| //===- DataStructure.cpp - Implement the core data structure analysis -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the core data structure functionality. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/DataStructure/DSGraphTraits.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Timer.h" |
| #include <iostream> |
| #include <algorithm> |
| using namespace llvm; |
| |
| #define COLLAPSE_ARRAYS_AGGRESSIVELY 0 |
| |
| namespace { |
| Statistic<> NumFolds ("dsa", "Number of nodes completely folded"); |
| Statistic<> NumCallNodesMerged("dsa", "Number of call nodes merged"); |
| Statistic<> NumNodeAllocated ("dsa", "Number of nodes allocated"); |
| Statistic<> NumDNE ("dsa", "Number of nodes removed by reachability"); |
| Statistic<> NumTrivialDNE ("dsa", "Number of nodes trivially removed"); |
| Statistic<> NumTrivialGlobalDNE("dsa", "Number of globals trivially removed"); |
| static cl::opt<unsigned> |
| DSAFieldLimit("dsa-field-limit", cl::Hidden, |
| cl::desc("Number of fields to track before collapsing a node"), |
| cl::init(256)); |
| }; |
| |
| #if 0 |
| #define TIME_REGION(VARNAME, DESC) \ |
| NamedRegionTimer VARNAME(DESC) |
| #else |
| #define TIME_REGION(VARNAME, DESC) |
| #endif |
| |
| using namespace DS; |
| |
| /// isForwarding - Return true if this NodeHandle is forwarding to another |
| /// one. |
| bool DSNodeHandle::isForwarding() const { |
| return N && N->isForwarding(); |
| } |
| |
| DSNode *DSNodeHandle::HandleForwarding() const { |
| assert(N->isForwarding() && "Can only be invoked if forwarding!"); |
| |
| // Handle node forwarding here! |
| DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage |
| Offset += N->ForwardNH.getOffset(); |
| |
| if (--N->NumReferrers == 0) { |
| // Removing the last referrer to the node, sever the forwarding link |
| N->stopForwarding(); |
| } |
| |
| N = Next; |
| N->NumReferrers++; |
| if (N->Size <= Offset) { |
| assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?"); |
| Offset = 0; |
| } |
| return N; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSScalarMap Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) { |
| assert(ValueMap.count(GV) == 0 && "GV already exists!"); |
| |
| // If the node doesn't exist, check to see if it's a global that is |
| // equated to another global in the program. |
| EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV); |
| if (ECI != GlobalECs.end()) { |
| GlobalValue *Leader = *GlobalECs.findLeader(ECI); |
| if (Leader != GV) { |
| GV = Leader; |
| iterator I = ValueMap.find(GV); |
| if (I != ValueMap.end()) |
| return I->second; |
| } |
| } |
| |
| // Okay, this is either not an equivalenced global or it is the leader, it |
| // will be inserted into the scalar map now. |
| GlobalSet.insert(GV); |
| |
| return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DSNode Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNode::DSNode(const Type *T, DSGraph *G) |
| : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) { |
| // Add the type entry if it is specified... |
| if (T) mergeTypeInfo(T, 0); |
| if (G) G->addNode(this); |
| ++NumNodeAllocated; |
| } |
| |
| // DSNode copy constructor... do not copy over the referrers list! |
| DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks) |
| : NumReferrers(0), Size(N.Size), ParentGraph(G), |
| Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) { |
| if (!NullLinks) { |
| Links = N.Links; |
| } else |
| Links.resize(N.Links.size()); // Create the appropriate number of null links |
| G->addNode(this); |
| ++NumNodeAllocated; |
| } |
| |
| /// getTargetData - Get the target data object used to construct this node. |
| /// |
| const TargetData &DSNode::getTargetData() const { |
| return ParentGraph->getTargetData(); |
| } |
| |
| void DSNode::assertOK() const { |
| assert((Ty != Type::VoidTy || |
| Ty == Type::VoidTy && (Size == 0 || |
| (NodeType & DSNode::Array))) && |
| "Node not OK!"); |
| |
| assert(ParentGraph && "Node has no parent?"); |
| const DSScalarMap &SM = ParentGraph->getScalarMap(); |
| for (unsigned i = 0, e = Globals.size(); i != e; ++i) { |
| assert(SM.global_count(Globals[i])); |
| assert(SM.find(Globals[i])->second.getNode() == this); |
| } |
| } |
| |
| /// forwardNode - Mark this node as being obsolete, and all references to it |
| /// should be forwarded to the specified node and offset. |
| /// |
| void DSNode::forwardNode(DSNode *To, unsigned Offset) { |
| assert(this != To && "Cannot forward a node to itself!"); |
| assert(ForwardNH.isNull() && "Already forwarding from this node!"); |
| if (To->Size <= 1) Offset = 0; |
| assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) && |
| "Forwarded offset is wrong!"); |
| ForwardNH.setTo(To, Offset); |
| NodeType = DEAD; |
| Size = 0; |
| Ty = Type::VoidTy; |
| |
| // Remove this node from the parent graph's Nodes list. |
| ParentGraph->unlinkNode(this); |
| ParentGraph = 0; |
| } |
| |
| // addGlobal - Add an entry for a global value to the Globals list. This also |
| // marks the node with the 'G' flag if it does not already have it. |
| // |
| void DSNode::addGlobal(GlobalValue *GV) { |
| // First, check to make sure this is the leader if the global is in an |
| // equivalence class. |
| GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV); |
| |
| // Keep the list sorted. |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Globals.begin(), Globals.end(), GV); |
| |
| if (I == Globals.end() || *I != GV) { |
| Globals.insert(I, GV); |
| NodeType |= GlobalNode; |
| } |
| } |
| |
| // removeGlobal - Remove the specified global that is explicitly in the globals |
| // list. |
| void DSNode::removeGlobal(GlobalValue *GV) { |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Globals.begin(), Globals.end(), GV); |
| assert(I != Globals.end() && *I == GV && "Global not in node!"); |
| Globals.erase(I); |
| } |
| |
| /// foldNodeCompletely - If we determine that this node has some funny |
| /// behavior happening to it that we cannot represent, we fold it down to a |
| /// single, completely pessimistic, node. This node is represented as a |
| /// single byte with a single TypeEntry of "void". |
| /// |
| void DSNode::foldNodeCompletely() { |
| if (isNodeCompletelyFolded()) return; // If this node is already folded... |
| |
| ++NumFolds; |
| |
| // If this node has a size that is <= 1, we don't need to create a forwarding |
| // node. |
| if (getSize() <= 1) { |
| NodeType |= DSNode::Array; |
| Ty = Type::VoidTy; |
| Size = 1; |
| assert(Links.size() <= 1 && "Size is 1, but has more links?"); |
| Links.resize(1); |
| } else { |
| // Create the node we are going to forward to. This is required because |
| // some referrers may have an offset that is > 0. By forcing them to |
| // forward, the forwarder has the opportunity to correct the offset. |
| DSNode *DestNode = new DSNode(0, ParentGraph); |
| DestNode->NodeType = NodeType|DSNode::Array; |
| DestNode->Ty = Type::VoidTy; |
| DestNode->Size = 1; |
| DestNode->Globals.swap(Globals); |
| |
| // Start forwarding to the destination node... |
| forwardNode(DestNode, 0); |
| |
| if (!Links.empty()) { |
| DestNode->Links.reserve(1); |
| |
| DSNodeHandle NH(DestNode); |
| DestNode->Links.push_back(Links[0]); |
| |
| // If we have links, merge all of our outgoing links together... |
| for (unsigned i = Links.size()-1; i != 0; --i) |
| NH.getNode()->Links[0].mergeWith(Links[i]); |
| Links.clear(); |
| } else { |
| DestNode->Links.resize(1); |
| } |
| } |
| } |
| |
| /// isNodeCompletelyFolded - Return true if this node has been completely |
| /// folded down to something that can never be expanded, effectively losing |
| /// all of the field sensitivity that may be present in the node. |
| /// |
| bool DSNode::isNodeCompletelyFolded() const { |
| return getSize() == 1 && Ty == Type::VoidTy && isArray(); |
| } |
| |
| /// addFullGlobalsList - Compute the full set of global values that are |
| /// represented by this node. Unlike getGlobalsList(), this requires fair |
| /// amount of work to compute, so don't treat this method call as free. |
| void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const { |
| if (globals_begin() == globals_end()) return; |
| |
| EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs(); |
| |
| for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { |
| EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I); |
| if (ECI == EC.end()) |
| List.push_back(*I); |
| else |
| List.insert(List.end(), EC.member_begin(ECI), EC.member_end()); |
| } |
| } |
| |
| /// addFullFunctionList - Identical to addFullGlobalsList, but only return the |
| /// functions in the full list. |
| void DSNode::addFullFunctionList(std::vector<Function*> &List) const { |
| if (globals_begin() == globals_end()) return; |
| |
| EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs(); |
| |
| for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { |
| EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I); |
| if (ECI == EC.end()) { |
| if (Function *F = dyn_cast<Function>(*I)) |
| List.push_back(F); |
| } else { |
| for (EquivalenceClasses<GlobalValue*>::member_iterator MI = |
| EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI) |
| if (Function *F = dyn_cast<Function>(*MI)) |
| List.push_back(F); |
| } |
| } |
| } |
| |
| namespace { |
| /// TypeElementWalker Class - Used for implementation of physical subtyping... |
| /// |
| class TypeElementWalker { |
| struct StackState { |
| const Type *Ty; |
| unsigned Offset; |
| unsigned Idx; |
| StackState(const Type *T, unsigned Off = 0) |
| : Ty(T), Offset(Off), Idx(0) {} |
| }; |
| |
| std::vector<StackState> Stack; |
| const TargetData &TD; |
| public: |
| TypeElementWalker(const Type *T, const TargetData &td) : TD(td) { |
| Stack.push_back(T); |
| StepToLeaf(); |
| } |
| |
| bool isDone() const { return Stack.empty(); } |
| const Type *getCurrentType() const { return Stack.back().Ty; } |
| unsigned getCurrentOffset() const { return Stack.back().Offset; } |
| |
| void StepToNextType() { |
| PopStackAndAdvance(); |
| StepToLeaf(); |
| } |
| |
| private: |
| /// PopStackAndAdvance - Pop the current element off of the stack and |
| /// advance the underlying element to the next contained member. |
| void PopStackAndAdvance() { |
| assert(!Stack.empty() && "Cannot pop an empty stack!"); |
| Stack.pop_back(); |
| while (!Stack.empty()) { |
| StackState &SS = Stack.back(); |
| if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { |
| ++SS.Idx; |
| if (SS.Idx != ST->getNumElements()) { |
| const StructLayout *SL = TD.getStructLayout(ST); |
| SS.Offset += |
| unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]); |
| return; |
| } |
| Stack.pop_back(); // At the end of the structure |
| } else { |
| const ArrayType *AT = cast<ArrayType>(SS.Ty); |
| ++SS.Idx; |
| if (SS.Idx != AT->getNumElements()) { |
| SS.Offset += unsigned(TD.getTypeSize(AT->getElementType())); |
| return; |
| } |
| Stack.pop_back(); // At the end of the array |
| } |
| } |
| } |
| |
| /// StepToLeaf - Used by physical subtyping to move to the first leaf node |
| /// on the type stack. |
| void StepToLeaf() { |
| if (Stack.empty()) return; |
| while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) { |
| StackState &SS = Stack.back(); |
| if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { |
| if (ST->getNumElements() == 0) { |
| assert(SS.Idx == 0); |
| PopStackAndAdvance(); |
| } else { |
| // Step into the structure... |
| assert(SS.Idx < ST->getNumElements()); |
| const StructLayout *SL = TD.getStructLayout(ST); |
| Stack.push_back(StackState(ST->getElementType(SS.Idx), |
| SS.Offset+unsigned(SL->MemberOffsets[SS.Idx]))); |
| } |
| } else { |
| const ArrayType *AT = cast<ArrayType>(SS.Ty); |
| if (AT->getNumElements() == 0) { |
| assert(SS.Idx == 0); |
| PopStackAndAdvance(); |
| } else { |
| // Step into the array... |
| assert(SS.Idx < AT->getNumElements()); |
| Stack.push_back(StackState(AT->getElementType(), |
| SS.Offset+SS.Idx* |
| unsigned(TD.getTypeSize(AT->getElementType())))); |
| } |
| } |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// ElementTypesAreCompatible - Check to see if the specified types are |
| /// "physically" compatible. If so, return true, else return false. We only |
| /// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1 |
| /// is true, then we also allow a larger T1. |
| /// |
| static bool ElementTypesAreCompatible(const Type *T1, const Type *T2, |
| bool AllowLargerT1, const TargetData &TD){ |
| TypeElementWalker T1W(T1, TD), T2W(T2, TD); |
| |
| while (!T1W.isDone() && !T2W.isDone()) { |
| if (T1W.getCurrentOffset() != T2W.getCurrentOffset()) |
| return false; |
| |
| const Type *T1 = T1W.getCurrentType(); |
| const Type *T2 = T2W.getCurrentType(); |
| if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2)) |
| return false; |
| |
| T1W.StepToNextType(); |
| T2W.StepToNextType(); |
| } |
| |
| return AllowLargerT1 || T1W.isDone(); |
| } |
| |
| |
| /// mergeTypeInfo - This method merges the specified type into the current node |
| /// at the specified offset. This may update the current node's type record if |
| /// this gives more information to the node, it may do nothing to the node if |
| /// this information is already known, or it may merge the node completely (and |
| /// return true) if the information is incompatible with what is already known. |
| /// |
| /// This method returns true if the node is completely folded, otherwise false. |
| /// |
| bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset, |
| bool FoldIfIncompatible) { |
| const TargetData &TD = getTargetData(); |
| // Check to make sure the Size member is up-to-date. Size can be one of the |
| // following: |
| // Size = 0, Ty = Void: Nothing is known about this node. |
| // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero |
| // Size = 1, Ty = Void, Array = 1: The node is collapsed |
| // Otherwise, sizeof(Ty) = Size |
| // |
| assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) || |
| (Size == 0 && !Ty->isSized() && !isArray()) || |
| (Size == 1 && Ty == Type::VoidTy && isArray()) || |
| (Size == 0 && !Ty->isSized() && !isArray()) || |
| (TD.getTypeSize(Ty) == Size)) && |
| "Size member of DSNode doesn't match the type structure!"); |
| assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); |
| |
| if (Offset == 0 && NewTy == Ty) |
| return false; // This should be a common case, handle it efficiently |
| |
| // Return true immediately if the node is completely folded. |
| if (isNodeCompletelyFolded()) return true; |
| |
| // If this is an array type, eliminate the outside arrays because they won't |
| // be used anyway. This greatly reduces the size of large static arrays used |
| // as global variables, for example. |
| // |
| bool WillBeArray = false; |
| while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) { |
| // FIXME: we might want to keep small arrays, but must be careful about |
| // things like: [2 x [10000 x int*]] |
| NewTy = AT->getElementType(); |
| WillBeArray = true; |
| } |
| |
| // Figure out how big the new type we're merging in is... |
| unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0; |
| |
| // Otherwise check to see if we can fold this type into the current node. If |
| // we can't, we fold the node completely, if we can, we potentially update our |
| // internal state. |
| // |
| if (Ty == Type::VoidTy) { |
| // If this is the first type that this node has seen, just accept it without |
| // question.... |
| assert(Offset == 0 && !isArray() && |
| "Cannot have an offset into a void node!"); |
| |
| // If this node would have to have an unreasonable number of fields, just |
| // collapse it. This can occur for fortran common blocks, which have stupid |
| // things like { [100000000 x double], [1000000 x double] }. |
| unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift; |
| if (NumFields > DSAFieldLimit) { |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| Ty = NewTy; |
| NodeType &= ~Array; |
| if (WillBeArray) NodeType |= Array; |
| Size = NewTySize; |
| |
| // Calculate the number of outgoing links from this node. |
| Links.resize(NumFields); |
| return false; |
| } |
| |
| // Handle node expansion case here... |
| if (Offset+NewTySize > Size) { |
| // It is illegal to grow this node if we have treated it as an array of |
| // objects... |
| if (isArray()) { |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| |
| // If this node would have to have an unreasonable number of fields, just |
| // collapse it. This can occur for fortran common blocks, which have stupid |
| // things like { [100000000 x double], [1000000 x double] }. |
| unsigned NumFields = (NewTySize+Offset+DS::PointerSize-1) >> DS::PointerShift; |
| if (NumFields > DSAFieldLimit) { |
| foldNodeCompletely(); |
| return true; |
| } |
| |
| if (Offset) { |
| //handle some common cases: |
| // Ty: struct { t1, t2, t3, t4, ..., tn} |
| // NewTy: struct { offset, stuff...} |
| // try merge with NewTy: struct {t1, t2, stuff...} if offset lands exactly on a field in Ty |
| if (isa<StructType>(NewTy) && isa<StructType>(Ty)) { |
| DEBUG(std::cerr << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n"); |
| unsigned O = 0; |
| const StructType *STy = cast<StructType>(Ty); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| unsigned i = SL.getElementContainingOffset(Offset); |
| //Either we hit it exactly or give up |
| if (SL.MemberOffsets[i] != Offset) { |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| std::vector<const Type*> nt; |
| for (unsigned x = 0; x < i; ++x) |
| nt.push_back(STy->getElementType(x)); |
| STy = cast<StructType>(NewTy); |
| nt.insert(nt.end(), STy->element_begin(), STy->element_end()); |
| //and merge |
| STy = StructType::get(nt); |
| DEBUG(std::cerr << "Trying with: " << *STy << "\n"); |
| return mergeTypeInfo(STy, 0); |
| } |
| |
| //Ty: struct { t1, t2, t3 ... tn} |
| //NewTy T offset x |
| //try merge with NewTy: struct : {t1, t2, T} if offset lands on a field in Ty |
| if (isa<StructType>(Ty)) { |
| DEBUG(std::cerr << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n"); |
| unsigned O = 0; |
| const StructType *STy = cast<StructType>(Ty); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| unsigned i = SL.getElementContainingOffset(Offset); |
| //Either we hit it exactly or give up |
| if (SL.MemberOffsets[i] != Offset) { |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| std::vector<const Type*> nt; |
| for (unsigned x = 0; x < i; ++x) |
| nt.push_back(STy->getElementType(x)); |
| nt.push_back(NewTy); |
| //and merge |
| STy = StructType::get(nt); |
| DEBUG(std::cerr << "Trying with: " << *STy << "\n"); |
| return mergeTypeInfo(STy, 0); |
| } |
| |
| std::cerr << "UNIMP: Trying to merge a growth type into " |
| << "offset != 0: Collapsing!\n"; |
| abort(); |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| |
| } |
| |
| |
| // Okay, the situation is nice and simple, we are trying to merge a type in |
| // at offset 0 that is bigger than our current type. Implement this by |
| // switching to the new type and then merge in the smaller one, which should |
| // hit the other code path here. If the other code path decides it's not |
| // ok, it will collapse the node as appropriate. |
| // |
| |
| const Type *OldTy = Ty; |
| Ty = NewTy; |
| NodeType &= ~Array; |
| if (WillBeArray) NodeType |= Array; |
| Size = NewTySize; |
| |
| // Must grow links to be the appropriate size... |
| Links.resize(NumFields); |
| |
| // Merge in the old type now... which is guaranteed to be smaller than the |
| // "current" type. |
| return mergeTypeInfo(OldTy, 0); |
| } |
| |
| assert(Offset <= Size && |
| "Cannot merge something into a part of our type that doesn't exist!"); |
| |
| // Find the section of Ty that NewTy overlaps with... first we find the |
| // type that starts at offset Offset. |
| // |
| unsigned O = 0; |
| const Type *SubType = Ty; |
| while (O < Offset) { |
| assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); |
| |
| switch (SubType->getTypeID()) { |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(SubType); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| unsigned i = SL.getElementContainingOffset(Offset-O); |
| |
| // The offset we are looking for must be in the i'th element... |
| SubType = STy->getElementType(i); |
| O += (unsigned)SL.MemberOffsets[i]; |
| break; |
| } |
| case Type::ArrayTyID: { |
| SubType = cast<ArrayType>(SubType)->getElementType(); |
| unsigned ElSize = (unsigned)TD.getTypeSize(SubType); |
| unsigned Remainder = (Offset-O) % ElSize; |
| O = Offset-Remainder; |
| break; |
| } |
| default: |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| } |
| |
| assert(O == Offset && "Could not achieve the correct offset!"); |
| |
| // If we found our type exactly, early exit |
| if (SubType == NewTy) return false; |
| |
| // Differing function types don't require us to merge. They are not values |
| // anyway. |
| if (isa<FunctionType>(SubType) && |
| isa<FunctionType>(NewTy)) return false; |
| |
| unsigned SubTypeSize = SubType->isSized() ? |
| (unsigned)TD.getTypeSize(SubType) : 0; |
| |
| // Ok, we are getting desperate now. Check for physical subtyping, where we |
| // just require each element in the node to be compatible. |
| if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 && |
| SubTypeSize && SubTypeSize < 256 && |
| ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD)) |
| return false; |
| |
| // Okay, so we found the leader type at the offset requested. Search the list |
| // of types that starts at this offset. If SubType is currently an array or |
| // structure, the type desired may actually be the first element of the |
| // composite type... |
| // |
| unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored |
| while (SubType != NewTy) { |
| const Type *NextSubType = 0; |
| unsigned NextSubTypeSize = 0; |
| unsigned NextPadSize = 0; |
| switch (SubType->getTypeID()) { |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(SubType); |
| const StructLayout &SL = *TD.getStructLayout(STy); |
| if (SL.MemberOffsets.size() > 1) |
| NextPadSize = (unsigned)SL.MemberOffsets[1]; |
| else |
| NextPadSize = SubTypeSize; |
| NextSubType = STy->getElementType(0); |
| NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); |
| break; |
| } |
| case Type::ArrayTyID: |
| NextSubType = cast<ArrayType>(SubType)->getElementType(); |
| NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); |
| NextPadSize = NextSubTypeSize; |
| break; |
| default: ; |
| // fall out |
| } |
| |
| if (NextSubType == 0) |
| break; // In the default case, break out of the loop |
| |
| if (NextPadSize < NewTySize) |
| break; // Don't allow shrinking to a smaller type than NewTySize |
| SubType = NextSubType; |
| SubTypeSize = NextSubTypeSize; |
| PadSize = NextPadSize; |
| } |
| |
| // If we found the type exactly, return it... |
| if (SubType == NewTy) |
| return false; |
| |
| // Check to see if we have a compatible, but different type... |
| if (NewTySize == SubTypeSize) { |
| // Check to see if this type is obviously convertible... int -> uint f.e. |
| if (NewTy->isLosslesslyConvertibleTo(SubType)) |
| return false; |
| |
| // Check to see if we have a pointer & integer mismatch going on here, |
| // loading a pointer as a long, for example. |
| // |
| if (SubType->isInteger() && isa<PointerType>(NewTy) || |
| NewTy->isInteger() && isa<PointerType>(SubType)) |
| return false; |
| } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) { |
| // We are accessing the field, plus some structure padding. Ignore the |
| // structure padding. |
| return false; |
| } |
| |
| Module *M = 0; |
| if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end()) |
| M = getParentGraph()->retnodes_begin()->first->getParent(); |
| DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: "; |
| WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:"; |
| WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n" |
| << "SubType: "; |
| WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n"); |
| |
| if (FoldIfIncompatible) foldNodeCompletely(); |
| return true; |
| } |
| |
| |
| |
| /// addEdgeTo - Add an edge from the current node to the specified node. This |
| /// can cause merging of nodes in the graph. |
| /// |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { |
| if (NH.isNull()) return; // Nothing to do |
| |
| if (isNodeCompletelyFolded()) |
| Offset = 0; |
| |
| DSNodeHandle &ExistingEdge = getLink(Offset); |
| if (!ExistingEdge.isNull()) { |
| // Merge the two nodes... |
| ExistingEdge.mergeWith(NH); |
| } else { // No merging to perform... |
| setLink(Offset, NH); // Just force a link in there... |
| } |
| } |
| |
| |
| /// MergeSortedVectors - Efficiently merge a vector into another vector where |
| /// duplicates are not allowed and both are sorted. This assumes that 'T's are |
| /// efficiently copyable and have sane comparison semantics. |
| /// |
| static void MergeSortedVectors(std::vector<GlobalValue*> &Dest, |
| const std::vector<GlobalValue*> &Src) { |
| // By far, the most common cases will be the simple ones. In these cases, |
| // avoid having to allocate a temporary vector... |
| // |
| if (Src.empty()) { // Nothing to merge in... |
| return; |
| } else if (Dest.empty()) { // Just copy the result in... |
| Dest = Src; |
| } else if (Src.size() == 1) { // Insert a single element... |
| const GlobalValue *V = Src[0]; |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), V); |
| if (I == Dest.end() || *I != Src[0]) // If not already contained... |
| Dest.insert(I, Src[0]); |
| } else if (Dest.size() == 1) { |
| GlobalValue *Tmp = Dest[0]; // Save value in temporary... |
| Dest = Src; // Copy over list... |
| std::vector<GlobalValue*>::iterator I = |
| std::lower_bound(Dest.begin(), Dest.end(), Tmp); |
| if (I == Dest.end() || *I != Tmp) // If not already contained... |
| Dest.insert(I, Tmp); |
| |
| } else { |
| // Make a copy to the side of Dest... |
| std::vector<GlobalValue*> Old(Dest); |
| |
| // Make space for all of the type entries now... |
| Dest.resize(Dest.size()+Src.size()); |
| |
| // Merge the two sorted ranges together... into Dest. |
| std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); |
| |
| // Now erase any duplicate entries that may have accumulated into the |
| // vectors (because they were in both of the input sets) |
| Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); |
| } |
| } |
| |
| void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) { |
| MergeSortedVectors(Globals, RHS); |
| } |
| |
| // MergeNodes - Helper function for DSNode::mergeWith(). |
| // This function does the hard work of merging two nodes, CurNodeH |
| // and NH after filtering out trivial cases and making sure that |
| // CurNodeH.offset >= NH.offset. |
| // |
| // ***WARNING*** |
| // Since merging may cause either node to go away, we must always |
| // use the node-handles to refer to the nodes. These node handles are |
| // automatically updated during merging, so will always provide access |
| // to the correct node after a merge. |
| // |
| void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) { |
| assert(CurNodeH.getOffset() >= NH.getOffset() && |
| "This should have been enforced in the caller."); |
| assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() && |
| "Cannot merge two nodes that are not in the same graph!"); |
| |
| // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with |
| // respect to NH.Offset) is now zero. NOffset is the distance from the base |
| // of our object that N starts from. |
| // |
| unsigned NOffset = CurNodeH.getOffset()-NH.getOffset(); |
| unsigned NSize = NH.getNode()->getSize(); |
| |
| // If the two nodes are of different size, and the smaller node has the array |
| // bit set, collapse! |
| if (NSize != CurNodeH.getNode()->getSize()) { |
| #if COLLAPSE_ARRAYS_AGGRESSIVELY |
| if (NSize < CurNodeH.getNode()->getSize()) { |
| if (NH.getNode()->isArray()) |
| NH.getNode()->foldNodeCompletely(); |
| } else if (CurNodeH.getNode()->isArray()) { |
| NH.getNode()->foldNodeCompletely(); |
| } |
| #endif |
| } |
| |
| // Merge the type entries of the two nodes together... |
| if (NH.getNode()->Ty != Type::VoidTy) |
| CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset); |
| assert(!CurNodeH.getNode()->isDeadNode()); |
| |
| // If we are merging a node with a completely folded node, then both nodes are |
| // now completely folded. |
| // |
| if (CurNodeH.getNode()->isNodeCompletelyFolded()) { |
| if (!NH.getNode()->isNodeCompletelyFolded()) { |
| NH.getNode()->foldNodeCompletely(); |
| assert(NH.getNode() && NH.getOffset() == 0 && |
| "folding did not make offset 0?"); |
| NOffset = NH.getOffset(); |
| NSize = NH.getNode()->getSize(); |
| assert(NOffset == 0 && NSize == 1); |
| } |
| } else if (NH.getNode()->isNodeCompletelyFolded()) { |
| CurNodeH.getNode()->foldNodeCompletely(); |
| assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 && |
| "folding did not make offset 0?"); |
| NSize = NH.getNode()->getSize(); |
| NOffset = NH.getOffset(); |
| assert(NOffset == 0 && NSize == 1); |
| } |
| |
| DSNode *N = NH.getNode(); |
| if (CurNodeH.getNode() == N || N == 0) return; |
| assert(!CurNodeH.getNode()->isDeadNode()); |
| |
| // Merge the NodeType information. |
| CurNodeH.getNode()->NodeType |= N->NodeType; |
| |
| // Start forwarding to the new node! |
| N->forwardNode(CurNodeH.getNode(), NOffset); |
| assert(!CurNodeH.getNode()->isDeadNode()); |
| |
| // Make all of the outgoing links of N now be outgoing links of CurNodeH. |
| // |
| for (unsigned i = 0; i < N->getNumLinks(); ++i) { |
| DSNodeHandle &Link = N->getLink(i << DS::PointerShift); |
| if (Link.getNode()) { |
| // Compute the offset into the current node at which to |
| // merge this link. In the common case, this is a linear |
| // relation to the offset in the original node (with |
| // wrapping), but if the current node gets collapsed due to |
| // recursive merging, we must make sure to merge in all remaining |
| // links at offset zero. |
| unsigned MergeOffset = 0; |
| DSNode *CN = CurNodeH.getNode(); |
| if (CN->Size != 1) |
| MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize(); |
| CN->addEdgeTo(MergeOffset, Link); |
| } |
| } |
| |
| // Now that there are no outgoing edges, all of the Links are dead. |
| N->Links.clear(); |
| |
| // Merge the globals list... |
| if (!N->Globals.empty()) { |
| CurNodeH.getNode()->mergeGlobals(N->Globals); |
| |
| // Delete the globals from the old node... |
| std::vector<GlobalValue*>().swap(N->Globals); |
| } |
| } |
| |
| |
| /// mergeWith - Merge this node and the specified node, moving all links to and |
| /// from the argument node into the current node, deleting the node argument. |
| /// Offset indicates what offset the specified node is to be merged into the |
| /// current node. |
| /// |
| /// The specified node may be a null pointer (in which case, we update it to |
| /// point to this node). |
| /// |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { |
| DSNode *N = NH.getNode(); |
| if (N == this && NH.getOffset() == Offset) |
| return; // Noop |
| |
| // If the RHS is a null node, make it point to this node! |
| if (N == 0) { |
| NH.mergeWith(DSNodeHandle(this, Offset)); |
| return; |
| } |
| |
| assert(!N->isDeadNode() && !isDeadNode()); |
| assert(!hasNoReferrers() && "Should not try to fold a useless node!"); |
| |
| if (N == this) { |
| // We cannot merge two pieces of the same node together, collapse the node |
| // completely. |
| DEBUG(std::cerr << "Attempting to merge two chunks of" |
| << " the same node together!\n"); |
| foldNodeCompletely(); |
| return; |
| } |
| |
| // If both nodes are not at offset 0, make sure that we are merging the node |
| // at an later offset into the node with the zero offset. |
| // |
| if (Offset < NH.getOffset()) { |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { |
| // If the offsets are the same, merge the smaller node into the bigger node |
| N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); |
| return; |
| } |
| |
| // Ok, now we can merge the two nodes. Use a static helper that works with |
| // two node handles, since "this" may get merged away at intermediate steps. |
| DSNodeHandle CurNodeH(this, Offset); |
| DSNodeHandle NHCopy(NH); |
| DSNode::MergeNodes(CurNodeH, NHCopy); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ReachabilityCloner Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) { |
| if (SrcNH.isNull()) return DSNodeHandle(); |
| const DSNode *SN = SrcNH.getNode(); |
| |
| DSNodeHandle &NH = NodeMap[SN]; |
| if (!NH.isNull()) { // Node already mapped? |
| DSNode *NHN = NH.getNode(); |
| return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset()); |
| } |
| |
| // If SrcNH has globals and the destination graph has one of the same globals, |
| // merge this node with the destination node, which is much more efficient. |
| if (SN->globals_begin() != SN->globals_end()) { |
| DSScalarMap &DestSM = Dest.getScalarMap(); |
| for (DSNode::globals_iterator I = SN->globals_begin(),E = SN->globals_end(); |
| I != E; ++I) { |
| GlobalValue *GV = *I; |
| DSScalarMap::iterator GI = DestSM.find(GV); |
| if (GI != DestSM.end() && !GI->second.isNull()) { |
| // We found one, use merge instead! |
| merge(GI->second, Src.getNodeForValue(GV)); |
| assert(!NH.isNull() && "Didn't merge node!"); |
| DSNode *NHN = NH.getNode(); |
| return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset()); |
| } |
| } |
| } |
| |
| DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */); |
| DN->maskNodeTypes(BitsToKeep); |
| NH = DN; |
| |
| // Next, recursively clone all outgoing links as necessary. Note that |
| // adding these links can cause the node to collapse itself at any time, and |
| // the current node may be merged with arbitrary other nodes. For this |
| // reason, we must always go through NH. |
| DN = 0; |
| for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) { |
| const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift); |
| if (!SrcEdge.isNull()) { |
| const DSNodeHandle &DestEdge = getClonedNH(SrcEdge); |
| // Compute the offset into the current node at which to |
| // merge this link. In the common case, this is a linear |
| // relation to the offset in the original node (with |
| // wrapping), but if the current node gets collapsed due to |
| // recursive merging, we must make sure to merge in all remaining |
| // links at offset zero. |
| unsigned MergeOffset = 0; |
| DSNode *CN = NH.getNode(); |
| if (CN->getSize() != 1) |
| MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize(); |
| CN->addEdgeTo(MergeOffset, DestEdge); |
| } |
| } |
| |
| // If this node contains any globals, make sure they end up in the scalar |
| // map with the correct offset. |
| for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end(); |
| I != E; ++I) { |
| GlobalValue *GV = *I; |
| const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); |
| DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; |
| assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent"); |
| Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), |
| DestGNH.getOffset()+SrcGNH.getOffset())); |
| } |
| NH.getNode()->mergeGlobals(SN->getGlobalsList()); |
| |
| return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset()); |
| } |
| |
| void ReachabilityCloner::merge(const DSNodeHandle &NH, |
| const DSNodeHandle &SrcNH) { |
| if (SrcNH.isNull()) return; // Noop |
| if (NH.isNull()) { |
| // If there is no destination node, just clone the source and assign the |
| // destination node to be it. |
| NH.mergeWith(getClonedNH(SrcNH)); |
| return; |
| } |
| |
| // Okay, at this point, we know that we have both a destination and a source |
| // node that need to be merged. Check to see if the source node has already |
| // been cloned. |
| const DSNode *SN = SrcNH.getNode(); |
| DSNodeHandle &SCNH = NodeMap[SN]; // SourceClonedNodeHandle |
| if (!SCNH.isNull()) { // Node already cloned? |
| DSNode *SCNHN = SCNH.getNode(); |
| NH.mergeWith(DSNodeHandle(SCNHN, |
| SCNH.getOffset()+SrcNH.getOffset())); |
| return; // Nothing to do! |
| } |
| |
| // Okay, so the source node has not already been cloned. Instead of creating |
| // a new DSNode, only to merge it into the one we already have, try to perform |
| // the merge in-place. The only case we cannot handle here is when the offset |
| // into the existing node is less than the offset into the virtual node we are |
| // merging in. In this case, we have to extend the existing node, which |
| // requires an allocation anyway. |
| DSNode *DN = NH.getNode(); // Make sure the Offset is up-to-date |
| if (NH.getOffset() >= SrcNH.getOffset()) { |
| if (!DN->isNodeCompletelyFolded()) { |
| // Make sure the destination node is folded if the source node is folded. |
| if (SN->isNodeCompletelyFolded()) { |
| DN->foldNodeCompletely(); |
| DN = NH.getNode(); |
| } else if (SN->getSize() != DN->getSize()) { |
| // If the two nodes are of different size, and the smaller node has the |
| // array bit set, collapse! |
| #if COLLAPSE_ARRAYS_AGGRESSIVELY |
| if (SN->getSize() < DN->getSize()) { |
| if (SN->isArray()) { |
| DN->foldNodeCompletely(); |
| DN = NH.getNode(); |
| } |
| } else if (DN->isArray()) { |
| DN->foldNodeCompletely(); |
| DN = NH.getNode(); |
| } |
| #endif |
| } |
| |
| // Merge the type entries of the two nodes together... |
| if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) { |
| DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset()); |
| DN = NH.getNode(); |
| } |
| } |
| |
| assert(!DN->isDeadNode()); |
| |
| // Merge the NodeType information. |
| DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep); |
| |
| // Before we start merging outgoing links and updating the scalar map, make |
| // sure it is known that this is the representative node for the src node. |
| SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset()); |
| |
| // If the source node contains any globals, make sure they end up in the |
| // scalar map with the correct offset. |
| if (SN->globals_begin() != SN->globals_end()) { |
| // Update the globals in the destination node itself. |
| DN->mergeGlobals(SN->getGlobalsList()); |
| |
| // Update the scalar map for the graph we are merging the source node |
| // into. |
| for (DSNode::globals_iterator I = SN->globals_begin(), |
| E = SN->globals_end(); I != E; ++I) { |
| GlobalValue *GV = *I; |
| const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); |
| DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; |
| assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent"); |
| Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), |
| DestGNH.getOffset()+SrcGNH.getOffset())); |
| } |
| NH.getNode()->mergeGlobals(SN->getGlobalsList()); |
| } |
| } else { |
| // We cannot handle this case without allocating a temporary node. Fall |
| // back on being simple. |
| DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */); |
| NewDN->maskNodeTypes(BitsToKeep); |
| |
| unsigned NHOffset = NH.getOffset(); |
| NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset())); |
| |
| assert(NH.getNode() && |
| (NH.getOffset() > NHOffset || |
| (NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) && |
| "Merging did not adjust the offset!"); |
| |
| // Before we start merging outgoing links and updating the scalar map, make |
| // sure it is known that this is the representative node for the src node. |
| SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset()); |
| |
| // If the source node contained any globals, make sure to create entries |
| // in the scalar map for them! |
| for (DSNode::globals_iterator I = SN->globals_begin(), |
| E = SN->globals_end(); I != E; ++I) { |
| GlobalValue *GV = *I; |
| const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); |
| DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; |
| assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent"); |
| assert(SrcGNH.getNode() == SN && "Global mapping inconsistent"); |
| Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), |
| DestGNH.getOffset()+SrcGNH.getOffset())); |
| } |
| } |
| |
| |
| // Next, recursively merge all outgoing links as necessary. Note that |
| // adding these links can cause the destination node to collapse itself at |
| // any time, and the current node may be merged with arbitrary other nodes. |
| // For this reason, we must always go through NH. |
| DN = 0; |
| for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) { |
| const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift); |
| if (!SrcEdge.isNull()) { |
| // Compute the offset into the current node at which to |
| // merge this link. In the common case, this is a linear |
| // relation to the offset in the original node (with |
| // wrapping), but if the current node gets collapsed due to |
| // recursive merging, we must make sure to merge in all remaining |
| // links at offset zero. |
| DSNode *CN = SCNH.getNode(); |
| unsigned MergeOffset = |
| ((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize(); |
| |
| DSNodeHandle Tmp = CN->getLink(MergeOffset); |
| if (!Tmp.isNull()) { |
| // Perform the recursive merging. Make sure to create a temporary NH, |
| // because the Link can disappear in the process of recursive merging. |
| merge(Tmp, SrcEdge); |
| } else { |
| Tmp.mergeWith(getClonedNH(SrcEdge)); |
| // Merging this could cause all kinds of recursive things to happen, |
| // culminating in the current node being eliminated. Since this is |
| // possible, make sure to reaquire the link from 'CN'. |
| |
| unsigned MergeOffset = 0; |
| CN = SCNH.getNode(); |
| MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize(); |
| CN->getLink(MergeOffset).mergeWith(Tmp); |
| } |
| } |
| } |
| } |
| |
| /// mergeCallSite - Merge the nodes reachable from the specified src call |
| /// site into the nodes reachable from DestCS. |
| void ReachabilityCloner::mergeCallSite(DSCallSite &DestCS, |
| const DSCallSite &SrcCS) { |
| merge(DestCS.getRetVal(), SrcCS.getRetVal()); |
| unsigned MinArgs = DestCS.getNumPtrArgs(); |
| if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs(); |
| |
| for (unsigned a = 0; a != MinArgs; ++a) |
| merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a)); |
| |
| for (unsigned a = MinArgs, e = SrcCS.getNumPtrArgs(); a != e; ++a) |
| DestCS.addPtrArg(getClonedNH(SrcCS.getPtrArg(a))); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DSCallSite Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h |
| Function &DSCallSite::getCaller() const { |
| return *Site.getInstruction()->getParent()->getParent(); |
| } |
| |
| void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src, |
| ReachabilityCloner &RC) { |
| NH = RC.getClonedNH(Src); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// getFunctionNames - Return a space separated list of the name of the |
| /// functions in this graph (if any) |
| std::string DSGraph::getFunctionNames() const { |
| switch (getReturnNodes().size()) { |
| case 0: return "Globals graph"; |
| case 1: return retnodes_begin()->first->getName(); |
| default: |
| std::string Return; |
| for (DSGraph::retnodes_iterator I = retnodes_begin(); |
| I != retnodes_end(); ++I) |
| Return += I->first->getName() + " "; |
| Return.erase(Return.end()-1, Return.end()); // Remove last space character |
| return Return; |
| } |
| } |
| |
| |
| DSGraph::DSGraph(const DSGraph &G, EquivalenceClasses<GlobalValue*> &ECs, |
| unsigned CloneFlags) |
| : GlobalsGraph(0), ScalarMap(ECs), TD(G.TD) { |
| PrintAuxCalls = false; |
| cloneInto(G, CloneFlags); |
| } |
| |
| DSGraph::~DSGraph() { |
| FunctionCalls.clear(); |
| AuxFunctionCalls.clear(); |
| ScalarMap.clear(); |
| ReturnNodes.clear(); |
| |
| // Drop all intra-node references, so that assertions don't fail... |
| for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) |
| NI->dropAllReferences(); |
| |
| // Free all of the nodes. |
| Nodes.clear(); |
| } |
| |
| // dump - Allow inspection of graph in a debugger. |
| void DSGraph::dump() const { print(std::cerr); } |
| |
| |
| /// remapLinks - Change all of the Links in the current node according to the |
| /// specified mapping. |
| /// |
| void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) { |
| for (unsigned i = 0, e = Links.size(); i != e; ++i) |
| if (DSNode *N = Links[i].getNode()) { |
| DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N); |
| if (ONMI != OldNodeMap.end()) { |
| DSNode *ONMIN = ONMI->second.getNode(); |
| Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset()); |
| } |
| } |
| } |
| |
| /// addObjectToGraph - This method can be used to add global, stack, and heap |
| /// objects to the graph. This can be used when updating DSGraphs due to the |
| /// introduction of new temporary objects. The new object is not pointed to |
| /// and does not point to any other objects in the graph. |
| DSNode *DSGraph::addObjectToGraph(Value *Ptr, bool UseDeclaredType) { |
| assert(isa<PointerType>(Ptr->getType()) && "Ptr is not a pointer!"); |
| const Type *Ty = cast<PointerType>(Ptr->getType())->getElementType(); |
| DSNode *N = new DSNode(UseDeclaredType ? Ty : 0, this); |
| assert(ScalarMap[Ptr].isNull() && "Object already in this graph!"); |
| ScalarMap[Ptr] = N; |
| |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(Ptr)) { |
| N->addGlobal(GV); |
| } else if (MallocInst *MI = dyn_cast<MallocInst>(Ptr)) { |
| N->setHeapNodeMarker(); |
| } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Ptr)) { |
| N->setAllocaNodeMarker(); |
| } else { |
| assert(0 && "Illegal memory object input!"); |
| } |
| return N; |
| } |
| |
| |
| /// cloneInto - Clone the specified DSGraph into the current graph. The |
| /// translated ScalarMap for the old function is filled into the ScalarMap |
| /// for the graph, and the translated ReturnNodes map is returned into |
| /// ReturnNodes. |
| /// |
| /// The CloneFlags member controls various aspects of the cloning process. |
| /// |
| void DSGraph::cloneInto(const DSGraph &G, unsigned CloneFlags) { |
| TIME_REGION(X, "cloneInto"); |
| assert(&G != this && "Cannot clone graph into itself!"); |
| |
| NodeMapTy OldNodeMap; |
| |
| // Remove alloca or mod/ref bits as specified... |
| unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0) |
| | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0) |
| | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0); |
| BitsToClear |= DSNode::DEAD; // Clear dead flag... |
| |
| for (node_const_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) { |
| assert(!I->isForwarding() && |
| "Forward nodes shouldn't be in node list!"); |
| DSNode *New = new DSNode(*I, this); |
| New->maskNodeTypes(~BitsToClear); |
| OldNodeMap[I] = New; |
| } |
| |
| #ifndef NDEBUG |
| Timer::addPeakMemoryMeasurement(); |
| #endif |
| |
| // Rewrite the links in the new nodes to point into the current graph now. |
| // Note that we don't loop over the node's list to do this. The problem is |
| // that remaping links can cause recursive merging to happen, which means |
| // that node_iterator's can get easily invalidated! Because of this, we |
| // loop over the OldNodeMap, which contains all of the new nodes as the |
| // .second element of the map elements. Also note that if we remap a node |
| // more than once, we won't break anything. |
| for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end(); |
| I != E; ++I) |
| I->second.getNode()->remapLinks(OldNodeMap); |
| |
| // Copy the scalar map... merging all of the global nodes... |
| for (DSScalarMap::const_iterator I = G.ScalarMap.begin(), |
| E = G.ScalarMap.end(); I != E; ++I) { |
| DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()]; |
| DSNodeHandle &H = ScalarMap.getRawEntryRef(I->first); |
| DSNode *MappedNodeN = MappedNode.getNode(); |
| H.mergeWith(DSNodeHandle(MappedNodeN, |
| I->second.getOffset()+MappedNode.getOffset())); |
| } |
| |
| if (!(CloneFlags & DontCloneCallNodes)) { |
| // Copy the function calls list. |
| for (fc_iterator I = G.fc_begin(), E = G.fc_end(); I != E; ++I) |
| FunctionCalls.push_back(DSCallSite(*I, OldNodeMap)); |
| } |
| |
| if (!(CloneFlags & DontCloneAuxCallNodes)) { |
| // Copy the auxiliary function calls list. |
| for (afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I) |
| AuxFunctionCalls.push_back(DSCallSite(*I, OldNodeMap)); |
| } |
| |
| // Map the return node pointers over... |
| for (retnodes_iterator I = G.retnodes_begin(), |
| E = G.retnodes_end(); I != E; ++I) { |
| const DSNodeHandle &Ret = I->second; |
| DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()]; |
| DSNode *MappedRetN = MappedRet.getNode(); |
| ReturnNodes.insert(std::make_pair(I->first, |
| DSNodeHandle(MappedRetN, |
| MappedRet.getOffset()+Ret.getOffset()))); |
| } |
| } |
| |
| /// spliceFrom - Logically perform the operation of cloning the RHS graph into |
| /// this graph, then clearing the RHS graph. Instead of performing this as |
| /// two seperate operations, do it as a single, much faster, one. |
| /// |
| void DSGraph::spliceFrom(DSGraph &RHS) { |
| // Change all of the nodes in RHS to think we are their parent. |
| for (NodeListTy::iterator I = RHS.Nodes.begin(), E = RHS.Nodes.end(); |
| I != E; ++I) |
| I->setParentGraph(this); |
| // Take all of the nodes. |
| Nodes.splice(Nodes.end(), RHS.Nodes); |
| |
| // Take all of the calls. |
| FunctionCalls.splice(FunctionCalls.end(), RHS.FunctionCalls); |
| AuxFunctionCalls.splice(AuxFunctionCalls.end(), RHS.AuxFunctionCalls); |
| |
| // Take all of the return nodes. |
| if (ReturnNodes.empty()) { |
| ReturnNodes.swap(RHS.ReturnNodes); |
| } else { |
| ReturnNodes.insert(RHS.ReturnNodes.begin(), RHS.ReturnNodes.end()); |
| RHS.ReturnNodes.clear(); |
| } |
| |
| // Merge the scalar map in. |
| ScalarMap.spliceFrom(RHS.ScalarMap); |
| } |
| |
| /// spliceFrom - Copy all entries from RHS, then clear RHS. |
| /// |
| void DSScalarMap::spliceFrom(DSScalarMap &RHS) { |
| // Special case if this is empty. |
| if (ValueMap.empty()) { |
| ValueMap.swap(RHS.ValueMap); |
| GlobalSet.swap(RHS.GlobalSet); |
| } else { |
| GlobalSet.insert(RHS.GlobalSet.begin(), RHS.GlobalSet.end()); |
| for (ValueMapTy::iterator I = RHS.ValueMap.begin(), E = RHS.ValueMap.end(); |
| I != E; ++I) |
| ValueMap[I->first].mergeWith(I->second); |
| RHS.ValueMap.clear(); |
| } |
| } |
| |
| |
| /// getFunctionArgumentsForCall - Given a function that is currently in this |
| /// graph, return the DSNodeHandles that correspond to the pointer-compatible |
| /// function arguments. The vector is filled in with the return value (or |
| /// null if it is not pointer compatible), followed by all of the |
| /// pointer-compatible arguments. |
| void DSGraph::getFunctionArgumentsForCall(Function *F, |
| std::vector<DSNodeHandle> &Args) const { |
| Args.push_back(getReturnNodeFor(*F)); |
| for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| AI != E; ++AI) |
| if (isPointerType(AI->getType())) { |
| Args.push_back(getNodeForValue(AI)); |
| assert(!Args.back().isNull() && "Pointer argument w/o scalarmap entry!?"); |
| } |
| } |
| |
| namespace { |
| // HackedGraphSCCFinder - This is used to find nodes that have a path from the |
| // node to a node cloned by the ReachabilityCloner object contained. To be |
| // extra obnoxious it ignores edges from nodes that are globals, and truncates |
| // search at RC marked nodes. This is designed as an object so that |
| // intermediate results can be memoized across invocations of |
| // PathExistsToClonedNode. |
| struct HackedGraphSCCFinder { |
| ReachabilityCloner &RC; |
| unsigned CurNodeId; |
| std::vector<const DSNode*> SCCStack; |
| std::map<const DSNode*, std::pair<unsigned, bool> > NodeInfo; |
| |
| HackedGraphSCCFinder(ReachabilityCloner &rc) : RC(rc), CurNodeId(1) { |
| // Remove null pointer as a special case. |
| NodeInfo[0] = std::make_pair(0, false); |
| } |
| |
| std::pair<unsigned, bool> &VisitForSCCs(const DSNode *N); |
| |
| bool PathExistsToClonedNode(const DSNode *N) { |
| return VisitForSCCs(N).second; |
| } |
| |
| bool PathExistsToClonedNode(const DSCallSite &CS) { |
| if (PathExistsToClonedNode(CS.getRetVal().getNode())) |
| return true; |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) |
| if (PathExistsToClonedNode(CS.getPtrArg(i).getNode())) |
| return true; |
| return false; |
| } |
| }; |
| } |
| |
| std::pair<unsigned, bool> &HackedGraphSCCFinder:: |
| VisitForSCCs(const DSNode *N) { |
| std::map<const DSNode*, std::pair<unsigned, bool> >::iterator |
| NodeInfoIt = NodeInfo.lower_bound(N); |
| if (NodeInfoIt != NodeInfo.end() && NodeInfoIt->first == N) |
| return NodeInfoIt->second; |
| |
| unsigned Min = CurNodeId++; |
| unsigned MyId = Min; |
| std::pair<unsigned, bool> &ThisNodeInfo = |
| NodeInfo.insert(NodeInfoIt, |
| std::make_pair(N, std::make_pair(MyId, false)))->second; |
| |
| // Base case: if we find a global, this doesn't reach the cloned graph |
| // portion. |
| if (N->isGlobalNode()) { |
| ThisNodeInfo.second = false; |
| return ThisNodeInfo; |
| } |
| |
| // Base case: if this does reach the cloned graph portion... it does. :) |
| if (RC.hasClonedNode(N)) { |
| ThisNodeInfo.second = true; |
| return ThisNodeInfo; |
| } |
| |
| SCCStack.push_back(N); |
| |
| // Otherwise, check all successors. |
| bool AnyDirectSuccessorsReachClonedNodes = false; |
| for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end(); |
| EI != EE; ++EI) |
| if (DSNode *Succ = EI->getNode()) { |
| std::pair<unsigned, bool> &SuccInfo = VisitForSCCs(Succ); |
| if (SuccInfo.first < Min) Min = SuccInfo.first; |
| AnyDirectSuccessorsReachClonedNodes |= SuccInfo.second; |
| } |
| |
| if (Min != MyId) |
| return ThisNodeInfo; // Part of a large SCC. Leave self on stack. |
| |
| if (SCCStack.back() == N) { // Special case single node SCC. |
| SCCStack.pop_back(); |
| ThisNodeInfo.second = AnyDirectSuccessorsReachClonedNodes; |
| return ThisNodeInfo; |
| } |
| |
| // Find out if any direct successors of any node reach cloned nodes. |
| if (!AnyDirectSuccessorsReachClonedNodes) |
| for (unsigned i = SCCStack.size()-1; SCCStack[i] != N; --i) |
| for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end(); |
| EI != EE; ++EI) |
| if (DSNode *N = EI->getNode()) |
| if (NodeInfo[N].second) { |
| AnyDirectSuccessorsReachClonedNodes = true; |
| goto OutOfLoop; |
| } |
| OutOfLoop: |
| // If any successor reaches a cloned node, mark all nodes in this SCC as |
| // reaching the cloned node. |
| if (AnyDirectSuccessorsReachClonedNodes) |
| while (SCCStack.back() != N) { |
| NodeInfo[SCCStack.back()].second = true; |
| SCCStack.pop_back(); |
| } |
| SCCStack.pop_back(); |
| ThisNodeInfo.second = true; |
| return ThisNodeInfo; |
| } |
| |
| /// mergeInCallFromOtherGraph - This graph merges in the minimal number of |
| /// nodes from G2 into 'this' graph, merging the bindings specified by the |
| /// call site (in this graph) with the bindings specified by the vector in G2. |
| /// The two DSGraphs must be different. |
| /// |
| void DSGraph::mergeInGraph(const DSCallSite &CS, |
| std::vector<DSNodeHandle> &Args, |
| const DSGraph &Graph, unsigned CloneFlags) { |
| TIME_REGION(X, "mergeInGraph"); |
| |
| assert((CloneFlags & DontCloneCallNodes) && |
| "Doesn't support copying of call nodes!"); |
| |
| // If this is not a recursive call, clone the graph into this graph... |
| if (&Graph == this) { |
| // Merge the return value with the return value of the context. |
| Args[0].mergeWith(CS.getRetVal()); |
| |
| // Resolve all of the function arguments. |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) { |
| if (i == Args.size()-1) |
| break; |
| |
| // Add the link from the argument scalar to the provided value. |
| Args[i+1].mergeWith(CS.getPtrArg(i)); |
| } |
| return; |
| } |
| |
| // Clone the callee's graph into the current graph, keeping track of where |
| // scalars in the old graph _used_ to point, and of the new nodes matching |
| // nodes of the old graph. |
| ReachabilityCloner RC(*this, Graph, CloneFlags); |
| |
| // Map the return node pointer over. |
| if (!CS.getRetVal().isNull()) |
| RC.merge(CS.getRetVal(), Args[0]); |
| |
| // Map over all of the arguments. |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) { |
| if (i == Args.size()-1) |
| break; |
| |
| // Add the link from the argument scalar to the provided value. |
| RC.merge(CS.getPtrArg(i), Args[i+1]); |
| } |
| |
| // We generally don't want to copy global nodes or aux calls from the callee |
| // graph to the caller graph. However, we have to copy them if there is a |
| // path from the node to a node we have already copied which does not go |
| // through another global. Compute the set of node that can reach globals and |
| // aux call nodes to copy over, then do it. |
| std::vector<const DSCallSite*> AuxCallToCopy; |
| std::vector<GlobalValue*> GlobalsToCopy; |
| |
| // NodesReachCopiedNodes - Memoize results for efficiency. Contains a |
| // true/false value for every visited node that reaches a copied node without |
| // going through a global. |
| HackedGraphSCCFinder SCCFinder(RC); |
| |
| if (!(CloneFlags & DontCloneAuxCallNodes)) |
| for (afc_iterator I = Graph.afc_begin(), E = Graph.afc_end(); I!=E; ++I) |
| if (SCCFinder.PathExistsToClonedNode(*I)) |
| AuxCallToCopy.push_back(&*I); |
| |
| const DSScalarMap &GSM = Graph.getScalarMap(); |
| for (DSScalarMap::global_iterator GI = GSM.global_begin(), |
| E = GSM.global_end(); GI != E; ++GI) { |
| DSNode *GlobalNode = Graph.getNodeForValue(*GI).getNode(); |
| for (DSNode::edge_iterator EI = GlobalNode->edge_begin(), |
| EE = GlobalNode->edge_end(); EI != EE; ++EI) |
| if (SCCFinder.PathExistsToClonedNode(EI->getNode())) { |
| GlobalsToCopy.push_back(*GI); |
| break; |
| } |
| } |
| |
| // Copy aux calls that are needed. |
| for (unsigned i = 0, e = AuxCallToCopy.size(); i != e; ++i) |
| AuxFunctionCalls.push_back(DSCallSite(*AuxCallToCopy[i], RC)); |
| |
| // Copy globals that are needed. |
| for (unsigned i = 0, e = GlobalsToCopy.size(); i != e; ++i) |
| RC.getClonedNH(Graph.getNodeForValue(GlobalsToCopy[i])); |
| } |
| |
| |
| |
| /// mergeInGraph - The method is used for merging graphs together. If the |
| /// argument graph is not *this, it makes a clone of the specified graph, then |
| /// merges the nodes specified in the call site with the formal arguments in the |
| /// graph. |
| /// |
| void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F, |
| const DSGraph &Graph, unsigned CloneFlags) { |
| // Set up argument bindings. |
| std::vector<DSNodeHandle> Args; |
| Graph.getFunctionArgumentsForCall(&F, Args); |
| |
| mergeInGraph(CS, Args, Graph, CloneFlags); |
| } |
| |
| /// getCallSiteForArguments - Get the arguments and return value bindings for |
| /// the specified function in the current graph. |
| /// |
| DSCallSite DSGraph::getCallSiteForArguments(Function &F) const { |
| std::vector<DSNodeHandle> Args; |
| |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) |
| if (isPointerType(I->getType())) |
| Args.push_back(getNodeForValue(I)); |
| |
| return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args); |
| } |
| |
| /// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in |
| /// the context of this graph, return the DSCallSite for it. |
| DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const { |
| DSNodeHandle RetVal; |
| Instruction *I = CS.getInstruction(); |
| if (isPointerType(I->getType())) |
| RetVal = getNodeForValue(I); |
| |
| std::vector<DSNodeHandle> Args; |
| Args.reserve(CS.arg_end()-CS.arg_begin()); |
| |
| // Calculate the arguments vector... |
| for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) |
| if (isPointerType((*I)->getType())) |
| if (isa<ConstantPointerNull>(*I)) |
| Args.push_back(DSNodeHandle()); |
| else |
| Args.push_back(getNodeForValue(*I)); |
| |
| // Add a new function call entry... |
| if (Function *F = CS.getCalledFunction()) |
| return DSCallSite(CS, RetVal, F, Args); |
| else |
| return DSCallSite(CS, RetVal, |
| getNodeForValue(CS.getCalledValue()).getNode(), Args); |
| } |
| |
| |
| |
| // markIncompleteNodes - Mark the specified node as having contents that are not |
| // known with the current analysis we have performed. Because a node makes all |
| // of the nodes it can reach incomplete if the node itself is incomplete, we |
| // must recursively traverse the data structure graph, marking all reachable |
| // nodes as incomplete. |
| // |
| static void markIncompleteNode(DSNode *N) { |
| // Stop recursion if no node, or if node already marked... |
| if (N == 0 || N->isIncomplete()) return; |
| |
| // Actually mark the node |
| N->setIncompleteMarker(); |
| |
| // Recursively process children... |
| for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I) |
| if (DSNode *DSN = I->getNode()) |
| markIncompleteNode(DSN); |
| } |
| |
| static void markIncomplete(DSCallSite &Call) { |
| // Then the return value is certainly incomplete! |
| markIncompleteNode(Call.getRetVal().getNode()); |
| |
| // All objects pointed to by function arguments are incomplete! |
| for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) |
| markIncompleteNode(Call.getPtrArg(i).getNode()); |
| } |
| |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be |
| // modified by other functions that have not been resolved yet. This marks |
| // nodes that are reachable through three sources of "unknownness": |
| // |
| // Global Variables, Function Calls, and Incoming Arguments |
| // |
| // For any node that may have unknown components (because something outside the |
| // scope of current analysis may have modified it), the 'Incomplete' flag is |
| // added to the NodeType. |
| // |
| void DSGraph::markIncompleteNodes(unsigned Flags) { |
| // Mark any incoming arguments as incomplete. |
| if (Flags & DSGraph::MarkFormalArgs) |
| for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end(); |
| FI != E; ++FI) { |
| Function &F = *FI->first; |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); |
| I != E; ++I) |
| if (isPointerType(I->getType())) |
| markIncompleteNode(getNodeForValue(I).getNode()); |
| markIncompleteNode(FI->second.getNode()); |
| } |
| |
| // Mark stuff passed into functions calls as being incomplete. |
| if (!shouldPrintAuxCalls()) |
| for (std::list<DSCallSite>::iterator I = FunctionCalls.begin(), |
| E = FunctionCalls.end(); I != E; ++I) |
| markIncomplete(*I); |
| else |
| for (std::list<DSCallSite>::iterator I = AuxFunctionCalls.begin(), |
| E = AuxFunctionCalls.end(); I != E; ++I) |
| markIncomplete(*I); |
| |
| // Mark all global nodes as incomplete. |
| for (DSScalarMap::global_iterator I = ScalarMap.global_begin(), |
| E = ScalarMap.global_end(); I != E; ++I) |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I)) |
| if (!GV->hasInitializer() || // Always mark external globals incomp. |
| (!GV->isConstant() && (Flags & DSGraph::IgnoreGlobals) == 0)) |
| markIncompleteNode(ScalarMap[GV].getNode()); |
| } |
| |
| static inline void killIfUselessEdge(DSNodeHandle &Edge) { |
| if (DSNode *N = Edge.getNode()) // Is there an edge? |
| if (N->getNumReferrers() == 1) // Does it point to a lonely node? |
| // No interesting info? |
| if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 && |
| N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded()) |
| Edge.setTo(0, 0); // Kill the edge! |
| } |
| |
| static inline bool nodeContainsExternalFunction(const DSNode *N) { |
| std::vector<Function*> Funcs; |
| N->addFullFunctionList(Funcs); |
| for (unsigned i = 0, e = Funcs.size(); i != e; ++i) |
| if (Funcs[i]->isExternal()) return true; |
| return false; |
| } |
| |
| static void removeIdenticalCalls(std::list<DSCallSite> &Calls) { |
| // Remove trivially identical function calls |
| Calls.sort(); // Sort by callee as primary key! |
| |
| // Scan the call list cleaning it up as necessary... |
| DSNodeHandle LastCalleeNode; |
| Function *LastCalleeFunc = 0; |
| unsigned NumDuplicateCalls = 0; |
| bool LastCalleeContainsExternalFunction = false; |
| |
| unsigned NumDeleted = 0; |
| for (std::list<DSCallSite>::iterator I = Calls.begin(), E = Calls.end(); |
| I != E;) { |
| DSCallSite &CS = *I; |
| std::list<DSCallSite>::iterator OldIt = I++; |
| |
| if (!CS.isIndirectCall()) { |
| LastCalleeNode = 0; |
| } else { |
| DSNode *Callee = CS.getCalleeNode(); |
| |
| // If the Callee is a useless edge, this must be an unreachable call site, |
| // eliminate it. |
| if (Callee->getNumReferrers() == 1 && Callee->isComplete() && |
| Callee->getGlobalsList().empty()) { // No useful info? |
| #ifndef NDEBUG |
| std::cerr << "WARNING: Useless call site found.\n"; |
| #endif |
| Calls.erase(OldIt); |
| ++NumDeleted; |
| continue; |
| } |
| |
| // If the last call site in the list has the same callee as this one, and |
| // if the callee contains an external function, it will never be |
| // resolvable, just merge the call sites. |
| if (!LastCalleeNode.isNull() && LastCalleeNode.getNode() == Callee) { |
| LastCalleeContainsExternalFunction = |
| nodeContainsExternalFunction(Callee); |
| |
| std::list<DSCallSite>::iterator PrevIt = OldIt; |
| --PrevIt; |
| PrevIt->mergeWith(CS); |
| |
| // No need to keep this call anymore. |
| Calls.erase(OldIt); |
| ++NumDeleted; |
| continue; |
| } else { |
| LastCalleeNode = Callee; |
| } |
| } |
| |
| // If the return value or any arguments point to a void node with no |
| // information at all in it, and the call node is the only node to point |
| // to it, remove the edge to the node (killing the node). |
| // |
| killIfUselessEdge(CS.getRetVal()); |
| for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a) |
| killIfUselessEdge(CS.getPtrArg(a)); |
| |
| #if 0 |
| // If this call site calls the same function as the last call site, and if |
| // the function pointer contains an external function, this node will |
| // never be resolved. Merge the arguments of the call node because no |
| // information will be lost. |
| // |
| if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) || |
| (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) { |
| ++NumDuplicateCalls; |
| if (NumDuplicateCalls == 1) { |
| if (LastCalleeNode) |
| LastCalleeContainsExternalFunction = |
| nodeContainsExternalFunction(LastCalleeNode); |
| else |
| LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal(); |
| } |
| |
| // It is not clear why, but enabling this code makes DSA really |
| // sensitive to node forwarding. Basically, with this enabled, DSA |
| // performs different number of inlinings based on which nodes are |
| // forwarding or not. This is clearly a problem, so this code is |
| // disabled until this can be resolved. |
| #if 1 |
| if (LastCalleeContainsExternalFunction |
| #if 0 |
| || |
| // This should be more than enough context sensitivity! |
| // FIXME: Evaluate how many times this is tripped! |
| NumDuplicateCalls > 20 |
| #endif |
| ) { |
| |
| std::list<DSCallSite>::iterator PrevIt = OldIt; |
| --PrevIt; |
| PrevIt->mergeWith(CS); |
| |
| // No need to keep this call anymore. |
| Calls.erase(OldIt); |
| ++NumDeleted; |
| continue; |
| } |
| #endif |
| } else { |
| if (CS.isDirectCall()) { |
| LastCalleeFunc = CS.getCalleeFunc(); |
| LastCalleeNode = 0; |
| } else { |
| LastCalleeNode = CS.getCalleeNode(); |
| LastCalleeFunc = 0; |
| } |
| NumDuplicateCalls = 0; |
| } |
| #endif |
| |
| if (I != Calls.end() && CS == *I) { |
| LastCalleeNode = 0; |
| Calls.erase(OldIt); |
| ++NumDeleted; |
| continue; |
| } |
| } |
| |
| // Resort now that we simplified things. |
| Calls.sort(); |
| |
| // Now that we are in sorted order, eliminate duplicates. |
| std::list<DSCallSite>::iterator CI = Calls.begin(), CE = Calls.end(); |
| if (CI != CE) |
| while (1) { |
| std::list<DSCallSite>::iterator OldIt = CI++; |
| if (CI == CE) break; |
| |
| // If this call site is now the same as the previous one, we can delete it |
| // as a duplicate. |
| if (*OldIt == *CI) { |
| Calls.erase(CI); |
| CI = OldIt; |
| ++NumDeleted; |
| } |
| } |
| |
| //Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); |
| |
| // Track the number of call nodes merged away... |
| NumCallNodesMerged += NumDeleted; |
| |
| DEBUG(if (NumDeleted) |
| std::cerr << "Merged " << NumDeleted << " call nodes.\n";); |
| } |
| |
| |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method |
| // removes all unreachable nodes that are created because they got merged with |
| // other nodes in the graph. These nodes will all be trivially unreachable, so |
| // we don't have to perform any non-trivial analysis here. |
| // |
| void DSGraph::removeTriviallyDeadNodes() { |
| TIME_REGION(X, "removeTriviallyDeadNodes"); |
| |
| #if 0 |
| /// NOTE: This code is disabled. This slows down DSA on 177.mesa |
| /// substantially! |
| |
| // Loop over all of the nodes in the graph, calling getNode on each field. |
| // This will cause all nodes to update their forwarding edges, causing |
| // forwarded nodes to be delete-able. |
| { TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate"); |
| for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) { |
| DSNode &N = *NI; |
| for (unsigned l = 0, e = N.getNumLinks(); l != e; ++l) |
| N.getLink(l*N.getPointerSize()).getNode(); |
| } |
| } |
| |
| // NOTE: This code is disabled. Though it should, in theory, allow us to |
| // remove more nodes down below, the scan of the scalar map is incredibly |
| // expensive for certain programs (with large SCCs). In the future, if we can |
| // make the scalar map scan more efficient, then we can reenable this. |
| { TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap"); |
| |
| // Likewise, forward any edges from the scalar nodes. While we are at it, |
| // clean house a bit. |
| for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){ |
| I->second.getNode(); |
| ++I; |
| } |
| } |
| #endif |
| bool isGlobalsGraph = !GlobalsGraph; |
| |
| for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) { |
| DSNode &Node = *NI; |
| |
| // Do not remove *any* global nodes in the globals graph. |
| // This is a special case because such nodes may not have I, M, R flags set. |
| if (Node.isGlobalNode() && isGlobalsGraph) { |
| ++NI; |
| continue; |
| } |
| |
| if (Node.isComplete() && !Node.isModified() && !Node.isRead()) { |
| // This is a useless node if it has no mod/ref info (checked above), |
| // outgoing edges (which it cannot, as it is not modified in this |
| // context), and it has no incoming edges. If it is a global node it may |
| // have all of these properties and still have incoming edges, due to the |
| // scalar map, so we check those now. |
| // |
| if (Node.getNumReferrers() == Node.getGlobalsList().size()) { |
| const std::vector<GlobalValue*> &Globals = Node.getGlobalsList(); |
| |
| // Loop through and make sure all of the globals are referring directly |
| // to the node... |
| for (unsigned j = 0, e = Globals.size(); j != e; ++j) { |
| DSNode *N = getNodeForValue(Globals[j]).getNode(); |
| assert(N == &Node && "ScalarMap doesn't match globals list!"); |
| } |
| |
| // Make sure NumReferrers still agrees, if so, the node is truly dead. |
| if (Node.getNumReferrers() == Globals.size()) { |
| for (unsigned j = 0, e = Globals.size(); j != e; ++j) |
| ScalarMap.erase(Globals[j]); |
| Node.makeNodeDead(); |
| ++NumTrivialGlobalDNE; |
| } |
| } |
| } |
| |
| if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) { |
| // This node is dead! |
| NI = Nodes.erase(NI); // Erase & remove from node list. |
| ++NumTrivialDNE; |
| } else { |
| ++NI; |
| } |
| } |
| |
| removeIdenticalCalls(FunctionCalls); |
| removeIdenticalCalls(AuxFunctionCalls); |
| } |
| |
| |
| /// markReachableNodes - This method recursively traverses the specified |
| /// DSNodes, marking any nodes which are reachable. All reachable nodes it adds |
| /// to the set, which allows it to only traverse visited nodes once. |
| /// |
| void DSNode::markReachableNodes(hash_set<const DSNode*> &ReachableNodes) const { |
| if (this == 0) return; |
| assert(getForwardNode() == 0 && "Cannot mark a forwarded node!"); |
| if (ReachableNodes.insert(this).second) // Is newly reachable? |
| for (DSNode::const_edge_iterator I = edge_begin(), E = edge_end(); |
| I != E; ++I) |
| I->getNode()->markReachableNodes(ReachableNodes); |
| } |
| |
| void DSCallSite::markReachableNodes(hash_set<const DSNode*> &Nodes) const { |
| getRetVal().getNode()->markReachableNodes(Nodes); |
| if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes); |
| |
| for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i) |
| getPtrArg(i).getNode()->markReachableNodes(Nodes); |
| } |
| |
| // CanReachAliveNodes - Simple graph walker that recursively traverses the graph |
| // looking for a node that is marked alive. If an alive node is found, return |
| // true, otherwise return false. If an alive node is reachable, this node is |
| // marked as alive... |
| // |
| static bool CanReachAliveNodes(DSNode *N, hash_set<const DSNode*> &Alive, |
| hash_set<const DSNode*> &Visited, |
| bool IgnoreGlobals) { |
| if (N == 0) return false; |
| assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!"); |
| |
| // If this is a global node, it will end up in the globals graph anyway, so we |
| // don't need to worry about it. |
| if (IgnoreGlobals && N->isGlobalNode()) return false; |
| |
| // If we know that this node is alive, return so! |
| if (Alive.count(N)) return true; |
| |
| // Otherwise, we don't think the node is alive yet, check for infinite |
| // recursion. |
| if (Visited.count(N)) return false; // Found a cycle |
| Visited.insert(N); // No recursion, insert into Visited... |
| |
| for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I) |
| if (CanReachAliveNodes(I->getNode(), Alive, Visited, IgnoreGlobals)) { |
| N->markReachableNodes(Alive); |
| return true; |
| } |
| return false; |
| } |
| |
| // CallSiteUsesAliveArgs - Return true if the specified call site can reach any |
| // alive nodes. |
| // |
| static bool CallSiteUsesAliveArgs(const DSCallSite &CS, |
| hash_set<const DSNode*> &Alive, |
| hash_set<const DSNode*> &Visited, |
| bool IgnoreGlobals) { |
| if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited, |
| IgnoreGlobals)) |
| return true; |
| if (CS.isIndirectCall() && |
| CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals)) |
| return true; |
| for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) |
| if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited, |
| IgnoreGlobals)) |
| return true; |
| return false; |
| } |
| |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate |
| // subgraphs that are unreachable. This often occurs because the data |
| // structure doesn't "escape" into it's caller, and thus should be eliminated |
| // from the caller's graph entirely. This is only appropriate to use when |
| // inlining graphs. |
| // |
| void DSGraph::removeDeadNodes(unsigned Flags) { |
| DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK()); |
| |
| // Reduce the amount of work we have to do... remove dummy nodes left over by |
| // merging... |
| removeTriviallyDeadNodes(); |
| |
| TIME_REGION(X, "removeDeadNodes"); |
| |
| // FIXME: Merge non-trivially identical call nodes... |
| |
| // Alive - a set that holds all nodes found to be reachable/alive. |
| hash_set<const DSNode*> Alive; |
| std::vector<std::pair<Value*, DSNode*> > GlobalNodes; |
| |
| // Copy and merge all information about globals to the GlobalsGraph if this is |
| // not a final pass (where unreachable globals are removed). |
| // |
| // Strip all alloca bits since the current function is only for the BU pass. |
| // Strip all incomplete bits since they are short-lived properties and they |
| // will be correctly computed when rematerializing nodes into the functions. |
| // |
| ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit | |
| DSGraph::StripIncompleteBit); |
| |
| // Mark all nodes reachable by (non-global) scalar nodes as alive... |
| { TIME_REGION(Y, "removeDeadNodes:scalarscan"); |
| for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end(); |
| I != E; ++I) |
| if (isa<GlobalValue>(I->first)) { // Keep track of global nodes |
| assert(!I->second.isNull() && "Null global node?"); |
| assert(I->second.getNode()->isGlobalNode() && "Should be a global node!"); |
| GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode())); |
| |
| // Make sure that all globals are cloned over as roots. |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals) && GlobalsGraph) { |
| DSGraph::ScalarMapTy::iterator SMI = |
| GlobalsGraph->getScalarMap().find(I->first); |
| if (SMI != GlobalsGraph->getScalarMap().end()) |
| GGCloner.merge(SMI->second, I->second); |
| else |
| GGCloner.getClonedNH(I->second); |
| } |
| } else { |
| I->second.getNode()->markReachableNodes(Alive); |
| } |
| } |
| |
| // The return values are alive as well. |
| for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end(); |
| I != E; ++I) |
| I->second.getNode()->markReachableNodes(Alive); |
| |
| // Mark any nodes reachable by primary calls as alive... |
| for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I) |
| I->markReachableNodes(Alive); |
| |
| |
| // Now find globals and aux call nodes that are already live or reach a live |
| // value (which makes them live in turn), and continue till no more are found. |
| // |
| bool Iterate; |
| hash_set<const DSNode*> Visited; |
| hash_set<const DSCallSite*> AuxFCallsAlive; |
| do { |
| Visited.clear(); |
| // If any global node points to a non-global that is "alive", the global is |
| // "alive" as well... Remove it from the GlobalNodes list so we only have |
| // unreachable globals in the list. |
| // |
| Iterate = false; |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals)) |
| for (unsigned i = 0; i != GlobalNodes.size(); ++i) |
| if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited, |
| Flags & DSGraph::RemoveUnreachableGlobals)) { |
| std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to... |
| GlobalNodes.pop_back(); // erase efficiently |
| Iterate = true; |
| } |
| |
| // Mark only unresolvable call nodes for moving to the GlobalsGraph since |
| // call nodes that get resolved will be difficult to remove from that graph. |
| // The final unresolved call nodes must be handled specially at the end of |
| // the BU pass (i.e., in main or other roots of the call graph). |
| for (afc_iterator CI = afc_begin(), E = afc_end(); CI != E; ++CI) |
| if (!AuxFCallsAlive.count(&*CI) && |
| (CI->isIndirectCall() |
| || CallSiteUsesAliveArgs(*CI, Alive, Visited, |
| Flags & DSGraph::RemoveUnreachableGlobals))) { |
| CI->markReachableNodes(Alive); |
| AuxFCallsAlive.insert(&*CI); |
| Iterate = true; |
| } |
| } while (Iterate); |
| |
| // Move dead aux function calls to the end of the list |
| unsigned CurIdx = 0; |
| for (std::list<DSCallSite>::iterator CI = AuxFunctionCalls.begin(), |
| E = AuxFunctionCalls.end(); CI != E; ) |
| if (AuxFCallsAlive.count(&*CI)) |
| ++CI; |
| else { |
| // Copy and merge global nodes and dead aux call nodes into the |
| // GlobalsGraph, and all nodes reachable from those nodes. Update their |
| // target pointers using the GGCloner. |
| // |
| if (!(Flags & DSGraph::RemoveUnreachableGlobals)) |
| GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(*CI, GGCloner)); |
| |
| AuxFunctionCalls.erase(CI++); |
| } |
| |
| // We are finally done with the GGCloner so we can destroy it. |
| GGCloner.destroy(); |
| |
| // At this point, any nodes which are visited, but not alive, are nodes |
| // which can be removed. Loop over all nodes, eliminating completely |
| // unreachable nodes. |
| // |
| std::vector<DSNode*> DeadNodes; |
| DeadNodes.reserve(Nodes.size()); |
| for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) { |
| DSNode *N = NI++; |
| assert(!N->isForwarding() && "Forwarded node in nodes list?"); |
| |
| if (!Alive.count(N)) { |
| Nodes.remove(N); |
| assert(!N->isForwarding() && "Cannot remove a forwarding node!"); |
| DeadNodes.push_back(N); |
| N->dropAllReferences(); |
| ++NumDNE; |
| } |
| } |
| |
| // Remove all unreachable globals from the ScalarMap. |
| // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes. |
| // In either case, the dead nodes will not be in the set Alive. |
| for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) |
| if (!Alive.count(GlobalNodes[i].second)) |
| ScalarMap.erase(GlobalNodes[i].first); |
| else |
| assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global"); |
| |
| // Delete all dead nodes now since their referrer counts are zero. |
| for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i) |
| delete DeadNodes[i]; |
| |
| DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK()); |
| } |
| |
| void DSGraph::AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const { |
| assert(std::find(N->globals_begin(),N->globals_end(), GV) != |
| N->globals_end() && "Global value not in node!"); |
| } |
| |
| void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const { |
| if (CS.isIndirectCall()) { |
| AssertNodeInGraph(CS.getCalleeNode()); |
| #if 0 |
| if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() && |
| CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty()) |
| std::cerr << "WARNING: WEIRD CALL SITE FOUND!\n"; |
| #endif |
| } |
| AssertNodeInGraph(CS.getRetVal().getNode()); |
| for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j) |
| AssertNodeInGraph(CS.getPtrArg(j).getNode()); |
| } |
| |
| void DSGraph::AssertCallNodesInGraph() const { |
| for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I) |
| AssertCallSiteInGraph(*I); |
| } |
| void DSGraph::AssertAuxCallNodesInGraph() const { |
| for (afc_iterator I = afc_begin(), E = afc_end(); I != E; ++I) |
| AssertCallSiteInGraph(*I); |
| } |
| |
| void DSGraph::AssertGraphOK() const { |
| for (node_const_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) |
| NI->assertOK(); |
| |
| for (ScalarMapTy::const_iterator I = ScalarMap.begin(), |
| E = ScalarMap.end(); I != E; ++I) { |
| assert(!I->second.isNull() && "Null node in scalarmap!"); |
| AssertNodeInGraph(I->second.getNode()); |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) { |
| assert(I->second.getNode()->isGlobalNode() && |
| "Global points to node, but node isn't global?"); |
| AssertNodeContainsGlobal(I->second.getNode(), GV); |
| } |
| } |
| AssertCallNodesInGraph(); |
| AssertAuxCallNodesInGraph(); |
| |
| // Check that all pointer arguments to any functions in this graph have |
| // destinations. |
| for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(), |
| E = ReturnNodes.end(); |
| RI != E; ++RI) { |
| Function &F = *RI->first; |
| for (Function::arg_iterator AI = F.arg_begin(); AI != F.arg_end(); ++AI) |
| if (isPointerType(AI->getType())) |
| assert(!getNodeForValue(AI).isNull() && |
| "Pointer argument must be in the scalar map!"); |
| } |
| } |
| |
| /// computeNodeMapping - Given roots in two different DSGraphs, traverse the |
| /// nodes reachable from the two graphs, computing the mapping of nodes from the |
| /// first to the second graph. This mapping may be many-to-one (i.e. the first |
| /// graph may have multiple nodes representing one node in the second graph), |
| /// but it will not work if there is a one-to-many or many-to-many mapping. |
| /// |
| void DSGraph::computeNodeMapping(const DSNodeHandle &NH1, |
| const DSNodeHandle &NH2, NodeMapTy &NodeMap, |
| bool StrictChecking) { |
| DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode(); |
| if (N1 == 0 || N2 == 0) return; |
| |
| DSNodeHandle &Entry = NodeMap[N1]; |
| if (!Entry.isNull()) { |
| // Termination of recursion! |
| if (StrictChecking) { |
| assert(Entry.getNode() == N2 && "Inconsistent mapping detected!"); |
| assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) || |
| Entry.getNode()->isNodeCompletelyFolded()) && |
| "Inconsistent mapping detected!"); |
| } |
| return; |
| } |
| |
| Entry.setTo(N2, NH2.getOffset()-NH1.getOffset()); |
| |
| // Loop over all of the fields that N1 and N2 have in common, recursively |
| // mapping the edges together now. |
| int N2Idx = NH2.getOffset()-NH1.getOffset(); |
| unsigned N2Size = N2->getSize(); |
| if (N2Size == 0) return; // No edges to map to. |
| |
| for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) { |
| const DSNodeHandle &N1NH = N1->getLink(i); |
| // Don't call N2->getLink if not needed (avoiding crash if N2Idx is not |
| // aligned right). |
| if (!N1NH.isNull()) { |
| if (unsigned(N2Idx)+i < N2Size) |
| computeNodeMapping(N1NH, N2->getLink(N2Idx+i), NodeMap); |
| else |
| computeNodeMapping(N1NH, |
| N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap); |
| } |
| } |
| } |
| |
| |
| /// computeGToGGMapping - Compute the mapping of nodes in the global graph to |
| /// nodes in this graph. |
| void DSGraph::computeGToGGMapping(NodeMapTy &NodeMap) { |
| DSGraph &GG = *getGlobalsGraph(); |
| |
| DSScalarMap &SM = getScalarMap(); |
| for (DSScalarMap::global_iterator I = SM.global_begin(), |
| E = SM.global_end(); I != E; ++I) |
| DSGraph::computeNodeMapping(SM[*I], GG.getNodeForValue(*I), NodeMap); |
| } |
| |
| /// computeGGToGMapping - Compute the mapping of nodes in the global graph to |
| /// nodes in this graph. Note that any uses of this method are probably bugs, |
| /// unless it is known that the globals graph has been merged into this graph! |
| void DSGraph::computeGGToGMapping(InvNodeMapTy &InvNodeMap) { |
| NodeMapTy NodeMap; |
| computeGToGGMapping(NodeMap); |
| |
| while (!NodeMap.empty()) { |
| InvNodeMap.insert(std::make_pair(NodeMap.begin()->second, |
| NodeMap.begin()->first)); |
| NodeMap.erase(NodeMap.begin()); |
| } |
| } |
| |
| |
| /// computeCalleeCallerMapping - Given a call from a function in the current |
| /// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the |
| /// mapping of nodes from the callee to nodes in the caller. |
| void DSGraph::computeCalleeCallerMapping(DSCallSite CS, const Function &Callee, |
| DSGraph &CalleeGraph, |
| NodeMapTy &NodeMap) { |
| |
| DSCallSite CalleeArgs = |
| CalleeGraph.getCallSiteForArguments(const_cast<Function&>(Callee)); |
| |
| computeNodeMapping(CalleeArgs.getRetVal(), CS.getRetVal(), NodeMap); |
| |
| unsigned NumArgs = CS.getNumPtrArgs(); |
| if (NumArgs > CalleeArgs.getNumPtrArgs()) |
| NumArgs = CalleeArgs.getNumPtrArgs(); |
| |
| for (unsigned i = 0; i != NumArgs; ++i) |
| computeNodeMapping(CalleeArgs.getPtrArg(i), CS.getPtrArg(i), NodeMap); |
| |
| // Map the nodes that are pointed to by globals. |
| DSScalarMap &CalleeSM = CalleeGraph.getScalarMap(); |
| DSScalarMap &CallerSM = getScalarMap(); |
| |
| if (CalleeSM.global_size() >= CallerSM.global_size()) { |
| for (DSScalarMap::global_iterator GI = CallerSM.global_begin(), |
| E = CallerSM.global_end(); GI != E; ++GI) |
| if (CalleeSM.global_count(*GI)) |
| computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap); |
| } else { |
| for (DSScalarMap::global_iterator GI = CalleeSM.global_begin(), |
| E = CalleeSM.global_end(); GI != E; ++GI) |
| if (CallerSM.global_count(*GI)) |
| computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap); |
| } |
| } |