| //===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Duraid Madina and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for IA64. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "IA64.h" |
| #include "IA64InstrBuilder.h" |
| #include "IA64RegisterInfo.h" |
| #include "IA64MachineFunctionInfo.h" |
| #include "llvm/Constants.h" // FIXME: REMOVE |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <set> |
| #include <map> |
| #include <algorithm> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // IA64TargetLowering - IA64 Implementation of the TargetLowering interface |
| namespace { |
| class IA64TargetLowering : public TargetLowering { |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area. |
| |
| //int ReturnAddrIndex; // FrameIndex for return slot. |
| unsigned GP, SP, RP; // FIXME - clean this mess up |
| public: |
| |
| unsigned VirtGPR; // this is public so it can be accessed in the selector |
| // for ISD::RET down below. add an accessor instead? FIXME |
| |
| IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) { |
| |
| // register class for general registers |
| addRegisterClass(MVT::i64, IA64::GRRegisterClass); |
| |
| // register class for FP registers |
| addRegisterClass(MVT::f64, IA64::FPRegisterClass); |
| |
| // register class for predicate registers |
| addRegisterClass(MVT::i1, IA64::PRRegisterClass); |
| |
| setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| |
| setSetCCResultType(MVT::i1); |
| setShiftAmountType(MVT::i64); |
| |
| setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote); |
| |
| setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand); |
| |
| setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); |
| setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand); |
| setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand); |
| setOperationAction(ISD::SEXTLOAD , MVT::i32 , Expand); |
| |
| setOperationAction(ISD::SREM , MVT::f32 , Expand); |
| setOperationAction(ISD::SREM , MVT::f64 , Expand); |
| |
| setOperationAction(ISD::UREM , MVT::f32 , Expand); |
| setOperationAction(ISD::UREM , MVT::f64 , Expand); |
| |
| setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| setOperationAction(ISD::MEMSET , MVT::Other, Expand); |
| setOperationAction(ISD::MEMCPY , MVT::Other, Expand); |
| |
| // We don't support sin/cos/sqrt |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f32, Expand); |
| |
| //IA64 has these, but they are not implemented |
| setOperationAction(ISD::CTTZ , MVT::i64 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i64 , Expand); |
| |
| computeRegisterProperties(); |
| |
| addLegalFPImmediate(+0.0); |
| addLegalFPImmediate(+1.0); |
| addLegalFPImmediate(-0.0); |
| addLegalFPImmediate(-1.0); |
| } |
| |
| /// LowerArguments - This hook must be implemented to indicate how we should |
| /// lower the arguments for the specified function, into the specified DAG. |
| virtual std::vector<SDOperand> |
| LowerArguments(Function &F, SelectionDAG &DAG); |
| |
| /// LowerCallTo - This hook lowers an abstract call to a function into an |
| /// actual call. |
| virtual std::pair<SDOperand, SDOperand> |
| LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, |
| SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand, SDOperand> |
| LowerVAStart(SDOperand Chain, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand,SDOperand> |
| LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, |
| const Type *ArgTy, SelectionDAG &DAG); |
| |
| virtual std::pair<SDOperand, SDOperand> |
| LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG); |
| |
| void restoreGP_SP_RP(MachineBasicBlock* BB) |
| { |
| BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP); |
| BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP); |
| BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); |
| } |
| |
| void restoreSP_RP(MachineBasicBlock* BB) |
| { |
| BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP); |
| BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); |
| } |
| |
| void restoreRP(MachineBasicBlock* BB) |
| { |
| BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP); |
| } |
| |
| void restoreGP(MachineBasicBlock* BB) |
| { |
| BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP); |
| } |
| |
| }; |
| } |
| |
| |
| std::vector<SDOperand> |
| IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { |
| std::vector<SDOperand> ArgValues; |
| |
| // |
| // add beautiful description of IA64 stack frame format |
| // here (from intel 24535803.pdf most likely) |
| // |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); |
| SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); |
| RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); |
| |
| MachineBasicBlock& BB = MF.front(); |
| |
| unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35, |
| IA64::r36, IA64::r37, IA64::r38, IA64::r39}; |
| |
| unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, |
| IA64::F12,IA64::F13,IA64::F14, IA64::F15}; |
| |
| unsigned argVreg[8]; |
| unsigned argPreg[8]; |
| unsigned argOpc[8]; |
| |
| unsigned used_FPArgs = 0; // how many FP args have been used so far? |
| |
| unsigned ArgOffset = 0; |
| int count = 0; |
| |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) |
| { |
| SDOperand newroot, argt; |
| if(count < 8) { // need to fix this logic? maybe. |
| |
| switch (getValueType(I->getType())) { |
| default: |
| std::cerr << "ERROR in LowerArgs: unknown type " |
| << getValueType(I->getType()) << "\n"; |
| abort(); |
| case MVT::f32: |
| // fixme? (well, will need to for weird FP structy stuff, |
| // see intel ABI docs) |
| case MVT::f64: |
| //XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]); |
| MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn |
| // floating point args go into f8..f15 as-needed, the increment |
| argVreg[count] = // is below..: |
| MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64)); |
| // FP args go into f8..f15 as needed: (hence the ++) |
| argPreg[count] = args_FP[used_FPArgs++]; |
| argOpc[count] = IA64::FMOV; |
| argt = newroot = DAG.getCopyFromReg(argVreg[count], |
| getValueType(I->getType()), DAG.getRoot()); |
| break; |
| case MVT::i1: // NOTE: as far as C abi stuff goes, |
| // bools are just boring old ints |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| //XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]); |
| MF.addLiveIn(args_int[count]); // mark this register as liveIn |
| argVreg[count] = |
| MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); |
| argPreg[count] = args_int[count]; |
| argOpc[count] = IA64::MOV; |
| argt = newroot = |
| DAG.getCopyFromReg(argVreg[count], MVT::i64, DAG.getRoot()); |
| if ( getValueType(I->getType()) != MVT::i64) |
| argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()), |
| newroot); |
| break; |
| } |
| } else { // more than 8 args go into the frame |
| // Create the frame index object for this incoming parameter... |
| ArgOffset = 16 + 8 * (count - 8); |
| int FI = MFI->CreateFixedObject(8, ArgOffset); |
| |
| // Create the SelectionDAG nodes corresponding to a load |
| //from this parameter |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); |
| argt = newroot = DAG.getLoad(getValueType(I->getType()), |
| DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); |
| } |
| ++count; |
| DAG.setRoot(newroot.getValue(1)); |
| ArgValues.push_back(argt); |
| } |
| |
| |
| // Create a vreg to hold the output of (what will become) |
| // the "alloc" instruction |
| VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64)); |
| BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR); |
| // we create a PSEUDO_ALLOC (pseudo)instruction for now |
| |
| BuildMI(&BB, IA64::IDEF, 0, IA64::r1); |
| |
| // hmm: |
| BuildMI(&BB, IA64::IDEF, 0, IA64::r12); |
| BuildMI(&BB, IA64::IDEF, 0, IA64::rp); |
| // ..hmm. |
| |
| BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1); |
| |
| // hmm: |
| BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12); |
| BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp); |
| // ..hmm. |
| |
| unsigned tempOffset=0; |
| |
| // if this is a varargs function, we simply lower llvm.va_start by |
| // pointing to the first entry |
| if(F.isVarArg()) { |
| tempOffset=0; |
| VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset); |
| } |
| |
| // here we actually do the moving of args, and store them to the stack |
| // too if this is a varargs function: |
| for (int i = 0; i < count && i < 8; ++i) { |
| BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]); |
| if(F.isVarArg()) { |
| // if this is a varargs function, we copy the input registers to the stack |
| int FI = MFI->CreateFixedObject(8, tempOffset); |
| tempOffset+=8; //XXX: is it safe to use r22 like this? |
| BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI); |
| // FIXME: we should use st8.spill here, one day |
| BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]); |
| } |
| } |
| |
| // Finally, inform the code generator which regs we return values in. |
| // (see the ISD::RET: case down below) |
| switch (getValueType(F.getReturnType())) { |
| default: assert(0 && "i have no idea where to return this type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| MF.addLiveOut(IA64::r8); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(IA64::F8); |
| break; |
| } |
| |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| IA64TargetLowering::LowerCallTo(SDOperand Chain, |
| const Type *RetTy, bool isVarArg, |
| unsigned CallingConv, |
| SDOperand Callee, ArgListTy &Args, |
| SelectionDAG &DAG) { |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| unsigned NumBytes = 16; |
| unsigned outRegsUsed = 0; |
| |
| if (Args.size() > 8) { |
| NumBytes += (Args.size() - 8) * 8; |
| outRegsUsed = 8; |
| } else { |
| outRegsUsed = Args.size(); |
| } |
| |
| // FIXME? this WILL fail if we ever try to pass around an arg that |
| // consumes more than a single output slot (a 'real' double, int128 |
| // some sort of aggregate etc.), as we'll underestimate how many 'outX' |
| // registers we use. Hopefully, the assembler will notice. |
| MF.getInfo<IA64FunctionInfo>()->outRegsUsed= |
| std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed); |
| |
| Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| |
| std::vector<SDOperand> args_to_use; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| { |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "unexpected argument type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| //promote to 64-bits, sign/zero extending based on type |
| //of the argument |
| if(Args[i].second->isSigned()) |
| Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, |
| Args[i].first); |
| else |
| Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64, |
| Args[i].first); |
| break; |
| case MVT::f32: |
| //promote to 64-bits |
| Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first); |
| case MVT::f64: |
| case MVT::i64: |
| break; |
| } |
| args_to_use.push_back(Args[i].first); |
| } |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| if (RetTyVT != MVT::isVoid) |
| RetVals.push_back(RetTyVT); |
| RetVals.push_back(MVT::Other); |
| |
| SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, |
| Callee, args_to_use), 0); |
| Chain = TheCall.getValue(RetTyVT != MVT::isVoid); |
| Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| return std::make_pair(TheCall, Chain); |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| IA64TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { |
| // vastart just returns the address of the VarArgsFrameIndex slot. |
| return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64), Chain); |
| } |
| |
| std::pair<SDOperand,SDOperand> IA64TargetLowering:: |
| LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, |
| const Type *ArgTy, SelectionDAG &DAG) { |
| |
| MVT::ValueType ArgVT = getValueType(ArgTy); |
| SDOperand Result; |
| if (!isVANext) { |
| Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList, DAG.getSrcValue(NULL)); |
| } else { |
| unsigned Amt; |
| if (ArgVT == MVT::i32 || ArgVT == MVT::f32) |
| Amt = 8; |
| else { |
| assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && |
| "Other types should have been promoted for varargs!"); |
| Amt = 8; |
| } |
| Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList, |
| DAG.getConstant(Amt, VAList.getValueType())); |
| } |
| return std::make_pair(Result, Chain); |
| } |
| |
| std::pair<SDOperand, SDOperand> IA64TargetLowering:: |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG) { |
| |
| assert(0 && "LowerFrameReturnAddress not done yet\n"); |
| abort(); |
| } |
| |
| |
| namespace { |
| |
| //===--------------------------------------------------------------------===// |
| /// ISel - IA64 specific code to select IA64 machine instructions for |
| /// SelectionDAG operations. |
| /// |
| class ISel : public SelectionDAGISel { |
| /// IA64Lowering - This object fully describes how to lower LLVM code to an |
| /// IA64-specific SelectionDAG. |
| IA64TargetLowering IA64Lowering; |
| SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform |
| // for sdiv and udiv until it is put into the future |
| // dag combiner |
| |
| /// ExprMap - As shared expressions are codegen'd, we keep track of which |
| /// vreg the value is produced in, so we only emit one copy of each compiled |
| /// tree. |
| std::map<SDOperand, unsigned> ExprMap; |
| std::set<SDOperand> LoweredTokens; |
| |
| public: |
| ISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM), |
| ISelDAG(0) { } |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); |
| |
| unsigned SelectExpr(SDOperand N); |
| void Select(SDOperand N); |
| // a dag->dag to transform mul-by-constant-int to shifts+adds/subs |
| SDOperand BuildConstmulSequence(SDOperand N); |
| |
| }; |
| } |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel |
| /// when it has created a SelectionDAG for us to codegen. |
| void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { |
| |
| // Codegen the basic block. |
| ISelDAG = &DAG; |
| Select(DAG.getRoot()); |
| |
| // Clear state used for selection. |
| ExprMap.clear(); |
| LoweredTokens.clear(); |
| ISelDAG = 0; |
| } |
| |
| // strip leading '0' characters from a string |
| void munchLeadingZeros(std::string& inString) { |
| while(inString.c_str()[0]=='0') { |
| inString.erase(0, 1); |
| } |
| } |
| |
| // strip trailing '0' characters from a string |
| void munchTrailingZeros(std::string& inString) { |
| int curPos=inString.length()-1; |
| |
| while(inString.c_str()[curPos]=='0') { |
| inString.erase(curPos, 1); |
| curPos--; |
| } |
| } |
| |
| // return how many consecutive '0' characters are at the end of a string |
| unsigned int countTrailingZeros(std::string& inString) { |
| int curPos=inString.length()-1; |
| unsigned int zeroCount=0; |
| // assert goes here |
| while(inString.c_str()[curPos--]=='0') { |
| zeroCount++; |
| } |
| return zeroCount; |
| } |
| |
| // booth encode a string of '1' and '0' characters (returns string of 'P' (+1) |
| // '0' and 'N' (-1) characters) |
| void boothEncode(std::string inString, std::string& boothEncodedString) { |
| |
| int curpos=0; |
| int replacements=0; |
| int lim=inString.size(); |
| |
| while(curpos<lim) { |
| if(inString[curpos]=='1') { // if we see a '1', look for a run of them |
| int runlength=0; |
| std::string replaceString="N"; |
| |
| // find the run length |
| for(;inString[curpos+runlength]=='1';runlength++) ; |
| |
| for(int i=0; i<runlength-1; i++) |
| replaceString+="0"; |
| replaceString+="1"; |
| |
| if(runlength>1) { |
| inString.replace(curpos, runlength+1, replaceString); |
| curpos+=runlength-1; |
| } else |
| curpos++; |
| } else { // a zero, we just keep chugging along |
| curpos++; |
| } |
| } |
| |
| // clean up (trim the string, reverse it and turn '1's into 'P's) |
| munchTrailingZeros(inString); |
| boothEncodedString=""; |
| |
| for(int i=inString.size()-1;i>=0;i--) |
| if(inString[i]=='1') |
| boothEncodedString+="P"; |
| else |
| boothEncodedString+=inString[i]; |
| |
| } |
| |
| struct shiftaddblob { // this encodes stuff like (x=) "A << B [+-] C << D" |
| unsigned firstVal; // A |
| unsigned firstShift; // B |
| unsigned secondVal; // C |
| unsigned secondShift; // D |
| bool isSub; |
| }; |
| |
| /* this implements Lefevre's "pattern-based" constant multiplication, |
| * see "Multiplication by an Integer Constant", INRIA report 1999-06 |
| * |
| * TODO: implement a method to try rewriting P0N<->0PP / N0P<->0NN |
| * to get better booth encodings - this does help in practice |
| * TODO: weight shifts appropriately (most architectures can't |
| * fuse a shift and an add for arbitrary shift amounts) */ |
| unsigned lefevre(const std::string inString, |
| std::vector<struct shiftaddblob> &ops) { |
| std::string retstring; |
| std::string s = inString; |
| munchTrailingZeros(s); |
| |
| int length=s.length()-1; |
| |
| if(length==0) { |
| return(0); |
| } |
| |
| std::vector<int> p,n; |
| |
| for(int i=0; i<=length; i++) { |
| if (s.c_str()[length-i]=='P') { |
| p.push_back(i); |
| } else if (s.c_str()[length-i]=='N') { |
| n.push_back(i); |
| } |
| } |
| |
| std::string t, u; |
| int c; |
| bool f; |
| std::map<const int, int> w; |
| |
| for(unsigned i=0; i<p.size(); i++) { |
| for(unsigned j=0; j<i; j++) { |
| w[p[i]-p[j]]++; |
| } |
| } |
| |
| for(unsigned i=1; i<n.size(); i++) { |
| for(unsigned j=0; j<i; j++) { |
| w[n[i]-n[j]]++; |
| } |
| } |
| |
| for(unsigned i=0; i<p.size(); i++) { |
| for(unsigned j=0; j<n.size(); j++) { |
| w[-abs(p[i]-n[j])]++; |
| } |
| } |
| |
| std::map<const int, int>::const_iterator ii; |
| std::vector<int> d; |
| std::multimap<int, int> sorted_by_value; |
| |
| for(ii = w.begin(); ii!=w.end(); ii++) |
| sorted_by_value.insert(std::pair<int, int>((*ii).second,(*ii).first)); |
| |
| for (std::multimap<int, int>::iterator it = sorted_by_value.begin(); |
| it != sorted_by_value.end(); ++it) { |
| d.push_back((*it).second); |
| } |
| |
| int int_W=0; |
| int int_d; |
| |
| while(d.size()>0 && (w[int_d=d.back()] > int_W)) { |
| d.pop_back(); |
| retstring=s; // hmmm |
| int x=0; |
| int z=abs(int_d)-1; |
| |
| if(int_d>0) { |
| |
| for(unsigned base=0; base<retstring.size(); base++) { |
| if( ((base+z+1) < retstring.size()) && |
| retstring.c_str()[base]=='P' && |
| retstring.c_str()[base+z+1]=='P') |
| { |
| // match |
| x++; |
| retstring.replace(base, 1, "0"); |
| retstring.replace(base+z+1, 1, "p"); |
| } |
| } |
| |
| for(unsigned base=0; base<retstring.size(); base++) { |
| if( ((base+z+1) < retstring.size()) && |
| retstring.c_str()[base]=='N' && |
| retstring.c_str()[base+z+1]=='N') |
| { |
| // match |
| x++; |
| retstring.replace(base, 1, "0"); |
| retstring.replace(base+z+1, 1, "n"); |
| } |
| } |
| |
| } else { |
| for(unsigned base=0; base<retstring.size(); base++) { |
| if( ((base+z+1) < retstring.size()) && |
| ((retstring.c_str()[base]=='P' && |
| retstring.c_str()[base+z+1]=='N') || |
| (retstring.c_str()[base]=='N' && |
| retstring.c_str()[base+z+1]=='P')) ) { |
| // match |
| x++; |
| |
| if(retstring.c_str()[base]=='P') { |
| retstring.replace(base, 1, "0"); |
| retstring.replace(base+z+1, 1, "p"); |
| } else { // retstring[base]=='N' |
| retstring.replace(base, 1, "0"); |
| retstring.replace(base+z+1, 1, "n"); |
| } |
| } |
| } |
| } |
| |
| if(x>int_W) { |
| int_W = x; |
| t = retstring; |
| c = int_d; // tofix |
| } |
| |
| } d.pop_back(); // hmm |
| |
| u = t; |
| |
| for(unsigned i=0; i<t.length(); i++) { |
| if(t.c_str()[i]=='p' || t.c_str()[i]=='n') |
| t.replace(i, 1, "0"); |
| } |
| |
| for(unsigned i=0; i<u.length(); i++) { |
| if(u[i]=='P' || u[i]=='N') |
| u.replace(i, 1, "0"); |
| if(u[i]=='p') |
| u.replace(i, 1, "P"); |
| if(u[i]=='n') |
| u.replace(i, 1, "N"); |
| } |
| |
| if( c<0 ) { |
| f=true; |
| c=-c; |
| } else |
| f=false; |
| |
| int pos=0; |
| while(u[pos]=='0') |
| pos++; |
| |
| bool hit=(u[pos]=='N'); |
| |
| int g=0; |
| if(hit) { |
| g=1; |
| for(unsigned p=0; p<u.length(); p++) { |
| bool isP=(u[p]=='P'); |
| bool isN=(u[p]=='N'); |
| |
| if(isP) |
| u.replace(p, 1, "N"); |
| if(isN) |
| u.replace(p, 1, "P"); |
| } |
| } |
| |
| munchLeadingZeros(u); |
| |
| int i = lefevre(u, ops); |
| |
| shiftaddblob blob; |
| |
| blob.firstVal=i; blob.firstShift=c; |
| blob.isSub=f; |
| blob.secondVal=i; blob.secondShift=0; |
| |
| ops.push_back(blob); |
| |
| i = ops.size(); |
| |
| munchLeadingZeros(t); |
| |
| if(t.length()==0) |
| return i; |
| |
| if(t.c_str()[0]!='P') { |
| g=2; |
| for(unsigned p=0; p<t.length(); p++) { |
| bool isP=(t.c_str()[p]=='P'); |
| bool isN=(t.c_str()[p]=='N'); |
| |
| if(isP) |
| t.replace(p, 1, "N"); |
| if(isN) |
| t.replace(p, 1, "P"); |
| } |
| } |
| |
| int j = lefevre(t, ops); |
| |
| int trail=countTrailingZeros(u); |
| blob.secondVal=i; blob.secondShift=trail; |
| |
| trail=countTrailingZeros(t); |
| blob.firstVal=j; blob.firstShift=trail; |
| |
| switch(g) { |
| case 0: |
| blob.isSub=false; // first + second |
| break; |
| case 1: |
| blob.isSub=true; // first - second |
| break; |
| case 2: |
| blob.isSub=true; // second - first |
| int tmpval, tmpshift; |
| tmpval=blob.firstVal; |
| tmpshift=blob.firstShift; |
| blob.firstVal=blob.secondVal; |
| blob.firstShift=blob.secondShift; |
| blob.secondVal=tmpval; |
| blob.secondShift=tmpshift; |
| break; |
| //assert |
| } |
| |
| ops.push_back(blob); |
| return ops.size(); |
| } |
| |
| SDOperand ISel::BuildConstmulSequence(SDOperand N) { |
| //FIXME: we should shortcut this stuff for multiplies by 2^n+1 |
| // in particular, *3 is nicer as *2+1, not *4-1 |
| int64_t constant=cast<ConstantSDNode>(N.getOperand(1))->getValue(); |
| |
| bool flippedSign; |
| unsigned preliminaryShift=0; |
| |
| assert(constant != 0 && "erk, you're trying to multiply by constant zero\n"); |
| |
| // first, we make the constant to multiply by positive |
| if(constant<0) { |
| constant=-constant; |
| flippedSign=true; |
| } else { |
| flippedSign=false; |
| } |
| |
| // next, we make it odd. |
| for(; (constant%2==0); preliminaryShift++) |
| constant>>=1; |
| |
| //OK, we have a positive, odd number of 64 bits or less. Convert it |
| //to a binary string, constantString[0] is the LSB |
| char constantString[65]; |
| for(int i=0; i<64; i++) |
| constantString[i]='0'+((constant>>i)&0x1); |
| constantString[64]=0; |
| |
| // now, Booth encode it |
| std::string boothEncodedString; |
| boothEncode(constantString, boothEncodedString); |
| |
| std::vector<struct shiftaddblob> ops; |
| // do the transformation, filling out 'ops' |
| lefevre(boothEncodedString, ops); |
| |
| SDOperand results[ops.size()]; // temporary results (of adds/subs of shifts) |
| |
| // now turn 'ops' into DAG bits |
| for(unsigned i=0; i<ops.size(); i++) { |
| SDOperand amt = ISelDAG->getConstant(ops[i].firstShift, MVT::i64); |
| SDOperand val = (ops[i].firstVal == 0) ? N.getOperand(0) : |
| results[ops[i].firstVal-1]; |
| SDOperand left = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt); |
| amt = ISelDAG->getConstant(ops[i].secondShift, MVT::i64); |
| val = (ops[i].secondVal == 0) ? N.getOperand(0) : |
| results[ops[i].secondVal-1]; |
| SDOperand right = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt); |
| if(ops[i].isSub) |
| results[i] = ISelDAG->getNode(ISD::SUB, MVT::i64, left, right); |
| else |
| results[i] = ISelDAG->getNode(ISD::ADD, MVT::i64, left, right); |
| } |
| |
| // don't forget flippedSign and preliminaryShift! |
| SDOperand shiftedresult; |
| if(preliminaryShift) { |
| SDOperand finalshift = ISelDAG->getConstant(preliminaryShift, MVT::i64); |
| shiftedresult = ISelDAG->getNode(ISD::SHL, MVT::i64, |
| results[ops.size()-1], finalshift); |
| } else { // there was no preliminary divide-by-power-of-2 required |
| shiftedresult = results[ops.size()-1]; |
| } |
| |
| SDOperand finalresult; |
| if(flippedSign) { // if we were multiplying by a negative constant: |
| SDOperand zero = ISelDAG->getConstant(0, MVT::i64); |
| // subtract the result from 0 to flip its sign |
| finalresult = ISelDAG->getNode(ISD::SUB, MVT::i64, zero, shiftedresult); |
| } else { // there was no preliminary multiply by -1 required |
| finalresult = shiftedresult; |
| } |
| |
| return finalresult; |
| } |
| |
| /// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It |
| /// returns zero when the input is not exactly a power of two. |
| static unsigned ExactLog2(uint64_t Val) { |
| if (Val == 0 || (Val & (Val-1))) return 0; |
| unsigned Count = 0; |
| while (Val != 1) { |
| Val >>= 1; |
| ++Count; |
| } |
| return Count; |
| } |
| |
| /// ExactLog2sub1 - This function solves for (Val == (1 << (N-1))-1) |
| /// and returns N. It returns 666 if Val is not 2^n -1 for some n. |
| static unsigned ExactLog2sub1(uint64_t Val) { |
| unsigned int n; |
| for(n=0; n<64; n++) { |
| if(Val==(uint64_t)((1LL<<n)-1)) |
| return n; |
| } |
| return 666; |
| } |
| |
| /// ponderIntegerDivisionBy - When handling integer divides, if the divide |
| /// is by a constant such that we can efficiently codegen it, this |
| /// function says what to do. Currently, it returns 0 if the division must |
| /// become a genuine divide, and 1 if the division can be turned into a |
| /// right shift. |
| static unsigned ponderIntegerDivisionBy(SDOperand N, bool isSigned, |
| unsigned& Imm) { |
| if (N.getOpcode() != ISD::Constant) return 0; // if not a divide by |
| // a constant, give up. |
| |
| int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); |
| |
| if ((Imm = ExactLog2(v))) { // if a division by a power of two, say so |
| return 1; |
| } |
| |
| return 0; // fallthrough |
| } |
| |
| static unsigned ponderIntegerAndWith(SDOperand N, unsigned& Imm) { |
| if (N.getOpcode() != ISD::Constant) return 0; // if not ANDing with |
| // a constant, give up. |
| |
| int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); |
| |
| if ((Imm = ExactLog2sub1(v))!=666) { // if ANDing with ((2^n)-1) for some n |
| return 1; // say so |
| } |
| |
| return 0; // fallthrough |
| } |
| |
| static unsigned ponderIntegerAdditionWith(SDOperand N, unsigned& Imm) { |
| if (N.getOpcode() != ISD::Constant) return 0; // if not adding a |
| // constant, give up. |
| int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); |
| |
| if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so |
| Imm = v & 0x3FFF; // 14 bits |
| return 1; |
| } |
| return 0; // fallthrough |
| } |
| |
| static unsigned ponderIntegerSubtractionFrom(SDOperand N, unsigned& Imm) { |
| if (N.getOpcode() != ISD::Constant) return 0; // if not subtracting a |
| // constant, give up. |
| int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended(); |
| |
| if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so |
| Imm = v & 0xFF; // 8 bits |
| return 1; |
| } |
| return 0; // fallthrough |
| } |
| |
| unsigned ISel::SelectExpr(SDOperand N) { |
| unsigned Result; |
| unsigned Tmp1, Tmp2, Tmp3; |
| unsigned Opc = 0; |
| MVT::ValueType DestType = N.getValueType(); |
| |
| unsigned opcode = N.getOpcode(); |
| |
| SDNode *Node = N.Val; |
| SDOperand Op0, Op1; |
| |
| if (Node->getOpcode() == ISD::CopyFromReg) |
| // Just use the specified register as our input. |
| return dyn_cast<RegSDNode>(Node)->getReg(); |
| |
| unsigned &Reg = ExprMap[N]; |
| if (Reg) return Reg; |
| |
| if (N.getOpcode() != ISD::CALL) |
| Reg = Result = (N.getValueType() != MVT::Other) ? |
| MakeReg(N.getValueType()) : 1; |
| else { |
| // If this is a call instruction, make sure to prepare ALL of the result |
| // values as well as the chain. |
| if (Node->getNumValues() == 1) |
| Reg = Result = 1; // Void call, just a chain. |
| else { |
| Result = MakeReg(Node->getValueType(0)); |
| ExprMap[N.getValue(0)] = Result; |
| for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) |
| ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); |
| ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; |
| } |
| } |
| |
| switch (N.getOpcode()) { |
| default: |
| Node->dump(); |
| assert(0 && "Node not handled!\n"); |
| |
| case ISD::FrameIndex: { |
| Tmp1 = cast<FrameIndexSDNode>(N)->getIndex(); |
| BuildMI(BB, IA64::MOV, 1, Result).addFrameIndex(Tmp1); |
| return Result; |
| } |
| |
| case ISD::ConstantPool: { |
| Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex(); |
| IA64Lowering.restoreGP(BB); // FIXME: do i really need this? |
| BuildMI(BB, IA64::ADD, 2, Result).addConstantPoolIndex(Tmp1) |
| .addReg(IA64::r1); |
| return Result; |
| } |
| |
| case ISD::ConstantFP: { |
| Tmp1 = Result; // Intermediate Register |
| if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 || |
| cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) |
| Tmp1 = MakeReg(MVT::f64); |
| |
| if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) || |
| cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0)) |
| BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F0); // load 0.0 |
| else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) || |
| cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0)) |
| BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F1); // load 1.0 |
| else |
| assert(0 && "Unexpected FP constant!"); |
| if (Tmp1 != Result) |
| // we multiply by +1.0, negate (this is FNMA), and then add 0.0 |
| BuildMI(BB, IA64::FNMA, 3, Result).addReg(Tmp1).addReg(IA64::F1) |
| .addReg(IA64::F0); |
| return Result; |
| } |
| |
| case ISD::DYNAMIC_STACKALLOC: { |
| // Generate both result values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| // FIXME: We are currently ignoring the requested alignment for handling |
| // greater than the stack alignment. This will need to be revisited at some |
| // point. Align = N.getOperand(2); |
| |
| if (!isa<ConstantSDNode>(N.getOperand(2)) || |
| cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) { |
| std::cerr << "Cannot allocate stack object with greater alignment than" |
| << " the stack alignment yet!"; |
| abort(); |
| } |
| |
| /* |
| Select(N.getOperand(0)); |
| if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) |
| { |
| if (CN->getValue() < 32000) |
| { |
| BuildMI(BB, IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12) |
| .addImm(-CN->getValue()); |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); |
| } |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); |
| } |
| */ |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1); |
| // Put a pointer to the space into the result register, by copying the |
| // stack pointer. |
| BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12); |
| return Result; |
| } |
| |
| case ISD::SELECT: { |
| Tmp1 = SelectExpr(N.getOperand(0)); //Cond |
| Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE |
| Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE |
| |
| unsigned bogoResult; |
| |
| switch (N.getOperand(1).getValueType()) { |
| default: assert(0 && |
| "ISD::SELECT: 'select'ing something other than i1, i64 or f64!\n"); |
| // for i1, we load the condition into an integer register, then |
| // conditionally copy Tmp2 and Tmp3 to Tmp1 in parallel (only one |
| // of them will go through, since the integer register will hold |
| // either 0 or 1) |
| case MVT::i1: { |
| bogoResult=MakeReg(MVT::i1); |
| |
| // load the condition into an integer register |
| unsigned condReg=MakeReg(MVT::i64); |
| unsigned dummy=MakeReg(MVT::i64); |
| BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0); |
| BuildMI(BB, IA64::TPCADDIMM22, 2, condReg).addReg(dummy) |
| .addImm(1).addReg(Tmp1); |
| |
| // initialize Result (bool) to false (hence UNC) and if |
| // the select condition (condReg) is false (0), copy Tmp3 |
| BuildMI(BB, IA64::PCMPEQUNC, 3, bogoResult) |
| .addReg(condReg).addReg(IA64::r0).addReg(Tmp3); |
| |
| // now, if the selection condition is true, write 1 to the |
| // result if Tmp2 is 1 |
| BuildMI(BB, IA64::TPCMPNE, 3, Result).addReg(bogoResult) |
| .addReg(condReg).addReg(IA64::r0).addReg(Tmp2); |
| break; |
| } |
| // for i64/f64, we just copy Tmp3 and then conditionally overwrite it |
| // with Tmp2 if Tmp1 is true |
| case MVT::i64: |
| bogoResult=MakeReg(MVT::i64); |
| BuildMI(BB, IA64::MOV, 1, bogoResult).addReg(Tmp3); |
| BuildMI(BB, IA64::CMOV, 2, Result).addReg(bogoResult).addReg(Tmp2) |
| .addReg(Tmp1); |
| break; |
| case MVT::f64: |
| bogoResult=MakeReg(MVT::f64); |
| BuildMI(BB, IA64::FMOV, 1, bogoResult).addReg(Tmp3); |
| BuildMI(BB, IA64::CFMOV, 2, Result).addReg(bogoResult).addReg(Tmp2) |
| .addReg(Tmp1); |
| break; |
| } |
| |
| return Result; |
| } |
| |
| case ISD::Constant: { |
| unsigned depositPos=0; |
| unsigned depositLen=0; |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot use constants of this type!"); |
| case MVT::i1: { // if a bool, we don't 'load' so much as generate |
| // the constant: |
| if(cast<ConstantSDNode>(N)->getValue()) // true: |
| BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(IA64::r0).addReg(IA64::r0); |
| else // false: |
| BuildMI(BB, IA64::CMPNE, 2, Result).addReg(IA64::r0).addReg(IA64::r0); |
| return Result; // early exit |
| } |
| case MVT::i64: break; |
| } |
| |
| int64_t immediate = cast<ConstantSDNode>(N)->getValue(); |
| |
| if(immediate==0) { // if the constant is just zero, |
| BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r0); // just copy r0 |
| return Result; // early exit |
| } |
| |
| if (immediate <= 8191 && immediate >= -8192) { |
| // if this constants fits in 14 bits, we use a mov the assembler will |
| // turn into: "adds rDest=imm,r0" (and _not_ "andl"...) |
| BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate); |
| return Result; // early exit |
| } |
| |
| if (immediate <= 2097151 && immediate >= -2097152) { |
| // if this constants fits in 22 bits, we use a mov the assembler will |
| // turn into: "addl rDest=imm,r0" |
| BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate); |
| return Result; // early exit |
| } |
| |
| /* otherwise, our immediate is big, so we use movl */ |
| uint64_t Imm = immediate; |
| BuildMI(BB, IA64::MOVLIMM64, 1, Result).addImm64(Imm); |
| return Result; |
| } |
| |
| case ISD::UNDEF: { |
| BuildMI(BB, IA64::IDEF, 0, Result); |
| return Result; |
| } |
| |
| case ISD::GlobalAddress: { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal(); |
| unsigned Tmp1 = MakeReg(MVT::i64); |
| |
| BuildMI(BB, IA64::ADD, 2, Tmp1).addGlobalAddress(GV).addReg(IA64::r1); |
| BuildMI(BB, IA64::LD8, 1, Result).addReg(Tmp1); |
| |
| return Result; |
| } |
| |
| case ISD::ExternalSymbol: { |
| const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol(); |
| // assert(0 && "sorry, but what did you want an ExternalSymbol for again?"); |
| BuildMI(BB, IA64::MOV, 1, Result).addExternalSymbol(Sym); // XXX |
| return Result; |
| } |
| |
| case ISD::FP_EXTEND: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, IA64::FMOV, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| case ISD::ZERO_EXTEND: { |
| Tmp1 = SelectExpr(N.getOperand(0)); // value |
| |
| switch (N.getOperand(0).getValueType()) { |
| default: assert(0 && "Cannot zero-extend this type!"); |
| case MVT::i8: Opc = IA64::ZXT1; break; |
| case MVT::i16: Opc = IA64::ZXT2; break; |
| case MVT::i32: Opc = IA64::ZXT4; break; |
| |
| // we handle bools differently! : |
| case MVT::i1: { // if the predicate reg has 1, we want a '1' in our GR. |
| unsigned dummy = MakeReg(MVT::i64); |
| // first load zero: |
| BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0); |
| // ...then conditionally (PR:Tmp1) add 1: |
| BuildMI(BB, IA64::TPCADDIMM22, 2, Result).addReg(dummy) |
| .addImm(1).addReg(Tmp1); |
| return Result; // XXX early exit! |
| } |
| } |
| |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| case ISD::SIGN_EXTEND: { // we should only have to handle i1 -> i64 here!!! |
| |
| assert(0 && "hmm, ISD::SIGN_EXTEND: shouldn't ever be reached. bad luck!\n"); |
| |
| Tmp1 = SelectExpr(N.getOperand(0)); // value |
| |
| switch (N.getOperand(0).getValueType()) { |
| default: assert(0 && "Cannot sign-extend this type!"); |
| case MVT::i1: assert(0 && "trying to sign extend a bool? ow.\n"); |
| Opc = IA64::SXT1; break; |
| // FIXME: for now, we treat bools the same as i8s |
| case MVT::i8: Opc = IA64::SXT1; break; |
| case MVT::i16: Opc = IA64::SXT2; break; |
| case MVT::i32: Opc = IA64::SXT4; break; |
| } |
| |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| case ISD::TRUNCATE: { |
| // we use the funky dep.z (deposit (zero)) instruction to deposit bits |
| // of R0 appropriately. |
| switch (N.getOperand(0).getValueType()) { |
| default: assert(0 && "Unknown truncate!"); |
| case MVT::i64: break; |
| } |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| unsigned depositPos, depositLen; |
| |
| switch (N.getValueType()) { |
| default: assert(0 && "Unknown truncate!"); |
| case MVT::i1: { |
| // if input (normal reg) is 0, 0!=0 -> false (0), if 1, 1!=0 ->true (1): |
| BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1) |
| .addReg(IA64::r0); |
| return Result; // XXX early exit! |
| } |
| case MVT::i8: depositPos=0; depositLen=8; break; |
| case MVT::i16: depositPos=0; depositLen=16; break; |
| case MVT::i32: depositPos=0; depositLen=32; break; |
| } |
| BuildMI(BB, IA64::DEPZ, 1, Result).addReg(Tmp1) |
| .addImm(depositPos).addImm(depositLen); |
| return Result; |
| } |
| |
| /* |
| case ISD::FP_ROUND: { |
| assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 && |
| "error: trying to FP_ROUND something other than f64 -> f32!\n"); |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, IA64::FADDS, 2, Result).addReg(Tmp1).addReg(IA64::F0); |
| // we add 0.0 using a single precision add to do rounding |
| return Result; |
| } |
| */ |
| |
| // FIXME: the following 4 cases need cleaning |
| case ISD::SINT_TO_FP: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = MakeReg(MVT::f64); |
| unsigned dummy = MakeReg(MVT::f64); |
| BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1); |
| BuildMI(BB, IA64::FCVTXF, 1, dummy).addReg(Tmp2); |
| BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy); |
| return Result; |
| } |
| |
| case ISD::UINT_TO_FP: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = MakeReg(MVT::f64); |
| unsigned dummy = MakeReg(MVT::f64); |
| BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1); |
| BuildMI(BB, IA64::FCVTXUF, 1, dummy).addReg(Tmp2); |
| BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy); |
| return Result; |
| } |
| |
| case ISD::FP_TO_SINT: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = MakeReg(MVT::f64); |
| BuildMI(BB, IA64::FCVTFXTRUNC, 1, Tmp2).addReg(Tmp1); |
| BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2); |
| return Result; |
| } |
| |
| case ISD::FP_TO_UINT: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = MakeReg(MVT::f64); |
| BuildMI(BB, IA64::FCVTFXUTRUNC, 1, Tmp2).addReg(Tmp1); |
| BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2); |
| return Result; |
| } |
| |
| case ISD::ADD: { |
| if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL && |
| N.getOperand(0).Val->hasOneUse()) { // if we can fold this add |
| // into an fma, do so: |
| // ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::FMA, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| return Result; // early exit |
| } |
| |
| if(DestType != MVT::f64 && N.getOperand(0).getOpcode() == ISD::SHL && |
| N.getOperand(0).Val->hasOneUse()) { // if we might be able to fold |
| // this add into a shladd, try: |
| ConstantSDNode *CSD = NULL; |
| if((CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) && |
| (CSD->getValue() >= 1) && (CSD->getValue() <= 4) ) { // we can: |
| |
| // ++FusedSHLADD; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| int shl_amt = CSD->getValue(); |
| Tmp3 = SelectExpr(N.getOperand(1)); |
| |
| BuildMI(BB, IA64::SHLADD, 3, Result) |
| .addReg(Tmp1).addImm(shl_amt).addReg(Tmp3); |
| return Result; // early exit |
| } |
| } |
| |
| //else, fallthrough: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if(DestType != MVT::f64) { // integer addition: |
| switch (ponderIntegerAdditionWith(N.getOperand(1), Tmp3)) { |
| case 1: // adding a constant that's 14 bits |
| BuildMI(BB, IA64::ADDIMM14, 2, Result).addReg(Tmp1).addSImm(Tmp3); |
| return Result; // early exit |
| } // fallthrough and emit a reg+reg ADD: |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } else { // this is a floating point addition |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::FADD, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| } |
| |
| case ISD::MUL: { |
| |
| if(DestType != MVT::f64) { // TODO: speed! |
| if(N.getOperand(1).getOpcode() != ISD::Constant) { // if not a const mul |
| // boring old integer multiply with xma |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| |
| unsigned TempFR1=MakeReg(MVT::f64); |
| unsigned TempFR2=MakeReg(MVT::f64); |
| unsigned TempFR3=MakeReg(MVT::f64); |
| BuildMI(BB, IA64::SETFSIG, 1, TempFR1).addReg(Tmp1); |
| BuildMI(BB, IA64::SETFSIG, 1, TempFR2).addReg(Tmp2); |
| BuildMI(BB, IA64::XMAL, 1, TempFR3).addReg(TempFR1).addReg(TempFR2) |
| .addReg(IA64::F0); |
| BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TempFR3); |
| return Result; // early exit |
| } else { // we are multiplying by an integer constant! yay |
| return Reg = SelectExpr(BuildConstmulSequence(N)); // avert your eyes! |
| } |
| } |
| else { // floating point multiply |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| return Result; |
| } |
| } |
| |
| case ISD::SUB: { |
| if(DestType == MVT::f64 && N.getOperand(0).getOpcode() == ISD::MUL && |
| N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub |
| // into an fms, do so: |
| // ++FusedFP; // Statistic |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); |
| Tmp3 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::FMS, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); |
| return Result; // early exit |
| } |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| if(DestType != MVT::f64) { // integer subtraction: |
| switch (ponderIntegerSubtractionFrom(N.getOperand(0), Tmp3)) { |
| case 1: // subtracting *from* an 8 bit constant: |
| BuildMI(BB, IA64::SUBIMM8, 2, Result).addSImm(Tmp3).addReg(Tmp2); |
| return Result; // early exit |
| } // fallthrough and emit a reg+reg SUB: |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, IA64::SUB, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } else { // this is a floating point subtraction |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, IA64::FSUB, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| } |
| |
| case ISD::FABS: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| assert(DestType == MVT::f64 && "trying to fabs something other than f64?"); |
| BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| case ISD::FNEG: { |
| assert(DestType == MVT::f64 && "trying to fneg something other than f64?"); |
| |
| if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()? |
| Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); |
| BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs |
| } else { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, IA64::FNEG, 1, Result).addReg(Tmp1); // plain old fneg |
| } |
| |
| return Result; |
| } |
| |
| case ISD::AND: { |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot AND this type!"); |
| case MVT::i1: { // if a bool, we emit a pseudocode AND |
| unsigned pA = SelectExpr(N.getOperand(0)); |
| unsigned pB = SelectExpr(N.getOperand(1)); |
| |
| /* our pseudocode for AND is: |
| * |
| (pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA |
| cmp.eq pTemp,p0 = r0,r0 // pTemp = NOT pB |
| ;; |
| (pB) cmp.ne pTemp,p0 = r0,r0 |
| ;; |
| (pTemp)cmp.ne pC,p0 = r0,r0 // if (NOT pB) pC = 0 |
| |
| */ |
| unsigned pTemp = MakeReg(MVT::i1); |
| |
| unsigned bogusTemp1 = MakeReg(MVT::i1); |
| unsigned bogusTemp2 = MakeReg(MVT::i1); |
| unsigned bogusTemp3 = MakeReg(MVT::i1); |
| unsigned bogusTemp4 = MakeReg(MVT::i1); |
| |
| BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1) |
| .addReg(IA64::r0).addReg(IA64::r0).addReg(pA); |
| BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2) |
| .addReg(IA64::r0).addReg(IA64::r0); |
| BuildMI(BB, IA64::TPCMPNE, 3, pTemp) |
| .addReg(bogusTemp2).addReg(IA64::r0).addReg(IA64::r0).addReg(pB); |
| BuildMI(BB, IA64::TPCMPNE, 3, Result) |
| .addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp); |
| break; |
| } |
| |
| // if not a bool, we just AND away: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| switch (ponderIntegerAndWith(N.getOperand(1), Tmp3)) { |
| case 1: // ANDing a constant that is 2^n-1 for some n |
| switch (Tmp3) { |
| case 8: // if AND 0x00000000000000FF, be quaint and use zxt1 |
| BuildMI(BB, IA64::ZXT1, 1, Result).addReg(Tmp1); |
| break; |
| case 16: // if AND 0x000000000000FFFF, be quaint and use zxt2 |
| BuildMI(BB, IA64::ZXT2, 1, Result).addReg(Tmp1); |
| break; |
| case 32: // if AND 0x00000000FFFFFFFF, be quaint and use zxt4 |
| BuildMI(BB, IA64::ZXT4, 1, Result).addReg(Tmp1); |
| break; |
| default: // otherwise, use dep.z to paste zeros |
| BuildMI(BB, IA64::DEPZ, 3, Result).addReg(Tmp1) |
| .addImm(0).addImm(Tmp3); |
| break; |
| } |
| return Result; // early exit |
| } // fallthrough and emit a simple AND: |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::AND, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| } |
| return Result; |
| } |
| |
| case ISD::OR: { |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot OR this type!"); |
| case MVT::i1: { // if a bool, we emit a pseudocode OR |
| unsigned pA = SelectExpr(N.getOperand(0)); |
| unsigned pB = SelectExpr(N.getOperand(1)); |
| |
| unsigned pTemp1 = MakeReg(MVT::i1); |
| |
| /* our pseudocode for OR is: |
| * |
| |
| pC = pA OR pB |
| ------------- |
| |
| (pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA |
| ;; |
| (pB) cmp.eq pC,p0 = r0,r0 // if (pB) pC = 1 |
| |
| */ |
| BuildMI(BB, IA64::PCMPEQUNC, 3, pTemp1) |
| .addReg(IA64::r0).addReg(IA64::r0).addReg(pA); |
| BuildMI(BB, IA64::TPCMPEQ, 3, Result) |
| .addReg(pTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pB); |
| break; |
| } |
| // if not a bool, we just OR away: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::OR, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| } |
| } |
| return Result; |
| } |
| |
| case ISD::XOR: { |
| switch (N.getValueType()) { |
| default: assert(0 && "Cannot XOR this type!"); |
| case MVT::i1: { // if a bool, we emit a pseudocode XOR |
| unsigned pY = SelectExpr(N.getOperand(0)); |
| unsigned pZ = SelectExpr(N.getOperand(1)); |
| |
| /* one possible routine for XOR is: |
| |
| // Compute px = py ^ pz |
| // using sum of products: px = (py & !pz) | (pz & !py) |
| // Uses 5 instructions in 3 cycles. |
| // cycle 1 |
| (pz) cmp.eq.unc px = r0, r0 // px = pz |
| (py) cmp.eq.unc pt = r0, r0 // pt = py |
| ;; |
| // cycle 2 |
| (pt) cmp.ne.and px = r0, r0 // px = px & !pt (px = pz & !pt) |
| (pz) cmp.ne.and pt = r0, r0 // pt = pt & !pz |
| ;; |
| } { .mmi |
| // cycle 3 |
| (pt) cmp.eq.or px = r0, r0 // px = px | pt |
| |
| *** Another, which we use here, requires one scratch GR. it is: |
| |
| mov rt = 0 // initialize rt off critical path |
| ;; |
| |
| // cycle 1 |
| (pz) cmp.eq.unc px = r0, r0 // px = pz |
| (pz) mov rt = 1 // rt = pz |
| ;; |
| // cycle 2 |
| (py) cmp.ne px = 1, rt // if (py) px = !pz |
| |
| .. these routines kindly provided by Jim Hull |
| */ |
| unsigned rt = MakeReg(MVT::i64); |
| |
| // these two temporaries will never actually appear, |
| // due to the two-address form of some of the instructions below |
| unsigned bogoPR = MakeReg(MVT::i1); // becomes Result |
| unsigned bogoGR = MakeReg(MVT::i64); // becomes rt |
| |
| BuildMI(BB, IA64::MOV, 1, bogoGR).addReg(IA64::r0); |
| BuildMI(BB, IA64::PCMPEQUNC, 3, bogoPR) |
| .addReg(IA64::r0).addReg(IA64::r0).addReg(pZ); |
| BuildMI(BB, IA64::TPCADDIMM22, 2, rt) |
| .addReg(bogoGR).addImm(1).addReg(pZ); |
| BuildMI(BB, IA64::TPCMPIMM8NE, 3, Result) |
| .addReg(bogoPR).addImm(1).addReg(rt).addReg(pY); |
| break; |
| } |
| // if not a bool, we just XOR away: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| } |
| } |
| return Result; |
| } |
| |
| case ISD::CTPOP: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| BuildMI(BB, IA64::POPCNT, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| case ISD::SHL: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue(); |
| BuildMI(BB, IA64::SHLI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::SHL, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| } |
| |
| case ISD::SRL: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue(); |
| BuildMI(BB, IA64::SHRUI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| } |
| |
| case ISD::SRA: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| Tmp2 = CN->getValue(); |
| BuildMI(BB, IA64::SHRSI, 2, Result).addReg(Tmp1).addImm(Tmp2); |
| } else { |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| } |
| return Result; |
| } |
| |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: { |
| |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| |
| bool isFP=false; |
| |
| if(DestType == MVT::f64) // XXX: we're not gonna be fed MVT::f32, are we? |
| isFP=true; |
| |
| bool isModulus=false; // is it a division or a modulus? |
| bool isSigned=false; |
| |
| switch(N.getOpcode()) { |
| case ISD::SDIV: isModulus=false; isSigned=true; break; |
| case ISD::UDIV: isModulus=false; isSigned=false; break; |
| case ISD::SREM: isModulus=true; isSigned=true; break; |
| case ISD::UREM: isModulus=true; isSigned=false; break; |
| } |
| |
| if(!isModulus && !isFP) { // if this is an integer divide, |
| switch (ponderIntegerDivisionBy(N.getOperand(1), isSigned, Tmp3)) { |
| case 1: // division by a constant that's a power of 2 |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| if(isSigned) { // argument could be negative, so emit some code: |
| unsigned divAmt=Tmp3; |
| unsigned tempGR1=MakeReg(MVT::i64); |
| unsigned tempGR2=MakeReg(MVT::i64); |
| unsigned tempGR3=MakeReg(MVT::i64); |
| BuildMI(BB, IA64::SHRS, 2, tempGR1) |
| .addReg(Tmp1).addImm(divAmt-1); |
| BuildMI(BB, IA64::EXTRU, 3, tempGR2) |
| .addReg(tempGR1).addImm(64-divAmt).addImm(divAmt); |
| BuildMI(BB, IA64::ADD, 2, tempGR3) |
| .addReg(Tmp1).addReg(tempGR2); |
| BuildMI(BB, IA64::SHRS, 2, Result) |
| .addReg(tempGR3).addImm(divAmt); |
| } |
| else // unsigned div-by-power-of-2 becomes a simple shift right: |
| BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addImm(Tmp3); |
| return Result; // early exit |
| } |
| } |
| |
| unsigned TmpPR=MakeReg(MVT::i1); // we need two scratch |
| unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers, |
| unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs. |
| unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64? |
| unsigned TmpF3=MakeReg(MVT::f64); // well, the real FIXME is to have |
| unsigned TmpF4=MakeReg(MVT::f64); // isTwoAddress forms of these |
| unsigned TmpF5=MakeReg(MVT::f64); // FP instructions so we can end up with |
| unsigned TmpF6=MakeReg(MVT::f64); // stuff like setf.sig f10=f10 etc. |
| unsigned TmpF7=MakeReg(MVT::f64); |
| unsigned TmpF8=MakeReg(MVT::f64); |
| unsigned TmpF9=MakeReg(MVT::f64); |
| unsigned TmpF10=MakeReg(MVT::f64); |
| unsigned TmpF11=MakeReg(MVT::f64); |
| unsigned TmpF12=MakeReg(MVT::f64); |
| unsigned TmpF13=MakeReg(MVT::f64); |
| unsigned TmpF14=MakeReg(MVT::f64); |
| unsigned TmpF15=MakeReg(MVT::f64); |
| |
| // OK, emit some code: |
| |
| if(!isFP) { |
| // first, load the inputs into FP regs. |
| BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1); |
| BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2); |
| |
| // next, convert the inputs to FP |
| if(isSigned) { |
| BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1); |
| BuildMI(BB, IA64::FCVTXF, 1, TmpF4).addReg(TmpF2); |
| } else { |
| BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1); |
| BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2); |
| } |
| |
| } else { // this is an FP divide/remainder, so we 'leak' some temp |
| // regs and assign TmpF3=Tmp1, TmpF4=Tmp2 |
| TmpF3=Tmp1; |
| TmpF4=Tmp2; |
| } |
| |
| // we start by computing an approximate reciprocal (good to 9 bits?) |
| // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate) |
| BuildMI(BB, IA64::FRCPAS1, 4) |
| .addReg(TmpF5, MachineOperand::Def) |
| .addReg(TmpPR, MachineOperand::Def) |
| .addReg(TmpF3).addReg(TmpF4); |
| |
| if(!isModulus) { // if this is a divide, we worry about div-by-zero |
| unsigned bogusPR=MakeReg(MVT::i1); // won't appear, due to twoAddress |
| // TPCMPNE below |
| BuildMI(BB, IA64::CMPEQ, 2, bogusPR).addReg(IA64::r0).addReg(IA64::r0); |
| BuildMI(BB, IA64::TPCMPNE, 3, TmpPR2).addReg(bogusPR) |
| .addReg(IA64::r0).addReg(IA64::r0).addReg(TmpPR); |
| } |
| |
| // now we apply newton's method, thrice! (FIXME: this is ~72 bits of |
| // precision, don't need this much for f32/i32) |
| BuildMI(BB, IA64::CFNMAS1, 4, TmpF6) |
| .addReg(TmpF4).addReg(TmpF5).addReg(IA64::F1).addReg(TmpPR); |
| BuildMI(BB, IA64::CFMAS1, 4, TmpF7) |
| .addReg(TmpF3).addReg(TmpF5).addReg(IA64::F0).addReg(TmpPR); |
| BuildMI(BB, IA64::CFMAS1, 4, TmpF8) |
| .addReg(TmpF6).addReg(TmpF6).addReg(IA64::F0).addReg(TmpPR); |
| BuildMI(BB, IA64::CFMAS1, 4, TmpF9) |
| .addReg(TmpF6).addReg(TmpF7).addReg(TmpF7).addReg(TmpPR); |
| BuildMI(BB, IA64::CFMAS1, 4,TmpF10) |
| .addReg(TmpF6).addReg(TmpF5).addReg(TmpF5).addReg(TmpPR); |
| BuildMI(BB, IA64::CFMAS1, 4,TmpF11) |
| .addReg(TmpF8).addReg(TmpF9).addReg(TmpF9).addReg(TmpPR); |
| BuildMI(BB, IA64::CFMAS1, 4,TmpF12) |
| .addReg(TmpF8).addReg(TmpF10).addReg(TmpF10).addReg(TmpPR); |
| BuildMI(BB, IA64::CFNMAS1, 4,TmpF13) |
| .addReg(TmpF4).addReg(TmpF11).addReg(TmpF3).addReg(TmpPR); |
| |
| // FIXME: this is unfortunate :( |
| // the story is that the dest reg of the fnma above and the fma below |
| // (and therefore possibly the src of the fcvt.fx[u] as well) cannot |
| // be the same register, or this code breaks if the first argument is |
| // zero. (e.g. without this hack, 0%8 yields -64, not 0.) |
| BuildMI(BB, IA64::CFMAS1, 4,TmpF14) |
| .addReg(TmpF13).addReg(TmpF12).addReg(TmpF11).addReg(TmpPR); |
| |
| if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! ! |
| BuildMI(BB, IA64::IUSE, 1).addReg(TmpF13); // hack :( |
| } |
| |
| if(!isFP) { |
| // round to an integer |
| if(isSigned) |
| BuildMI(BB, IA64::FCVTFXTRUNCS1, 1, TmpF15).addReg(TmpF14); |
| else |
| BuildMI(BB, IA64::FCVTFXUTRUNCS1, 1, TmpF15).addReg(TmpF14); |
| } else { |
| BuildMI(BB, IA64::FMOV, 1, TmpF15).addReg(TmpF14); |
| // EXERCISE: can you see why TmpF15=TmpF14 does not work here, and |
| // we really do need the above FMOV? ;) |
| } |
| |
| if(!isModulus) { |
| if(isFP) { // extra worrying about div-by-zero |
| unsigned bogoResult=MakeReg(MVT::f64); |
| |
| // we do a 'conditional fmov' (of the correct result, depending |
| // on how the frcpa predicate turned out) |
| BuildMI(BB, IA64::PFMOV, 2, bogoResult) |
| .addReg(TmpF12).addReg(TmpPR2); |
| BuildMI(BB, IA64::CFMOV, 2, Result) |
| .addReg(bogoResult).addReg(TmpF15).addReg(TmpPR); |
| } |
| else { |
| BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TmpF15); |
| } |
| } else { // this is a modulus |
| if(!isFP) { |
| // answer = q * (-b) + a |
| unsigned ModulusResult = MakeReg(MVT::f64); |
| unsigned TmpF = MakeReg(MVT::f64); |
| unsigned TmpI = MakeReg(MVT::i64); |
| |
| BuildMI(BB, IA64::SUB, 2, TmpI).addReg(IA64::r0).addReg(Tmp2); |
| BuildMI(BB, IA64::SETFSIG, 1, TmpF).addReg(TmpI); |
| BuildMI(BB, IA64::XMAL, 3, ModulusResult) |
| .addReg(TmpF15).addReg(TmpF).addReg(TmpF1); |
| BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(ModulusResult); |
| } else { // FP modulus! The horror... the horror.... |
| assert(0 && "sorry, no FP modulus just yet!\n!\n"); |
| } |
| } |
| |
| return Result; |
| } |
| |
| case ISD::SIGN_EXTEND_INREG: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| MVTSDNode* MVN = dyn_cast<MVTSDNode>(Node); |
| switch(MVN->getExtraValueType()) |
| { |
| default: |
| Node->dump(); |
| assert(0 && "don't know how to sign extend this type"); |
| break; |
| case MVT::i8: Opc = IA64::SXT1; break; |
| case MVT::i16: Opc = IA64::SXT2; break; |
| case MVT::i32: Opc = IA64::SXT4; break; |
| } |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp1); |
| return Result; |
| } |
| |
| case ISD::SETCC: { |
| Tmp1 = SelectExpr(N.getOperand(0)); |
| |
| if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) { |
| if (MVT::isInteger(SetCC->getOperand(0).getValueType())) { |
| |
| if(ConstantSDNode *CSDN = |
| dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| // if we are comparing against a constant zero |
| if(CSDN->getValue()==0) |
| Tmp2 = IA64::r0; // then we can just compare against r0 |
| else |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| } else // not comparing against a constant |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Unknown integer comparison!"); |
| case ISD::SETEQ: |
| BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETGT: |
| BuildMI(BB, IA64::CMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETGE: |
| BuildMI(BB, IA64::CMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETLT: |
| BuildMI(BB, IA64::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETLE: |
| BuildMI(BB, IA64::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETNE: |
| BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETULT: |
| BuildMI(BB, IA64::CMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETUGT: |
| BuildMI(BB, IA64::CMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETULE: |
| BuildMI(BB, IA64::CMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETUGE: |
| BuildMI(BB, IA64::CMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| } |
| } |
| else { // if not integer, should be FP. FIXME: what about bools? ;) |
| assert(SetCC->getOperand(0).getValueType() != MVT::f32 && |
| "error: SETCC should have had incoming f32 promoted to f64!\n"); |
| |
| if(ConstantFPSDNode *CFPSDN = |
| dyn_cast<ConstantFPSDNode>(N.getOperand(1))) { |
| |
| // if we are comparing against a constant +0.0 or +1.0 |
| if(CFPSDN->isExactlyValue(+0.0)) |
| Tmp2 = IA64::F0; // then we can just compare against f0 |
| else if(CFPSDN->isExactlyValue(+1.0)) |
| Tmp2 = IA64::F1; // or f1 |
| else |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| } else // not comparing against a constant |
| Tmp2 = SelectExpr(N.getOperand(1)); |
| |
| switch (SetCC->getCondition()) { |
| default: assert(0 && "Unknown FP comparison!"); |
| case ISD::SETEQ: |
| BuildMI(BB, IA64::FCMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETGT: |
| BuildMI(BB, IA64::FCMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETGE: |
| BuildMI(BB, IA64::FCMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETLT: |
| BuildMI(BB, IA64::FCMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETLE: |
| BuildMI(BB, IA64::FCMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETNE: |
| BuildMI(BB, IA64::FCMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETULT: |
| BuildMI(BB, IA64::FCMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETUGT: |
| BuildMI(BB, IA64::FCMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETULE: |
| BuildMI(BB, IA64::FCMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| case ISD::SETUGE: |
| BuildMI(BB, IA64::FCMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2); |
| break; |
| } |
| } |
| } |
| else |
| assert(0 && "this setcc not implemented yet"); |
| |
| return Result; |
| } |
| |
| case ISD::EXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::LOAD: { |
| // Make sure we generate both values. |
| if (Result != 1) |
| ExprMap[N.getValue(1)] = 1; // Generate the token |
| else |
| Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); |
| |
| bool isBool=false; |
| |
| if(opcode == ISD::LOAD) { // this is a LOAD |
| switch (Node->getValueType(0)) { |
| default: assert(0 && "Cannot load this type!"); |
| case MVT::i1: Opc = IA64::LD1; isBool=true; break; |
| // FIXME: for now, we treat bool loads the same as i8 loads */ |
| case MVT::i8: Opc = IA64::LD1; break; |
| case MVT::i16: Opc = IA64::LD2; break; |
| case MVT::i32: Opc = IA64::LD4; break; |
| case MVT::i64: Opc = IA64::LD8; break; |
| |
| case MVT::f32: Opc = IA64::LDF4; break; |
| case MVT::f64: Opc = IA64::LDF8; break; |
| } |
| } else { // this is an EXTLOAD or ZEXTLOAD |
| MVT::ValueType TypeBeingLoaded = cast<MVTSDNode>(Node)->getExtraValueType(); |
| switch (TypeBeingLoaded) { |
| default: assert(0 && "Cannot extload/zextload this type!"); |
| // FIXME: bools? |
| case MVT::i8: Opc = IA64::LD1; break; |
| case MVT::i16: Opc = IA64::LD2; break; |
| case MVT::i32: Opc = IA64::LD4; break; |
| case MVT::f32: Opc = IA64::LDF4; break; |
| } |
| } |
| |
| SDOperand Chain = N.getOperand(0); |
| SDOperand Address = N.getOperand(1); |
| |
| if(Address.getOpcode() == ISD::GlobalAddress) { |
| Select(Chain); |
| unsigned dummy = MakeReg(MVT::i64); |
| unsigned dummy2 = MakeReg(MVT::i64); |
| BuildMI(BB, IA64::ADD, 2, dummy) |
| .addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal()) |
| .addReg(IA64::r1); |
| BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy); |
| if(!isBool) |
| BuildMI(BB, Opc, 1, Result).addReg(dummy2); |
| else { // emit a little pseudocode to load a bool (stored in one byte) |
| // into a predicate register |
| assert(Opc==IA64::LD1 && "problem loading a bool"); |
| unsigned dummy3 = MakeReg(MVT::i64); |
| BuildMI(BB, Opc, 1, dummy3).addReg(dummy2); |
| // we compare to 0. true? 0. false? 1. |
| BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); |
| } |
| } else if(ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) { |
| Select(Chain); |
| IA64Lowering.restoreGP(BB); |
| unsigned dummy = MakeReg(MVT::i64); |
| BuildMI(BB, IA64::ADD, 2, dummy).addConstantPoolIndex(CP->getIndex()) |
| .addReg(IA64::r1); // CPI+GP |
| if(!isBool) |
| BuildMI(BB, Opc, 1, Result).addReg(dummy); |
| else { // emit a little pseudocode to load a bool (stored in one byte) |
| // into a predicate register |
| assert(Opc==IA64::LD1 && "problem loading a bool"); |
| unsigned dummy3 = MakeReg(MVT::i64); |
| BuildMI(BB, Opc, 1, dummy3).addReg(dummy); |
| // we compare to 0. true? 0. false? 1. |
| BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); |
| } |
| } else if(Address.getOpcode() == ISD::FrameIndex) { |
| Select(Chain); // FIXME ? what about bools? |
| unsigned dummy = MakeReg(MVT::i64); |
| BuildMI(BB, IA64::MOV, 1, dummy) |
| .addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex()); |
| if(!isBool) |
| BuildMI(BB, Opc, 1, Result).addReg(dummy); |
| else { // emit a little pseudocode to load a bool (stored in one byte) |
| // into a predicate register |
| assert(Opc==IA64::LD1 && "problem loading a bool"); |
| unsigned dummy3 = MakeReg(MVT::i64); |
| BuildMI(BB, Opc, 1, dummy3).addReg(dummy); |
| // we compare to 0. true? 0. false? 1. |
| BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0); |
| } |
| } else { // none of the above... |
| Select(Chain); |
| Tmp2 = SelectExpr(Address); |
| if(!isBool) |
| BuildMI(BB, Opc, 1, Result).addReg(Tmp2); |
| else { // emit a little pseudocode to load a bool (stored in one byte) |
| // into a predicate register |
| assert(Opc==IA64::LD1 && "problem loading a bool"); |
| unsigned dummy = MakeReg(MVT::i64); |
| BuildMI(BB, Opc, 1, dummy).addReg(Tmp2); |
| // we compare to 0. true? 0. false? 1. |
| BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy).addReg(IA64::r0); |
| } |
| } |
| |
| return Result; |
| } |
| |
| case ISD::CopyFromReg: { |
| if (Result == 1) |
| Result = ExprMap[N.getValue(0)] = |
| MakeReg(N.getValue(0).getValueType()); |
| |
| SDOperand Chain = N.getOperand(0); |
| |
| Select(Chain); |
| unsigned r = dyn_cast<RegSDNode>(Node)->getReg(); |
| |
| if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode |
| BuildMI(BB, IA64::PCMPEQUNC, 3, Result) |
| .addReg(IA64::r0).addReg(IA64::r0).addReg(r); |
| // (r) Result =cmp.eq.unc(r0,r0) |
| else |
| BuildMI(BB, IA64::MOV, 1, Result).addReg(r); // otherwise MOV |
| return Result; |
| } |
| |
| case ISD::CALL: { |
| Select(N.getOperand(0)); |
| |
| // The chain for this call is now lowered. |
| ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1)); |
| |
| //grab the arguments |
| std::vector<unsigned> argvregs; |
| |
| for(int i = 2, e = Node->getNumOperands(); i < e; ++i) |
| argvregs.push_back(SelectExpr(N.getOperand(i))); |
| |
| // see section 8.5.8 of "Itanium Software Conventions and |
| // Runtime Architecture Guide to see some examples of what's going |
| // on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7, |
| // while FP args get mapped to F8->F15 as needed) |
| |
| unsigned used_FPArgs=0; // how many FP Args have been used so far? |
| |
| // in reg args |
| for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i) |
| { |
| unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3, |
| IA64::out4, IA64::out5, IA64::out6, IA64::out7 }; |
| unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11, |
| IA64::F12, IA64::F13, IA64::F14, IA64::F15 }; |
| |
| switch(N.getOperand(i+2).getValueType()) |
| { |
| default: // XXX do we need to support MVT::i1 here? |
| Node->dump(); |
| N.getOperand(i).Val->dump(); |
| std::cerr << "Type for " << i << " is: " << |
| N.getOperand(i+2).getValueType() << std::endl; |
| assert(0 && "Unknown value type for call"); |
| case MVT::i64: |
| BuildMI(BB, IA64::MOV, 1, intArgs[i]).addReg(argvregs[i]); |
| break; |
| case MVT::f64: |
| BuildMI(BB, IA64::FMOV, 1, FPArgs[used_FPArgs++]) |
| .addReg(argvregs[i]); |
| // FIXME: we don't need to do this _all_ the time: |
| BuildMI(BB, IA64::GETFD, 1, intArgs[i]).addReg(argvregs[i]); |
| break; |
| } |
| } |
| |
| //in mem args |
| for (int i = 8, e = argvregs.size(); i < e; ++i) |
| { |
| unsigned tempAddr = MakeReg(MVT::i64); |
| |
| switch(N.getOperand(i+2).getValueType()) { |
| default: |
| Node->dump(); |
| N.getOperand(i).Val->dump(); |
| std::cerr << "Type for " << i << " is: " << |
| N.getOperand(i+2).getValueType() << "\n"; |
| assert(0 && "Unknown value type for call"); |
| case MVT::i1: // FIXME? |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| BuildMI(BB, IA64::ADDIMM22, 2, tempAddr) |
| .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP |
| BuildMI(BB, IA64::ST8, 2).addReg(tempAddr).addReg(argvregs[i]); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| BuildMI(BB, IA64::ADDIMM22, 2, tempAddr) |
| .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP |
| BuildMI(BB, IA64::STF8, 2).addReg(tempAddr).addReg(argvregs[i]); |
| break; |
| } |
| } |
| |
| /* XXX we want to re-enable direct branches! crippling them now |
| * to stress-test indirect branches.: |
| //build the right kind of call |
| if (GlobalAddressSDNode *GASD = |
| dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) |
| { |
| BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true); |
| IA64Lowering.restoreGP_SP_RP(BB); |
| } |
| ^^^^^^^^^^^^^ we want this code one day XXX */ |
| if (ExternalSymbolSDNode *ESSDN = |
| dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) |
| { // FIXME : currently need this case for correctness, to avoid |
| // "non-pic code with imm relocation against dynamic symbol" errors |
| BuildMI(BB, IA64::BRCALL, 1) |
| .addExternalSymbol(ESSDN->getSymbol(), true); |
| IA64Lowering.restoreGP_SP_RP(BB); |
| } |
| else { |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| |
| unsigned targetEntryPoint=MakeReg(MVT::i64); |
| unsigned targetGPAddr=MakeReg(MVT::i64); |
| unsigned currentGP=MakeReg(MVT::i64); |
| |
| // b6 is a scratch branch register, we load the target entry point |
| // from the base of the function descriptor |
| BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1); |
| BuildMI(BB, IA64::MOV, 1, IA64::B6).addReg(targetEntryPoint); |
| |
| // save the current GP: |
| BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1); |
| |
| /* TODO: we need to make sure doing this never, ever loads a |
| * bogus value into r1 (GP). */ |
| // load the target GP (which is at mem[functiondescriptor+8]) |
| BuildMI(BB, IA64::ADDIMM22, 2, targetGPAddr) |
| .addReg(Tmp1).addImm(8); // FIXME: addimm22? why not postincrement ld |
| BuildMI(BB, IA64::LD8, 1, IA64::r1).addReg(targetGPAddr); |
| |
| // and then jump: (well, call) |
| BuildMI(BB, IA64::BRCALL, 1).addReg(IA64::B6); |
| // and finally restore the old GP |
| BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(currentGP); |
| IA64Lowering.restoreSP_RP(BB); |
| } |
| |
| switch (Node->getValueType(0)) { |
| default: assert(0 && "Unknown value type for call result!"); |
| case MVT::Other: return 1; |
| case MVT::i1: |
| BuildMI(BB, IA64::CMPNE, 2, Result) |
| .addReg(IA64::r8).addReg(IA64::r0); |
| break; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r8); |
| break; |
| case MVT::f64: |
| BuildMI(BB, IA64::FMOV, 1, Result).addReg(IA64::F8); |
| break; |
| } |
| return Result+N.ResNo; |
| } |
| |
| } // <- uhhh XXX |
| return 0; |
| } |
| |
| void ISel::Select(SDOperand N) { |
| unsigned Tmp1, Tmp2, Opc; |
| unsigned opcode = N.getOpcode(); |
| |
| if (!LoweredTokens.insert(N).second) |
| return; // Already selected. |
| |
| SDNode *Node = N.Val; |
| |
| switch (Node->getOpcode()) { |
| default: |
| Node->dump(); std::cerr << "\n"; |
| assert(0 && "Node not handled yet!"); |
| |
| case ISD::EntryToken: return; // Noop |
| |
| case ISD::TokenFactor: { |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Select(Node->getOperand(i)); |
| return; |
| } |
| |
| case ISD::CopyToReg: { |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| Tmp2 = cast<RegSDNode>(N)->getReg(); |
| |
| if (Tmp1 != Tmp2) { |
| if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode |
| BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2) |
| .addReg(IA64::r0).addReg(IA64::r0).addReg(Tmp1); |
| // (Tmp1) Tmp2 = cmp.eq.unc(r0,r0) |
| else |
| BuildMI(BB, IA64::MOV, 1, Tmp2).addReg(Tmp1); |
| // XXX is this the right way 'round? ;) |
| } |
| return; |
| } |
| |
| case ISD::RET: { |
| |
| /* what the heck is going on here: |
| |
| <_sabre_> ret with two operands is obvious: chain and value |
| <camel_> yep |
| <_sabre_> ret with 3 values happens when 'expansion' occurs |
| <_sabre_> e.g. i64 gets split into 2x i32 |
| <camel_> oh right |
| <_sabre_> you don't have this case on ia64 |
| <camel_> yep |
| <_sabre_> so the two returned values go into EAX/EDX on ia32 |
| <camel_> ahhh *memories* |
| <_sabre_> :) |
| <camel_> ok, thanks :) |
| <_sabre_> so yeah, everything that has a side effect takes a 'token chain' |
| <_sabre_> this is the first operand always |
| <_sabre_> these operand often define chains, they are the last operand |
| <_sabre_> they are printed as 'ch' if you do DAG.dump() |
| */ |
| |
| switch (N.getNumOperands()) { |
| default: |
| assert(0 && "Unknown return instruction!"); |
| case 2: |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| switch (N.getOperand(1).getValueType()) { |
| default: assert(0 && "All other types should have been promoted!!"); |
| // FIXME: do I need to add support for bools here? |
| // (return '0' or '1' r8, basically...) |
| // |
| // FIXME: need to round floats - 80 bits is bad, the tester |
| // told me so |
| case MVT::i64: |
| // we mark r8 as live on exit up above in LowerArguments() |
| BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1); |
| break; |
| case MVT::f64: |
| // we mark F8 as live on exit up above in LowerArguments() |
| BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1); |
| } |
| break; |
| case 1: |
| Select(N.getOperand(0)); |
| break; |
| } |
| // before returning, restore the ar.pfs register (set by the 'alloc' up top) |
| BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR); |
| BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction |
| return; |
| } |
| |
| case ISD::BR: { |
| Select(N.getOperand(0)); |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock(); |
| BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(IA64::p0).addMBB(Dest); |
| // XXX HACK! we do _not_ need long branches all the time |
| return; |
| } |
| |
| case ISD::ImplicitDef: { |
| Select(N.getOperand(0)); |
| BuildMI(BB, IA64::IDEF, 0, cast<RegSDNode>(N)->getReg()); |
| return; |
| } |
| |
| case ISD::BRCOND: { |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock(); |
| |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); |
| BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(Tmp1).addMBB(Dest); |
| // XXX HACK! we do _not_ need long branches all the time |
| return; |
| } |
| |
| case ISD::EXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::SEXTLOAD: |
| case ISD::LOAD: |
| case ISD::CALL: |
| case ISD::CopyFromReg: |
| case ISD::DYNAMIC_STACKALLOC: |
| SelectExpr(N); |
| return; |
| |
| case ISD::TRUNCSTORE: |
| case ISD::STORE: { |
| Select(N.getOperand(0)); |
| Tmp1 = SelectExpr(N.getOperand(1)); // value |
| |
| bool isBool=false; |
| |
| if(opcode == ISD::STORE) { |
| switch (N.getOperand(1).getValueType()) { |
| default: assert(0 && "Cannot store this type!"); |
| case MVT::i1: Opc = IA64::ST1; isBool=true; break; |
| // FIXME?: for now, we treat bool loads the same as i8 stores */ |
| case MVT::i8: Opc = IA64::ST1; break; |
| case MVT::i16: Opc = IA64::ST2; break; |
| case MVT::i32: Opc = IA64::ST4; break; |
| case MVT::i64: Opc = IA64::ST8; break; |
| |
| case MVT::f32: Opc = IA64::STF4; break; |
| case MVT::f64: Opc = IA64::STF8; break; |
| } |
| } else { // truncstore |
| switch(cast<MVTSDNode>(Node)->getExtraValueType()) { |
| default: assert(0 && "unknown type in truncstore"); |
| case MVT::i1: Opc = IA64::ST1; isBool=true; break; |
| //FIXME: DAG does not promote this load? |
| case MVT::i8: Opc = IA64::ST1; break; |
| case MVT::i16: Opc = IA64::ST2; break; |
| case MVT::i32: Opc = IA64::ST4; break; |
| case MVT::f32: Opc = IA64::STF4; break; |
| } |
| } |
| |
| if(N.getOperand(2).getOpcode() == ISD::GlobalAddress) { |
| unsigned dummy = MakeReg(MVT::i64); |
| unsigned dummy2 = MakeReg(MVT::i64); |
| BuildMI(BB, IA64::ADD, 2, dummy) |
| .addGlobalAddress(cast<GlobalAddressSDNode> |
| (N.getOperand(2))->getGlobal()).addReg(IA64::r1); |
| BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy); |
| |
| if(!isBool) |
| BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1); |
| else { // we are storing a bool, so emit a little pseudocode |
| // to store a predicate register as one byte |
| assert(Opc==IA64::ST1); |
| unsigned dummy3 = MakeReg(MVT::i64); |
| unsigned dummy4 = MakeReg(MVT::i64); |
| BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0); |
| BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4) |
| .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1; |
| BuildMI(BB, Opc, 2).addReg(dummy2).addReg(dummy4); |
| } |
| } else if(N.getOperand(2).getOpcode() == ISD::FrameIndex) { |
| |
| // FIXME? (what about bools?) |
| |
| unsigned dummy = MakeReg(MVT::i64); |
| BuildMI(BB, IA64::MOV, 1, dummy) |
| .addFrameIndex(cast<FrameIndexSDNode>(N.getOperand(2))->getIndex()); |
| BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1); |
| } else { // otherwise |
| Tmp2 = SelectExpr(N.getOperand(2)); //address |
| if(!isBool) |
| BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1); |
| else { // we are storing a bool, so emit a little pseudocode |
| // to store a predicate register as one byte |
| assert(Opc==IA64::ST1); |
| unsigned dummy3 = MakeReg(MVT::i64); |
| unsigned dummy4 = MakeReg(MVT::i64); |
| BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0); |
| BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4) |
| .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1; |
| BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(dummy4); |
| } |
| } |
| return; |
| } |
| |
| case ISD::ADJCALLSTACKDOWN: |
| case ISD::ADJCALLSTACKUP: { |
| Select(N.getOperand(0)); |
| Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue(); |
| |
| Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? IA64::ADJUSTCALLSTACKDOWN : |
| IA64::ADJUSTCALLSTACKUP; |
| BuildMI(BB, Opc, 1).addImm(Tmp1); |
| return; |
| } |
| |
| return; |
| } |
| assert(0 && "GAME OVER. INSERT COIN?"); |
| } |
| |
| |
| /// createIA64PatternInstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation using pattern matching and a machine |
| /// description file. |
| /// |
| FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |
| |
| |