| //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Duraid Madina and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the RABigBlock class |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // This register allocator is derived from RegAllocLocal.cpp. Like it, this |
| // allocator works on one basic block at a time, oblivious to others. |
| // However, the algorithm used here is suited for long blocks of |
| // instructions - registers are spilled by greedily choosing those holding |
| // values that will not be needed for the longest amount of time. This works |
| // particularly well for blocks with 10 or more times as many instructions |
| // as machine registers, but can be used for general code. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // TODO: - automagically invoke linearscan for (groups of) small BBs? |
| // - break ties when picking regs? (probably not worth it in a |
| // JIT context) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumStores, "Number of stores added"); |
| STATISTIC(NumLoads , "Number of loads added"); |
| STATISTIC(NumFolded, "Number of loads/stores folded into instructions"); |
| |
| namespace { |
| static RegisterRegAlloc |
| bigBlockRegAlloc("bigblock", " Big-block register allocator", |
| createBigBlockRegisterAllocator); |
| |
| /// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap |
| /// keys. |
| struct VRegKeyInfo { |
| static inline unsigned getEmptyKey() { return -1U; } |
| static inline unsigned getTombstoneKey() { return -2U; } |
| static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; } |
| static unsigned getHashValue(const unsigned &Key) { return Key; } |
| }; |
| |
| |
| /// This register allocator is derived from RegAllocLocal.cpp. Like it, this |
| /// allocator works on one basic block at a time, oblivious to others. |
| /// However, the algorithm used here is suited for long blocks of |
| /// instructions - registers are spilled by greedily choosing those holding |
| /// values that will not be needed for the longest amount of time. This works |
| /// particularly well for blocks with 10 or more times as many instructions |
| /// as machine registers, but can be used for general code. |
| /// |
| /// TODO: - automagically invoke linearscan for (groups of) small BBs? |
| /// - break ties when picking regs? (probably not worth it in a |
| /// JIT context) |
| /// |
| class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass { |
| public: |
| static char ID; |
| RABigBlock() : MachineFunctionPass((intptr_t)&ID) {} |
| private: |
| /// TM - For getting at TargetMachine info |
| /// |
| const TargetMachine *TM; |
| |
| /// MF - Our generic MachineFunction pointer |
| /// |
| MachineFunction *MF; |
| |
| /// RegInfo - For dealing with machine register info (aliases, folds |
| /// etc) |
| const MRegisterInfo *RegInfo; |
| |
| /// LV - Our generic LiveVariables pointer |
| /// |
| LiveVariables *LV; |
| |
| typedef SmallVector<unsigned, 2> VRegTimes; |
| |
| /// VRegReadTable - maps VRegs in a BB to the set of times they are read |
| /// |
| DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable; |
| |
| /// VRegReadIdx - keeps track of the "current time" in terms of |
| /// positions in VRegReadTable |
| DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx; |
| |
| /// StackSlotForVirtReg - Maps virtual regs to the frame index where these |
| /// values are spilled. |
| IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg; |
| |
| /// Virt2PhysRegMap - This map contains entries for each virtual register |
| /// that is currently available in a physical register. |
| IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; |
| |
| /// PhysRegsUsed - This array is effectively a map, containing entries for |
| /// each physical register that currently has a value (ie, it is in |
| /// Virt2PhysRegMap). The value mapped to is the virtual register |
| /// corresponding to the physical register (the inverse of the |
| /// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned |
| /// because it is used by a future instruction, and to -2 if it is not |
| /// allocatable. If the entry for a physical register is -1, then the |
| /// physical register is "not in the map". |
| /// |
| std::vector<int> PhysRegsUsed; |
| |
| /// VirtRegModified - This bitset contains information about which virtual |
| /// registers need to be spilled back to memory when their registers are |
| /// scavenged. If a virtual register has simply been rematerialized, there |
| /// is no reason to spill it to memory when we need the register back. |
| /// |
| std::vector<int> VirtRegModified; |
| |
| /// MBBLastInsnTime - the number of the the last instruction in MBB |
| /// |
| int MBBLastInsnTime; |
| |
| /// MBBCurTime - the number of the the instruction being currently processed |
| /// |
| int MBBCurTime; |
| |
| unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { |
| return Virt2PhysRegMap[VirtReg]; |
| } |
| |
| unsigned &getVirt2StackSlot(unsigned VirtReg) { |
| return StackSlotForVirtReg[VirtReg]; |
| } |
| |
| /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset |
| /// |
| void markVirtRegModified(unsigned Reg, bool Val = true) { |
| assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); |
| Reg -= MRegisterInfo::FirstVirtualRegister; |
| if (VirtRegModified.size() <= Reg) |
| VirtRegModified.resize(Reg+1); |
| VirtRegModified[Reg] = Val; |
| } |
| |
| /// isVirtRegModified - Lets us query the VirtRegModified bitset |
| /// |
| bool isVirtRegModified(unsigned Reg) const { |
| assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); |
| assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size() |
| && "Illegal virtual register!"); |
| return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister]; |
| } |
| |
| public: |
| /// getPassName - returns the BigBlock allocator's name |
| /// |
| virtual const char *getPassName() const { |
| return "BigBlock Register Allocator"; |
| } |
| |
| /// getAnalaysisUsage - declares the required analyses |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LiveVariables>(); |
| AU.addRequiredID(PHIEliminationID); |
| AU.addRequiredID(TwoAddressInstructionPassID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool runOnMachineFunction(MachineFunction &Fn); |
| |
| /// AllocateBasicBlock - Register allocate the specified basic block. |
| /// |
| void AllocateBasicBlock(MachineBasicBlock &MBB); |
| |
| /// FillVRegReadTable - Fill out the table of vreg read times given a BB |
| /// |
| void FillVRegReadTable(MachineBasicBlock &MBB); |
| |
| /// areRegsEqual - This method returns true if the specified registers are |
| /// related to each other. To do this, it checks to see if they are equal |
| /// or if the first register is in the alias set of the second register. |
| /// |
| bool areRegsEqual(unsigned R1, unsigned R2) const { |
| if (R1 == R2) return true; |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(R2); |
| *AliasSet; ++AliasSet) { |
| if (*AliasSet == R1) return true; |
| } |
| return false; |
| } |
| |
| /// getStackSpaceFor - This returns the frame index of the specified virtual |
| /// register on the stack, allocating space if necessary. |
| int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); |
| |
| /// removePhysReg - This method marks the specified physical register as no |
| /// longer being in use. |
| /// |
| void removePhysReg(unsigned PhysReg); |
| |
| /// spillVirtReg - This method spills the value specified by PhysReg into |
| /// the virtual register slot specified by VirtReg. It then updates the RA |
| /// data structures to indicate the fact that PhysReg is now available. |
| /// |
| void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| unsigned VirtReg, unsigned PhysReg); |
| |
| /// spillPhysReg - This method spills the specified physical register into |
| /// the virtual register slot associated with it. If OnlyVirtRegs is set to |
| /// true, then the request is ignored if the physical register does not |
| /// contain a virtual register. |
| /// |
| void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, |
| unsigned PhysReg, bool OnlyVirtRegs = false); |
| |
| /// assignVirtToPhysReg - This method updates local state so that we know |
| /// that PhysReg is the proper container for VirtReg now. The physical |
| /// register must not be used for anything else when this is called. |
| /// |
| void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); |
| |
| /// isPhysRegAvailable - Return true if the specified physical register is |
| /// free and available for use. This also includes checking to see if |
| /// aliased registers are all free... |
| /// |
| bool isPhysRegAvailable(unsigned PhysReg) const; |
| |
| /// getFreeReg - Look to see if there is a free register available in the |
| /// specified register class. If not, return 0. |
| /// |
| unsigned getFreeReg(const TargetRegisterClass *RC); |
| |
| /// chooseReg - Pick a physical register to hold the specified |
| /// virtual register by choosing the one which will be read furthest |
| /// in the future. |
| /// |
| unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| unsigned VirtReg); |
| |
| /// reloadVirtReg - This method transforms the specified specified virtual |
| /// register use to refer to a physical register. This method may do this |
| /// in one of several ways: if the register is available in a physical |
| /// register already, it uses that physical register. If the value is not |
| /// in a physical register, and if there are physical registers available, |
| /// it loads it into a register. If register pressure is high, and it is |
| /// possible, it tries to fold the load of the virtual register into the |
| /// instruction itself. It avoids doing this if register pressure is low to |
| /// improve the chance that subsequent instructions can use the reloaded |
| /// value. This method returns the modified instruction. |
| /// |
| MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| unsigned OpNum); |
| |
| }; |
| char RABigBlock::ID = 0; |
| } |
| |
| /// getStackSpaceFor - This allocates space for the specified virtual register |
| /// to be held on the stack. |
| int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { |
| // Find the location Reg would belong... |
| int FrameIdx = getVirt2StackSlot(VirtReg); |
| |
| if (FrameIdx) |
| return FrameIdx - 1; // Already has space allocated? |
| |
| // Allocate a new stack object for this spill location... |
| FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), |
| RC->getAlignment()); |
| |
| // Assign the slot... |
| getVirt2StackSlot(VirtReg) = FrameIdx + 1; |
| return FrameIdx; |
| } |
| |
| |
| /// removePhysReg - This method marks the specified physical register as no |
| /// longer being in use. |
| /// |
| void RABigBlock::removePhysReg(unsigned PhysReg) { |
| PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used |
| } |
| |
| |
| /// spillVirtReg - This method spills the value specified by PhysReg into the |
| /// virtual register slot specified by VirtReg. It then updates the RA data |
| /// structures to indicate the fact that PhysReg is now available. |
| /// |
| void RABigBlock::spillVirtReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned VirtReg, unsigned PhysReg) { |
| assert(VirtReg && "Spilling a physical register is illegal!" |
| " Must not have appropriate kill for the register or use exists beyond" |
| " the intended one."); |
| DOUT << " Spilling register " << RegInfo->getName(PhysReg) |
| << " containing %reg" << VirtReg; |
| if (!isVirtRegModified(VirtReg)) |
| DOUT << " which has not been modified, so no store necessary!"; |
| |
| // Otherwise, there is a virtual register corresponding to this physical |
| // register. We only need to spill it into its stack slot if it has been |
| // modified. |
| if (isVirtRegModified(VirtReg)) { |
| const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); |
| int FrameIndex = getStackSpaceFor(VirtReg, RC); |
| DOUT << " to stack slot #" << FrameIndex; |
| RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC); |
| ++NumStores; // Update statistics |
| } |
| |
| getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available |
| |
| DOUT << "\n"; |
| removePhysReg(PhysReg); |
| } |
| |
| |
| /// spillPhysReg - This method spills the specified physical register into the |
| /// virtual register slot associated with it. If OnlyVirtRegs is set to true, |
| /// then the request is ignored if the physical register does not contain a |
| /// virtual register. |
| /// |
| void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, |
| unsigned PhysReg, bool OnlyVirtRegs) { |
| if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used! |
| assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); |
| if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) |
| spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); |
| } else { |
| // If the selected register aliases any other registers, we must make |
| // sure that one of the aliases isn't alive. |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); |
| *AliasSet; ++AliasSet) |
| if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register. |
| PhysRegsUsed[*AliasSet] != -2) // If allocatable. |
| if (PhysRegsUsed[*AliasSet]) |
| spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); |
| } |
| } |
| |
| |
| /// assignVirtToPhysReg - This method updates local state so that we know |
| /// that PhysReg is the proper container for VirtReg now. The physical |
| /// register must not be used for anything else when this is called. |
| /// |
| void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { |
| assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); |
| // Update information to note the fact that this register was just used, and |
| // it holds VirtReg. |
| PhysRegsUsed[PhysReg] = VirtReg; |
| getVirt2PhysRegMapSlot(VirtReg) = PhysReg; |
| } |
| |
| |
| /// isPhysRegAvailable - Return true if the specified physical register is free |
| /// and available for use. This also includes checking to see if aliased |
| /// registers are all free... |
| /// |
| bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const { |
| if (PhysRegsUsed[PhysReg] != -1) return false; |
| |
| // If the selected register aliases any other allocated registers, it is |
| // not free! |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); |
| *AliasSet; ++AliasSet) |
| if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use? |
| return false; // Can't use this reg then. |
| return true; |
| } |
| |
| |
| /// getFreeReg - Look to see if there is a free register available in the |
| /// specified register class. If not, return 0. |
| /// |
| unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) { |
| // Get iterators defining the range of registers that are valid to allocate in |
| // this class, which also specifies the preferred allocation order. |
| TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); |
| TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); |
| |
| for (; RI != RE; ++RI) |
| if (isPhysRegAvailable(*RI)) { // Is reg unused? |
| assert(*RI != 0 && "Cannot use register!"); |
| return *RI; // Found an unused register! |
| } |
| return 0; |
| } |
| |
| |
| /// chooseReg - Pick a physical register to hold the specified |
| /// virtual register by choosing the one whose value will be read |
| /// furthest in the future. |
| /// |
| unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I, |
| unsigned VirtReg) { |
| const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); |
| // First check to see if we have a free register of the requested type... |
| unsigned PhysReg = getFreeReg(RC); |
| |
| // If we didn't find an unused register, find the one which will be |
| // read at the most distant point in time. |
| if (PhysReg == 0) { |
| unsigned delay=0, longest_delay=0; |
| VRegTimes* ReadTimes; |
| |
| unsigned curTime = MBBCurTime; |
| |
| // for all physical regs in the RC, |
| for(TargetRegisterClass::iterator pReg = RC->begin(); |
| pReg != RC->end(); ++pReg) { |
| // how long until they're read? |
| if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs |
| ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]]; |
| if(ReadTimes && !ReadTimes->empty()) { |
| unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]]; |
| while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) { |
| ++pt; |
| } |
| |
| if(pt < ReadTimes->size()) |
| delay = (*ReadTimes)[pt] - curTime; |
| else |
| delay = MBBLastInsnTime + 1 - curTime; |
| } else { |
| // This register is only defined, but never |
| // read in this MBB. Therefore the next read |
| // happens after the end of this MBB |
| delay = MBBLastInsnTime + 1 - curTime; |
| } |
| |
| |
| if(delay > longest_delay) { |
| longest_delay = delay; |
| PhysReg = *pReg; |
| } |
| } |
| } |
| |
| if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose |
| // a register to spill by looking through the |
| // read timetable, so now we just spill the |
| // first allocatable register we find. |
| |
| // for all physical regs in the RC, |
| for(TargetRegisterClass::iterator pReg = RC->begin(); |
| pReg != RC->end(); ++pReg) { |
| // if we find a register we can spill |
| if(PhysRegsUsed[*pReg]>=-1) |
| PhysReg = *pReg; // choose it to be spilled |
| } |
| } |
| |
| assert(PhysReg && "couldn't choose a register to spill :( "); |
| // TODO: assert that RC->contains(PhysReg) / handle aliased registers? |
| |
| // since we needed to look in the table we need to spill this register. |
| spillPhysReg(MBB, I, PhysReg); |
| } |
| |
| // assign the vreg to our chosen physical register |
| assignVirtToPhysReg(VirtReg, PhysReg); |
| return PhysReg; // and return it |
| } |
| |
| |
| /// reloadVirtReg - This method transforms an instruction with a virtual |
| /// register use to one that references a physical register. It does this as |
| /// follows: |
| /// |
| /// 1) If the register is already in a physical register, it uses it. |
| /// 2) Otherwise, if there is a free physical register, it uses that. |
| /// 3) Otherwise, it calls chooseReg() to get the physical register |
| /// holding the most distantly needed value, generating a spill in |
| /// the process. |
| /// |
| /// This method returns the modified instruction. |
| MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, |
| unsigned OpNum) { |
| unsigned VirtReg = MI->getOperand(OpNum).getReg(); |
| |
| // If the virtual register is already available in a physical register, |
| // just update the instruction and return. |
| if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { |
| MI->getOperand(OpNum).setReg(PR); |
| return MI; |
| } |
| |
| // Otherwise, if we have free physical registers available to hold the |
| // value, use them. |
| const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); |
| unsigned PhysReg = getFreeReg(RC); |
| int FrameIndex = getStackSpaceFor(VirtReg, RC); |
| |
| if (PhysReg) { // we have a free register, so use it. |
| assignVirtToPhysReg(VirtReg, PhysReg); |
| } else { // no free registers available. |
| // try to fold the spill into the instruction |
| if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)) { |
| ++NumFolded; |
| // Since we changed the address of MI, make sure to update live variables |
| // to know that the new instruction has the properties of the old one. |
| LV->instructionChanged(MI, FMI); |
| return MBB.insert(MBB.erase(MI), FMI); |
| } |
| |
| // determine which of the physical registers we'll kill off, since we |
| // couldn't fold. |
| PhysReg = chooseReg(MBB, MI, VirtReg); |
| } |
| |
| // this virtual register is now unmodified (since we just reloaded it) |
| markVirtRegModified(VirtReg, false); |
| |
| DOUT << " Reloading %reg" << VirtReg << " into " |
| << RegInfo->getName(PhysReg) << "\n"; |
| |
| // Add move instruction(s) |
| RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); |
| ++NumLoads; // Update statistics |
| |
| MF->setPhysRegUsed(PhysReg); |
| MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register |
| return MI; |
| } |
| |
| /// Fill out the vreg read timetable. Since ReadTime increases |
| /// monotonically, the individual readtime sets will be sorted |
| /// in ascending order. |
| void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) { |
| // loop over each instruction |
| MachineBasicBlock::iterator MII; |
| unsigned ReadTime; |
| |
| for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) { |
| MachineInstr *MI = MII; |
| |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| // look for vreg reads.. |
| if (MO.isRegister() && !MO.isDef() && MO.getReg() && |
| MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| // ..and add them to the read table. |
| VRegTimes* &Times = VRegReadTable[MO.getReg()]; |
| if(!VRegReadTable[MO.getReg()]) { |
| Times = new VRegTimes; |
| VRegReadIdx[MO.getReg()] = 0; |
| } |
| Times->push_back(ReadTime); |
| } |
| } |
| |
| } |
| |
| MBBLastInsnTime = ReadTime; |
| |
| for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin(); |
| Reads != VRegReadTable.end(); ++Reads) { |
| if(Reads->second) { |
| DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n"; |
| } |
| } |
| } |
| |
| /// isReadModWriteImplicitKill - True if this is an implicit kill for a |
| /// read/mod/write register, i.e. update partial register. |
| static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && |
| MO.isDef() && !MO.isDead()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// isReadModWriteImplicitDef - True if this is an implicit def for a |
| /// read/mod/write register, i.e. update partial register. |
| static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() && |
| !MO.isDef() && MO.isKill()) |
| return true; |
| } |
| return false; |
| } |
| |
| |
| void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) { |
| // loop over each instruction |
| MachineBasicBlock::iterator MII = MBB.begin(); |
| const TargetInstrInfo &TII = *TM->getInstrInfo(); |
| |
| DEBUG(const BasicBlock *LBB = MBB.getBasicBlock(); |
| if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName()); |
| |
| // If this is the first basic block in the machine function, add live-in |
| // registers as active. |
| if (&MBB == &*MF->begin()) { |
| for (MachineFunction::livein_iterator I = MF->livein_begin(), |
| E = MF->livein_end(); I != E; ++I) { |
| unsigned Reg = I->first; |
| MF->setPhysRegUsed(Reg); |
| PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); |
| *AliasSet; ++AliasSet) { |
| if (PhysRegsUsed[*AliasSet] != -2) { |
| PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now |
| MF->setPhysRegUsed(*AliasSet); |
| } |
| } |
| } |
| } |
| |
| // Otherwise, sequentially allocate each instruction in the MBB. |
| MBBCurTime = -1; |
| while (MII != MBB.end()) { |
| MachineInstr *MI = MII++; |
| MBBCurTime++; |
| const TargetInstrDescriptor &TID = TII.get(MI->getOpcode()); |
| DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI; |
| DOUT << " Regs have values: "; |
| for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i) |
| if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) |
| DOUT << "[" << RegInfo->getName(i) |
| << ",%reg" << PhysRegsUsed[i] << "] "; |
| DOUT << "\n"); |
| |
| SmallVector<unsigned, 8> Kills; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isKill()) { |
| if (!MO.isImplicit()) |
| Kills.push_back(MO.getReg()); |
| else if (!isReadModWriteImplicitKill(MI, MO.getReg())) |
| // These are extra physical register kills when a sub-register |
| // is defined (def of a sub-register is a read/mod/write of the |
| // larger registers). Ignore. |
| Kills.push_back(MO.getReg()); |
| } |
| } |
| |
| // Get the used operands into registers. This has the potential to spill |
| // incoming values if we are out of registers. Note that we completely |
| // ignore physical register uses here. We assume that if an explicit |
| // physical register is referenced by the instruction, that it is guaranteed |
| // to be live-in, or the input is badly hosed. |
| // |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| // here we are looking for only used operands (never def&use) |
| if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && |
| MRegisterInfo::isVirtualRegister(MO.getReg())) |
| MI = reloadVirtReg(MBB, MI, i); |
| } |
| |
| // If this instruction is the last user of this register, kill the |
| // value, freeing the register being used, so it doesn't need to be |
| // spilled to memory. |
| // |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) { |
| unsigned VirtReg = Kills[i]; |
| unsigned PhysReg = VirtReg; |
| if (MRegisterInfo::isVirtualRegister(VirtReg)) { |
| // If the virtual register was never materialized into a register, it |
| // might not be in the map, but it won't hurt to zero it out anyway. |
| unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); |
| PhysReg = PhysRegSlot; |
| PhysRegSlot = 0; |
| } else if (PhysRegsUsed[PhysReg] == -2) { |
| // Unallocatable register dead, ignore. |
| continue; |
| } else { |
| assert(!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1 && |
| "Silently clearing a virtual register?"); |
| } |
| |
| if (PhysReg) { |
| DOUT << " Last use of " << RegInfo->getName(PhysReg) |
| << "[%reg" << VirtReg <<"], removing it from live set\n"; |
| removePhysReg(PhysReg); |
| for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg); |
| *AliasSet; ++AliasSet) { |
| if (PhysRegsUsed[*AliasSet] != -2) { |
| DOUT << " Last use of " |
| << RegInfo->getName(*AliasSet) |
| << "[%reg" << VirtReg <<"], removing it from live set\n"; |
| removePhysReg(*AliasSet); |
| } |
| } |
| } |
| } |
| |
| // Loop over all of the operands of the instruction, spilling registers that |
| // are defined, and marking explicit destinations in the PhysRegsUsed map. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() && |
| MRegisterInfo::isPhysicalRegister(MO.getReg())) { |
| unsigned Reg = MO.getReg(); |
| if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. |
| // These are extra physical register defs when a sub-register |
| // is defined (def of a sub-register is a read/mod/write of the |
| // larger registers). Ignore. |
| if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; |
| |
| MF->setPhysRegUsed(Reg); |
| spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg |
| PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); |
| *AliasSet; ++AliasSet) { |
| if (PhysRegsUsed[*AliasSet] != -2) { |
| PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now |
| MF->setPhysRegUsed(*AliasSet); |
| } |
| } |
| } |
| } |
| |
| // Loop over the implicit defs, spilling them as well. |
| if (TID.ImplicitDefs) { |
| for (const unsigned *ImplicitDefs = TID.ImplicitDefs; |
| *ImplicitDefs; ++ImplicitDefs) { |
| unsigned Reg = *ImplicitDefs; |
| if (PhysRegsUsed[Reg] != -2) { |
| spillPhysReg(MBB, MI, Reg, true); |
| PhysRegsUsed[Reg] = 0; // It is free and reserved now |
| } |
| MF->setPhysRegUsed(Reg); |
| for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg); |
| *AliasSet; ++AliasSet) { |
| if (PhysRegsUsed[*AliasSet] != -2) { |
| PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now |
| MF->setPhysRegUsed(*AliasSet); |
| } |
| } |
| } |
| } |
| |
| SmallVector<unsigned, 8> DeadDefs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDead()) |
| DeadDefs.push_back(MO.getReg()); |
| } |
| |
| // Okay, we have allocated all of the source operands and spilled any values |
| // that would be destroyed by defs of this instruction. Loop over the |
| // explicit defs and assign them to a register, spilling incoming values if |
| // we need to scavenge a register. |
| // |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand& MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDef() && MO.getReg() && |
| MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| unsigned DestVirtReg = MO.getReg(); |
| unsigned DestPhysReg; |
| |
| // If DestVirtReg already has a value, use it. |
| if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) |
| DestPhysReg = chooseReg(MBB, MI, DestVirtReg); |
| MF->setPhysRegUsed(DestPhysReg); |
| markVirtRegModified(DestVirtReg); |
| MI->getOperand(i).setReg(DestPhysReg); // Assign the output register |
| } |
| } |
| |
| // If this instruction defines any registers that are immediately dead, |
| // kill them now. |
| // |
| for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { |
| unsigned VirtReg = DeadDefs[i]; |
| unsigned PhysReg = VirtReg; |
| if (MRegisterInfo::isVirtualRegister(VirtReg)) { |
| unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); |
| PhysReg = PhysRegSlot; |
| assert(PhysReg != 0); |
| PhysRegSlot = 0; |
| } else if (PhysRegsUsed[PhysReg] == -2) { |
| // Unallocatable register dead, ignore. |
| continue; |
| } |
| |
| if (PhysReg) { |
| DOUT << " Register " << RegInfo->getName(PhysReg) |
| << " [%reg" << VirtReg |
| << "] is never used, removing it frame live list\n"; |
| removePhysReg(PhysReg); |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg); |
| *AliasSet; ++AliasSet) { |
| if (PhysRegsUsed[*AliasSet] != -2) { |
| DOUT << " Register " << RegInfo->getName(*AliasSet) |
| << " [%reg" << *AliasSet |
| << "] is never used, removing it frame live list\n"; |
| removePhysReg(*AliasSet); |
| } |
| } |
| } |
| } |
| |
| // Finally, if this is a noop copy instruction, zap it. |
| unsigned SrcReg, DstReg; |
| if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) { |
| LV->removeVirtualRegistersKilled(MI); |
| LV->removeVirtualRegistersDead(MI); |
| MBB.erase(MI); |
| } |
| } |
| |
| MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); |
| |
| // Spill all physical registers holding virtual registers now. |
| for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) |
| if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) |
| if (unsigned VirtReg = PhysRegsUsed[i]) |
| spillVirtReg(MBB, MI, VirtReg, i); |
| else |
| removePhysReg(i); |
| } |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) { |
| DOUT << "Machine Function " << "\n"; |
| MF = &Fn; |
| TM = &Fn.getTarget(); |
| RegInfo = TM->getRegisterInfo(); |
| LV = &getAnalysis<LiveVariables>(); |
| |
| PhysRegsUsed.assign(RegInfo->getNumRegs(), -1); |
| |
| // At various places we want to efficiently check to see whether a register |
| // is allocatable. To handle this, we mark all unallocatable registers as |
| // being pinned down, permanently. |
| { |
| BitVector Allocable = RegInfo->getAllocatableSet(Fn); |
| for (unsigned i = 0, e = Allocable.size(); i != e; ++i) |
| if (!Allocable[i]) |
| PhysRegsUsed[i] = -2; // Mark the reg unallocable. |
| } |
| |
| // initialize the virtual->physical register map to have a 'null' |
| // mapping for all virtual registers |
| Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg()); |
| StackSlotForVirtReg.grow(MF->getSSARegMap()->getLastVirtReg()); |
| VirtRegModified.resize(MF->getSSARegMap()->getLastVirtReg() - MRegisterInfo::FirstVirtualRegister + 1,0); |
| |
| // Loop over all of the basic blocks, eliminating virtual register references |
| for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
| MBB != MBBe; ++MBB) { |
| // fill out the read timetable |
| FillVRegReadTable(*MBB); |
| // use it to allocate the BB |
| AllocateBasicBlock(*MBB); |
| // clear it |
| VRegReadTable.clear(); |
| } |
| |
| StackSlotForVirtReg.clear(); |
| PhysRegsUsed.clear(); |
| VirtRegModified.clear(); |
| Virt2PhysRegMap.clear(); |
| return true; |
| } |
| |
| FunctionPass *llvm::createBigBlockRegisterAllocator() { |
| return new RABigBlock(); |
| } |
| |