| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 | <html> | 
 | <head> | 
 |   <title>LLVM Assembly Language Reference Manual</title> | 
 |   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
 |   <meta name="author" content="Chris Lattner"> | 
 |   <meta name="description"  | 
 |   content="LLVM Assembly Language Reference Manual."> | 
 |   <link rel="stylesheet" href="llvm.css" type="text/css"> | 
 | </head> | 
 |  | 
 | <body> | 
 |  | 
 | <div class="doc_title"> LLVM Language Reference Manual </div> | 
 | <ol> | 
 |   <li><a href="#abstract">Abstract</a></li> | 
 |   <li><a href="#introduction">Introduction</a></li> | 
 |   <li><a href="#identifiers">Identifiers</a></li> | 
 |   <li><a href="#highlevel">High Level Structure</a> | 
 |     <ol> | 
 |       <li><a href="#modulestructure">Module Structure</a></li> | 
 |       <li><a href="#linkage">Linkage Types</a></li> | 
 |       <li><a href="#callingconv">Calling Conventions</a></li> | 
 |       <li><a href="#globalvars">Global Variables</a></li> | 
 |       <li><a href="#functionstructure">Function Structure</a></li> | 
 |     </ol> | 
 |   </li> | 
 |   <li><a href="#typesystem">Type System</a> | 
 |     <ol> | 
 |       <li><a href="#t_primitive">Primitive Types</a> 	 | 
 |         <ol> | 
 |           <li><a href="#t_classifications">Type Classifications</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#t_derived">Derived Types</a> | 
 |         <ol> | 
 |           <li><a href="#t_array">Array Type</a></li> | 
 |           <li><a href="#t_function">Function Type</a></li> | 
 |           <li><a href="#t_pointer">Pointer Type</a></li> | 
 |           <li><a href="#t_struct">Structure Type</a></li> | 
 |           <li><a href="#t_packed">Packed Type</a></li> | 
 |           <li><a href="#t_opaque">Opaque Type</a></li> | 
 |         </ol> | 
 |       </li> | 
 |     </ol> | 
 |   </li> | 
 |   <li><a href="#constants">Constants</a> | 
 |     <ol> | 
 |       <li><a href="#simpleconstants">Simple Constants</a> | 
 |       <li><a href="#aggregateconstants">Aggregate Constants</a> | 
 |       <li><a href="#globalconstants">Global Variable and Function Addresses</a> | 
 |       <li><a href="#undefvalues">Undefined Values</a> | 
 |       <li><a href="#constantexprs">Constant Expressions</a> | 
 |     </ol> | 
 |   </li> | 
 |   <li><a href="#instref">Instruction Reference</a> | 
 |     <ol> | 
 |       <li><a href="#terminators">Terminator Instructions</a> | 
 |         <ol> | 
 |           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li> | 
 |           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li> | 
 |           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> | 
 |           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> | 
 |           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li> | 
 |           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#binaryops">Binary Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li> | 
 |           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li> | 
 |           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li> | 
 |           <li><a href="#i_div">'<tt>div</tt>' Instruction</a></li> | 
 |           <li><a href="#i_rem">'<tt>rem</tt>' Instruction</a></li> | 
 |           <li><a href="#i_setcc">'<tt>set<i>cc</i></tt>' Instructions</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#bitwiseops">Bitwise Binary Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> | 
 |           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li> | 
 |           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> | 
 |           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> | 
 |           <li><a href="#i_shr">'<tt>shr</tt>' Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#memoryops">Memory Access Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_malloc">'<tt>malloc</tt>'   Instruction</a></li> | 
 |           <li><a href="#i_free">'<tt>free</tt>'     Instruction</a></li> | 
 |           <li><a href="#i_alloca">'<tt>alloca</tt>'   Instruction</a></li> | 
 | 	 <li><a href="#i_load">'<tt>load</tt>'     Instruction</a></li> | 
 | 	 <li><a href="#i_store">'<tt>store</tt>'    Instruction</a></li> | 
 | 	 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#otherops">Other Operations</a> | 
 |         <ol> | 
 |           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li> | 
 |           <li><a href="#i_cast">'<tt>cast .. to</tt>' Instruction</a></li> | 
 |           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li> | 
 |           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li> | 
 |           <li><a href="#i_vanext">'<tt>vanext</tt>' Instruction</a></li> | 
 |           <li><a href="#i_vaarg">'<tt>vaarg</tt>'  Instruction</a></li> | 
 |         </ol> | 
 |       </li> | 
 |     </ol> | 
 |   </li> | 
 |   <li><a href="#intrinsics">Intrinsic Functions</a> | 
 |     <ol> | 
 |       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li> | 
 |           <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#int_codegen">Code Generator Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li> | 
 |           <li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#int_os">Operating System Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#i_readport">'<tt>llvm.readport</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_writeport">'<tt>llvm.writeport</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_readio">'<tt>llvm.readio</tt>'   Intrinsic</a></li> | 
 |           <li><a href="#i_writeio">'<tt>llvm.writeio</tt>'   Intrinsic</a></li> | 
 |         </ol> | 
 |       <li><a href="#int_libc">Standard C Library Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_memset">'<tt>llvm.memset</tt>' Intrinsic</a></li> | 
 |           <li><a href="#i_isunordered">'<tt>llvm.isunordered</tt>' Intrinsic</a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#int_count">Bit counting Intrinsics</a> | 
 |         <ol> | 
 |           <li><a href="#int_ctpop">'<tt>llvm.ctpop</tt>' Intrinsic </a></li> | 
 |           <li><a href="#int_cttz">'<tt>llvm.cttz</tt>' Intrinsic </a></li> | 
 |           <li><a href="#int_ctlz">'<tt>llvm.ctlz</tt>' Intrinsic </a></li> | 
 |         </ol> | 
 |       </li> | 
 |       <li><a href="#int_debugger">Debugger intrinsics</a></li> | 
 |     </ol> | 
 |   </li> | 
 | </ol> | 
 |  | 
 | <div class="doc_author"> | 
 |   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> | 
 |             and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="abstract">Abstract </a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 | <p>This document is a reference manual for the LLVM assembly language.  | 
 | LLVM is an SSA based representation that provides type safety, | 
 | low-level operations, flexibility, and the capability of representing | 
 | 'all' high-level languages cleanly.  It is the common code | 
 | representation used throughout all phases of the LLVM compilation | 
 | strategy.</p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="introduction">Introduction</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The LLVM code representation is designed to be used in three | 
 | different forms: as an in-memory compiler IR, as an on-disk bytecode | 
 | representation (suitable for fast loading by a Just-In-Time compiler), | 
 | and as a human readable assembly language representation.  This allows | 
 | LLVM to provide a powerful intermediate representation for efficient | 
 | compiler transformations and analysis, while providing a natural means | 
 | to debug and visualize the transformations.  The three different forms | 
 | of LLVM are all equivalent.  This document describes the human readable | 
 | representation and notation.</p> | 
 |  | 
 | <p>The LLVM representation aims to be a light-weight and low-level | 
 | while being expressive, typed, and extensible at the same time.  It | 
 | aims to be a "universal IR" of sorts, by being at a low enough level | 
 | that high-level ideas may be cleanly mapped to it (similar to how | 
 | microprocessors are "universal IR's", allowing many source languages to | 
 | be mapped to them).  By providing type information, LLVM can be used as | 
 | the target of optimizations: for example, through pointer analysis, it | 
 | can be proven that a C automatic variable is never accessed outside of | 
 | the current function... allowing it to be promoted to a simple SSA | 
 | value instead of a memory location.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>It is important to note that this document describes 'well formed' | 
 | LLVM assembly language.  There is a difference between what the parser | 
 | accepts and what is considered 'well formed'.  For example, the | 
 | following instruction is syntactically okay, but not well formed:</p> | 
 |  | 
 | <pre> | 
 |   %x = <a href="#i_add">add</a> int 1, %x | 
 | </pre> | 
 |  | 
 | <p>...because the definition of <tt>%x</tt> does not dominate all of | 
 | its uses. The LLVM infrastructure provides a verification pass that may | 
 | be used to verify that an LLVM module is well formed.  This pass is | 
 | automatically run by the parser after parsing input assembly, and by | 
 | the optimizer before it outputs bytecode.  The violations pointed out | 
 | by the verifier pass indicate bugs in transformation passes or input to | 
 | the parser.</p> | 
 |  | 
 | <!-- Describe the typesetting conventions here. --> </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="identifiers">Identifiers</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM uses three different forms of identifiers, for different | 
 | purposes:</p> | 
 |  | 
 | <ol> | 
 |   <li>Named values are represented as a string of characters with a '%' prefix. | 
 |   For example, %foo, %DivisionByZero, %a.really.long.identifier.  The actual | 
 |   regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. | 
 |   Identifiers which require other characters in their names can be surrounded | 
 |   with quotes.  In this way, anything except a <tt>"</tt> character can be used | 
 |   in a name.</li> | 
 |  | 
 |   <li>Unnamed values are represented as an unsigned numeric value with a '%' | 
 |   prefix.  For example, %12, %2, %44.</li> | 
 |  | 
 |   <li>Constants, which are described in a <a href="#constants">section about | 
 |   constants</a>, below.</li> | 
 | </ol> | 
 |  | 
 | <p>LLVM requires that values start with a '%' sign for two reasons: Compilers | 
 | don't need to worry about name clashes with reserved words, and the set of | 
 | reserved words may be expanded in the future without penalty.  Additionally, | 
 | unnamed identifiers allow a compiler to quickly come up with a temporary | 
 | variable without having to avoid symbol table conflicts.</p> | 
 |  | 
 | <p>Reserved words in LLVM are very similar to reserved words in other | 
 | languages. There are keywords for different opcodes ('<tt><a | 
 | href="#i_add">add</a></tt>', '<tt><a href="#i_cast">cast</a></tt>', '<tt><a | 
 | href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a | 
 | href="#t_void">void</a></tt>', '<tt><a href="#t_uint">uint</a></tt>', etc...), | 
 | and others.  These reserved words cannot conflict with variable names, because | 
 | none of them start with a '%' character.</p> | 
 |  | 
 | <p>Here is an example of LLVM code to multiply the integer variable | 
 | '<tt>%X</tt>' by 8:</p> | 
 |  | 
 | <p>The easy way:</p> | 
 |  | 
 | <pre> | 
 |   %result = <a href="#i_mul">mul</a> uint %X, 8 | 
 | </pre> | 
 |  | 
 | <p>After strength reduction:</p> | 
 |  | 
 | <pre> | 
 |   %result = <a href="#i_shl">shl</a> uint %X, ubyte 3 | 
 | </pre> | 
 |  | 
 | <p>And the hard way:</p> | 
 |  | 
 | <pre> | 
 |   <a href="#i_add">add</a> uint %X, %X           <i>; yields {uint}:%0</i> | 
 |   <a href="#i_add">add</a> uint %0, %0           <i>; yields {uint}:%1</i> | 
 |   %result = <a href="#i_add">add</a> uint %1, %1 | 
 | </pre> | 
 |  | 
 | <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several | 
 | important lexical features of LLVM:</p> | 
 |  | 
 | <ol> | 
 |  | 
 |   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of | 
 |   line.</li> | 
 |  | 
 |   <li>Unnamed temporaries are created when the result of a computation is not | 
 |   assigned to a named value.</li> | 
 |  | 
 |   <li>Unnamed temporaries are numbered sequentially</li> | 
 |  | 
 | </ol> | 
 |  | 
 | <p>...and it also shows a convention that we follow in this document.  When | 
 | demonstrating instructions, we will follow an instruction with a comment that | 
 | defines the type and name of value produced.  Comments are shown in italic | 
 | text.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="modulestructure">Module Structure</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM programs are composed of "Module"s, each of which is a | 
 | translation unit of the input programs.  Each module consists of | 
 | functions, global variables, and symbol table entries.  Modules may be | 
 | combined together with the LLVM linker, which merges function (and | 
 | global variable) definitions, resolves forward declarations, and merges | 
 | symbol table entries. Here is an example of the "hello world" module:</p> | 
 |  | 
 | <pre><i>; Declare the string constant as a global constant...</i> | 
 | <a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a | 
 |  href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00"          <i>; [13 x sbyte]*</i> | 
 |  | 
 | <i>; External declaration of the puts function</i> | 
 | <a href="#functionstructure">declare</a> int %puts(sbyte*)                                            <i>; int(sbyte*)* </i> | 
 |  | 
 | <i>; Definition of main function</i> | 
 | int %main() {                                                        <i>; int()* </i> | 
 |         <i>; Convert [13x sbyte]* to sbyte *...</i> | 
 |         %cast210 = <a | 
 |  href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i> | 
 |  | 
 |         <i>; Call puts function to write out the string to stdout...</i> | 
 |         <a | 
 |  href="#i_call">call</a> int %puts(sbyte* %cast210)                              <i>; int</i> | 
 |         <a | 
 |  href="#i_ret">ret</a> int 0<br>}<br></pre> | 
 |  | 
 | <p>This example is made up of a <a href="#globalvars">global variable</a> | 
 | named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" | 
 | function, and a <a href="#functionstructure">function definition</a> | 
 | for "<tt>main</tt>".</p> | 
 |  | 
 | <p>In general, a module is made up of a list of global values, | 
 | where both functions and global variables are global values.  Global values are | 
 | represented by a pointer to a memory location (in this case, a pointer to an | 
 | array of char, and a pointer to a function), and have one of the following <a | 
 | href="#linkage">linkage types</a>.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="linkage">Linkage Types</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | All Global Variables and Functions have one of the following types of linkage: | 
 | </p> | 
 |  | 
 | <dl> | 
 |  | 
 |   <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt> | 
 |  | 
 |   <dd>Global values with internal linkage are only directly accessible by | 
 |   objects in the current module.  In particular, linking code into a module with | 
 |   an internal global value may cause the internal to be renamed as necessary to | 
 |   avoid collisions.  Because the symbol is internal to the module, all | 
 |   references can be updated.  This corresponds to the notion of the | 
 |   '<tt>static</tt>' keyword in C, or the idea of "anonymous namespaces" in C++. | 
 |   </dd> | 
 |  | 
 |   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt> | 
 |  | 
 |   <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> linkage, with | 
 |   the twist that linking together two modules defining the same | 
 |   <tt>linkonce</tt> globals will cause one of the globals to be discarded.  This | 
 |   is typically used to implement inline functions.  Unreferenced | 
 |   <tt>linkonce</tt> globals are allowed to be discarded. | 
 |   </dd> | 
 |  | 
 |   <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt> | 
 |  | 
 |   <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage, | 
 |   except that unreferenced <tt>weak</tt> globals may not be discarded.  This is | 
 |   used to implement constructs in C such as "<tt>int X;</tt>" at global scope. | 
 |   </dd> | 
 |  | 
 |   <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt> | 
 |  | 
 |   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of | 
 |   pointer to array type.  When two global variables with appending linkage are | 
 |   linked together, the two global arrays are appended together.  This is the | 
 |   LLVM, typesafe, equivalent of having the system linker append together | 
 |   "sections" with identical names when .o files are linked. | 
 |   </dd> | 
 |  | 
 |   <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt> | 
 |  | 
 |   <dd>If none of the above identifiers are used, the global is externally | 
 |   visible, meaning that it participates in linkage and can be used to resolve | 
 |   external symbol references. | 
 |   </dd> | 
 | </dl> | 
 |  | 
 | <p><a name="linkage_external">For example, since the "<tt>.LC0</tt>" | 
 | variable is defined to be internal, if another module defined a "<tt>.LC0</tt>" | 
 | variable and was linked with this one, one of the two would be renamed, | 
 | preventing a collision.  Since "<tt>main</tt>" and "<tt>puts</tt>" are | 
 | external (i.e., lacking any linkage declarations), they are accessible | 
 | outside of the current module.  It is illegal for a function <i>declaration</i> | 
 | to have any linkage type other than "externally visible".</a></p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="callingconv">Calling Conventions</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a> | 
 | and <a href="#i_invoke">invokes</a> can all have an optional calling convention | 
 | specified for the call.  The calling convention of any pair of dynamic | 
 | caller/callee must match, or the behavior of the program is undefined.  The | 
 | following calling conventions are supported by LLVM, and more may be added in | 
 | the future:</p> | 
 |  | 
 | <dl> | 
 |   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt> | 
 |  | 
 |   <dd>This calling convention (the default if no other calling convention is | 
 |   specified) matches the target C calling conventions.  This calling convention | 
 |   supports varargs function calls and tolerates some mismatch in the declared | 
 |   prototype and implemented declaration of the function (as does normal C). | 
 |   </dd> | 
 |  | 
 |   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt> | 
 |  | 
 |   <dd>This calling convention attempts to make calls as fast as possible | 
 |   (e.g. by passing things in registers).  This calling convention allows the | 
 |   target to use whatever tricks it wants to produce fast code for the target, | 
 |   without having to conform to an externally specified ABI.  Implementations of | 
 |   this convention should allow arbitrary tail call optimization to be supported. | 
 |   This calling convention does not support varargs and requires the prototype of | 
 |   all callees to exactly match the prototype of the function definition. | 
 |   </dd> | 
 |  | 
 |   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt> | 
 |  | 
 |   <dd>This calling convention attempts to make code in the caller as efficient | 
 |   as possible under the assumption that the call is not commonly executed.  As | 
 |   such, these calls often preserve all registers so that the call does not break | 
 |   any live ranges in the caller side.  This calling convention does not support | 
 |   varargs and requires the prototype of all callees to exactly match the | 
 |   prototype of the function definition. | 
 |   </dd> | 
 |  | 
 |   <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt> | 
 |  | 
 |   <dd>Any calling convention may be specified by number, allowing | 
 |   target-specific calling conventions to be used.  Target specific calling | 
 |   conventions start at 64. | 
 |   </dd> | 
 | </dl> | 
 |  | 
 | <p>More calling conventions can be added/defined on an as-needed basis, to | 
 | support pascal conventions or any other well-known target-independent | 
 | convention.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="globalvars">Global Variables</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Global variables define regions of memory allocated at compilation time | 
 | instead of run-time.  Global variables may optionally be initialized.  A | 
 | variable may be defined as a global "constant", which indicates that the | 
 | contents of the variable will <b>never</b> be modified (enabling better | 
 | optimization, allowing the global data to be placed in the read-only section of | 
 | an executable, etc).  Note that variables that need runtime initialization | 
 | cannot be marked "constant", as there is a store to the variable.</p> | 
 |  | 
 | <p> | 
 | LLVM explicitly allows <em>declarations</em> of global variables to be marked | 
 | constant, even if the final definition of the global is not.  This capability | 
 | can be used to enable slightly better optimization of the program, but requires | 
 | the language definition to guarantee that optimizations based on the | 
 | 'constantness' are valid for the translation units that do not include the | 
 | definition. | 
 | </p> | 
 |  | 
 | <p>As SSA values, global variables define pointer values that are in | 
 | scope (i.e. they dominate) all basic blocks in the program.  Global | 
 | variables always define a pointer to their "content" type because they | 
 | describe a region of memory, and all memory objects in LLVM are | 
 | accessed through pointers.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="functionstructure">Functions</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM function definitions consist of an optional <a href="#linkage">linkage | 
 | type</a>, an optional <a href="#callingconv">calling convention</a>, a return | 
 | type, a function name, a (possibly empty) argument list, an opening curly brace, | 
 | a list of basic blocks, and a closing curly brace.  LLVM function declarations | 
 | are defined with the "<tt>declare</tt>" keyword, an optional <a | 
 | href="#callingconv">calling convention</a>, a return type, a function name, and | 
 | a possibly empty list of arguments.</p> | 
 |  | 
 | <p>A function definition contains a list of basic blocks, forming the CFG for | 
 | the function.  Each basic block may optionally start with a label (giving the | 
 | basic block a symbol table entry), contains a list of instructions, and ends | 
 | with a <a href="#terminators">terminator</a> instruction (such as a branch or | 
 | function return).</p> | 
 |  | 
 | <p>The first basic block in a program is special in two ways: it is immediately | 
 | executed on entrance to the function, and it is not allowed to have predecessor | 
 | basic blocks (i.e. there can not be any branches to the entry block of a | 
 | function).  Because the block can have no predecessors, it also cannot have any | 
 | <a href="#i_phi">PHI nodes</a>.</p> | 
 |  | 
 | <p>LLVM functions are identified by their name and type signature.  Hence, two | 
 | functions with the same name but different parameter lists or return values are | 
 | considered different functions, and LLVM will resolve references to each | 
 | appropriately.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="typesystem">Type System</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The LLVM type system is one of the most important features of the | 
 | intermediate representation.  Being typed enables a number of | 
 | optimizations to be performed on the IR directly, without having to do | 
 | extra analyses on the side before the transformation.  A strong type | 
 | system makes it easier to read the generated code and enables novel | 
 | analyses and transformations that are not feasible to perform on normal | 
 | three address code representations.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div> | 
 | <div class="doc_text"> | 
 | <p>The primitive types are the fundamental building blocks of the LLVM | 
 | system. The current set of primitive types is as follows:</p> | 
 |  | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <table> | 
 |         <tbody> | 
 |         <tr><th>Type</th><th>Description</th></tr> | 
 |         <tr><td><tt>void</tt></td><td>No value</td></tr> | 
 |         <tr><td><tt>ubyte</tt></td><td>Unsigned 8-bit value</td></tr> | 
 |         <tr><td><tt>ushort</tt></td><td>Unsigned 16-bit value</td></tr> | 
 |         <tr><td><tt>uint</tt></td><td>Unsigned 32-bit value</td></tr> | 
 |         <tr><td><tt>ulong</tt></td><td>Unsigned 64-bit value</td></tr> | 
 |         <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr> | 
 |         <tr><td><tt>label</tt></td><td>Branch destination</td></tr> | 
 |         </tbody> | 
 |       </table> | 
 |     </td> | 
 |     <td class="right"> | 
 |       <table> | 
 |         <tbody> | 
 |           <tr><th>Type</th><th>Description</th></tr> | 
 |           <tr><td><tt>bool</tt></td><td>True or False value</td></tr> | 
 |           <tr><td><tt>sbyte</tt></td><td>Signed 8-bit value</td></tr> | 
 |           <tr><td><tt>short</tt></td><td>Signed 16-bit value</td></tr> | 
 |           <tr><td><tt>int</tt></td><td>Signed 32-bit value</td></tr> | 
 |           <tr><td><tt>long</tt></td><td>Signed 64-bit value</td></tr> | 
 |           <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr> | 
 |         </tbody> | 
 |       </table> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_classifications">Type | 
 | Classifications</a> </div> | 
 | <div class="doc_text"> | 
 | <p>These different primitive types fall into a few useful | 
 | classifications:</p> | 
 |  | 
 | <table border="1" cellspacing="0" cellpadding="4"> | 
 |   <tbody> | 
 |     <tr><th>Classification</th><th>Types</th></tr> | 
 |     <tr> | 
 |       <td><a name="t_signed">signed</a></td> | 
 |       <td><tt>sbyte, short, int, long, float, double</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_unsigned">unsigned</a></td> | 
 |       <td><tt>ubyte, ushort, uint, ulong</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_integer">integer</a></td> | 
 |       <td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_integral">integral</a></td> | 
 |       <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt> | 
 |       </td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_floating">floating point</a></td> | 
 |       <td><tt>float, double</tt></td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td><a name="t_firstclass">first class</a></td> | 
 |       <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long,<br>  | 
 |       float, double, <a href="#t_pointer">pointer</a>,  | 
 |       <a href="#t_packed">packed</a></tt></td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 |  | 
 | <p>The <a href="#t_firstclass">first class</a> types are perhaps the | 
 | most important.  Values of these types are the only ones which can be | 
 | produced by instructions, passed as arguments, or used as operands to | 
 | instructions.  This means that all structures and arrays must be | 
 | manipulated either by pointer or by component.</p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The real power in LLVM comes from the derived types in the system.  | 
 | This is what allows a programmer to represent arrays, functions, | 
 | pointers, and other useful types.  Note that these derived types may be | 
 | recursive: For example, it is possible to have a two dimensional array.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The array type is a very simple derived type that arranges elements | 
 | sequentially in memory.  The array type requires a size (number of | 
 | elements) and an underlying data type.</p> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   [<# elements> x <elementtype>] | 
 | </pre> | 
 |  | 
 | <p>The number of elements is a constant integer value; elementtype may | 
 | be any type with a size.</p> | 
 |  | 
 | <h5>Examples:</h5> | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <tt>[40 x int ]</tt><br/> | 
 |       <tt>[41 x int ]</tt><br/> | 
 |       <tt>[40 x uint]</tt><br/> | 
 |     </td> | 
 |     <td class="left"> | 
 |       Array of 40 integer values.<br/> | 
 |       Array of 41 integer values.<br/> | 
 |       Array of 40 unsigned integer values.<br/> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 | <p>Here are some examples of multidimensional arrays:</p> | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <tt>[3 x [4 x int]]</tt><br/> | 
 |       <tt>[12 x [10 x float]]</tt><br/> | 
 |       <tt>[2 x [3 x [4 x uint]]]</tt><br/> | 
 |     </td> | 
 |     <td class="left"> | 
 |       3x4 array integer values.<br/> | 
 |       12x10 array of single precision floating point values.<br/> | 
 |       2x3x4 array of unsigned integer values.<br/> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Overview:</h5> | 
 | <p>The function type can be thought of as a function signature.  It | 
 | consists of a return type and a list of formal parameter types.  | 
 | Function types are usually used to build virtual function tables | 
 | (which are structures of pointers to functions), for indirect function | 
 | calls, and when defining a function.</p> | 
 | <p> | 
 | The return type of a function type cannot be an aggregate type. | 
 | </p> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <returntype> (<parameter list>)<br></pre> | 
 | <p>Where '<tt><parameter list></tt>' is a comma-separated list of type | 
 | specifiers.  Optionally, the parameter list may include a type <tt>...</tt>, | 
 | which indicates that the function takes a variable number of arguments. | 
 | Variable argument functions can access their arguments with the <a | 
 |  href="#int_varargs">variable argument handling intrinsic</a> functions.</p> | 
 | <h5>Examples:</h5> | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <tt>int (int)</tt> <br/> | 
 |       <tt>float (int, int *) *</tt><br/> | 
 |       <tt>int (sbyte *, ...)</tt><br/> | 
 |     </td> | 
 |     <td class="left"> | 
 |       function taking an <tt>int</tt>, returning an <tt>int</tt><br/> | 
 |       <a href="#t_pointer">Pointer</a> to a function that takes an | 
 |       <tt>int</tt> and a <a href="#t_pointer">pointer</a> to <tt>int</tt>, | 
 |       returning <tt>float</tt>.<br/> | 
 |       A vararg function that takes at least one <a href="#t_pointer">pointer</a>  | 
 |       to <tt>sbyte</tt> (signed char in C), which returns an integer.  This is  | 
 |       the signature for <tt>printf</tt> in LLVM.<br/> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 |  | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Overview:</h5> | 
 | <p>The structure type is used to represent a collection of data members | 
 | together in memory.  The packing of the field types is defined to match | 
 | the ABI of the underlying processor.  The elements of a structure may | 
 | be any type that has a size.</p> | 
 | <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> | 
 | and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a | 
 | field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' | 
 | instruction.</p> | 
 | <h5>Syntax:</h5> | 
 | <pre>  { <type list> }<br></pre> | 
 | <h5>Examples:</h5> | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <tt>{ int, int, int }</tt><br/> | 
 |       <tt>{ float, int (int) * }</tt><br/> | 
 |     </td> | 
 |     <td class="left"> | 
 |       a triple of three <tt>int</tt> values<br/> | 
 |       A pair, where the first element is a <tt>float</tt> and the second element  | 
 |       is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>  | 
 |       that takes an <tt>int</tt>, returning an <tt>int</tt>.<br/> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Overview:</h5> | 
 | <p>As in many languages, the pointer type represents a pointer or | 
 | reference to another object, which must live in memory.</p> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <type> *<br></pre> | 
 | <h5>Examples:</h5> | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <tt>[4x int]*</tt><br/> | 
 |       <tt>int (int *) *</tt><br/> | 
 |     </td> | 
 |     <td class="left"> | 
 |       A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of | 
 |       four <tt>int</tt> values<br/> | 
 |       A <a href="#t_pointer">pointer</a> to a <a | 
 |       href="#t_function">function</a> that takes an <tt>int*</tt>, returning an | 
 |       <tt>int</tt>.<br/> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_packed">Packed Type</a> </div> | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>A packed type is a simple derived type that represents a vector | 
 | of elements.  Packed types are used when multiple primitive data  | 
 | are operated in parallel using a single instruction (SIMD).  | 
 | A packed type requires a size (number of | 
 | elements) and an underlying primitive data type.  Packed types are | 
 | considered <a href="#t_firstclass">first class</a>.</p> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   < <# elements> x <elementtype> > | 
 | </pre> | 
 |  | 
 | <p>The number of elements is a constant integer value, elementtype may | 
 | be any integral or floating point type.</p> | 
 |  | 
 | <h5>Examples:</h5> | 
 |  | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <tt><4 x int></tt><br/> | 
 |       <tt><8 x float></tt><br/> | 
 |       <tt><2 x uint></tt><br/> | 
 |     </td> | 
 |     <td class="left"> | 
 |       Packed vector of 4 integer values.<br/> | 
 |       Packed vector of 8 floating-point values.<br/> | 
 |       Packed vector of 2 unsigned integer values.<br/> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div> | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>Opaque types are used to represent unknown types in the system.  This | 
 | corresponds (for example) to the C notion of a foward declared structure type. | 
 | In LLVM, opaque types can eventually be resolved to any type (not just a | 
 | structure type).</p> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   opaque | 
 | </pre> | 
 |  | 
 | <h5>Examples:</h5> | 
 |  | 
 | <table class="layout"> | 
 |   <tr class="layout"> | 
 |     <td class="left"> | 
 |       <tt>opaque</tt> | 
 |     </td> | 
 |     <td class="left"> | 
 |       An opaque type.<br/> | 
 |     </td> | 
 |   </tr> | 
 | </table> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="constants">Constants</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM has several different basic types of constants.  This section describes | 
 | them all and their syntax.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <dl> | 
 |   <dt><b>Boolean constants</b></dt> | 
 |  | 
 |   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid | 
 |   constants of the <tt><a href="#t_primitive">bool</a></tt> type. | 
 |   </dd> | 
 |  | 
 |   <dt><b>Integer constants</b></dt> | 
 |  | 
 |   <dd>Standard integers (such as '4') are constants of the <a | 
 |   href="#t_integer">integer</a> type.  Negative numbers may be used with signed | 
 |   integer types. | 
 |   </dd> | 
 |  | 
 |   <dt><b>Floating point constants</b></dt> | 
 |  | 
 |   <dd>Floating point constants use standard decimal notation (e.g. 123.421), | 
 |   exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal | 
 |   notation.  Floating point constants have an optional hexadecimal | 
 |   notation (see below).  Floating point constants must have a <a | 
 |   href="#t_floating">floating point</a> type. </dd> | 
 |  | 
 |   <dt><b>Null pointer constants</b></dt> | 
 |  | 
 |   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant | 
 |   and must be of <a href="#t_pointer">pointer type</a>.</dd> | 
 |  | 
 | </dl> | 
 |  | 
 | <p>The one non-intuitive notation for constants is the optional hexadecimal form | 
 | of floating point constants.  For example, the form '<tt>double | 
 | 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double | 
 | 4.5e+15</tt>'.  The only time hexadecimal floating point constants are required | 
 | (and the only time that they are generated by the disassembler) is when a  | 
 | floating point constant must be emitted but it cannot be represented as a  | 
 | decimal floating point number.  For example, NaN's, infinities, and other  | 
 | special values are represented in their IEEE hexadecimal format so that  | 
 | assembly and disassembly do not cause any bits to change in the constants.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p>Aggregate constants arise from aggregation of simple constants | 
 | and smaller aggregate constants.</p> | 
 |  | 
 | <dl> | 
 |   <dt><b>Structure constants</b></dt> | 
 |  | 
 |   <dd>Structure constants are represented with notation similar to structure | 
 |   type definitions (a comma separated list of elements, surrounded by braces | 
 |   (<tt>{}</tt>)).  For example: "<tt>{ int 4, float 17.0, int* %G }</tt>", | 
 |   where "<tt>%G</tt>" is declared as "<tt>%G = external global int</tt>".  Structure constants | 
 |   must have <a href="#t_struct">structure type</a>, and the number and | 
 |   types of elements must match those specified by the type. | 
 |   </dd> | 
 |  | 
 |   <dt><b>Array constants</b></dt> | 
 |  | 
 |   <dd>Array constants are represented with notation similar to array type | 
 |   definitions (a comma separated list of elements, surrounded by square brackets | 
 |   (<tt>[]</tt>)).  For example: "<tt>[ int 42, int 11, int 74 ]</tt>".  Array | 
 |   constants must have <a href="#t_array">array type</a>, and the number and | 
 |   types of elements must match those specified by the type. | 
 |   </dd> | 
 |  | 
 |   <dt><b>Packed constants</b></dt> | 
 |  | 
 |   <dd>Packed constants are represented with notation similar to packed type | 
 |   definitions (a comma separated list of elements, surrounded by | 
 |   less-than/greater-than's (<tt><></tt>)).  For example: "<tt>< int 42, | 
 |   int 11, int 74, int 100 ></tt>".  Packed constants must have <a | 
 |   href="#t_packed">packed type</a>, and the number and types of elements must | 
 |   match those specified by the type. | 
 |   </dd> | 
 |  | 
 |   <dt><b>Zero initialization</b></dt> | 
 |  | 
 |   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a | 
 |   value to zero of <em>any</em> type, including scalar and aggregate types. | 
 |   This is often used to avoid having to print large zero initializers (e.g. for | 
 |   large arrays), and is always exactly equivalent to using explicit zero | 
 |   initializers. | 
 |   </dd> | 
 | </dl> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="globalconstants">Global Variable and Function Addresses</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The addresses of <a href="#globalvars">global variables</a> and <a | 
 | href="#functionstructure">functions</a> are always implicitly valid (link-time) | 
 | constants.  These constants are explicitly referenced when the <a | 
 | href="#identifiers">identifier for the global</a> is used and always have <a | 
 | href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM | 
 | file:</p> | 
 |  | 
 | <pre> | 
 |   %X = global int 17 | 
 |   %Y = global int 42 | 
 |   %Z = global [2 x int*] [ int* %X, int* %Y ] | 
 | </pre> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div> | 
 | <div class="doc_text"> | 
 |   <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has  | 
 |   no specific value.  Undefined values may be of any type, and be used anywhere  | 
 |   a constant is permitted.</p> | 
 |  | 
 |   <p>Undefined values indicate to the compiler that the program is well defined | 
 |   no matter what value is used, giving the compiler more freedom to optimize. | 
 |   </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Constant expressions are used to allow expressions involving other constants | 
 | to be used as constants.  Constant expressions may be of any <a | 
 | href="#t_firstclass">first class</a> type, and may involve any LLVM operation | 
 | that does not have side effects (e.g. load and call are not supported).  The | 
 | following is the syntax for constant expressions:</p> | 
 |  | 
 | <dl> | 
 |   <dt><b><tt>cast ( CST to TYPE )</tt></b></dt> | 
 |  | 
 |   <dd>Cast a constant to another type.</dd> | 
 |  | 
 |   <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt> | 
 |  | 
 |   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on | 
 |   constants.  As with the <a href="#i_getelementptr">getelementptr</a> | 
 |   instruction, the index list may have zero or more indexes, which are required | 
 |   to make sense for the type of "CSTPTR".</dd> | 
 |  | 
 |   <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt> | 
 |  | 
 |   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may  | 
 |   be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise | 
 |   binary</a> operations.  The constraints on operands are the same as those for | 
 |   the corresponding instruction (e.g. no bitwise operations on floating point | 
 |   values are allowed).</dd> | 
 | </dl> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="instref">Instruction Reference</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>The LLVM instruction set consists of several different | 
 | classifications of instructions: <a href="#terminators">terminator | 
 | instructions</a>, <a href="#binaryops">binary instructions</a>, <a | 
 |  href="#memoryops">memory instructions</a>, and <a href="#otherops">other | 
 | instructions</a>.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="terminators">Terminator | 
 | Instructions</a> </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>As mentioned <a href="#functionstructure">previously</a>, every | 
 | basic block in a program ends with a "Terminator" instruction, which | 
 | indicates which block should be executed after the current block is | 
 | finished. These terminator instructions typically yield a '<tt>void</tt>' | 
 | value: they produce control flow, not values (the one exception being | 
 | the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> | 
 | <p>There are six different terminator instructions: the '<a | 
 |  href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>' | 
 | instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction, | 
 | the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a | 
 |  href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a | 
 |  href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  ret <type> <value>       <i>; Return a value from a non-void function</i> | 
 |   ret void                 <i>; Return from void function</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>ret</tt>' instruction is used to return control flow (and a | 
 | value) from a function, back to the caller.</p> | 
 | <p>There are two forms of the '<tt>ret</tt>' instruction: one that | 
 | returns a value and then causes control flow, and one that just causes | 
 | control flow to occur.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The '<tt>ret</tt>' instruction may return any '<a | 
 |  href="#t_firstclass">first class</a>' type.  Notice that a function is | 
 | not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>' | 
 | instruction inside of the function that returns a value that does not | 
 | match the return type of the function.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>When the '<tt>ret</tt>' instruction is executed, control flow | 
 | returns back to the calling function's context.  If the caller is a "<a | 
 |  href="#i_call"><tt>call</tt></a>" instruction, execution continues at | 
 | the instruction after the call.  If the caller was an "<a | 
 |  href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues | 
 | at the beginning of the "normal" destination block.  If the instruction | 
 | returns a value, that value shall set the call or invoke instruction's | 
 | return value.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  ret int 5                       <i>; Return an integer value of 5</i> | 
 |   ret void                        <i>; Return from a void function</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  br bool <cond>, label <iftrue>, label <iffalse><br>  br label <dest>          <i>; Unconditional branch</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>br</tt>' instruction is used to cause control flow to | 
 | transfer to a different basic block in the current function.  There are | 
 | two forms of this instruction, corresponding to a conditional branch | 
 | and an unconditional branch.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The conditional branch form of the '<tt>br</tt>' instruction takes a | 
 | single '<tt>bool</tt>' value and two '<tt>label</tt>' values.  The | 
 | unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' | 
 | value as a target.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>' | 
 | argument is evaluated.  If the value is <tt>true</tt>, control flows | 
 | to the '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>, | 
 | control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> | 
 | <h5>Example:</h5> | 
 | <pre>Test:<br>  %cond = <a href="#i_setcc">seteq</a> int %a, %b<br>  br bool %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br>  <a | 
 |  href="#i_ret">ret</a> int 1<br>IfUnequal:<br>  <a href="#i_ret">ret</a> int 0<br></pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |    <a name="i_switch">'<tt>switch</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ] | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of | 
 | several different places.  It is a generalization of the '<tt>br</tt>' | 
 | instruction, allowing a branch to occur to one of many possible | 
 | destinations.</p> | 
 |  | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>The '<tt>switch</tt>' instruction uses three parameters: an integer | 
 | comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and | 
 | an array of pairs of comparison value constants and '<tt>label</tt>'s.  The | 
 | table is not allowed to contain duplicate constant entries.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The <tt>switch</tt> instruction specifies a table of values and | 
 | destinations. When the '<tt>switch</tt>' instruction is executed, this | 
 | table is searched for the given value.  If the value is found, control flow is | 
 | transfered to the corresponding destination; otherwise, control flow is | 
 | transfered to the default destination.</p> | 
 |  | 
 | <h5>Implementation:</h5> | 
 |  | 
 | <p>Depending on properties of the target machine and the particular | 
 | <tt>switch</tt> instruction, this instruction may be code generated in different | 
 | ways.  For example, it could be generated as a series of chained conditional | 
 | branches or with a lookup table.</p> | 
 |  | 
 | <h5>Example:</h5> | 
 |  | 
 | <pre> | 
 |  <i>; Emulate a conditional br instruction</i> | 
 |  %Val = <a href="#i_cast">cast</a> bool %value to int | 
 |  switch int %Val, label %truedest [int 0, label %falsedest ] | 
 |  | 
 |  <i>; Emulate an unconditional br instruction</i> | 
 |  switch uint 0, label %dest [ ] | 
 |  | 
 |  <i>; Implement a jump table:</i> | 
 |  switch uint %val, label %otherwise [ uint 0, label %onzero  | 
 |                                       uint 1, label %onone  | 
 |                                       uint 2, label %ontwo ] | 
 | </pre> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   <result> = invoke [<a href="#callingconv">cconv</a>] <ptr to function ty> %<function ptr val>(<function args>)  | 
 |                 to label <normal label> except label <exception label> | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified | 
 | function, with the possibility of control flow transfer to either the | 
 | '<tt>normal</tt>' label or the | 
 | '<tt>exception</tt>' label.  If the callee function returns with the | 
 | "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the | 
 | "normal" label.  If the callee (or any indirect callees) returns with the "<a | 
 | href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and | 
 | continued at the dynamically nearest "exception" label.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>This instruction requires several arguments:</p> | 
 |  | 
 | <ol> | 
 |   <li> | 
 |     <p>The optional "cconv" marker indicates which <a href="callingconv">calling | 
 |     convention</a> the call should use.  If none is specified, the call defaults | 
 |     to using C calling conventions. | 
 |   </li> | 
 |   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to | 
 |   function value being invoked.  In most cases, this is a direct function | 
 |   invocation, but indirect <tt>invoke</tt>s are just as possible, branching off | 
 |   an arbitrary pointer to function value. | 
 |   </li> | 
 |  | 
 |   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a | 
 |   function to be invoked. </li> | 
 |  | 
 |   <li>'<tt>function args</tt>': argument list whose types match the function | 
 |   signature argument types.  If the function signature indicates the function | 
 |   accepts a variable number of arguments, the extra arguments can be | 
 |   specified. </li> | 
 |  | 
 |   <li>'<tt>normal label</tt>': the label reached when the called function | 
 |   executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> | 
 |  | 
 |   <li>'<tt>exception label</tt>': the label reached when a callee returns with | 
 |   the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> | 
 |  | 
 | </ol> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>This instruction is designed to operate as a standard '<tt><a | 
 | href="#i_call">call</a></tt>' instruction in most regards.  The primary | 
 | difference is that it establishes an association with a label, which is used by | 
 | the runtime library to unwind the stack.</p> | 
 |  | 
 | <p>This instruction is used in languages with destructors to ensure that proper | 
 | cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown | 
 | exception.  Additionally, this is important for implementation of | 
 | '<tt>catch</tt>' clauses in high-level languages that support them.</p> | 
 |  | 
 | <h5>Example:</h5> | 
 | <pre> | 
 |   %retval = invoke int %Test(int 15)             to label %Continue | 
 |               except label %TestCleanup     <i>; {int}:retval set</i> | 
 |   %retval = invoke <a href="#callingconv">coldcc</a> int %Test(int 15)             to label %Continue | 
 |               except label %TestCleanup     <i>; {int}:retval set</i> | 
 | </pre> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 |  | 
 | <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>' | 
 | Instruction</a> </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   unwind | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow | 
 | at the first callee in the dynamic call stack which used an <a | 
 | href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.  This is | 
 | primarily used to implement exception handling.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to | 
 | immediately halt.  The dynamic call stack is then searched for the first <a | 
 | href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.  Once found, | 
 | execution continues at the "exceptional" destination block specified by the | 
 | <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt> instruction in the | 
 | dynamic call chain, undefined behavior results.</p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 |  | 
 | <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>' | 
 | Instruction</a> </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   unreachable | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This | 
 | instruction is used to inform the optimizer that a particular portion of the | 
 | code is not reachable.  This can be used to indicate that the code after a | 
 | no-return function cannot be reached, and other facts.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p> | 
 | </div> | 
 |  | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div> | 
 | <div class="doc_text"> | 
 | <p>Binary operators are used to do most of the computation in a | 
 | program.  They require two operands, execute an operation on them, and | 
 | produce a single value.  The operands might represent  | 
 | multiple data, as is the case with the <a href="#t_packed">packed</a> data type.  | 
 | The result value of a binary operator is not | 
 | necessarily the same type as its operands.</p> | 
 | <p>There are several different binary operators:</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = add <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>add</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values. | 
 |  This instruction can also take <a href="#t_packed">packed</a> versions of the values. | 
 | Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point sum of the two | 
 | operands.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = add int 4, %var          <i>; yields {int}:result = 4 + %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = sub <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>sub</tt>' instruction returns the difference of its two | 
 | operands.</p> | 
 | <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>' | 
 | instruction present in most other intermediate representations.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values.  | 
 | This instruction can also take <a href="#t_packed">packed</a> versions of the values. | 
 | Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point difference of | 
 | the two operands.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = sub int 4, %var          <i>; yields {int}:result = 4 - %var</i> | 
 |   <result> = sub int 0, %val          <i>; yields {int}:result = -%var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = mul <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The  '<tt>mul</tt>' instruction returns the product of its two | 
 | operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values.  | 
 | This instruction can also take <a href="#t_packed">packed</a> versions of the values. | 
 | Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point product of the | 
 | two operands.</p> | 
 | <p>There is no signed vs unsigned multiplication.  The appropriate | 
 | action is taken based on the type of the operand.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = mul int 4, %var          <i>; yields {int}:result = 4 * %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_div">'<tt>div</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = div <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>div</tt>' instruction returns the quotient of its two | 
 | operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>div</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values.  | 
 | This instruction can also take <a href="#t_packed">packed</a> versions of the values. | 
 | Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is the integer or floating point quotient of the | 
 | two operands.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = div int 4, %var          <i>; yields {int}:result = 4 / %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_rem">'<tt>rem</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = rem <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>rem</tt>' instruction returns the remainder from the | 
 | division of its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>rem</tt>' instruction must be either <a | 
 |  href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> | 
 | values.  | 
 | This instruction can also take <a href="#t_packed">packed</a> versions of the values. | 
 | Both arguments must have identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>This returns the <i>remainder</i> of a division (where the result | 
 | has the same sign as the divisor), not the <i>modulus</i> (where the | 
 | result has the same sign as the dividend) of a value.  For more | 
 | information about the difference, see: <a | 
 |  href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The | 
 | Math Forum</a>.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = rem int 4, %var          <i>; yields {int}:result = 4 % %var</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_setcc">'<tt>set<i>cc</i></tt>' | 
 | Instructions</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = seteq <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setne <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setlt <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setgt <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setle <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 |   <result> = setge <ty> <var1>, <var2>   <i>; yields {bool}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>set<i>cc</i></tt>' family of instructions returns a boolean | 
 | value based on a comparison of their two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>set<i>cc</i></tt>' instructions must | 
 | be of <a href="#t_firstclass">first class</a> type (it is not possible | 
 | to compare '<tt>label</tt>'s, '<tt>array</tt>'s, '<tt>structure</tt>' | 
 | or '<tt>void</tt>' values, etc...).  Both arguments must have identical | 
 | types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>seteq</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if both operands are equal.<br> | 
 | The '<tt>setne</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if both operands are unequal.<br> | 
 | The '<tt>setlt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is less than the second operand.<br> | 
 | The '<tt>setgt</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is greater than the second operand.<br> | 
 | The '<tt>setle</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is less than or equal to the second operand.<br> | 
 | The '<tt>setge</tt>' instruction yields a <tt>true</tt> '<tt>bool</tt>' | 
 | value if the first operand is greater than or equal to the second | 
 | operand.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = seteq int   4, 5        <i>; yields {bool}:result = false</i> | 
 |   <result> = setne float 4, 5        <i>; yields {bool}:result = true</i> | 
 |   <result> = setlt uint  4, 5        <i>; yields {bool}:result = true</i> | 
 |   <result> = setgt sbyte 4, 5        <i>; yields {bool}:result = false</i> | 
 |   <result> = setle sbyte 4, 5        <i>; yields {bool}:result = true</i> | 
 |   <result> = setge sbyte 4, 5        <i>; yields {bool}:result = false</i> | 
 | </pre> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary | 
 | Operations</a> </div> | 
 | <div class="doc_text"> | 
 | <p>Bitwise binary operators are used to do various forms of | 
 | bit-twiddling in a program.  They are generally very efficient | 
 | instructions and can commonly be strength reduced from other | 
 | instructions.  They require two operands, execute an operation on them, | 
 | and produce a single value.  The resulting value of the bitwise binary | 
 | operators is always the same type as its first operand.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = and <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>and</tt>' instruction returns the bitwise logical and of | 
 | its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>and</tt>' instruction must be <a | 
 |  href="#t_integral">integral</a> values.  Both arguments must have | 
 | identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The truth table used for the '<tt>and</tt>' instruction is:</p> | 
 | <p> </p> | 
 | <div style="align: center"> | 
 | <table border="1" cellspacing="0" cellpadding="4"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td>In0</td> | 
 |       <td>In1</td> | 
 |       <td>Out</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </div> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = and int 4, %var         <i>; yields {int}:result = 4 & %var</i> | 
 |   <result> = and int 15, 40          <i>; yields {int}:result = 8</i> | 
 |   <result> = and int 4, 8            <i>; yields {int}:result = 0</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = or <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive | 
 | or of its two operands.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>or</tt>' instruction must be <a | 
 |  href="#t_integral">integral</a> values.  Both arguments must have | 
 | identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The truth table used for the '<tt>or</tt>' instruction is:</p> | 
 | <p> </p> | 
 | <div style="align: center"> | 
 | <table border="1" cellspacing="0" cellpadding="4"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td>In0</td> | 
 |       <td>In1</td> | 
 |       <td>Out</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </div> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = or int 4, %var         <i>; yields {int}:result = 4 | %var</i> | 
 |   <result> = or int 15, 40          <i>; yields {int}:result = 47</i> | 
 |   <result> = or int 4, 8            <i>; yields {int}:result = 12</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = xor <ty> <var1>, <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive | 
 | or of its two operands.  The <tt>xor</tt> is used to implement the | 
 | "one's complement" operation, which is the "~" operator in C.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The two arguments to the '<tt>xor</tt>' instruction must be <a | 
 |  href="#t_integral">integral</a> values.  Both arguments must have | 
 | identical types.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> | 
 | <p> </p> | 
 | <div style="align: center"> | 
 | <table border="1" cellspacing="0" cellpadding="4"> | 
 |   <tbody> | 
 |     <tr> | 
 |       <td>In0</td> | 
 |       <td>In1</td> | 
 |       <td>Out</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |       <td>1</td> | 
 |     </tr> | 
 |     <tr> | 
 |       <td>1</td> | 
 |       <td>1</td> | 
 |       <td>0</td> | 
 |     </tr> | 
 |   </tbody> | 
 | </table> | 
 | </div> | 
 | <p> </p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = xor int 4, %var         <i>; yields {int}:result = 4 ^ %var</i> | 
 |   <result> = xor int 15, 40          <i>; yields {int}:result = 39</i> | 
 |   <result> = xor int 4, 8            <i>; yields {int}:result = 12</i> | 
 |   <result> = xor int %V, -1          <i>; yields {int}:result = ~%V</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = shl <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>shl</tt>' instruction returns the first operand shifted to | 
 | the left a specified number of bits.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The first argument to the '<tt>shl</tt>' instruction must be an <a | 
 |  href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>' | 
 | type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = shl int 4, ubyte %var   <i>; yields {int}:result = 4 << %var</i> | 
 |   <result> = shl int 4, ubyte 2      <i>; yields {int}:result = 16</i> | 
 |   <result> = shl int 1, ubyte 10     <i>; yields {int}:result = 1024</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_shr">'<tt>shr</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = shr <ty> <var1>, ubyte <var2>   <i>; yields {ty}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>shr</tt>' instruction returns the first operand shifted to | 
 | the right a specified number of bits.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The first argument to the '<tt>shr</tt>' instruction must be an <a | 
 |  href="#t_integer">integer</a> type.  The second argument must be an '<tt>ubyte</tt>' | 
 | type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>If the first argument is a <a href="#t_signed">signed</a> type, the | 
 | most significant bit is duplicated in the newly free'd bit positions.  | 
 | If the first argument is unsigned, zero bits shall fill the empty | 
 | positions.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  <result> = shr int 4, ubyte %var   <i>; yields {int}:result = 4 >> %var</i> | 
 |   <result> = shr uint 4, ubyte 1     <i>; yields {uint}:result = 2</i> | 
 |   <result> = shr int 4, ubyte 2      <i>; yields {int}:result = 1</i> | 
 |   <result> = shr sbyte 4, ubyte 3    <i>; yields {sbyte}:result = 0</i> | 
 |   <result> = shr sbyte -2, ubyte 1   <i>; yields {sbyte}:result = -1</i> | 
 | </pre> | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="memoryops">Memory Access | 
 | Operations</a></div> | 
 | <div class="doc_text"> | 
 | <p>A key design point of an SSA-based representation is how it | 
 | represents memory.  In LLVM, no memory locations are in SSA form, which | 
 | makes things very simple.  This section describes how to read, write, | 
 | allocate, and free memory in LLVM.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_malloc">'<tt>malloc</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = malloc <type>, uint <NumElements>     <i>; yields {type*}:result</i> | 
 |   <result> = malloc <type>                         <i>; yields {type*}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>malloc</tt>' instruction allocates memory from the system | 
 | heap and returns a pointer to it.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The '<tt>malloc</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> | 
 | bytes of memory from the operating system and returns a pointer of the | 
 | appropriate type to the program.  The second form of the instruction is | 
 | a shorter version of the first instruction that defaults to allocating | 
 | one element.</p> | 
 | <p>'<tt>type</tt>' must be a sized type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Memory is allocated using the system "<tt>malloc</tt>" function, and | 
 | a pointer is returned.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %array  = malloc [4 x ubyte ]                    <i>; yields {[%4 x ubyte]*}:array</i> | 
 |  | 
 |   %size   = <a | 
 |  href="#i_add">add</a> uint 2, 2                          <i>; yields {uint}:size = uint 4</i> | 
 |   %array1 = malloc ubyte, uint 4                   <i>; yields {ubyte*}:array1</i> | 
 |   %array2 = malloc [12 x ubyte], uint %size        <i>; yields {[12 x ubyte]*}:array2</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_free">'<tt>free</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  free <type> <value>                              <i>; yields {void}</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>free</tt>' instruction returns memory back to the unused | 
 | memory heap, to be reallocated in the future.</p> | 
 | <p> </p> | 
 | <h5>Arguments:</h5> | 
 | <p>'<tt>value</tt>' shall be a pointer value that points to a value | 
 | that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' | 
 | instruction.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Access to the memory pointed to by the pointer is no longer defined | 
 | after this instruction executes.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %array  = <a href="#i_malloc">malloc</a> [4 x ubyte]                    <i>; yields {[4 x ubyte]*}:array</i> | 
 |             free   [4 x ubyte]* %array | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_alloca">'<tt>alloca</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = alloca <type>, uint <NumElements>  <i>; yields {type*}:result</i> | 
 |   <result> = alloca <type>                      <i>; yields {type*}:result</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>alloca</tt>' instruction allocates memory on the current | 
 | stack frame of the procedure that is live until the current function | 
 | returns to its caller.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> | 
 | bytes of memory on the runtime stack, returning a pointer of the | 
 | appropriate type to the program.  The second form of the instruction is | 
 | a shorter version of the first that defaults to allocating one element.</p> | 
 | <p>'<tt>type</tt>' may be any sized type.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>Memory is allocated, a pointer is returned.  '<tt>alloca</tt>'d | 
 | memory is automatically released when the function returns.  The '<tt>alloca</tt>' | 
 | instruction is commonly used to represent automatic variables that must | 
 | have an address available.  When the function returns (either with the <tt><a | 
 |  href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt> | 
 | instructions), the memory is reclaimed.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %ptr = alloca int                              <i>; yields {int*}:ptr</i> | 
 |   %ptr = alloca int, uint 4                      <i>; yields {int*}:ptr</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = load <ty>* <pointer><br>  <result> = volatile load <ty>* <pointer><br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>load</tt>' instruction is used to read from memory.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The argument to the '<tt>load</tt>' instruction specifies the memory | 
 | address to load from.  The pointer must point to a <a | 
 |  href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is | 
 | marked as <tt>volatile</tt> then the optimizer is not allowed to modify | 
 | the number or order of execution of this <tt>load</tt> with other | 
 | volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> | 
 | instructions. </p> | 
 | <h5>Semantics:</h5> | 
 | <p>The location of memory pointed to is loaded.</p> | 
 | <h5>Examples:</h5> | 
 | <pre>  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i> | 
 |   <a | 
 |  href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i> | 
 |   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i> | 
 | </pre> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>' | 
 | Instruction</a> </div> | 
 | <h5>Syntax:</h5> | 
 | <pre>  store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i> | 
 |   volatile store <ty> <value>, <ty>* <pointer>                   <i>; yields {void}</i> | 
 | </pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>store</tt>' instruction is used to write to memory.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>There are two arguments to the '<tt>store</tt>' instruction: a value | 
 | to store and an address to store it into.  The type of the '<tt><pointer></tt>' | 
 | operand must be a pointer to the type of the '<tt><value></tt>' | 
 | operand. If the <tt>store</tt> is marked as <tt>volatile</tt> then the | 
 | optimizer is not allowed to modify the number or order of execution of | 
 | this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a | 
 |  href="#i_store">store</a></tt> instructions.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The contents of memory are updated to contain '<tt><value></tt>' | 
 | at the location specified by the '<tt><pointer></tt>' operand.</p> | 
 | <h5>Example:</h5> | 
 | <pre>  %ptr = <a href="#i_alloca">alloca</a> int                               <i>; yields {int*}:ptr</i> | 
 |   <a | 
 |  href="#i_store">store</a> int 3, int* %ptr                          <i>; yields {void}</i> | 
 |   %val = load int* %ptr                           <i>; yields {int}:val = int 3</i> | 
 | </pre> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   <result> = getelementptr <ty>* <ptrval>{, <ty> <idx>}* | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>getelementptr</tt>' instruction is used to get the address of a | 
 | subelement of an aggregate data structure.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>This instruction takes a list of integer constants that indicate what | 
 | elements of the aggregate object to index to.  The actual types of the arguments | 
 | provided depend on the type of the first pointer argument.  The | 
 | '<tt>getelementptr</tt>' instruction is used to index down through the type | 
 | levels of a structure.  When indexing into a structure, only <tt>uint</tt> | 
 | integer constants are allowed.  When indexing into an array or pointer | 
 | <tt>int</tt> and <tt>long</tt> indexes are allowed of any sign.</p> | 
 |  | 
 | <p>For example, let's consider a C code fragment and how it gets | 
 | compiled to LLVM:</p> | 
 |  | 
 | <pre> | 
 |   struct RT { | 
 |     char A; | 
 |     int B[10][20]; | 
 |     char C; | 
 |   }; | 
 |   struct ST { | 
 |     int X; | 
 |     double Y; | 
 |     struct RT Z; | 
 |   }; | 
 |  | 
 |   int *foo(struct ST *s) { | 
 |     return &s[1].Z.B[5][13]; | 
 |   } | 
 | </pre> | 
 |  | 
 | <p>The LLVM code generated by the GCC frontend is:</p> | 
 |  | 
 | <pre> | 
 |   %RT = type { sbyte, [10 x [20 x int]], sbyte } | 
 |   %ST = type { int, double, %RT } | 
 |  | 
 |   implementation | 
 |  | 
 |   int* %foo(%ST* %s) { | 
 |   entry: | 
 |     %reg = getelementptr %ST* %s, int 1, uint 2, uint 1, int 5, int 13 | 
 |     ret int* %reg | 
 |   } | 
 | </pre> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend | 
 | on the pointer type that is being index into. <a href="#t_pointer">Pointer</a> | 
 | and <a href="#t_array">array</a> types require <tt>uint</tt>, <tt>int</tt>, | 
 | <tt>ulong</tt>, or <tt>long</tt> values, and <a href="#t_struct">structure</a> | 
 | types require <tt>uint</tt> <b>constants</b>.</p> | 
 |  | 
 | <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>' | 
 | type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT | 
 | }</tt>' type, a structure.  The second index indexes into the third element of | 
 | the structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]], | 
 | sbyte }</tt>' type, another structure.  The third index indexes into the second | 
 | element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an | 
 | array.  The two dimensions of the array are subscripted into, yielding an | 
 | '<tt>int</tt>' type.  The '<tt>getelementptr</tt>' instruction return a pointer | 
 | to this element, thus computing a value of '<tt>int*</tt>' type.</p> | 
 |  | 
 | <p>Note that it is perfectly legal to index partially through a | 
 | structure, returning a pointer to an inner element.  Because of this, | 
 | the LLVM code for the given testcase is equivalent to:</p> | 
 |  | 
 | <pre> | 
 |   int* %foo(%ST* %s) { | 
 |     %t1 = getelementptr %ST* %s, int 1                        <i>; yields %ST*:%t1</i> | 
 |     %t2 = getelementptr %ST* %t1, int 0, uint 2               <i>; yields %RT*:%t2</i> | 
 |     %t3 = getelementptr %RT* %t2, int 0, uint 1               <i>; yields [10 x [20 x int]]*:%t3</i> | 
 |     %t4 = getelementptr [10 x [20 x int]]* %t3, int 0, int 5  <i>; yields [20 x int]*:%t4</i> | 
 |     %t5 = getelementptr [20 x int]* %t4, int 0, int 13        <i>; yields int*:%t5</i> | 
 |     ret int* %t5 | 
 |   } | 
 | </pre> | 
 | <h5>Example:</h5> | 
 | <pre> | 
 |     <i>; yields [12 x ubyte]*:aptr</i> | 
 |     %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, uint 1 | 
 | </pre> | 
 |  | 
 | </div> | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div> | 
 | <div class="doc_text"> | 
 | <p>The instructions in this category are the "miscellaneous" | 
 | instructions, which defy better classification.</p> | 
 | </div> | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>' | 
 | Instruction</a> </div> | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  <result> = phi <ty> [ <val0>, <label0>], ...<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>phi</tt>' instruction is used to implement the φ node in | 
 | the SSA graph representing the function.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The type of the incoming values are specified with the first type | 
 | field. After this, the '<tt>phi</tt>' instruction takes a list of pairs | 
 | as arguments, with one pair for each predecessor basic block of the | 
 | current block.  Only values of <a href="#t_firstclass">first class</a> | 
 | type may be used as the value arguments to the PHI node.  Only labels | 
 | may be used as the label arguments.</p> | 
 | <p>There must be no non-phi instructions between the start of a basic | 
 | block and the PHI instructions: i.e. PHI instructions must be first in | 
 | a basic block.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the | 
 | value specified by the parameter, depending on which basic block we | 
 | came from in the last <a href="#terminators">terminator</a> instruction.</p> | 
 | <h5>Example:</h5> | 
 | <pre>Loop:       ; Infinite loop that counts from 0 on up...<br>  %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br>  %nextindvar = add uint %indvar, 1<br>  br label %Loop<br></pre> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |    <a name="i_cast">'<tt>cast .. to</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   <result> = cast <ty> <value> to <ty2>             <i>; yields ty2</i> | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>cast</tt>' instruction is used as the primitive means to convert | 
 | integers to floating point, change data type sizes, and break type safety (by | 
 | casting pointers). | 
 | </p> | 
 |  | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>cast</tt>' instruction takes a value to cast, which must be a first | 
 | class value, and a type to cast it to, which must also be a <a | 
 | href="#t_firstclass">first class</a> type. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | This instruction follows the C rules for explicit casts when determining how the | 
 | data being cast must change to fit in its new container. | 
 | </p> | 
 |  | 
 | <p> | 
 | When casting to bool, any value that would be considered true in the context of | 
 | a C '<tt>if</tt>' condition is converted to the boolean '<tt>true</tt>' values, | 
 | all else are '<tt>false</tt>'. | 
 | </p> | 
 |  | 
 | <p> | 
 | When extending an integral value from a type of one signness to another (for | 
 | example '<tt>sbyte</tt>' to '<tt>ulong</tt>'), the value is sign-extended if the | 
 | <b>source</b> value is signed, and zero-extended if the source value is | 
 | unsigned. <tt>bool</tt> values are always zero extended into either zero or | 
 | one. | 
 | </p> | 
 |  | 
 | <h5>Example:</h5> | 
 |  | 
 | <pre> | 
 |   %X = cast int 257 to ubyte              <i>; yields ubyte:1</i> | 
 |   %Y = cast int 123 to bool               <i>; yields bool:true</i> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |    <a name="i_select">'<tt>select</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   <result> = select bool <cond>, <ty> <val1>, <ty> <val2>             <i>; yields ty</i> | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>select</tt>' instruction is used to choose one value based on a | 
 | condition, without branching. | 
 | </p> | 
 |  | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | If the boolean condition evaluates to true, the instruction returns the first | 
 | value argument, otherwise it returns the second value argument. | 
 | </p> | 
 |  | 
 | <h5>Example:</h5> | 
 |  | 
 | <pre> | 
 |   %X = select bool true, ubyte 17, ubyte 42          <i>; yields ubyte:17</i> | 
 | </pre> | 
 | </div> | 
 |  | 
 |  | 
 |  | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_call">'<tt>call</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   <result> = [tail] call [<a href="#callingconv">cconv</a>] <ty>* <fnptrval>(<param list>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>call</tt>' instruction represents a simple function call.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>This instruction requires several arguments:</p> | 
 |  | 
 | <ol> | 
 |   <li> | 
 |     <p>The optional "tail" marker indicates whether the callee function accesses | 
 |     any allocas or varargs in the caller.  If the "tail" marker is present, the | 
 |     function call is eligible for tail call optimization.  Note that calls may | 
 |     be marked "tail" even if they do not occur before a <a | 
 |     href="#i_ret"><tt>ret</tt></a> instruction. | 
 |   </li> | 
 |   <li> | 
 |     <p>The optional "cconv" marker indicates which <a href="callingconv">calling | 
 |     convention</a> the call should use.  If none is specified, the call defaults | 
 |     to using C calling conventions. | 
 |   </li> | 
 |   <li> | 
 |     <p>'<tt>ty</tt>': shall be the signature of the pointer to function value | 
 |     being invoked.  The argument types must match the types implied by this | 
 |     signature.</p> | 
 |   </li> | 
 |   <li> | 
 |     <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to | 
 |     be invoked. In most cases, this is a direct function invocation, but | 
 |     indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer | 
 |     to function values.</p> | 
 |   </li> | 
 |   <li> | 
 |     <p>'<tt>function args</tt>': argument list whose types match the | 
 |     function signature argument types. All arguments must be of  | 
 |     <a href="#t_firstclass">first class</a> type. If the function signature  | 
 |     indicates the function accepts a variable number of arguments, the extra  | 
 |     arguments can be specified.</p> | 
 |   </li> | 
 | </ol> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>call</tt>' instruction is used to cause control flow to | 
 | transfer to a specified function, with its incoming arguments bound to | 
 | the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>' | 
 | instruction in the called function, control flow continues with the | 
 | instruction after the function call, and the return value of the | 
 | function is bound to the result argument.  This is a simpler case of | 
 | the <a href="#i_invoke">invoke</a> instruction.</p> | 
 |  | 
 | <h5>Example:</h5> | 
 |  | 
 | <pre> | 
 |   %retval = call int %test(int %argc) | 
 |   call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42); | 
 |   %X = tail call int %foo() | 
 |   %Y = tail call <a href="#callingconv">fastcc</a> int %foo() | 
 | </pre> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_vanext">'<tt>vanext</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   <resultarglist> = vanext <va_list> <arglist>, <argty> | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>vanext</tt>' instruction is used to access arguments passed | 
 | through the "variable argument" area of a function call.  It is used to | 
 | implement the <tt>va_arg</tt> macro in C.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>This instruction takes a <tt>va_list</tt> value and the type of the | 
 | argument. It returns another <tt>va_list</tt>. The actual type of | 
 | <tt>va_list</tt> may be defined differently for different targets.  Most targets | 
 | use a <tt>va_list</tt> type of <tt>sbyte*</tt> or some other pointer type.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>vanext</tt>' instruction advances the specified <tt>va_list</tt> | 
 | past an argument of the specified type.  In conjunction with the <a | 
 |  href="#i_vaarg"><tt>vaarg</tt></a> instruction, it is used to implement | 
 | the <tt>va_arg</tt> macro available in C.  For more information, see | 
 | the variable argument handling <a href="#int_varargs">Intrinsic | 
 | Functions</a>.</p> | 
 |  | 
 | <p>It is legal for this instruction to be called in a function which | 
 | does not take a variable number of arguments, for example, the <tt>vfprintf</tt> | 
 | function.</p> | 
 |  | 
 | <p><tt>vanext</tt> is an LLVM instruction instead of an <a | 
 | href="#intrinsics">intrinsic function</a> because it takes a type as an | 
 | argument.  The type refers to the current argument in the <tt>va_list</tt>, it | 
 | tells the compiler how far on the stack it needs to advance to find the next | 
 | argument</p> | 
 |  | 
 | <h5>Example:</h5> | 
 |  | 
 | <p>See the <a href="#int_varargs">variable argument processing</a> | 
 | section.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_vaarg">'<tt>vaarg</tt>' Instruction</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   <resultval> = vaarg <va_list> <arglist>, <argty> | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>vaarg</tt>' instruction is used to access arguments passed through | 
 | the "variable argument" area of a function call.  It is used to implement the | 
 | <tt>va_arg</tt> macro in C.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>This instruction takes a <tt>va_list</tt> value and the type of the | 
 | argument. It returns a value of the specified argument type.  Again, the actual | 
 | type of <tt>va_list</tt> is target specific.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>vaarg</tt>' instruction loads an argument of the specified type from | 
 | the specified <tt>va_list</tt>.  In conjunction with the <a | 
 | href="#i_vanext"><tt>vanext</tt></a> instruction, it is used to implement the | 
 | <tt>va_arg</tt> macro available in C.  For more information, see the variable | 
 | argument handling <a href="#int_varargs">Intrinsic Functions</a>.</p> | 
 |  | 
 | <p>It is legal for this instruction to be called in a function which does not | 
 | take a variable number of arguments, for example, the <tt>vfprintf</tt> | 
 | function.</p> | 
 |  | 
 | <p><tt>vaarg</tt> is an LLVM instruction instead of an <a | 
 | href="#intrinsics">intrinsic function</a> because it takes an type as an | 
 | argument.</p> | 
 |  | 
 | <h5>Example:</h5> | 
 |  | 
 | <p>See the <a href="#int_varargs">variable argument processing</a> section.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>LLVM supports the notion of an "intrinsic function".  These functions have | 
 | well known names and semantics, and are required to follow certain | 
 | restrictions. Overall, these instructions represent an extension mechanism for | 
 | the LLVM language that does not require changing all of the transformations in | 
 | LLVM to add to the language (or the bytecode reader/writer, the parser, | 
 | etc...).</p> | 
 |  | 
 | <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix, this | 
 | prefix is reserved in LLVM for intrinsic names, thus functions may not be named | 
 | this.  Intrinsic functions must always be external functions: you cannot define | 
 | the body of intrinsic functions.  Intrinsic functions may only be used in call | 
 | or invoke instructions: it is illegal to take the address of an intrinsic | 
 | function.  Additionally, because intrinsic functions are part of the LLVM | 
 | language, it is required that they all be documented here if any are added.</p> | 
 |  | 
 |  | 
 | <p>To learn how to add an intrinsics, please see the <a | 
 | href="ExtendingLLVM.html">Extending LLVM Guide</a>. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_varargs">Variable Argument Handling Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Variable argument support is defined in LLVM with the <a | 
 |  href="#i_vanext"><tt>vanext</tt></a> instruction and these three | 
 | intrinsic functions.  These functions are related to the similarly | 
 | named macros defined in the <tt><stdarg.h></tt> header file.</p> | 
 |  | 
 | <p>All of these functions operate on arguments that use a | 
 | target-specific value type "<tt>va_list</tt>".  The LLVM assembly | 
 | language reference manual does not define what this type is, so all | 
 | transformations should be prepared to handle intrinsics with any type | 
 | used.</p> | 
 |  | 
 | <p>This example shows how the <a href="#i_vanext"><tt>vanext</tt></a> | 
 | instruction and the variable argument handling intrinsic functions are | 
 | used.</p> | 
 |  | 
 | <pre> | 
 | int %test(int %X, ...) { | 
 |   ; Initialize variable argument processing | 
 |   %ap = call sbyte* %<a href="#i_va_start">llvm.va_start</a>() | 
 |  | 
 |   ; Read a single integer argument | 
 |   %tmp = vaarg sbyte* %ap, int | 
 |  | 
 |   ; Advance to the next argument | 
 |   %ap2 = vanext sbyte* %ap, int | 
 |  | 
 |   ; Demonstrate usage of llvm.va_copy and llvm.va_end | 
 |   %aq = call sbyte* %<a href="#i_va_copy">llvm.va_copy</a>(sbyte* %ap2) | 
 |   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %aq) | 
 |  | 
 |   ; Stop processing of arguments. | 
 |   call void %<a href="#i_va_end">llvm.va_end</a>(sbyte* %ap2) | 
 |   ret int %tmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 |  | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  declare <va_list> %llvm.va_start()<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>llvm.va_start</tt>' intrinsic returns a new <tt><arglist></tt> | 
 | for subsequent use by the variable argument intrinsics.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> | 
 | macro available in C.  In a target-dependent way, it initializes and | 
 | returns a <tt>va_list</tt> element, so that the next <tt>vaarg</tt> | 
 | will produce the first variable argument passed to the function.  Unlike | 
 | the C <tt>va_start</tt> macro, this intrinsic does not need to know the | 
 | last argument of the function, the compiler can figure that out.</p> | 
 | <p>Note that this intrinsic function is only legal to be called from | 
 | within the body of a variable argument function.</p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |  <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <h5>Syntax:</h5> | 
 | <pre>  declare void %llvm.va_end(<va_list> <arglist>)<br></pre> | 
 | <h5>Overview:</h5> | 
 | <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt><arglist></tt> | 
 | which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt> | 
 | or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p> | 
 | <h5>Arguments:</h5> | 
 | <p>The argument is a <tt>va_list</tt> to destroy.</p> | 
 | <h5>Semantics:</h5> | 
 | <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> | 
 | macro available in C.  In a target-dependent way, it destroys the <tt>va_list</tt>. | 
 | Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a | 
 |  href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly | 
 | with calls to <tt>llvm.va_end</tt>.</p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   declare <va_list> %llvm.va_copy(<va_list> <destarglist>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position | 
 | from the source argument list to the destination argument list.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>The argument is the <tt>va_list</tt> to copy.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> | 
 | macro available in C.  In a target-dependent way, it copies the source | 
 | <tt>va_list</tt> element into the returned list.  This intrinsic is necessary | 
 | because the <tt><a href="#i_va_start">llvm.va_start</a></tt> intrinsic may be | 
 | arbitrarily complex and require memory allocation, for example.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_gc">Accurate Garbage Collection Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | LLVM support for <a href="GarbageCollection.html">Accurate Garbage | 
 | Collection</a> requires the implementation and generation of these intrinsics. | 
 | These intrinsics allow identification of <a href="#i_gcroot">GC roots on the | 
 | stack</a>, as well as garbage collector implementations that require <a | 
 | href="#i_gcread">read</a> and <a href="#i_gcwrite">write</a> barriers. | 
 | Front-ends for type-safe garbage collected languages should generate these | 
 | intrinsics to make use of the LLVM garbage collectors.  For more details, see <a | 
 | href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   declare void %llvm.gcroot(<ty>** %ptrloc, <ty2>* %metadata) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to | 
 | the code generator, and allows some metadata to be associated with it.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>The first argument specifies the address of a stack object that contains the | 
 | root pointer.  The second pointer (which must be either a constant or a global | 
 | value address) contains the meta-data to be associated with the root.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc" | 
 | location.  At compile-time, the code generator generates information to allow | 
 | the runtime to find the pointer at GC safe points. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   declare sbyte* %llvm.gcread(sbyte** %Ptr) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap | 
 | locations, allowing garbage collector implementations that require read | 
 | barriers.</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>The argument is the address to read from, which should be an address | 
 | allocated from the garbage collector.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load | 
 | instruction, but may be replaced with substantially more complex code by the | 
 | garbage collector runtime, as needed.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 |  | 
 | <pre> | 
 |   declare void %llvm.gcwrite(sbyte* %P1, sbyte** %P2) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap | 
 | locations, allowing garbage collector implementations that require write | 
 | barriers (such as generational or reference counting collectors).</p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p>The first argument is the reference to store, and the second is the heap | 
 | location to store to.</p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store | 
 | instruction, but may be replaced with substantially more complex code by the | 
 | garbage collector runtime, as needed.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_codegen">Code Generator Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | These intrinsics are provided by LLVM to expose special features that may only | 
 | be implemented with code generator support. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void* %llvm.returnaddress(uint <level>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.returnaddress</tt>' intrinsic returns a target-specific value | 
 | indicating the return address of the current function or one of its callers. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The argument to this intrinsic indicates which function to return the address | 
 | for.  Zero indicates the calling function, one indicates its caller, etc.  The | 
 | argument is <b>required</b> to be a constant integer value. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating | 
 | the return address of the specified call frame, or zero if it cannot be | 
 | identified.  The value returned by this intrinsic is likely to be incorrect or 0 | 
 | for arguments other than zero, so it should only be used for debugging purposes. | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that calling this intrinsic does not prevent function inlining or other | 
 | aggressive transformations, so the value returned may not be that of the obvious | 
 | source-language caller. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void* %llvm.frameaddress(uint <level>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.frameaddress</tt>' intrinsic returns the target-specific frame | 
 | pointer value for the specified stack frame. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The argument to this intrinsic indicates which function to return the frame | 
 | pointer for.  Zero indicates the calling function, one indicates its caller, | 
 | etc.  The argument is <b>required</b> to be a constant integer value. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating | 
 | the frame address of the specified call frame, or zero if it cannot be | 
 | identified.  The value returned by this intrinsic is likely to be incorrect or 0 | 
 | for arguments other than zero, so it should only be used for debugging purposes. | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that calling this intrinsic does not prevent function inlining or other | 
 | aggressive transformations, so the value returned may not be that of the obvious | 
 | source-language caller. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void %llvm.prefetch(sbyte * <address>, | 
 |                                 uint <rw>, uint <locality>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 |  | 
 | <p> | 
 | The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert | 
 | a prefetch instruction if supported, otherwise it is a noop.  Prefetches have no | 
 | effect on the behavior of the program, but can change its performance | 
 | characteristics. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier | 
 | determining if the fetch should be for a read (0) or write (1), and | 
 | <tt>locality</tt> is a temporal locality specifier ranging from (0) - no | 
 | locality, to (3) - extremely local keep in cache.  The <tt>rw</tt> and | 
 | <tt>locality</tt> arguments must be constant integers. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | This intrinsic does not modify the behavior of the program.  In particular, | 
 | prefetches cannot trap and do not produce a value.  On targets that support this | 
 | intrinsic, the prefetch can provide hints to the processor cache for better | 
 | performance. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void %llvm.pcmarker( uint <id> ) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 |  | 
 | <p> | 
 | The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a PC in a region of  | 
 | code to simulators and other tools.  The method is target specific, but it is  | 
 | expected that the marker will use exported symbols to transmit the PC of the marker. | 
 | The marker makes no guaranties that it will remain with any specific instruction  | 
 | after optimizations.  It is possible that the presense of a marker will inhibit  | 
 | optimizations.  The intended use is to be inserted after optmizations to allow | 
 | corrolations of simulation runs. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | <tt>id</tt> is a numerical id identifying the marker. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | This intrinsic does not modify the behavior of the program.  Backends that do not  | 
 | support this intrinisic may ignore it. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_os">Operating System Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | These intrinsics are provided by LLVM to support the implementation of | 
 | operating system level code. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_readport">'<tt>llvm.readport</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare <integer type> %llvm.readport (<integer type> <address>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.readport</tt>' intrinsic reads data from the specified hardware | 
 | I/O port. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The argument to this intrinsic indicates the hardware I/O address from which | 
 | to read the data.  The address is in the hardware I/O address namespace (as | 
 | opposed to being a memory location for memory mapped I/O). | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.readport</tt>' intrinsic reads data from the hardware I/O port | 
 | specified by <i>address</i> and returns the value.  The address and return | 
 | value must be integers, but the size is dependent upon the platform upon which | 
 | the program is code generated.  For example, on x86, the address must be an | 
 | unsigned 16-bit value, and the return value must be 8, 16, or 32 bits. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_writeport">'<tt>llvm.writeport</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   call void (<integer type>, <integer type>)* | 
 |             %llvm.writeport (<integer type> <value>, | 
 |                              <integer type> <address>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.writeport</tt>' intrinsic writes data to the specified hardware | 
 | I/O port. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The first argument is the value to write to the I/O port. | 
 | </p> | 
 |  | 
 | <p> | 
 | The second argument indicates the hardware I/O address to which data should be | 
 | written.  The address is in the hardware I/O address namespace (as opposed to | 
 | being a memory location for memory mapped I/O). | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.writeport</tt>' intrinsic writes <i>value</i> to the I/O port | 
 | specified by <i>address</i>.  The address and value must be integers, but the | 
 | size is dependent upon the platform upon which the program is code generated. | 
 | For example, on x86, the address must be an unsigned 16-bit value, and the | 
 | value written must be 8, 16, or 32 bits in length. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_readio">'<tt>llvm.readio</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare <result> %llvm.readio (<ty> * <pointer>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.readio</tt>' intrinsic reads data from a memory mapped I/O | 
 | address. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The argument to this intrinsic is a pointer indicating the memory address from | 
 | which to read the data.  The data must be a | 
 | <a href="#t_firstclass">first class</a> type. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.readio</tt>' intrinsic reads data from a memory mapped I/O | 
 | location specified by <i>pointer</i> and returns the value.  The argument must | 
 | be a pointer, and the return value must be a | 
 | <a href="#t_firstclass">first class</a> type.  However, certain architectures | 
 | may not support I/O on all first class types.  For example, 32-bit processors | 
 | may only support I/O on data types that are 32 bits or less. | 
 | </p> | 
 |  | 
 | <p> | 
 | This intrinsic enforces an in-order memory model for llvm.readio and | 
 | llvm.writeio calls on machines that use dynamic scheduling.  Dynamically | 
 | scheduled processors may execute loads and stores out of order, re-ordering at | 
 | run time accesses to memory mapped I/O registers.  Using these intrinsics | 
 | ensures that accesses to memory mapped I/O registers occur in program order. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_writeio">'<tt>llvm.writeio</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void %llvm.writeio (<ty1> <value>, <ty2> * <pointer>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.writeio</tt>' intrinsic writes data to the specified memory | 
 | mapped I/O address. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The first argument is the value to write to the memory mapped I/O location. | 
 | The second argument is a pointer indicating the memory address to which the | 
 | data should be written. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.writeio</tt>' intrinsic writes <i>value</i> to the memory mapped | 
 | I/O address specified by <i>pointer</i>.  The value must be a | 
 | <a href="#t_firstclass">first class</a> type.  However, certain architectures | 
 | may not support I/O on all first class types.  For example, 32-bit processors | 
 | may only support I/O on data types that are 32 bits or less. | 
 | </p> | 
 |  | 
 | <p> | 
 | This intrinsic enforces an in-order memory model for llvm.readio and | 
 | llvm.writeio calls on machines that use dynamic scheduling.  Dynamically | 
 | scheduled processors may execute loads and stores out of order, re-ordering at | 
 | run time accesses to memory mapped I/O registers.  Using these intrinsics | 
 | ensures that accesses to memory mapped I/O registers occur in program order. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_libc">Standard C Library Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | LLVM provides intrinsics for a few important standard C library functions. | 
 | These intrinsics allow source-language front-ends to pass information about the | 
 | alignment of the pointer arguments to the code generator, providing opportunity | 
 | for more efficient code generation. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void %llvm.memcpy(sbyte* <dest>, sbyte* <src>, | 
 |                             uint <len>, uint <align>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memcpy</tt>' intrinsic copies a block of memory from the source | 
 | location to the destination location. | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that, unlike the standard libc function, the <tt>llvm.memcpy</tt> intrinsic | 
 | does not return a value, and takes an extra alignment argument. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The first argument is a pointer to the destination, the second is a pointer to | 
 | the source.  The third argument is an (arbitrarily sized) integer argument | 
 | specifying the number of bytes to copy, and the fourth argument is the alignment | 
 | of the source and destination locations. | 
 | </p> | 
 |  | 
 | <p> | 
 | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
 | the caller guarantees that the size of the copy is a multiple of the alignment | 
 | and that both the source and destination pointers are aligned to that boundary. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memcpy</tt>' intrinsic copies a block of memory from the source | 
 | location to the destination location, which are not allowed to overlap.  It | 
 | copies "len" bytes of memory over.  If the argument is known to be aligned to | 
 | some boundary, this can be specified as the fourth argument, otherwise it should | 
 | be set to 0 or 1. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void %llvm.memmove(sbyte* <dest>, sbyte* <src>, | 
 |                              uint <len>, uint <align>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memmove</tt>' intrinsic moves a block of memory from the source | 
 | location to the destination location. It is similar to the '<tt>llvm.memcpy</tt>'  | 
 | intrinsic but allows the two memory locations to overlap. | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that, unlike the standard libc function, the <tt>llvm.memmove</tt> intrinsic | 
 | does not return a value, and takes an extra alignment argument. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The first argument is a pointer to the destination, the second is a pointer to | 
 | the source.  The third argument is an (arbitrarily sized) integer argument | 
 | specifying the number of bytes to copy, and the fourth argument is the alignment | 
 | of the source and destination locations. | 
 | </p> | 
 |  | 
 | <p> | 
 | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
 | the caller guarantees that the size of the copy is a multiple of the alignment | 
 | and that both the source and destination pointers are aligned to that boundary. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memmove</tt>' intrinsic copies a block of memory from the source | 
 | location to the destination location, which may overlap.  It | 
 | copies "len" bytes of memory over.  If the argument is known to be aligned to | 
 | some boundary, this can be specified as the fourth argument, otherwise it should | 
 | be set to 0 or 1. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_memset">'<tt>llvm.memset</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare void %llvm.memset(sbyte* <dest>, ubyte <val>, | 
 |                             uint <len>, uint <align>) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memset</tt>' intrinsic fills a block of memory with a particular | 
 | byte value. | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic | 
 | does not return a value, and takes an extra alignment argument. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The first argument is a pointer to the destination to fill, the second is the | 
 | byte value to fill it with, the third argument is an (arbitrarily sized) integer | 
 | argument specifying the number of bytes to fill, and the fourth argument is the | 
 | known alignment of destination location. | 
 | </p> | 
 |  | 
 | <p> | 
 | If the call to this intrinisic has an alignment value that is not 0 or 1, then | 
 | the caller guarantees that the size of the copy is a multiple of the alignment | 
 | and that the destination pointer is aligned to that boundary. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.memset</tt>' intrinsic fills "len" bytes of memory starting at the | 
 | destination location.  If the argument is known to be aligned to some boundary, | 
 | this can be specified as the fourth argument, otherwise it should be set to 0 or | 
 | 1. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="i_isunordered">'<tt>llvm.isunordered</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare bool %llvm.isunordered(<float or double> Val1, <float or double> Val2) | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.isunordered</tt>' intrinsic returns true if either or both of the | 
 | specified floating point values is a NAN. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The arguments are floating point numbers of the same type. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | If either or both of the arguments is a SNAN or QNAN, it returns true, otherwise | 
 | false. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_count">Bit Counting Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | LLVM provides intrinsics for a few important bit counting operations. | 
 | These allow efficient code generation for some algorithms. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="int_ctpop">'<tt>llvm.ctpop</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare int %llvm.ctpop(int <src>) | 
 |  | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.ctpop</tt>' intrinsic counts the number of ones in a variable. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The only argument is the value to be counted.  The argument may be of any | 
 | integer type.  The return type must match the argument type. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="int_cttz">'<tt>llvm.cttz</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare int %llvm.cttz(int <src>) | 
 |  | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.cttz</tt>' intrinsic counts the number of trailing zeros. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The only argument is the value to be counted.  The argument may be of any | 
 | integer type.  The return type must match the argument type. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.cttz</tt>' intrinsic counts the trailing zeros in a variable.  If | 
 | the src == 0 then the result is the size in bits of the type of src. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="int_ctlz">'<tt>llvm.ctlz</tt>' Intrinsic</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <h5>Syntax:</h5> | 
 | <pre> | 
 |   declare int %llvm.ctlz(int <src>) | 
 |  | 
 | </pre> | 
 |  | 
 | <h5>Overview:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.ctlz</tt>' intrinsic counts the number of leading zeros in a | 
 | variable. | 
 | </p> | 
 |  | 
 | <h5>Arguments:</h5> | 
 |  | 
 | <p> | 
 | The only argument is the value to be counted.  The argument may be of any | 
 | integer type. The return type must match the argument type. | 
 | </p> | 
 |  | 
 | <h5>Semantics:</h5> | 
 |  | 
 | <p> | 
 | The '<tt>llvm.ctlz</tt>' intrinsic counts the leading zeros in a variable.  If | 
 | the src == 0 then the result is the size in bits of the type of src. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="int_debugger">Debugger Intrinsics</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix), | 
 | are described in the <a | 
 | href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level | 
 | Debugging</a> document. | 
 | </p> | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <hr> | 
 | <address> | 
 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 |   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
 |   <a href="http://validator.w3.org/check/referer"><img | 
 |   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a> | 
 |  | 
 |   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
 |   <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br> | 
 |   Last modified: $Date$ | 
 | </address> | 
 | </body> | 
 | </html> |