| //===- Reader.cpp - Code to read bytecode files ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library implements the functionality defined in llvm/Bytecode/Reader.h |
| // |
| // Note that this library should be as fast as possible, reentrant, and |
| // threadsafe!! |
| // |
| // TODO: Allow passing in an option to ignore the symbol table |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Reader.h" |
| #include "llvm/Bytecode/BytecodeHandler.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Bytecode/Format.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "Support/StringExtras.h" |
| #include <sstream> |
| |
| using namespace llvm; |
| |
| /// A convenience macro for handling parsing errors. |
| #define PARSE_ERROR(inserters) { \ |
| std::ostringstream errormsg; \ |
| errormsg << inserters; \ |
| throw std::string(errormsg.str()); \ |
| } |
| |
| /// @brief A class for maintaining the slot number definition |
| /// as a placeholder for the actual definition. |
| template<class SuperType> |
| class PlaceholderDef : public SuperType { |
| unsigned ID; |
| PlaceholderDef(); // DO NOT IMPLEMENT |
| void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT |
| public: |
| PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {} |
| unsigned getID() { return ID; } |
| }; |
| |
| struct ConstantPlaceHolderHelper : public ConstantExpr { |
| ConstantPlaceHolderHelper(const Type *Ty) |
| : ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty) {} |
| }; |
| |
| typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder; |
| |
| //===----------------------------------------------------------------------===// |
| // Bytecode Reading Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// Determine if the current block being read contains any more data. |
| inline bool BytecodeReader::moreInBlock() { |
| return At < BlockEnd; |
| } |
| |
| /// Throw an error if we've read past the end of the current block |
| inline void BytecodeReader::checkPastBlockEnd(const char * block_name) { |
| if ( At > BlockEnd ) |
| PARSE_ERROR("Attempt to read past the end of " << block_name << " block."); |
| } |
| |
| /// Align the buffer position to a 32 bit boundary |
| inline void BytecodeReader::align32() { |
| BufPtr Save = At; |
| At = (const unsigned char *)((unsigned long)(At+3) & (~3UL)); |
| if ( At > Save ) |
| if (Handler) Handler->handleAlignment( At - Save ); |
| if (At > BlockEnd) |
| throw std::string("Ran out of data while aligning!"); |
| } |
| |
| /// Read a whole unsigned integer |
| inline unsigned BytecodeReader::read_uint() { |
| if (At+4 > BlockEnd) |
| throw std::string("Ran out of data reading uint!"); |
| At += 4; |
| return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24); |
| } |
| |
| /// Read a variable-bit-rate encoded unsigned integer |
| inline unsigned BytecodeReader::read_vbr_uint() { |
| unsigned Shift = 0; |
| unsigned Result = 0; |
| BufPtr Save = At; |
| |
| do { |
| if (At == BlockEnd) |
| throw std::string("Ran out of data reading vbr_uint!"); |
| Result |= (unsigned)((*At++) & 0x7F) << Shift; |
| Shift += 7; |
| } while (At[-1] & 0x80); |
| if (Handler) Handler->handleVBR32(At-Save); |
| return Result; |
| } |
| |
| /// Read a variable-bit-rate encoded unsigned 64-bit integer. |
| inline uint64_t BytecodeReader::read_vbr_uint64() { |
| unsigned Shift = 0; |
| uint64_t Result = 0; |
| BufPtr Save = At; |
| |
| do { |
| if (At == BlockEnd) |
| throw std::string("Ran out of data reading vbr_uint64!"); |
| Result |= (uint64_t)((*At++) & 0x7F) << Shift; |
| Shift += 7; |
| } while (At[-1] & 0x80); |
| if (Handler) Handler->handleVBR64(At-Save); |
| return Result; |
| } |
| |
| /// Read a variable-bit-rate encoded signed 64-bit integer. |
| inline int64_t BytecodeReader::read_vbr_int64() { |
| uint64_t R = read_vbr_uint64(); |
| if (R & 1) { |
| if (R != 1) |
| return -(int64_t)(R >> 1); |
| else // There is no such thing as -0 with integers. "-0" really means |
| // 0x8000000000000000. |
| return 1LL << 63; |
| } else |
| return (int64_t)(R >> 1); |
| } |
| |
| /// Read a pascal-style string (length followed by text) |
| inline std::string BytecodeReader::read_str() { |
| unsigned Size = read_vbr_uint(); |
| const unsigned char *OldAt = At; |
| At += Size; |
| if (At > BlockEnd) // Size invalid? |
| throw std::string("Ran out of data reading a string!"); |
| return std::string((char*)OldAt, Size); |
| } |
| |
| /// Read an arbitrary block of data |
| inline void BytecodeReader::read_data(void *Ptr, void *End) { |
| unsigned char *Start = (unsigned char *)Ptr; |
| unsigned Amount = (unsigned char *)End - Start; |
| if (At+Amount > BlockEnd) |
| throw std::string("Ran out of data!"); |
| std::copy(At, At+Amount, Start); |
| At += Amount; |
| } |
| |
| /// Read a block header and obtain its type and size |
| inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) { |
| Type = read_uint(); |
| Size = read_uint(); |
| BlockStart = At; |
| if ( At + Size > BlockEnd ) |
| throw std::string("Attempt to size a block past end of memory"); |
| BlockEnd = At + Size; |
| if (Handler) Handler->handleBlock( Type, BlockStart, Size ); |
| } |
| |
| |
| /// In LLVM 1.2 and before, Types were derived from Value and so they were |
| /// written as part of the type planes along with any other Value. In LLVM |
| /// 1.3 this changed so that Type does not derive from Value. Consequently, |
| /// the BytecodeReader's containers for Values can't contain Types because |
| /// there's no inheritance relationship. This means that the "Type Type" |
| /// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3 |
| /// whenever a bytecode construct must have both types and values together, |
| /// the types are always read/written first and then the Values. Furthermore |
| /// since Type::TypeTyID no longer exists, its value (12) now corresponds to |
| /// Type::LabelTyID. In order to overcome this we must "sanitize" all the |
| /// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change. |
| /// For LLVM 1.2 and before, this function will decrement the type id by |
| /// one to account for the missing Type::TypeTyID enumerator if the value is |
| /// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this |
| /// function returns true, otherwise false. This helps detect situations |
| /// where the pre 1.3 bytecode is indicating that what follows is a type. |
| /// @returns true iff type id corresponds to pre 1.3 "type type" |
| inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId ) { |
| if ( hasTypeDerivedFromValue ) { /// do nothing if 1.3 or later |
| if ( TypeId == Type::LabelTyID ) { |
| TypeId = Type::VoidTyID; // sanitize it |
| return true; // indicate we got TypeTyID in pre 1.3 bytecode |
| } else if ( TypeId > Type::LabelTyID ) |
| --TypeId; // shift all planes down because type type plane is missing |
| } |
| return false; |
| } |
| |
| /// Reads a vbr uint to read in a type id and does the necessary |
| /// conversion on it by calling sanitizeTypeId. |
| /// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type" |
| /// @see sanitizeTypeId |
| inline bool BytecodeReader::read_typeid(unsigned &TypeId) { |
| TypeId = read_vbr_uint(); |
| return sanitizeTypeId(TypeId); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IR Lookup Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// Determine if a type id has an implicit null value |
| inline bool BytecodeReader::hasImplicitNull(unsigned TyID ) { |
| if (!hasExplicitPrimitiveZeros) |
| return TyID != Type::LabelTyID && TyID != Type::VoidTyID; |
| return TyID >= Type::FirstDerivedTyID; |
| } |
| |
| /// Obtain a type given a typeid and account for things like compaction tables, |
| /// function level vs module level, and the offsetting for the primitive types. |
| const Type *BytecodeReader::getType(unsigned ID) { |
| if (ID < Type::FirstDerivedTyID) |
| if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID)) |
| return T; // Asked for a primitive type... |
| |
| // Otherwise, derived types need offset... |
| ID -= Type::FirstDerivedTyID; |
| |
| if (!CompactionTypes.empty()) { |
| if (ID >= CompactionTypes.size()) |
| throw std::string("Type ID out of range for compaction table!"); |
| return CompactionTypes[ID]; |
| } |
| |
| // Is it a module-level type? |
| if (ID < ModuleTypes.size()) |
| return ModuleTypes[ID].get(); |
| |
| // Nope, is it a function-level type? |
| ID -= ModuleTypes.size(); |
| if (ID < FunctionTypes.size()) |
| return FunctionTypes[ID].get(); |
| |
| throw std::string("Illegal type reference!"); |
| return Type::VoidTy; |
| } |
| |
| /// Get a sanitized type id. This just makes sure that the \p ID |
| /// is both sanitized and not the "type type" of pre-1.3 bytecode. |
| /// @see sanitizeTypeId |
| inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) { |
| bool isTypeType = sanitizeTypeId(ID); |
| assert(!isTypeType && "Invalid type id occurred"); |
| return getType(ID); |
| } |
| |
| /// This method just saves some coding. It uses read_typeid to read |
| /// in a sanitized type id, asserts that its not the type type, and |
| /// then calls getType to return the type value. |
| inline const Type* BytecodeReader::readSanitizedType() { |
| unsigned ID; |
| bool isTypeType = read_typeid(ID); |
| assert(!isTypeType && "Invalid type id occurred"); |
| return getType(ID); |
| } |
| |
| /// Get the slot number associated with a type accounting for primitive |
| /// types, compaction tables, and function level vs module level. |
| unsigned BytecodeReader::getTypeSlot(const Type *Ty) { |
| if (Ty->isPrimitiveType()) |
| return Ty->getTypeID(); |
| |
| // Scan the compaction table for the type if needed. |
| if (!CompactionTypes.empty()) { |
| std::vector<const Type*>::const_iterator I = |
| find(CompactionTypes.begin(), CompactionTypes.end(), Ty); |
| |
| if (I == CompactionTypes.end()) |
| throw std::string("Couldn't find type specified in compaction table!"); |
| return Type::FirstDerivedTyID + (&*I - &CompactionTypes[0]); |
| } |
| |
| // Check the function level types first... |
| TypeListTy::iterator I = find(FunctionTypes.begin(), FunctionTypes.end(), Ty); |
| |
| if (I != FunctionTypes.end()) |
| return Type::FirstDerivedTyID + ModuleTypes.size() + |
| (&*I - &FunctionTypes[0]); |
| |
| // Check the module level types now... |
| I = find(ModuleTypes.begin(), ModuleTypes.end(), Ty); |
| if (I == ModuleTypes.end()) |
| throw std::string("Didn't find type in ModuleTypes."); |
| return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]); |
| } |
| |
| /// This is just like getType, but when a compaction table is in use, it is |
| /// ignored. It also ignores function level types. |
| /// @see getType |
| const Type *BytecodeReader::getGlobalTableType(unsigned Slot) { |
| if (Slot < Type::FirstDerivedTyID) { |
| const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot); |
| assert(Ty && "Not a primitive type ID?"); |
| return Ty; |
| } |
| Slot -= Type::FirstDerivedTyID; |
| if (Slot >= ModuleTypes.size()) |
| throw std::string("Illegal compaction table type reference!"); |
| return ModuleTypes[Slot]; |
| } |
| |
| /// This is just like getTypeSlot, but when a compaction table is in use, it |
| /// is ignored. It also ignores function level types. |
| unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) { |
| if (Ty->isPrimitiveType()) |
| return Ty->getTypeID(); |
| TypeListTy::iterator I = find(ModuleTypes.begin(), |
| ModuleTypes.end(), Ty); |
| if (I == ModuleTypes.end()) |
| throw std::string("Didn't find type in ModuleTypes."); |
| return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]); |
| } |
| |
| /// Retrieve a value of a given type and slot number, possibly creating |
| /// it if it doesn't already exist. |
| Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) { |
| assert(type != Type::LabelTyID && "getValue() cannot get blocks!"); |
| unsigned Num = oNum; |
| |
| // If there is a compaction table active, it defines the low-level numbers. |
| // If not, the module values define the low-level numbers. |
| if (CompactionValues.size() > type && !CompactionValues[type].empty()) { |
| if (Num < CompactionValues[type].size()) |
| return CompactionValues[type][Num]; |
| Num -= CompactionValues[type].size(); |
| } else { |
| // By default, the global type id is the type id passed in |
| unsigned GlobalTyID = type; |
| |
| // If the type plane was compactified, figure out the global type ID |
| // by adding the derived type ids and the distance. |
| if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID) { |
| const Type *Ty = CompactionTypes[type-Type::FirstDerivedTyID]; |
| TypeListTy::iterator I = |
| find(ModuleTypes.begin(), ModuleTypes.end(), Ty); |
| assert(I != ModuleTypes.end()); |
| GlobalTyID = Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]); |
| } |
| |
| if (hasImplicitNull(GlobalTyID)) { |
| if (Num == 0) |
| return Constant::getNullValue(getType(type)); |
| --Num; |
| } |
| |
| if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) { |
| if (Num < ModuleValues[GlobalTyID]->size()) |
| return ModuleValues[GlobalTyID]->getOperand(Num); |
| Num -= ModuleValues[GlobalTyID]->size(); |
| } |
| } |
| |
| if (FunctionValues.size() > type && |
| FunctionValues[type] && |
| Num < FunctionValues[type]->size()) |
| return FunctionValues[type]->getOperand(Num); |
| |
| if (!Create) return 0; // Do not create a placeholder? |
| |
| std::pair<unsigned,unsigned> KeyValue(type, oNum); |
| ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue); |
| if (I != ForwardReferences.end() && I->first == KeyValue) |
| return I->second; // We have already created this placeholder |
| |
| Value *Val = new Argument(getType(type)); |
| ForwardReferences.insert(I, std::make_pair(KeyValue, Val)); |
| return Val; |
| } |
| |
| /// This is just like getValue, but when a compaction table is in use, it |
| /// is ignored. Also, no forward references or other fancy features are |
| /// supported. |
| Value* BytecodeReader::getGlobalTableValue(const Type *Ty, unsigned SlotNo) { |
| // FIXME: getTypeSlot is inefficient! |
| unsigned TyID = getGlobalTableTypeSlot(Ty); |
| |
| if (TyID != Type::LabelTyID) { |
| if (SlotNo == 0) |
| return Constant::getNullValue(Ty); |
| --SlotNo; |
| } |
| |
| if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 || |
| SlotNo >= ModuleValues[TyID]->size()) { |
| PARSE_ERROR("Corrupt compaction table entry!" |
| << TyID << ", " << SlotNo << ": " << ModuleValues.size() << ", " |
| << (void*)ModuleValues[TyID] << ", " |
| << ModuleValues[TyID]->size() << "\n"); |
| } |
| return ModuleValues[TyID]->getOperand(SlotNo); |
| } |
| |
| /// Just like getValue, except that it returns a null pointer |
| /// only on error. It always returns a constant (meaning that if the value is |
| /// defined, but is not a constant, that is an error). If the specified |
| /// constant hasn't been parsed yet, a placeholder is defined and used. |
| /// Later, after the real value is parsed, the placeholder is eliminated. |
| Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) { |
| if (Value *V = getValue(TypeSlot, Slot, false)) |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return C; // If we already have the value parsed, just return it |
| else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| // ConstantPointerRef's are an abomination, but at least they don't have |
| // to infest bytecode files. |
| return ConstantPointerRef::get(GV); |
| else |
| throw std::string("Reference of a value is expected to be a constant!"); |
| |
| const Type *Ty = getType(TypeSlot); |
| std::pair<const Type*, unsigned> Key(Ty, Slot); |
| ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key); |
| |
| if (I != ConstantFwdRefs.end() && I->first == Key) { |
| return I->second; |
| } else { |
| // Create a placeholder for the constant reference and |
| // keep track of the fact that we have a forward ref to recycle it |
| Constant *C = new ConstPHolder(Ty, Slot); |
| |
| // Keep track of the fact that we have a forward ref to recycle it |
| ConstantFwdRefs.insert(I, std::make_pair(Key, C)); |
| return C; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IR Construction Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// As values are created, they are inserted into the appropriate place |
| /// with this method. The ValueTable argument must be one of ModuleValues |
| /// or FunctionValues data members of this class. |
| unsigned BytecodeReader::insertValue( |
| Value *Val, unsigned type, ValueTable &ValueTab) { |
| assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) || |
| !hasImplicitNull(type) && |
| "Cannot read null values from bytecode!"); |
| |
| if (ValueTab.size() <= type) |
| ValueTab.resize(type+1); |
| |
| if (!ValueTab[type]) ValueTab[type] = new ValueList(); |
| |
| ValueTab[type]->push_back(Val); |
| |
| bool HasOffset = hasImplicitNull(type); |
| return ValueTab[type]->size()-1 + HasOffset; |
| } |
| |
| /// Insert the arguments of a function as new values in the reader. |
| void BytecodeReader::insertArguments(Function* F ) { |
| const FunctionType *FT = F->getFunctionType(); |
| Function::aiterator AI = F->abegin(); |
| for (FunctionType::param_iterator It = FT->param_begin(); |
| It != FT->param_end(); ++It, ++AI) |
| insertValue(AI, getTypeSlot(AI->getType()), FunctionValues); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Bytecode Parsing Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// This method parses a single instruction. The instruction is |
| /// inserted at the end of the \p BB provided. The arguments of |
| /// the instruction are provided in the \p Args vector. |
| void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds, |
| BasicBlock* BB) { |
| BufPtr SaveAt = At; |
| |
| // Clear instruction data |
| Oprnds.clear(); |
| unsigned iType = 0; |
| unsigned Opcode = 0; |
| unsigned Op = read_uint(); |
| |
| // bits Instruction format: Common to all formats |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 1. |
| // 07-02: Opcode |
| Opcode = (Op >> 2) & 63; |
| Oprnds.resize((Op >> 0) & 03); |
| |
| // Extract the operands |
| switch (Oprnds.size()) { |
| case 1: |
| // bits Instruction format: |
| // -------------------------- |
| // 19-08: Resulting type plane |
| // 31-20: Operand #1 (if set to (2^12-1), then zero operands) |
| // |
| iType = (Op >> 8) & 4095; |
| Oprnds[0] = (Op >> 20) & 4095; |
| if (Oprnds[0] == 4095) // Handle special encoding for 0 operands... |
| Oprnds.resize(0); |
| break; |
| case 2: |
| // bits Instruction format: |
| // -------------------------- |
| // 15-08: Resulting type plane |
| // 23-16: Operand #1 |
| // 31-24: Operand #2 |
| // |
| iType = (Op >> 8) & 255; |
| Oprnds[0] = (Op >> 16) & 255; |
| Oprnds[1] = (Op >> 24) & 255; |
| break; |
| case 3: |
| // bits Instruction format: |
| // -------------------------- |
| // 13-08: Resulting type plane |
| // 19-14: Operand #1 |
| // 25-20: Operand #2 |
| // 31-26: Operand #3 |
| // |
| iType = (Op >> 8) & 63; |
| Oprnds[0] = (Op >> 14) & 63; |
| Oprnds[1] = (Op >> 20) & 63; |
| Oprnds[2] = (Op >> 26) & 63; |
| break; |
| case 0: |
| At -= 4; // Hrm, try this again... |
| Opcode = read_vbr_uint(); |
| Opcode >>= 2; |
| iType = read_vbr_uint(); |
| |
| unsigned NumOprnds = read_vbr_uint(); |
| Oprnds.resize(NumOprnds); |
| |
| if (NumOprnds == 0) |
| throw std::string("Zero-argument instruction found; this is invalid."); |
| |
| for (unsigned i = 0; i != NumOprnds; ++i) |
| Oprnds[i] = read_vbr_uint(); |
| align32(); |
| break; |
| } |
| |
| const Type *InstTy = getSanitizedType(iType); |
| |
| // Hae enough to inform the handler now |
| if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt); |
| |
| // Declare the resulting instruction we'll build. |
| Instruction *Result = 0; |
| |
| // Handle binary operators |
| if (Opcode >= Instruction::BinaryOpsBegin && |
| Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2) |
| Result = BinaryOperator::create((Instruction::BinaryOps)Opcode, |
| getValue(iType, Oprnds[0]), |
| getValue(iType, Oprnds[1])); |
| |
| switch (Opcode) { |
| default: |
| if (Result == 0) |
| throw std::string("Illegal instruction read!"); |
| break; |
| case Instruction::VAArg: |
| Result = new VAArgInst(getValue(iType, Oprnds[0]), |
| getSanitizedType(Oprnds[1])); |
| break; |
| case Instruction::VANext: |
| Result = new VANextInst(getValue(iType, Oprnds[0]), |
| getSanitizedType(Oprnds[1])); |
| break; |
| case Instruction::Cast: |
| Result = new CastInst(getValue(iType, Oprnds[0]), |
| getSanitizedType(Oprnds[1])); |
| break; |
| case Instruction::Select: |
| Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]), |
| getValue(iType, Oprnds[1]), |
| getValue(iType, Oprnds[2])); |
| break; |
| case Instruction::PHI: { |
| if (Oprnds.size() == 0 || (Oprnds.size() & 1)) |
| throw std::string("Invalid phi node encountered!"); |
| |
| PHINode *PN = new PHINode(InstTy); |
| PN->op_reserve(Oprnds.size()); |
| for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2) |
| PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1])); |
| Result = PN; |
| break; |
| } |
| |
| case Instruction::Shl: |
| case Instruction::Shr: |
| Result = new ShiftInst((Instruction::OtherOps)Opcode, |
| getValue(iType, Oprnds[0]), |
| getValue(Type::UByteTyID, Oprnds[1])); |
| break; |
| case Instruction::Ret: |
| if (Oprnds.size() == 0) |
| Result = new ReturnInst(); |
| else if (Oprnds.size() == 1) |
| Result = new ReturnInst(getValue(iType, Oprnds[0])); |
| else |
| throw std::string("Unrecognized instruction!"); |
| break; |
| |
| case Instruction::Br: |
| if (Oprnds.size() == 1) |
| Result = new BranchInst(getBasicBlock(Oprnds[0])); |
| else if (Oprnds.size() == 3) |
| Result = new BranchInst(getBasicBlock(Oprnds[0]), |
| getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2])); |
| else |
| throw std::string("Invalid number of operands for a 'br' instruction!"); |
| break; |
| case Instruction::Switch: { |
| if (Oprnds.size() & 1) |
| throw std::string("Switch statement with odd number of arguments!"); |
| |
| SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]), |
| getBasicBlock(Oprnds[1])); |
| for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2) |
| I->addCase(cast<Constant>(getValue(iType, Oprnds[i])), |
| getBasicBlock(Oprnds[i+1])); |
| Result = I; |
| break; |
| } |
| |
| case Instruction::Call: { |
| if (Oprnds.size() == 0) |
| throw std::string("Invalid call instruction encountered!"); |
| |
| Value *F = getValue(iType, Oprnds[0]); |
| |
| // Check to make sure we have a pointer to function type |
| const PointerType *PTy = dyn_cast<PointerType>(F->getType()); |
| if (PTy == 0) throw std::string("Call to non function pointer value!"); |
| const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType()); |
| if (FTy == 0) throw std::string("Call to non function pointer value!"); |
| |
| std::vector<Value *> Params; |
| if (!FTy->isVarArg()) { |
| FunctionType::param_iterator It = FTy->param_begin(); |
| |
| for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) { |
| if (It == FTy->param_end()) |
| throw std::string("Invalid call instruction!"); |
| Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i])); |
| } |
| if (It != FTy->param_end()) |
| throw std::string("Invalid call instruction!"); |
| } else { |
| Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1); |
| |
| unsigned FirstVariableOperand; |
| if (Oprnds.size() < FTy->getNumParams()) |
| throw std::string("Call instruction missing operands!"); |
| |
| // Read all of the fixed arguments |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i])); |
| |
| FirstVariableOperand = FTy->getNumParams(); |
| |
| if ((Oprnds.size()-FirstVariableOperand) & 1) // Must be pairs of type/value |
| throw std::string("Invalid call instruction!"); |
| |
| for (unsigned i = FirstVariableOperand, e = Oprnds.size(); |
| i != e; i += 2) |
| Params.push_back(getValue(Oprnds[i], Oprnds[i+1])); |
| } |
| |
| Result = new CallInst(F, Params); |
| break; |
| } |
| case Instruction::Invoke: { |
| if (Oprnds.size() < 3) |
| throw std::string("Invalid invoke instruction!"); |
| Value *F = getValue(iType, Oprnds[0]); |
| |
| // Check to make sure we have a pointer to function type |
| const PointerType *PTy = dyn_cast<PointerType>(F->getType()); |
| if (PTy == 0) |
| throw std::string("Invoke to non function pointer value!"); |
| const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType()); |
| if (FTy == 0) |
| throw std::string("Invoke to non function pointer value!"); |
| |
| std::vector<Value *> Params; |
| BasicBlock *Normal, *Except; |
| |
| if (!FTy->isVarArg()) { |
| Normal = getBasicBlock(Oprnds[1]); |
| Except = getBasicBlock(Oprnds[2]); |
| |
| FunctionType::param_iterator It = FTy->param_begin(); |
| for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) { |
| if (It == FTy->param_end()) |
| throw std::string("Invalid invoke instruction!"); |
| Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i])); |
| } |
| if (It != FTy->param_end()) |
| throw std::string("Invalid invoke instruction!"); |
| } else { |
| Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1); |
| |
| Normal = getBasicBlock(Oprnds[0]); |
| Except = getBasicBlock(Oprnds[1]); |
| |
| unsigned FirstVariableArgument = FTy->getNumParams()+2; |
| for (unsigned i = 2; i != FirstVariableArgument; ++i) |
| Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)), |
| Oprnds[i])); |
| |
| if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs |
| throw std::string("Invalid invoke instruction!"); |
| |
| for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2) |
| Params.push_back(getValue(Oprnds[i], Oprnds[i+1])); |
| } |
| |
| Result = new InvokeInst(F, Normal, Except, Params); |
| break; |
| } |
| case Instruction::Malloc: |
| if (Oprnds.size() > 2) |
| throw std::string("Invalid malloc instruction!"); |
| if (!isa<PointerType>(InstTy)) |
| throw std::string("Invalid malloc instruction!"); |
| |
| Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(), |
| Oprnds.size() ? getValue(Type::UIntTyID, |
| Oprnds[0]) : 0); |
| break; |
| |
| case Instruction::Alloca: |
| if (Oprnds.size() > 2) |
| throw std::string("Invalid alloca instruction!"); |
| if (!isa<PointerType>(InstTy)) |
| throw std::string("Invalid alloca instruction!"); |
| |
| Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(), |
| Oprnds.size() ? getValue(Type::UIntTyID, |
| Oprnds[0]) :0); |
| break; |
| case Instruction::Free: |
| if (!isa<PointerType>(InstTy)) |
| throw std::string("Invalid free instruction!"); |
| Result = new FreeInst(getValue(iType, Oprnds[0])); |
| break; |
| case Instruction::GetElementPtr: { |
| if (Oprnds.size() == 0 || !isa<PointerType>(InstTy)) |
| throw std::string("Invalid getelementptr instruction!"); |
| |
| std::vector<Value*> Idx; |
| |
| const Type *NextTy = InstTy; |
| for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) { |
| const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy); |
| if (!TopTy) |
| throw std::string("Invalid getelementptr instruction!"); |
| |
| unsigned ValIdx = Oprnds[i]; |
| unsigned IdxTy = 0; |
| if (!hasRestrictedGEPTypes) { |
| // Struct indices are always uints, sequential type indices can be any |
| // of the 32 or 64-bit integer types. The actual choice of type is |
| // encoded in the low two bits of the slot number. |
| if (isa<StructType>(TopTy)) |
| IdxTy = Type::UIntTyID; |
| else { |
| switch (ValIdx & 3) { |
| default: |
| case 0: IdxTy = Type::UIntTyID; break; |
| case 1: IdxTy = Type::IntTyID; break; |
| case 2: IdxTy = Type::ULongTyID; break; |
| case 3: IdxTy = Type::LongTyID; break; |
| } |
| ValIdx >>= 2; |
| } |
| } else { |
| IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID; |
| } |
| |
| Idx.push_back(getValue(IdxTy, ValIdx)); |
| |
| // Convert ubyte struct indices into uint struct indices. |
| if (isa<StructType>(TopTy) && hasRestrictedGEPTypes) |
| if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back())) |
| Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy); |
| |
| NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true); |
| } |
| |
| Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx); |
| break; |
| } |
| |
| case 62: // volatile load |
| case Instruction::Load: |
| if (Oprnds.size() != 1 || !isa<PointerType>(InstTy)) |
| throw std::string("Invalid load instruction!"); |
| Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62); |
| break; |
| |
| case 63: // volatile store |
| case Instruction::Store: { |
| if (!isa<PointerType>(InstTy) || Oprnds.size() != 2) |
| throw std::string("Invalid store instruction!"); |
| |
| Value *Ptr = getValue(iType, Oprnds[1]); |
| const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType(); |
| Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr, |
| Opcode == 63); |
| break; |
| } |
| case Instruction::Unwind: |
| if (Oprnds.size() != 0) |
| throw std::string("Invalid unwind instruction!"); |
| Result = new UnwindInst(); |
| break; |
| } // end switch(Opcode) |
| |
| unsigned TypeSlot; |
| if (Result->getType() == InstTy) |
| TypeSlot = iType; |
| else |
| TypeSlot = getTypeSlot(Result->getType()); |
| |
| insertValue(Result, TypeSlot, FunctionValues); |
| BB->getInstList().push_back(Result); |
| } |
| |
| /// Get a particular numbered basic block, which might be a forward reference. |
| /// This works together with ParseBasicBlock to handle these forward references |
| /// in a clean manner. This function is used when constructing phi, br, switch, |
| /// and other instructions that reference basic blocks. Blocks are numbered |
| /// sequentially as they appear in the function. |
| BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) { |
| // Make sure there is room in the table... |
| if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1); |
| |
| // First check to see if this is a backwards reference, i.e., ParseBasicBlock |
| // has already created this block, or if the forward reference has already |
| // been created. |
| if (ParsedBasicBlocks[ID]) |
| return ParsedBasicBlocks[ID]; |
| |
| // Otherwise, the basic block has not yet been created. Do so and add it to |
| // the ParsedBasicBlocks list. |
| return ParsedBasicBlocks[ID] = new BasicBlock(); |
| } |
| |
| /// In LLVM 1.0 bytecode files, we used to output one basicblock at a time. |
| /// This method reads in one of the basicblock packets. This method is not used |
| /// for bytecode files after LLVM 1.0 |
| /// @returns The basic block constructed. |
| BasicBlock *BytecodeReader::ParseBasicBlock( unsigned BlockNo) { |
| if (Handler) Handler->handleBasicBlockBegin( BlockNo ); |
| |
| BasicBlock *BB = 0; |
| |
| if (ParsedBasicBlocks.size() == BlockNo) |
| ParsedBasicBlocks.push_back(BB = new BasicBlock()); |
| else if (ParsedBasicBlocks[BlockNo] == 0) |
| BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); |
| else |
| BB = ParsedBasicBlocks[BlockNo]; |
| |
| std::vector<unsigned> Operands; |
| while ( moreInBlock() ) |
| ParseInstruction(Operands, BB); |
| |
| if (Handler) Handler->handleBasicBlockEnd( BlockNo ); |
| return BB; |
| } |
| |
| /// Parse all of the BasicBlock's & Instruction's in the body of a function. |
| /// In post 1.0 bytecode files, we no longer emit basic block individually, |
| /// in order to avoid per-basic-block overhead. |
| /// @returns Rhe number of basic blocks encountered. |
| unsigned BytecodeReader::ParseInstructionList(Function* F) { |
| unsigned BlockNo = 0; |
| std::vector<unsigned> Args; |
| |
| while ( moreInBlock() ) { |
| if (Handler) Handler->handleBasicBlockBegin( BlockNo ); |
| BasicBlock *BB; |
| if (ParsedBasicBlocks.size() == BlockNo) |
| ParsedBasicBlocks.push_back(BB = new BasicBlock()); |
| else if (ParsedBasicBlocks[BlockNo] == 0) |
| BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); |
| else |
| BB = ParsedBasicBlocks[BlockNo]; |
| if (Handler) Handler->handleBasicBlockEnd( BlockNo ); |
| ++BlockNo; |
| F->getBasicBlockList().push_back(BB); |
| |
| // Read instructions into this basic block until we get to a terminator |
| while ( moreInBlock() && !BB->getTerminator()) |
| ParseInstruction(Args, BB); |
| |
| if (!BB->getTerminator()) |
| throw std::string("Non-terminated basic block found!"); |
| } |
| |
| return BlockNo; |
| } |
| |
| /// Parse a symbol table. This works for both module level and function |
| /// level symbol tables. For function level symbol tables, the CurrentFunction |
| /// parameter must be non-zero and the ST parameter must correspond to |
| /// CurrentFunction's symbol table. For Module level symbol tables, the |
| /// CurrentFunction argument must be zero. |
| void BytecodeReader::ParseSymbolTable(Function *CurrentFunction, |
| SymbolTable *ST) { |
| if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST); |
| |
| // Allow efficient basic block lookup by number. |
| std::vector<BasicBlock*> BBMap; |
| if (CurrentFunction) |
| for (Function::iterator I = CurrentFunction->begin(), |
| E = CurrentFunction->end(); I != E; ++I) |
| BBMap.push_back(I); |
| |
| /// In LLVM 1.3 we write types separately from values so |
| /// The types are always first in the symbol table. This is |
| /// because Type no longer derives from Value. |
| if ( ! hasTypeDerivedFromValue ) { |
| // Symtab block header: [num entries] |
| unsigned NumEntries = read_vbr_uint(); |
| for ( unsigned i = 0; i < NumEntries; ++i ) { |
| // Symtab entry: [def slot #][name] |
| unsigned slot = read_vbr_uint(); |
| std::string Name = read_str(); |
| const Type* T = getType(slot); |
| ST->insert(Name, T); |
| } |
| } |
| |
| while ( moreInBlock() ) { |
| // Symtab block header: [num entries][type id number] |
| unsigned NumEntries = read_vbr_uint(); |
| unsigned Typ = 0; |
| bool isTypeType = read_typeid(Typ); |
| const Type *Ty = getType(Typ); |
| |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| // Symtab entry: [def slot #][name] |
| unsigned slot = read_vbr_uint(); |
| std::string Name = read_str(); |
| |
| // if we're reading a pre 1.3 bytecode file and the type plane |
| // is the "type type", handle it here |
| if ( isTypeType ) { |
| const Type* T = getType(slot); |
| if ( T == 0 ) |
| PARSE_ERROR("Failed type look-up for name '" << Name << "'"); |
| ST->insert(Name, T); |
| continue; // code below must be short circuited |
| } else { |
| Value *V = 0; |
| if (Typ == Type::LabelTyID) { |
| if (slot < BBMap.size()) |
| V = BBMap[slot]; |
| } else { |
| V = getValue(Typ, slot, false); // Find mapping... |
| } |
| if (V == 0) |
| PARSE_ERROR("Failed value look-up for name '" << Name << "'"); |
| V->setName(Name, ST); |
| } |
| } |
| } |
| checkPastBlockEnd("Symbol Table"); |
| if (Handler) Handler->handleSymbolTableEnd(); |
| } |
| |
| /// Read in the types portion of a compaction table. |
| void BytecodeReader::ParseCompactionTypes( unsigned NumEntries ) { |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| unsigned TypeSlot = 0; |
| bool isTypeType = read_typeid(TypeSlot); |
| assert(!isTypeType && "Invalid type in compaction table: type type"); |
| const Type *Typ = getGlobalTableType(TypeSlot); |
| CompactionTypes.push_back(Typ); |
| if (Handler) Handler->handleCompactionTableType( i, TypeSlot, Typ ); |
| } |
| } |
| |
| /// Parse a compaction table. |
| void BytecodeReader::ParseCompactionTable() { |
| |
| if (Handler) Handler->handleCompactionTableBegin(); |
| |
| /// In LLVM 1.3 Type no longer derives from Value. So, |
| /// we always write them first in the compaction table |
| /// because they can't occupy a "type plane" where the |
| /// Values reside. |
| if ( ! hasTypeDerivedFromValue ) { |
| unsigned NumEntries = read_vbr_uint(); |
| ParseCompactionTypes( NumEntries ); |
| } |
| |
| while ( moreInBlock() ) { |
| unsigned NumEntries = read_vbr_uint(); |
| unsigned Ty = 0; |
| unsigned isTypeType = false; |
| |
| if ((NumEntries & 3) == 3) { |
| NumEntries >>= 2; |
| isTypeType = read_typeid(Ty); |
| } else { |
| Ty = NumEntries >> 2; |
| isTypeType = sanitizeTypeId(Ty); |
| NumEntries &= 3; |
| } |
| |
| // if we're reading a pre 1.3 bytecode file and the type plane |
| // is the "type type", handle it here |
| if ( isTypeType ) { |
| ParseCompactionTypes(NumEntries); |
| } else { |
| if (Ty >= CompactionValues.size()) |
| CompactionValues.resize(Ty+1); |
| |
| if (!CompactionValues[Ty].empty()) |
| throw std::string("Compaction table plane contains multiple entries!"); |
| |
| if (Handler) Handler->handleCompactionTablePlane( Ty, NumEntries ); |
| |
| const Type *Typ = getType(Ty); |
| // Push the implicit zero |
| CompactionValues[Ty].push_back(Constant::getNullValue(Typ)); |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| unsigned ValSlot = read_vbr_uint(); |
| Value *V = getGlobalTableValue(Typ, ValSlot); |
| CompactionValues[Ty].push_back(V); |
| if (Handler) Handler->handleCompactionTableValue( i, Ty, ValSlot, Typ ); |
| } |
| } |
| } |
| if (Handler) Handler->handleCompactionTableEnd(); |
| } |
| |
| // Parse a single type constant. |
| const Type *BytecodeReader::ParseTypeConstant() { |
| unsigned PrimType = 0; |
| bool isTypeType = read_typeid(PrimType); |
| assert(!isTypeType && "Invalid type (type type) in type constants!"); |
| |
| const Type *Result = 0; |
| if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType))) |
| return Result; |
| |
| switch (PrimType) { |
| case Type::FunctionTyID: { |
| const Type *RetType = readSanitizedType(); |
| |
| unsigned NumParams = read_vbr_uint(); |
| |
| std::vector<const Type*> Params; |
| while (NumParams--) |
| Params.push_back(readSanitizedType()); |
| |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| Result = FunctionType::get(RetType, Params, isVarArg); |
| break; |
| } |
| case Type::ArrayTyID: { |
| const Type *ElementType = readSanitizedType(); |
| unsigned NumElements = read_vbr_uint(); |
| Result = ArrayType::get(ElementType, NumElements); |
| break; |
| } |
| case Type::StructTyID: { |
| std::vector<const Type*> Elements; |
| unsigned Typ = 0; |
| bool isTypeType = read_typeid(Typ); |
| assert(!isTypeType && "Invalid element type (type type) for structure!"); |
| while (Typ) { // List is terminated by void/0 typeid |
| Elements.push_back(getType(Typ)); |
| bool isTypeType = read_typeid(Typ); |
| assert(!isTypeType && "Invalid element type (type type) for structure!"); |
| } |
| |
| Result = StructType::get(Elements); |
| break; |
| } |
| case Type::PointerTyID: { |
| Result = PointerType::get(readSanitizedType()); |
| break; |
| } |
| |
| case Type::OpaqueTyID: { |
| Result = OpaqueType::get(); |
| break; |
| } |
| |
| default: |
| PARSE_ERROR("Don't know how to deserialize primitive type" |
| << PrimType << "\n"); |
| break; |
| } |
| if (Handler) Handler->handleType( Result ); |
| return Result; |
| } |
| |
| // ParseTypeConstants - We have to use this weird code to handle recursive |
| // types. We know that recursive types will only reference the current slab of |
| // values in the type plane, but they can forward reference types before they |
| // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might |
| // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix |
| // this ugly problem, we pessimistically insert an opaque type for each type we |
| // are about to read. This means that forward references will resolve to |
| // something and when we reread the type later, we can replace the opaque type |
| // with a new resolved concrete type. |
| // |
| void BytecodeReader::ParseTypeConstants(TypeListTy &Tab, unsigned NumEntries){ |
| assert(Tab.size() == 0 && "should not have read type constants in before!"); |
| |
| // Insert a bunch of opaque types to be resolved later... |
| Tab.reserve(NumEntries); |
| for (unsigned i = 0; i != NumEntries; ++i) |
| Tab.push_back(OpaqueType::get()); |
| |
| // Loop through reading all of the types. Forward types will make use of the |
| // opaque types just inserted. |
| // |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| const Type* NewTy = ParseTypeConstant(); |
| const Type* OldTy = Tab[i].get(); |
| if (NewTy == 0) |
| throw std::string("Couldn't parse type!"); |
| |
| // Don't directly push the new type on the Tab. Instead we want to replace |
| // the opaque type we previously inserted with the new concrete value. This |
| // approach helps with forward references to types. The refinement from the |
| // abstract (opaque) type to the new type causes all uses of the abstract |
| // type to use the concrete type (NewTy). This will also cause the opaque |
| // type to be deleted. |
| cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy); |
| |
| // This should have replaced the old opaque type with the new type in the |
| // value table... or with a preexisting type that was already in the system. |
| // Let's just make sure it did. |
| assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); |
| } |
| } |
| |
| /// Parse a single constant value |
| Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) { |
| // We must check for a ConstantExpr before switching by type because |
| // a ConstantExpr can be of any type, and has no explicit value. |
| // |
| // 0 if not expr; numArgs if is expr |
| unsigned isExprNumArgs = read_vbr_uint(); |
| |
| if (isExprNumArgs) { |
| // FIXME: Encoding of constant exprs could be much more compact! |
| std::vector<Constant*> ArgVec; |
| ArgVec.reserve(isExprNumArgs); |
| unsigned Opcode = read_vbr_uint(); |
| |
| // Read the slot number and types of each of the arguments |
| for (unsigned i = 0; i != isExprNumArgs; ++i) { |
| unsigned ArgValSlot = read_vbr_uint(); |
| unsigned ArgTypeSlot = 0; |
| bool isTypeType = read_typeid(ArgTypeSlot); |
| assert(!isTypeType && "Invalid argument type (type type) for constant value"); |
| |
| // Get the arg value from its slot if it exists, otherwise a placeholder |
| ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot)); |
| } |
| |
| // Construct a ConstantExpr of the appropriate kind |
| if (isExprNumArgs == 1) { // All one-operand expressions |
| assert(Opcode == Instruction::Cast); |
| Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID)); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr |
| std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end()); |
| |
| if (hasRestrictedGEPTypes) { |
| const Type *BaseTy = ArgVec[0]->getType(); |
| generic_gep_type_iterator<std::vector<Constant*>::iterator> |
| GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()), |
| E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end()); |
| for (unsigned i = 0; GTI != E; ++GTI, ++i) |
| if (isa<StructType>(*GTI)) { |
| if (IdxList[i]->getType() != Type::UByteTy) |
| throw std::string("Invalid index for getelementptr!"); |
| IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy); |
| } |
| } |
| |
| Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else if (Opcode == Instruction::Select) { |
| assert(ArgVec.size() == 3); |
| Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1], |
| ArgVec[2]); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } else { // All other 2-operand expressions |
| Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]); |
| if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); |
| return Result; |
| } |
| } |
| |
| // Ok, not an ConstantExpr. We now know how to read the given type... |
| const Type *Ty = getType(TypeID); |
| switch (Ty->getTypeID()) { |
| case Type::BoolTyID: { |
| unsigned Val = read_vbr_uint(); |
| if (Val != 0 && Val != 1) |
| throw std::string("Invalid boolean value read."); |
| Constant* Result = ConstantBool::get(Val == 1); |
| if (Handler) Handler->handleConstantValue(Result); |
| return Result; |
| } |
| |
| case Type::UByteTyID: // Unsigned integer types... |
| case Type::UShortTyID: |
| case Type::UIntTyID: { |
| unsigned Val = read_vbr_uint(); |
| if (!ConstantUInt::isValueValidForType(Ty, Val)) |
| throw std::string("Invalid unsigned byte/short/int read."); |
| Constant* Result = ConstantUInt::get(Ty, Val); |
| if (Handler) Handler->handleConstantValue(Result); |
| return Result; |
| } |
| |
| case Type::ULongTyID: { |
| Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64()); |
| if (Handler) Handler->handleConstantValue(Result); |
| return Result; |
| } |
| |
| case Type::SByteTyID: // Signed integer types... |
| case Type::ShortTyID: |
| case Type::IntTyID: { |
| case Type::LongTyID: |
| int64_t Val = read_vbr_int64(); |
| if (!ConstantSInt::isValueValidForType(Ty, Val)) |
| throw std::string("Invalid signed byte/short/int/long read."); |
| Constant* Result = ConstantSInt::get(Ty, Val); |
| if (Handler) Handler->handleConstantValue(Result); |
| return Result; |
| } |
| |
| case Type::FloatTyID: { |
| float F; |
| read_data(&F, &F+1); |
| Constant* Result = ConstantFP::get(Ty, F); |
| if (Handler) Handler->handleConstantValue(Result); |
| return Result; |
| } |
| |
| case Type::DoubleTyID: { |
| double Val; |
| read_data(&Val, &Val+1); |
| Constant* Result = ConstantFP::get(Ty, Val); |
| if (Handler) Handler->handleConstantValue(Result); |
| return Result; |
| } |
| |
| case Type::ArrayTyID: { |
| const ArrayType *AT = cast<ArrayType>(Ty); |
| unsigned NumElements = AT->getNumElements(); |
| unsigned TypeSlot = getTypeSlot(AT->getElementType()); |
| std::vector<Constant*> Elements; |
| Elements.reserve(NumElements); |
| while (NumElements--) // Read all of the elements of the constant. |
| Elements.push_back(getConstantValue(TypeSlot, |
| read_vbr_uint())); |
| Constant* Result = ConstantArray::get(AT, Elements); |
| if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result); |
| return Result; |
| } |
| |
| case Type::StructTyID: { |
| const StructType *ST = cast<StructType>(Ty); |
| |
| std::vector<Constant *> Elements; |
| Elements.reserve(ST->getNumElements()); |
| for (unsigned i = 0; i != ST->getNumElements(); ++i) |
| Elements.push_back(getConstantValue(ST->getElementType(i), |
| read_vbr_uint())); |
| |
| Constant* Result = ConstantStruct::get(ST, Elements); |
| if (Handler) Handler->handleConstantStruct(ST, Elements, Result); |
| return Result; |
| } |
| |
| case Type::PointerTyID: { // ConstantPointerRef value... |
| const PointerType *PT = cast<PointerType>(Ty); |
| unsigned Slot = read_vbr_uint(); |
| |
| // Check to see if we have already read this global variable... |
| Value *Val = getValue(TypeID, Slot, false); |
| GlobalValue *GV; |
| if (Val) { |
| if (!(GV = dyn_cast<GlobalValue>(Val))) |
| throw std::string("Value of ConstantPointerRef not in ValueTable!"); |
| } else { |
| throw std::string("Forward references are not allowed here."); |
| } |
| |
| Constant* Result = ConstantPointerRef::get(GV); |
| if (Handler) Handler->handleConstantPointer(PT, Slot, GV, Result); |
| return Result; |
| } |
| |
| default: |
| PARSE_ERROR("Don't know how to deserialize constant value of type '"+ |
| Ty->getDescription()); |
| break; |
| } |
| } |
| |
| /// Resolve references for constants. This function resolves the forward |
| /// referenced constants in the ConstantFwdRefs map. It uses the |
| /// replaceAllUsesWith method of Value class to substitute the placeholder |
| /// instance with the actual instance. |
| void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){ |
| ConstantRefsType::iterator I = |
| ConstantFwdRefs.find(std::make_pair(NewV->getType(), Slot)); |
| if (I == ConstantFwdRefs.end()) return; // Never forward referenced? |
| |
| Value *PH = I->second; // Get the placeholder... |
| PH->replaceAllUsesWith(NewV); |
| delete PH; // Delete the old placeholder |
| ConstantFwdRefs.erase(I); // Remove the map entry for it |
| } |
| |
| /// Parse the constant strings section. |
| void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){ |
| for (; NumEntries; --NumEntries) { |
| unsigned Typ = 0; |
| bool isTypeType = read_typeid(Typ); |
| assert(!isTypeType && "Invalid type (type type) for string constant"); |
| const Type *Ty = getType(Typ); |
| if (!isa<ArrayType>(Ty)) |
| throw std::string("String constant data invalid!"); |
| |
| const ArrayType *ATy = cast<ArrayType>(Ty); |
| if (ATy->getElementType() != Type::SByteTy && |
| ATy->getElementType() != Type::UByteTy) |
| throw std::string("String constant data invalid!"); |
| |
| // Read character data. The type tells us how long the string is. |
| char Data[ATy->getNumElements()]; |
| read_data(Data, Data+ATy->getNumElements()); |
| |
| std::vector<Constant*> Elements(ATy->getNumElements()); |
| if (ATy->getElementType() == Type::SByteTy) |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]); |
| else |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]); |
| |
| // Create the constant, inserting it as needed. |
| Constant *C = ConstantArray::get(ATy, Elements); |
| unsigned Slot = insertValue(C, Typ, Tab); |
| ResolveReferencesToConstant(C, Slot); |
| if (Handler) Handler->handleConstantString(cast<ConstantArray>(C)); |
| } |
| } |
| |
| /// Parse the constant pool. |
| void BytecodeReader::ParseConstantPool(ValueTable &Tab, |
| TypeListTy &TypeTab, |
| bool isFunction) { |
| if (Handler) Handler->handleGlobalConstantsBegin(); |
| |
| /// In LLVM 1.3 Type does not derive from Value so the types |
| /// do not occupy a plane. Consequently, we read the types |
| /// first in the constant pool. |
| if ( isFunction && !hasTypeDerivedFromValue ) { |
| unsigned NumEntries = read_vbr_uint(); |
| ParseTypeConstants(TypeTab, NumEntries); |
| } |
| |
| while ( moreInBlock() ) { |
| unsigned NumEntries = read_vbr_uint(); |
| unsigned Typ = 0; |
| bool isTypeType = read_typeid(Typ); |
| |
| /// In LLVM 1.2 and before, Types were written to the |
| /// bytecode file in the "Type Type" plane (#12). |
| /// In 1.3 plane 12 is now the label plane. Handle this here. |
| if ( isTypeType ) { |
| ParseTypeConstants(TypeTab, NumEntries); |
| } else if (Typ == Type::VoidTyID) { |
| /// Use of Type::VoidTyID is a misnomer. It actually means |
| /// that the following plane is constant strings |
| assert(&Tab == &ModuleValues && "Cannot read strings in functions!"); |
| ParseStringConstants(NumEntries, Tab); |
| } else { |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| Constant *C = ParseConstantValue(Typ); |
| assert(C && "ParseConstantValue returned NULL!"); |
| unsigned Slot = insertValue(C, Typ, Tab); |
| |
| // If we are reading a function constant table, make sure that we adjust |
| // the slot number to be the real global constant number. |
| // |
| if (&Tab != &ModuleValues && Typ < ModuleValues.size() && |
| ModuleValues[Typ]) |
| Slot += ModuleValues[Typ]->size(); |
| ResolveReferencesToConstant(C, Slot); |
| } |
| } |
| } |
| checkPastBlockEnd("Constant Pool"); |
| if (Handler) Handler->handleGlobalConstantsEnd(); |
| } |
| |
| /// Parse the contents of a function. Note that this function can be |
| /// called lazily by materializeFunction |
| /// @see materializeFunction |
| void BytecodeReader::ParseFunctionBody(Function* F ) { |
| |
| unsigned FuncSize = BlockEnd - At; |
| GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage; |
| |
| unsigned LinkageType = read_vbr_uint(); |
| switch (LinkageType) { |
| case 0: Linkage = GlobalValue::ExternalLinkage; break; |
| case 1: Linkage = GlobalValue::WeakLinkage; break; |
| case 2: Linkage = GlobalValue::AppendingLinkage; break; |
| case 3: Linkage = GlobalValue::InternalLinkage; break; |
| case 4: Linkage = GlobalValue::LinkOnceLinkage; break; |
| default: |
| throw std::string("Invalid linkage type for Function."); |
| Linkage = GlobalValue::InternalLinkage; |
| break; |
| } |
| |
| F->setLinkage( Linkage ); |
| if (Handler) Handler->handleFunctionBegin(F,FuncSize); |
| |
| // Keep track of how many basic blocks we have read in... |
| unsigned BlockNum = 0; |
| bool InsertedArguments = false; |
| |
| BufPtr MyEnd = BlockEnd; |
| while ( At < MyEnd ) { |
| unsigned Type, Size; |
| BufPtr OldAt = At; |
| read_block(Type, Size); |
| |
| switch (Type) { |
| case BytecodeFormat::ConstantPool: |
| if (!InsertedArguments) { |
| // Insert arguments into the value table before we parse the first basic |
| // block in the function, but after we potentially read in the |
| // compaction table. |
| insertArguments(F); |
| InsertedArguments = true; |
| } |
| |
| ParseConstantPool(FunctionValues, FunctionTypes, true); |
| break; |
| |
| case BytecodeFormat::CompactionTable: |
| ParseCompactionTable(); |
| break; |
| |
| case BytecodeFormat::BasicBlock: { |
| if (!InsertedArguments) { |
| // Insert arguments into the value table before we parse the first basic |
| // block in the function, but after we potentially read in the |
| // compaction table. |
| insertArguments(F); |
| InsertedArguments = true; |
| } |
| |
| BasicBlock *BB = ParseBasicBlock(BlockNum++); |
| F->getBasicBlockList().push_back(BB); |
| break; |
| } |
| |
| case BytecodeFormat::InstructionList: { |
| // Insert arguments into the value table before we parse the instruction |
| // list for the function, but after we potentially read in the compaction |
| // table. |
| if (!InsertedArguments) { |
| insertArguments(F); |
| InsertedArguments = true; |
| } |
| |
| if (BlockNum) |
| throw std::string("Already parsed basic blocks!"); |
| BlockNum = ParseInstructionList(F); |
| break; |
| } |
| |
| case BytecodeFormat::SymbolTable: |
| ParseSymbolTable(F, &F->getSymbolTable()); |
| break; |
| |
| default: |
| At += Size; |
| if (OldAt > At) |
| throw std::string("Wrapped around reading bytecode."); |
| break; |
| } |
| BlockEnd = MyEnd; |
| |
| // Malformed bc file if read past end of block. |
| align32(); |
| } |
| |
| // Make sure there were no references to non-existant basic blocks. |
| if (BlockNum != ParsedBasicBlocks.size()) |
| throw std::string("Illegal basic block operand reference"); |
| |
| ParsedBasicBlocks.clear(); |
| |
| // Resolve forward references. Replace any uses of a forward reference value |
| // with the real value. |
| |
| // replaceAllUsesWith is very inefficient for instructions which have a LARGE |
| // number of operands. PHI nodes often have forward references, and can also |
| // often have a very large number of operands. |
| // |
| // FIXME: REEVALUATE. replaceAllUsesWith is _much_ faster now, and this code |
| // should be simplified back to using it! |
| // |
| std::map<Value*, Value*> ForwardRefMapping; |
| for (std::map<std::pair<unsigned,unsigned>, Value*>::iterator |
| I = ForwardReferences.begin(), E = ForwardReferences.end(); |
| I != E; ++I) |
| ForwardRefMapping[I->second] = getValue(I->first.first, I->first.second, |
| false); |
| |
| for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (Argument *A = dyn_cast<Argument>(I->getOperand(i))) { |
| std::map<Value*, Value*>::iterator It = ForwardRefMapping.find(A); |
| if (It != ForwardRefMapping.end()) I->setOperand(i, It->second); |
| } |
| |
| while (!ForwardReferences.empty()) { |
| std::map<std::pair<unsigned,unsigned>, Value*>::iterator I = |
| ForwardReferences.begin(); |
| Value *PlaceHolder = I->second; |
| ForwardReferences.erase(I); |
| |
| // Now that all the uses are gone, delete the placeholder... |
| // If we couldn't find a def (error case), then leak a little |
| // memory, because otherwise we can't remove all uses! |
| delete PlaceHolder; |
| } |
| |
| // Clear out function-level types... |
| FunctionTypes.clear(); |
| CompactionTypes.clear(); |
| CompactionValues.clear(); |
| freeTable(FunctionValues); |
| |
| if (Handler) Handler->handleFunctionEnd(F); |
| } |
| |
| /// This function parses LLVM functions lazily. It obtains the type of the |
| /// function and records where the body of the function is in the bytecode |
| /// buffer. The caller can then use the ParseNextFunction and |
| /// ParseAllFunctionBodies to get handler events for the functions. |
| void BytecodeReader::ParseFunctionLazily() { |
| if (FunctionSignatureList.empty()) |
| throw std::string("FunctionSignatureList empty!"); |
| |
| Function *Func = FunctionSignatureList.back(); |
| FunctionSignatureList.pop_back(); |
| |
| // Save the information for future reading of the function |
| LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd); |
| |
| // Pretend we've `parsed' this function |
| At = BlockEnd; |
| } |
| |
| /// The ParserFunction method lazily parses one function. Use this method to |
| /// casue the parser to parse a specific function in the module. Note that |
| /// this will remove the function from what is to be included by |
| /// ParseAllFunctionBodies. |
| /// @see ParseAllFunctionBodies |
| /// @see ParseBytecode |
| void BytecodeReader::ParseFunction(Function* Func) { |
| // Find {start, end} pointers and slot in the map. If not there, we're done. |
| LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func); |
| |
| // Make sure we found it |
| if ( Fi == LazyFunctionLoadMap.end() ) { |
| PARSE_ERROR("Unrecognized function of type " << Func->getType()->getDescription()); |
| return; |
| } |
| |
| BlockStart = At = Fi->second.Buf; |
| BlockEnd = Fi->second.EndBuf; |
| assert(Fi->first == Func); |
| |
| LazyFunctionLoadMap.erase(Fi); |
| |
| this->ParseFunctionBody( Func ); |
| } |
| |
| /// The ParseAllFunctionBodies method parses through all the previously |
| /// unparsed functions in the bytecode file. If you want to completely parse |
| /// a bytecode file, this method should be called after Parsebytecode because |
| /// Parsebytecode only records the locations in the bytecode file of where |
| /// the function definitions are located. This function uses that information |
| /// to materialize the functions. |
| /// @see ParseBytecode |
| void BytecodeReader::ParseAllFunctionBodies() { |
| LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin(); |
| LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end(); |
| |
| while ( Fi != Fe ) { |
| Function* Func = Fi->first; |
| BlockStart = At = Fi->second.Buf; |
| BlockEnd = Fi->second.EndBuf; |
| this->ParseFunctionBody(Func); |
| ++Fi; |
| } |
| } |
| |
| /// Parse the global type list |
| void BytecodeReader::ParseGlobalTypes() { |
| // Read the number of types |
| unsigned NumEntries = read_vbr_uint(); |
| ParseTypeConstants(ModuleTypes, NumEntries); |
| } |
| |
| /// Parse the Global info (types, global vars, constants) |
| void BytecodeReader::ParseModuleGlobalInfo() { |
| |
| if (Handler) Handler->handleModuleGlobalsBegin(); |
| |
| // Read global variables... |
| unsigned VarType = read_vbr_uint(); |
| while (VarType != Type::VoidTyID) { // List is terminated by Void |
| // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 = |
| // Linkage, bit4+ = slot# |
| unsigned SlotNo = VarType >> 5; |
| bool isTypeType = sanitizeTypeId(SlotNo); |
| assert(!isTypeType && "Invalid type (type type) for global var!"); |
| unsigned LinkageID = (VarType >> 2) & 7; |
| bool isConstant = VarType & 1; |
| bool hasInitializer = VarType & 2; |
| GlobalValue::LinkageTypes Linkage; |
| |
| switch (LinkageID) { |
| case 0: Linkage = GlobalValue::ExternalLinkage; break; |
| case 1: Linkage = GlobalValue::WeakLinkage; break; |
| case 2: Linkage = GlobalValue::AppendingLinkage; break; |
| case 3: Linkage = GlobalValue::InternalLinkage; break; |
| case 4: Linkage = GlobalValue::LinkOnceLinkage; break; |
| default: |
| PARSE_ERROR("Unknown linkage type: " << LinkageID); |
| Linkage = GlobalValue::InternalLinkage; |
| break; |
| } |
| |
| const Type *Ty = getType(SlotNo); |
| if ( !Ty ) { |
| PARSE_ERROR("Global has no type! SlotNo=" << SlotNo); |
| } |
| |
| if ( !isa<PointerType>(Ty)) { |
| PARSE_ERROR("Global not a pointer type! Ty= " << Ty->getDescription()); |
| } |
| |
| const Type *ElTy = cast<PointerType>(Ty)->getElementType(); |
| |
| // Create the global variable... |
| GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage, |
| 0, "", TheModule); |
| insertValue(GV, SlotNo, ModuleValues); |
| |
| unsigned initSlot = 0; |
| if (hasInitializer) { |
| initSlot = read_vbr_uint(); |
| GlobalInits.push_back(std::make_pair(GV, initSlot)); |
| } |
| |
| // Notify handler about the global value. |
| if (Handler) Handler->handleGlobalVariable( ElTy, isConstant, Linkage, SlotNo, initSlot ); |
| |
| // Get next item |
| VarType = read_vbr_uint(); |
| } |
| |
| // Read the function objects for all of the functions that are coming |
| unsigned FnSignature = 0; |
| bool isTypeType = read_typeid(FnSignature); |
| assert(!isTypeType && "Invalid function type (type type) found"); |
| while (FnSignature != Type::VoidTyID) { // List is terminated by Void |
| const Type *Ty = getType(FnSignature); |
| if (!isa<PointerType>(Ty) || |
| !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) { |
| PARSE_ERROR( "Function not a pointer to function type! Ty = " + |
| Ty->getDescription()); |
| // FIXME: what should Ty be if handler continues? |
| } |
| |
| // We create functions by passing the underlying FunctionType to create... |
| const FunctionType* FTy = |
| cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); |
| |
| // Insert the place hodler |
| Function* Func = new Function(FTy, GlobalValue::InternalLinkage, |
| "", TheModule); |
| insertValue(Func, FnSignature, ModuleValues); |
| |
| // Save this for later so we know type of lazily instantiated functions |
| FunctionSignatureList.push_back(Func); |
| |
| if (Handler) Handler->handleFunctionDeclaration(Func); |
| |
| // Get Next function signature |
| isTypeType = read_typeid(FnSignature); |
| assert(!isTypeType && "Invalid function type (type type) found"); |
| } |
| |
| if (hasInconsistentModuleGlobalInfo) |
| align32(); |
| |
| // Now that the function signature list is set up, reverse it so that we can |
| // remove elements efficiently from the back of the vector. |
| std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end()); |
| |
| // This is for future proofing... in the future extra fields may be added that |
| // we don't understand, so we transparently ignore them. |
| // |
| At = BlockEnd; |
| |
| if (Handler) Handler->handleModuleGlobalsEnd(); |
| } |
| |
| /// Parse the version information and decode it by setting flags on the |
| /// Reader that enable backward compatibility of the reader. |
| void BytecodeReader::ParseVersionInfo() { |
| unsigned Version = read_vbr_uint(); |
| |
| // Unpack version number: low four bits are for flags, top bits = version |
| Module::Endianness Endianness; |
| Module::PointerSize PointerSize; |
| Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian; |
| PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32; |
| |
| bool hasNoEndianness = Version & 4; |
| bool hasNoPointerSize = Version & 8; |
| |
| RevisionNum = Version >> 4; |
| |
| // Default values for the current bytecode version |
| hasInconsistentModuleGlobalInfo = false; |
| hasExplicitPrimitiveZeros = false; |
| hasRestrictedGEPTypes = false; |
| hasTypeDerivedFromValue = false; |
| |
| switch (RevisionNum) { |
| case 0: // LLVM 1.0, 1.1 release version |
| // Base LLVM 1.0 bytecode format. |
| hasInconsistentModuleGlobalInfo = true; |
| hasExplicitPrimitiveZeros = true; |
| |
| // FALL THROUGH |
| case 1: // LLVM 1.2 release version |
| // LLVM 1.2 added explicit support for emitting strings efficiently. |
| |
| // Also, it fixed the problem where the size of the ModuleGlobalInfo block |
| // included the size for the alignment at the end, where the rest of the |
| // blocks did not. |
| |
| // LLVM 1.2 and before required that GEP indices be ubyte constants for |
| // structures and longs for sequential types. |
| hasRestrictedGEPTypes = true; |
| |
| // LLVM 1.2 and before had the Type class derive from Value class. This |
| // changed in release 1.3 and consequently LLVM 1.3 bytecode files are |
| // written differently because Types can no longer be part of the |
| // type planes for Values. |
| hasTypeDerivedFromValue = true; |
| |
| // FALL THROUGH |
| case 2: // LLVM 1.3 release version |
| break; |
| |
| default: |
| PARSE_ERROR("Unknown bytecode version number: " << RevisionNum); |
| } |
| |
| if (hasNoEndianness) Endianness = Module::AnyEndianness; |
| if (hasNoPointerSize) PointerSize = Module::AnyPointerSize; |
| |
| if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize ); |
| } |
| |
| /// Parse a whole module. |
| void BytecodeReader::ParseModule() { |
| unsigned Type, Size; |
| |
| FunctionSignatureList.clear(); // Just in case... |
| |
| // Read into instance variables... |
| ParseVersionInfo(); |
| align32(); /// FIXME: Is this redundant? VI is first and 4 bytes! |
| |
| bool SeenModuleGlobalInfo = false; |
| bool SeenGlobalTypePlane = false; |
| BufPtr MyEnd = BlockEnd; |
| while (At < MyEnd) { |
| BufPtr OldAt = At; |
| read_block(Type, Size); |
| |
| switch (Type) { |
| |
| case BytecodeFormat::GlobalTypePlane: |
| if ( SeenGlobalTypePlane ) |
| throw std::string("Two GlobalTypePlane Blocks Encountered!"); |
| |
| ParseGlobalTypes(); |
| SeenGlobalTypePlane = true; |
| break; |
| |
| case BytecodeFormat::ModuleGlobalInfo: |
| if ( SeenModuleGlobalInfo ) |
| throw std::string("Two ModuleGlobalInfo Blocks Encountered!"); |
| ParseModuleGlobalInfo(); |
| SeenModuleGlobalInfo = true; |
| break; |
| |
| case BytecodeFormat::ConstantPool: |
| ParseConstantPool(ModuleValues, ModuleTypes,false); |
| break; |
| |
| case BytecodeFormat::Function: |
| ParseFunctionLazily(); |
| break; |
| |
| case BytecodeFormat::SymbolTable: |
| ParseSymbolTable(0, &TheModule->getSymbolTable()); |
| break; |
| |
| default: |
| At += Size; |
| if (OldAt > At) { |
| PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" ); |
| } |
| break; |
| } |
| BlockEnd = MyEnd; |
| align32(); |
| } |
| |
| // After the module constant pool has been read, we can safely initialize |
| // global variables... |
| while (!GlobalInits.empty()) { |
| GlobalVariable *GV = GlobalInits.back().first; |
| unsigned Slot = GlobalInits.back().second; |
| GlobalInits.pop_back(); |
| |
| // Look up the initializer value... |
| // FIXME: Preserve this type ID! |
| |
| const llvm::PointerType* GVType = GV->getType(); |
| unsigned TypeSlot = getTypeSlot(GVType->getElementType()); |
| if (Constant *CV = getConstantValue(TypeSlot, Slot)) { |
| if (GV->hasInitializer()) |
| throw std::string("Global *already* has an initializer?!"); |
| if (Handler) Handler->handleGlobalInitializer(GV,CV); |
| GV->setInitializer(CV); |
| } else |
| throw std::string("Cannot find initializer value."); |
| } |
| |
| /// Make sure we pulled them all out. If we didn't then there's a declaration |
| /// but a missing body. That's not allowed. |
| if (!FunctionSignatureList.empty()) |
| throw std::string( |
| "Function declared, but bytecode stream ended before definition"); |
| } |
| |
| /// This function completely parses a bytecode buffer given by the \p Buf |
| /// and \p Length parameters. |
| void BytecodeReader::ParseBytecode( |
| BufPtr Buf, unsigned Length, |
| const std::string &ModuleID) { |
| |
| try { |
| At = MemStart = BlockStart = Buf; |
| MemEnd = BlockEnd = Buf + Length; |
| |
| // Create the module |
| TheModule = new Module(ModuleID); |
| |
| if (Handler) Handler->handleStart(TheModule, Length); |
| |
| // Read and check signature... |
| unsigned Sig = read_uint(); |
| if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) { |
| PARSE_ERROR("Invalid bytecode signature: " << Sig); |
| } |
| |
| |
| // Tell the handler we're starting a module |
| if (Handler) Handler->handleModuleBegin(ModuleID); |
| |
| // Get the module block and size and verify |
| unsigned Type, Size; |
| read_block(Type, Size); |
| if ( Type != BytecodeFormat::Module ) { |
| PARSE_ERROR("Expected Module Block! At: " << unsigned(intptr_t(At)) |
| << ", Type:" << Type << ", Size:" << Size); |
| } |
| if ( At + Size != MemEnd ) { |
| PARSE_ERROR("Invalid Top Level Block Length! At: " |
| << unsigned(intptr_t(At)) << ", Type:" << Type << ", Size:" << Size); |
| } |
| |
| // Parse the module contents |
| this->ParseModule(); |
| |
| // Tell the handler we're done |
| if (Handler) Handler->handleModuleEnd(ModuleID); |
| |
| // Check for missing functions |
| if ( hasFunctions() ) |
| throw std::string("Function expected, but bytecode stream ended!"); |
| |
| // Tell the handler we're |
| if (Handler) Handler->handleFinish(); |
| |
| } catch (std::string& errstr ) { |
| if (Handler) Handler->handleError(errstr); |
| freeState(); |
| delete TheModule; |
| TheModule = 0; |
| throw; |
| } catch (...) { |
| std::string msg("Unknown Exception Occurred"); |
| if (Handler) Handler->handleError(msg); |
| freeState(); |
| delete TheModule; |
| TheModule = 0; |
| throw msg; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| //=== Default Implementations of Handler Methods |
| //===----------------------------------------------------------------------===// |
| |
| BytecodeHandler::~BytecodeHandler() {} |
| |
| // vim: sw=2 |