizeAlloca(target, instr, tsize, |
| numElementsVal, mvec); |
| } |
| break; |
| } |
| |
| case 61: // reg: Call |
| { // Generate a direct (CALL) or indirect (JMPL) call. |
| // Mark the return-address register, the indirection |
| // register (for indirect calls), the operands of the Call, |
| // and the return value (if any) as implicit operands |
| // of the machine instruction. |
| // |
| // If this is a varargs function, floating point arguments |
| // have to passed in integer registers so insert |
| // copy-float-to-int instructions for each float operand. |
| // |
| CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction()); |
| Value *callee = callInstr->getCalledValue(); |
| Function* calledFunc = dyn_cast<Function>(callee); |
| |
| // Check if this is an intrinsic function that needs a special code |
| // sequence (e.g., va_start). Indirect calls cannot be special. |
| // |
| bool specialIntrinsic = false; |
| Intrinsic::ID iid; |
| if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID())) |
| specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec); |
| |
| // If not, generate the normal call sequence for the function. |
| // This can also handle any intrinsics that are just function calls. |
| // |
| if (! specialIntrinsic) { |
| Function* currentFunc = callInstr->getParent()->getParent(); |
| MachineFunction& MF = MachineFunction::get(currentFunc); |
| MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get(callInstr); |
| const SparcV9RegInfo& regInfo = |
| (SparcV9RegInfo&) *target.getRegInfo(); |
| const TargetFrameInfo& frameInfo = *target.getFrameInfo(); |
| |
| // Create hidden virtual register for return address with type void* |
| TmpInstruction* retAddrReg = |
| new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr); |
| |
| // Generate the machine instruction and its operands. |
| // Use CALL for direct function calls; this optimistically assumes |
| // the PC-relative address fits in the CALL address field (22 bits). |
| // Use JMPL for indirect calls. |
| // This will be added to mvec later, after operand copies. |
| // |
| MachineInstr* callMI; |
| if (calledFunc) // direct function call |
| callMI = BuildMI(V9::CALL, 1).addPCDisp(callee); |
| else // indirect function call |
| callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee) |
| .addSImm((int64_t)0).addRegDef(retAddrReg)); |
| |
| const FunctionType* funcType = |
| cast<FunctionType>(cast<PointerType>(callee->getType()) |
| ->getElementType()); |
| bool isVarArgs = funcType->isVarArg(); |
| bool noPrototype = isVarArgs && funcType->getNumParams() == 0; |
| |
| // Use a descriptor to pass information about call arguments |
| // to the register allocator. This descriptor will be "owned" |
| // and freed automatically when the MachineCodeForInstruction |
| // object for the callInstr goes away. |
| CallArgsDescriptor* argDesc = |
| new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype); |
| assert(callInstr->getOperand(0) == callee |
| && "This is assumed in the loop below!"); |
| |
| // Insert sign-extension instructions for small signed values, |
| // if this is an unknown function (i.e., called via a funcptr) |
| // or an external one (i.e., which may not be compiled by llc). |
| // |
| if (calledFunc == NULL || calledFunc->isExternal()) { |
| for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { |
| Value* argVal = callInstr->getOperand(i); |
| const Type* argType = argVal->getType(); |
| if (argType->isIntegral() && argType->isSigned()) { |
| unsigned argSize = target.getTargetData().getTypeSize(argType); |
| if (argSize <= 4) { |
| // create a temporary virtual reg. to hold the sign-extension |
| TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal); |
| |
| // sign-extend argVal and put the result in the temporary reg. |
| CreateSignExtensionInstructions |
| (target, currentFunc, argVal, argExtend, |
| 8*argSize, mvec, mcfi); |
| |
| // replace argVal with argExtend in CallArgsDescriptor |
| argDesc->getArgInfo(i-1).replaceArgVal(argExtend); |
| } |
| } |
| } |
| } |
| |
| // Insert copy instructions to get all the arguments into |
| // all the places that they need to be. |
| // |
| for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { |
| int argNo = i-1; |
| CallArgInfo& argInfo = argDesc->getArgInfo(argNo); |
| Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here |
| const Type* argType = argVal->getType(); |
| unsigned regType = regInfo.getRegTypeForDataType(argType); |
| unsigned argSize = target.getTargetData().getTypeSize(argType); |
| int regNumForArg = SparcV9RegInfo::getInvalidRegNum(); |
| unsigned regClassIDOfArgReg; |
| |
| // Check for FP arguments to varargs functions. |
| // Any such argument in the first $K$ args must be passed in an |
| // integer register. If there is no prototype, it must also |
| // be passed as an FP register. |
| // K = #integer argument registers. |
| bool isFPArg = argVal->getType()->isFloatingPoint(); |
| if (isVarArgs && isFPArg) { |
| |
| if (noPrototype) { |
| // It is a function with no prototype: pass value |
| // as an FP value as well as a varargs value. The FP value |
| // may go in a register or on the stack. The copy instruction |
| // to the outgoing reg/stack is created by the normal argument |
| // handling code since this is the "normal" passing mode. |
| // |
| regNumForArg = regInfo.regNumForFPArg(regType, |
| false, false, argNo, |
| regClassIDOfArgReg); |
| if (regNumForArg == regInfo.getInvalidRegNum()) |
| argInfo.setUseStackSlot(); |
| else |
| argInfo.setUseFPArgReg(); |
| } |
| |
| // If this arg. is in the first $K$ regs, add special copy- |
| // float-to-int instructions to pass the value as an int. |
| // To check if it is in the first $K$, get the register |
| // number for the arg #i. These copy instructions are |
| // generated here because they are extra cases and not needed |
| // for the normal argument handling (some code reuse is |
| // possible though -- later). |
| // |
| int copyRegNum = regInfo.regNumForIntArg(false, false, argNo, |
| regClassIDOfArgReg); |
| if (copyRegNum != regInfo.getInvalidRegNum()) { |
| // Create a virtual register to represent copyReg. Mark |
| // this vreg as being an implicit operand of the call MI |
| const Type* loadTy = (argType == Type::FloatTy |
| ? Type::IntTy : Type::LongTy); |
| TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy, |
| argVal, NULL, |
| "argRegCopy"); |
| callMI->addImplicitRef(argVReg); |
| |
| // Get a temp stack location to use to copy |
| // float-to-int via the stack. |
| // |
| // FIXME: For now, we allocate permanent space because |
| // the stack frame manager does not allow locals to be |
| // allocated (e.g., for alloca) after a temp is |
| // allocated! |
| // |
| // int tmpOffset = MF.getInfo<SparcV9FunctionInfo>()->pushTempValue(argSize); |
| int tmpOffset = MF.getInfo<SparcV9FunctionInfo>()->allocateLocalVar(argVReg); |
| |
| // Generate the store from FP reg to stack |
| unsigned StoreOpcode = ChooseStoreInstruction(argType); |
| M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3) |
| .addReg(argVal).addMReg(regInfo.getFramePointer()) |
| .addSImm(tmpOffset); |
| mvec.push_back(M); |
| |
| // Generate the load from stack to int arg reg |
| unsigned LoadOpcode = ChooseLoadInstruction(loadTy); |
| M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3) |
| .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset) |
| .addReg(argVReg, MachineOperand::Def); |
| |
| // Mark operand with register it should be assigned |
| // both for copy and for the callMI |
| M->SetRegForOperand(M->getNumOperands()-1, copyRegNum); |
| callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, |
| copyRegNum); |
| mvec.push_back(M); |
| |
| // Add info about the argument to the CallArgsDescriptor |
| argInfo.setUseIntArgReg(); |
| argInfo.setArgCopy(copyRegNum); |
| } else { |
| // Cannot fit in first $K$ regs so pass arg on stack |
| argInfo.setUseStackSlot(); |
| } |
| } else if (isFPArg) { |
| // Get the outgoing arg reg to see if there is one. |
| regNumForArg = regInfo.regNumForFPArg(regType, false, false, |
| argNo, regClassIDOfArgReg); |
| if (regNumForArg == regInfo.getInvalidRegNum()) |
| argInfo.setUseStackSlot(); |
| else { |
| argInfo.setUseFPArgReg(); |
| regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, |
| regNumForArg); |
| } |
| } else { |
| // Get the outgoing arg reg to see if there is one. |
| regNumForArg = regInfo.regNumForIntArg(false,false, |
| argNo, regClassIDOfArgReg); |
| if (regNumForArg == regInfo.getInvalidRegNum()) |
| argInfo.setUseStackSlot(); |
| else { |
| argInfo.setUseIntArgReg(); |
| regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, |
| regNumForArg); |
| } |
| } |
| |
| // |
| // Now insert copy instructions to stack slot or arg. register |
| // |
| if (argInfo.usesStackSlot()) { |
| // Get the stack offset for this argument slot. |
| // FP args on stack are right justified so adjust offset! |
| // int arguments are also right justified but they are |
| // always loaded as a full double-word so the offset does |
| // not need to be adjusted. |
| int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo); |
| if (argType->isFloatingPoint()) { |
| unsigned slotSize = SparcV9FrameInfo::SizeOfEachArgOnStack; |
| assert(argSize <= slotSize && "Insufficient slot size!"); |
| argOffset += slotSize - argSize; |
| } |
| |
| // Now generate instruction to copy argument to stack |
| MachineOpCode storeOpCode = |
| (argType->isFloatingPoint() |
| ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi); |
| |
| M = BuildMI(storeOpCode, 3).addReg(argVal) |
| .addMReg(regInfo.getStackPointer()).addSImm(argOffset); |
| mvec.push_back(M); |
| } |
| else if (regNumForArg != regInfo.getInvalidRegNum()) { |
| |
| // Create a virtual register to represent the arg reg. Mark |
| // this vreg as being an implicit operand of the call MI. |
| TmpInstruction* argVReg = |
| new TmpInstruction(mcfi, argVal, NULL, "argReg"); |
| |
| callMI->addImplicitRef(argVReg); |
| |
| // Generate the reg-to-reg copy into the outgoing arg reg. |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| if (argType->isFloatingPoint()) |
| M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2) |
| .addReg(argVal).addReg(argVReg, MachineOperand::Def)); |
| else |
| M = (BuildMI(ChooseAddInstructionByType(argType), 3) |
| .addReg(argVal).addSImm((int64_t) 0) |
| .addReg(argVReg, MachineOperand::Def)); |
| |
| // Mark the operand with the register it should be assigned |
| M->SetRegForOperand(M->getNumOperands()-1, regNumForArg); |
| callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, |
| regNumForArg); |
| |
| mvec.push_back(M); |
| } |
| else |
| assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() && |
| "Arg. not in stack slot, primary or secondary register?"); |
| } |
| |
| // add call instruction and delay slot before copying return value |
| mvec.push_back(callMI); |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // Add the return value as an implicit ref. The call operands |
| // were added above. Also, add code to copy out the return value. |
| // This is always register-to-register for int or FP return values. |
| // |
| if (callInstr->getType() != Type::VoidTy) { |
| // Get the return value reg. |
| const Type* retType = callInstr->getType(); |
| |
| int regNum = (retType->isFloatingPoint() |
| ? (unsigned) SparcV9FloatRegClass::f0 |
| : (unsigned) SparcV9IntRegClass::o0); |
| unsigned regClassID = regInfo.getRegClassIDOfType(retType); |
| regNum = regInfo.getUnifiedRegNum(regClassID, regNum); |
| |
| // Create a virtual register to represent it and mark |
| // this vreg as being an implicit operand of the call MI |
| TmpInstruction* retVReg = |
| new TmpInstruction(mcfi, callInstr, NULL, "argReg"); |
| |
| callMI->addImplicitRef(retVReg, /*isDef*/ true); |
| |
| // Generate the reg-to-reg copy from the return value reg. |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| if (retType->isFloatingPoint()) |
| M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(retVReg).addReg(callInstr, MachineOperand::Def)); |
| else |
| M = (BuildMI(ChooseAddInstructionByType(retType), 3) |
| .addReg(retVReg).addSImm((int64_t) 0) |
| .addReg(callInstr, MachineOperand::Def)); |
| |
| // Mark the operand with the register it should be assigned |
| // Also mark the implicit ref of the call defining this operand |
| M->SetRegForOperand(0, regNum); |
| callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum); |
| |
| mvec.push_back(M); |
| } |
| |
| // For the CALL instruction, the ret. addr. reg. is also implicit |
| if (isa<Function>(callee)) |
| callMI->addImplicitRef(retAddrReg, /*isDef*/ true); |
| |
| MF.getInfo<SparcV9FunctionInfo>()->popAllTempValues(); // free temps used for this inst |
| } |
| |
| break; |
| } |
| |
| case 62: // reg: Shl(reg, reg) |
| { |
| Value* argVal1 = subtreeRoot->leftChild()->getValue(); |
| Value* argVal2 = subtreeRoot->rightChild()->getValue(); |
| Instruction* shlInstr = subtreeRoot->getInstruction(); |
| |
| const Type* opType = argVal1->getType(); |
| assert((opType->isInteger() || isa<PointerType>(opType)) && |
| "Shl unsupported for other types"); |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| |
| CreateShiftInstructions(target, shlInstr->getParent()->getParent(), |
| (opSize > 4)? V9::SLLXr6:V9::SLLr5, |
| argVal1, argVal2, 0, shlInstr, mvec, |
| MachineCodeForInstruction::get(shlInstr)); |
| break; |
| } |
| |
| case 63: // reg: Shr(reg, reg) |
| { |
| const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert((opType->isInteger() || isa<PointerType>(opType)) && |
| "Shr unsupported for other types"); |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| Add3OperandInstr(opType->isSigned() |
| ? (opSize > 4? V9::SRAXr6 : V9::SRAr5) |
| : (opSize > 4? V9::SRLXr6 : V9::SRLr5), |
| subtreeRoot, mvec); |
| break; |
| } |
| |
| case 64: // reg: Phi(reg,reg) |
| break; // don't forward the value |
| |
| case 65: // reg: VANext(reg): the va_next(va_list, type) instruction |
| { // Increment the va_list pointer register according to the type. |
| // All LLVM argument types are <= 64 bits, so use one doubleword. |
| Instruction* vaNextI = subtreeRoot->getInstruction(); |
| assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 && |
| "We assumed that all LLVM parameter types <= 8 bytes!"); |
| unsigned argSize = SparcV9FrameInfo::SizeOfEachArgOnStack; |
| mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)). |
| addSImm(argSize).addRegDef(vaNextI)); |
| break; |
| } |
| |
| case 66: // reg: VAArg (reg): the va_arg instruction |
| { // Load argument from stack using current va_list pointer value. |
| // Use 64-bit load for all non-FP args, and LDDF or double for FP. |
| Instruction* vaArgI = subtreeRoot->getInstruction(); |
| MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint() |
| ? (vaArgI->getType() == Type::FloatTy |
| ? V9::LDFi : V9::LDDFi) |
| : V9::LDXi); |
| mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)). |
| addSImm(0).addRegDef(vaArgI)); |
| break; |
| } |
| |
| case 71: // reg: VReg |
| case 72: // reg: Constant |
| break; // don't forward the value |
| |
| default: |
| assert(0 && "Unrecognized BURG rule"); |
| break; |
| } |
| } |
| |
| if (forwardOperandNum >= 0) { |
| // We did not generate a machine instruction but need to use operand. |
| // If user is in the same tree, replace Value in its machine operand. |
| // If not, insert a copy instruction which should get coalesced away |
| // by register allocation. |
| if (subtreeRoot->parent() != NULL) |
| ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); |
| else { |
| std::vector<MachineInstr*> minstrVec; |
| Instruction* instr = subtreeRoot->getInstruction(); |
| CreateCopyInstructionsByType(target, |
| instr->getParent()->getParent(), |
| instr->getOperand(forwardOperandNum), |
| instr, minstrVec, |
| MachineCodeForInstruction::get(instr)); |
| assert(minstrVec.size() > 0); |
| mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); |
| } |
| } |
| |
| if (maskUnsignedResult) { |
| // If result is unsigned and smaller than int reg size, |
| // we need to clear high bits of result value. |
| assert(forwardOperandNum < 0 && "Need mask but no instruction generated"); |
| Instruction* dest = subtreeRoot->getInstruction(); |
| if (dest->getType()->isUnsigned()) { |
| unsigned destSize=target.getTargetData().getTypeSize(dest->getType()); |
| if (destSize <= 4) { |
| // Mask high 64 - N bits, where N = 4*destSize. |
| |
| // Use a TmpInstruction to represent the |
| // intermediate result before masking. Since those instructions |
| // have already been generated, go back and substitute tmpI |
| // for dest in the result position of each one of them. |
| // |
| MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest); |
| TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(), |
| dest, NULL, "maskHi"); |
| Value* srlArgToUse = tmpI; |
| |
| unsigned numSubst = 0; |
| for (unsigned i=0, N=mvec.size(); i < N; ++i) { |
| |
| // Make sure we substitute all occurrences of dest in these instrs. |
| // Otherwise, we will have bogus code. |
| bool someArgsWereIgnored = false; |
| |
| // Make sure not to substitute an upwards-exposed use -- that would |
| // introduce a use of `tmpI' with no preceding def. Therefore, |
| // substitute a use or def-and-use operand only if a previous def |
| // operand has already been substituted (i.e., numSubst > 0). |
| // |
| numSubst += mvec[i]->substituteValue(dest, tmpI, |
| /*defsOnly*/ numSubst == 0, |
| /*notDefsAndUses*/ numSubst > 0, |
| someArgsWereIgnored); |
| assert(!someArgsWereIgnored && |
| "Operand `dest' exists but not replaced: probably bogus!"); |
| } |
| assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!"); |
| |
| // Left shift 32-N if size (N) is less than 32 bits. |
| // Use another tmp. virtual register to represent this result. |
| if (destSize < 4) { |
| srlArgToUse = new TmpInstruction(mcfi, dest->getType(), |
| tmpI, NULL, "maskHi2"); |
| mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI) |
| .addZImm(8*(4-destSize)) |
| .addReg(srlArgToUse, MachineOperand::Def)); |
| } |
| |
| // Logical right shift 32-N to get zero extension in top 64-N bits. |
| mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse) |
| .addZImm(8*(4-destSize)) |
| .addReg(dest, MachineOperand::Def)); |
| |
| } else if (destSize < 8) { |
| assert(0 && "Unsupported type size: 32 < size < 64 bits"); |
| } |
| } |
| } |
| } |
| |
| } // End llvm namespace |
| |
| //==------------------------------------------------------------------------==// |
| // Class V9ISel Implementation |
| //==------------------------------------------------------------------------==// |
| |
| bool V9ISel::runOnFunction(Function &F) { |
| // First pass - Walk the function, lowering any calls to intrinsic functions |
| // which the instruction selector cannot handle. |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) |
| if (CallInst *CI = dyn_cast<CallInst>(I++)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| case Intrinsic::vastart: |
| case Intrinsic::vacopy: |
| case Intrinsic::vaend: |
| // We directly implement these intrinsics. Note that this knowledge |
| // is incestuously entangled with the code in |
| // SparcInstrSelection.cpp and must be updated when it is updated. |
| // Since ALL of the code in this library is incestuously intertwined |
| // with it already and sparc specific, we will live with this. |
| break; |
| default: |
| // All other intrinsic calls we must lower. |
| Instruction *Before = CI->getPrev(); |
| Target.getIntrinsicLowering().LowerIntrinsicCall(CI); |
| if (Before) { // Move iterator to instruction after call |
| I = Before; ++I; |
| } else { |
| I = BB->begin(); |
| } |
| } |
| |
| // Build the instruction trees to be given as inputs to BURG. |
| InstrForest instrForest(&F); |
| if (SelectDebugLevel >= Select_DebugInstTrees) { |
| std::cerr << "\n\n*** Input to instruction selection for function " |
| << F.getName() << "\n\n" << F |
| << "\n\n*** Instruction trees for function " |
| << F.getName() << "\n\n"; |
| instrForest.dump(); |
| } |
| |
| // Invoke BURG instruction selection for each tree |
| for (InstrForest::const_root_iterator RI = instrForest.roots_begin(); |
| RI != instrForest.roots_end(); ++RI) { |
| InstructionNode* basicNode = *RI; |
| assert(basicNode->parent() == NULL && "A `root' node has a parent?"); |
| |
| // Invoke BURM to label each tree node with a state |
| burm_label(basicNode); |
| if (SelectDebugLevel >= Select_DebugBurgTrees) { |
| printcover(basicNode, 1, 0); |
| std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n"; |
| printMatches(basicNode); |
| } |
| |
| // Then recursively walk the tree to select instructions |
| SelectInstructionsForTree(basicNode, /*goalnt*/1); |
| } |
| |
| // Create the MachineBasicBlocks and add all of the MachineInstrs |
| // defined in the MachineCodeForInstruction objects to the MachineBasicBlocks. |
| MachineFunction &MF = MachineFunction::get(&F); |
| std::map<const BasicBlock *, MachineBasicBlock *> MBBMap; |
| for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { |
| MachineBasicBlock *MBB = new MachineBasicBlock(BI); |
| MF.getBasicBlockList().push_back(MBB); |
| MBBMap[BI] = MBB; |
| |
| for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) { |
| MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II); |
| MBB->insert(MBB->end(), mvec.begin(), mvec.end()); |
| } |
| } |
| |
| // Initialize Machine-CFG for the function. |
| for (MachineFunction::iterator i = MF.begin (), e = MF.end (); i != e; ++i) { |
| MachineBasicBlock &MBB = *i; |
| const BasicBlock *BB = MBB.getBasicBlock (); |
| // for each successor S of BB, add MBBMap[S] as a successor of MBB. |
| for (succ_const_iterator si = succ_begin(BB), se = succ_end(BB); si != se; |
| ++si) { |
| MachineBasicBlock *succMBB = MBBMap[*si]; |
| assert (succMBB && "Can't find MachineBasicBlock for this successor"); |
| MBB.addSuccessor (succMBB); |
| } |
| } |
| |
| // Insert phi elimination code |
| InsertCodeForPhis(F); |
| |
| if (SelectDebugLevel >= Select_PrintMachineCode) { |
| std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n"; |
| MachineFunction::get(&F).dump(); |
| } |
| |
| return true; |
| } |
| |
| /// InsertCodeForPhis - This method inserts Phi elimination code for |
| /// all Phi nodes in the given function. After this method is called, |
| /// the Phi nodes still exist in the LLVM code, but copies are added to the |
| /// machine code. |
| /// |
| void V9ISel::InsertCodeForPhis(Function &F) { |
| // Iterate over every Phi node PN in F: |
| MachineFunction &MF = MachineFunction::get(&F); |
| for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) { |
| for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin(); |
| const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) { |
| // Create a new temporary register to hold the result of the Phi copy. |
| // The leak detector shouldn't track these nodes. They are not garbage, |
| // even though their parent field is never filled in. |
| Value *PhiCpRes = new PHINode(PN->getType(), PN->getName() + ":PhiCp"); |
| LeakDetector::removeGarbageObject(PhiCpRes); |
| |
| // For each of PN's incoming values, insert a copy in the corresponding |
| // predecessor block. |
| MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get (PN); |
| for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) { |
| std::vector<MachineInstr*> mvec, CpVec; |
| Target.getRegInfo()->cpValue2Value(PN->getIncomingValue(i), |
| PhiCpRes, mvec); |
| for (std::vector<MachineInstr*>::iterator MI=mvec.begin(); |
| MI != mvec.end(); ++MI) { |
| std::vector<MachineInstr*> CpVec2 = |
| FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target); |
| CpVec2.push_back(*MI); |
| CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end()); |
| } |
| // Insert the copy instructions into the predecessor BB. |
| InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec); |
| MCforPN.insert (MCforPN.end (), CpVec.begin (), CpVec.end ()); |
| } |
| // Insert a copy instruction from PhiCpRes to PN. |
| std::vector<MachineInstr*> mvec; |
| Target.getRegInfo()->cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN), |
| mvec); |
| BB->insert(BB->begin(), mvec.begin(), mvec.end()); |
| MCforPN.insert (MCforPN.end (), mvec.begin (), mvec.end ()); |
| } // for each Phi Instr in BB |
| } // for all BBs in function |
| } |
| |
| /// InsertPhiElimInstructions - Inserts the instructions in CpVec into the |
| /// MachineBasicBlock corresponding to BB, just before its terminator |
| /// instruction. This is used by InsertCodeForPhis() to insert copies, above. |
| /// |
| void V9ISel::InsertPhiElimInstructions(BasicBlock *BB, |
| const std::vector<MachineInstr*>& CpVec) |
| { |
| Instruction *TermInst = (Instruction*)BB->getTerminator(); |
| MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst); |
| MachineInstr *FirstMIOfTerm = MC4Term.front(); |
| assert (FirstMIOfTerm && "No Machine Instrs for terminator"); |
| |
| MachineBasicBlock *MBB = FirstMIOfTerm->getParent(); |
| assert(MBB && "Machine BB for predecessor's terminator not found"); |
| MachineBasicBlock::iterator MCIt = FirstMIOfTerm; |
| assert(MCIt != MBB->end() && "Start inst of terminator not found"); |
| |
| // Insert the copy instructions just before the first machine instruction |
| // generated for the terminator. |
| MBB->insert(MCIt, CpVec.begin(), CpVec.end()); |
| } |
| |
| /// SelectInstructionsForTree - Recursively walk the tree to select |
| /// instructions. Do this top-down so that child instructions can exploit |
| /// decisions made at the child instructions. |
| /// |
| /// E.g., if br(setle(reg,const)) decides the constant is 0 and uses |
| /// a branch-on-integer-register instruction, then the setle node |
| /// can use that information to avoid generating the SUBcc instruction. |
| /// |
| /// Note that this cannot be done bottom-up because setle must do this |
| /// only if it is a child of the branch (otherwise, the result of setle |
| /// may be used by multiple instructions). |
| /// |
| void V9ISel::SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt) { |
| // Get the rule that matches this node. |
| int ruleForNode = burm_rule(treeRoot->state, goalnt); |
| |
| if (ruleForNode == 0) { |
| std::cerr << "Could not match instruction tree for instr selection\n"; |
| abort(); |
| } |
| |
| // Get this rule's non-terminals and the corresponding child nodes (if any) |
| short *nts = burm_nts[ruleForNode]; |
| |
| // First, select instructions for the current node and rule. |
| // (If this is a list node, not an instruction, then skip this step). |
| // This function is specific to the target architecture. |
| if (treeRoot->opLabel != VRegListOp) { |
| std::vector<MachineInstr*> minstrVec; |
| InstructionNode* instrNode = (InstructionNode*)treeRoot; |
| assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode); |
| GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec); |
| MachineCodeForInstruction &mvec = |
| MachineCodeForInstruction::get(instrNode->getInstruction()); |
| mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); |
| } |
| |
| // Then, recursively compile the child nodes, if any. |
| // |
| if (nts[0]) { |
| // i.e., there is at least one kid |
| InstrTreeNode* kids[2]; |
| int currentRule = ruleForNode; |
| burm_kids(treeRoot, currentRule, kids); |
| |
| // First skip over any chain rules so that we don't visit |
| // the current node again. |
| while (ThisIsAChainRule(currentRule)) { |
| currentRule = burm_rule(treeRoot->state, nts[0]); |
| nts = burm_nts[currentRule]; |
| burm_kids(treeRoot, currentRule, kids); |
| } |
| |
| // Now we have the first non-chain rule so we have found |
| // the actual child nodes. Recursively compile them. |
| for (unsigned i = 0; nts[i]; i++) { |
| assert(i < 2); |
| InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType(); |
| if (nodeType == InstrTreeNode::NTVRegListNode || |
| nodeType == InstrTreeNode::NTInstructionNode) |
| SelectInstructionsForTree(kids[i], nts[i]); |
| } |
| } |
| |
| // Finally, do any post-processing on this node after its children |
| // have been translated. |
| if (treeRoot->opLabel != VRegListOp) |
| PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts); |
| } |
| |
| /// PostprocessMachineCodeForTree - Apply any final cleanups to |
| /// machine code for the root of a subtree after selection for all its |
| /// children has been completed. |
| /// |
| void V9ISel::PostprocessMachineCodeForTree(InstructionNode *instrNode, |
| int ruleForNode, short *nts) { |
| // Fix up any constant operands in the machine instructions to either |
| // use an immediate field or to load the constant into a register. |
| // Walk backwards and use direct indexes to allow insertion before current. |
| Instruction* vmInstr = instrNode->getInstruction(); |
| MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr); |
| for (unsigned i = mvec.size(); i != 0; --i) { |
| std::vector<MachineInstr*> loadConstVec = |
| FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target); |
| mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end()); |
| } |
| } |
| |
| /// createSparcV9BurgInstSelector - Creates and returns a new SparcV9 |
| /// BURG-based instruction selection pass. |
| /// |
| FunctionPass *llvm::createSparcV9BurgInstSelector(TargetMachine &TM) { |
| return new V9ISel(TM); |
| } |