| //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// |
| // |
| // This file defines a simple peephole instruction selector for the x86 platform |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/Function.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/Type.h" |
| #include "llvm/Constants.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include <map> |
| |
| namespace { |
| struct ISel : public InstVisitor<ISel> { // eventually will be a FunctionPass |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| |
| unsigned CurReg; |
| std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs |
| |
| ISel(MachineFunction *f) |
| : F(f), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {} |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &F) { |
| visit(F); |
| RegMap.clear(); |
| return false; // We never modify the LLVM itself. |
| } |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = new MachineBasicBlock(); |
| // FIXME: Use the auto-insert form when it's available |
| F->getBasicBlockList().push_back(BB); |
| } |
| |
| // Visitation methods for various instructions. These methods simply emit |
| // fixed X86 code for each instruction. |
| // |
| void visitReturnInst(ReturnInst &RI); |
| void visitAdd(BinaryOperator &B); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Cannot instruction select: " << I; |
| abort(); |
| } |
| |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(Constant *C, unsigned Reg); |
| |
| /// getReg - This method turns an LLVM value into a register number. This |
| /// is guaranteed to produce the same register number for a particular value |
| /// every time it is queried. |
| /// |
| unsigned getReg(Value &V) { return getReg(&V); } // Allow references |
| unsigned getReg(Value *V) { |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) |
| Reg = CurReg++; |
| |
| // If this operand is a constant, emit the code to copy the constant into |
| // the register here... |
| // |
| if (Constant *C = dyn_cast<Constant>(V)) |
| copyConstantToRegister(C, Reg); |
| |
| return Reg; |
| } |
| |
| }; |
| } |
| |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void ISel::copyConstantToRegister(Constant *C, unsigned R) { |
| assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n"); |
| |
| switch (C->getType()->getPrimitiveID()) { |
| case Type::SByteTyID: |
| BuildMI(BB, X86::MOVir8, R).addSImm(cast<ConstantSInt>(C)->getValue()); |
| break; |
| case Type::UByteTyID: |
| BuildMI(BB, X86::MOVir8, R).addZImm(cast<ConstantUInt>(C)->getValue()); |
| break; |
| case Type::ShortTyID: |
| BuildMI(BB, X86::MOVir16, R).addSImm(cast<ConstantSInt>(C)->getValue()); |
| break; |
| case Type::UShortTyID: |
| BuildMI(BB, X86::MOVir16, R).addZImm(cast<ConstantUInt>(C)->getValue()); |
| break; |
| case Type::IntTyID: |
| BuildMI(BB, X86::MOVir32, R).addSImm(cast<ConstantSInt>(C)->getValue()); |
| break; |
| case Type::UIntTyID: |
| BuildMI(BB, X86::MOVir32, R).addZImm(cast<ConstantUInt>(C)->getValue()); |
| break; |
| default: assert(0 && "Type not handled yet!"); |
| } |
| } |
| |
| |
| /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, |
| /// we have the following possibilities: |
| /// |
| /// ret void: No return value, simply emit a 'ret' instruction |
| /// ret sbyte, ubyte : Extend value into EAX and return |
| /// ret short, ushort: Extend value into EAX and return |
| /// ret int, uint : Move value into EAX and return |
| /// ret pointer : Move value into EAX and return |
| /// ret long, ulong : Move value into EAX/EDX (?) and return |
| /// ret float/double : ? Top of FP stack? XMM0? |
| /// |
| void ISel::visitReturnInst(ReturnInst &I) { |
| if (I.getNumOperands() != 0) { // Not 'ret void'? |
| // Move result into a hard register... then emit a ret |
| visitInstruction(I); // abort |
| } |
| |
| // Emit a simple 'ret' instruction... appending it to the end of the basic |
| // block |
| BuildMI(BB, X86::RET, 0); |
| } |
| |
| |
| /// 'add' instruction - Simply turn this into an x86 reg,reg add instruction. |
| void ISel::visitAdd(BinaryOperator &B) { |
| unsigned Op0r = getReg(B.getOperand(0)), Op1r = getReg(B.getOperand(1)); |
| unsigned DestReg = getReg(B); |
| |
| switch (B.getType()->getPrimitiveSize()) { |
| case 1: // UByte, SByte |
| BuildMI(BB, X86::ADDrr8, DestReg).addReg(Op0r).addReg(Op1r); |
| break; |
| case 2: // UShort, Short |
| BuildMI(BB, X86::ADDrr16, DestReg).addReg(Op0r).addReg(Op1r); |
| break; |
| case 4: // UInt, Int |
| BuildMI(BB, X86::ADDrr32, DestReg).addReg(Op0r).addReg(Op1r); |
| break; |
| |
| case 8: // ULong, Long |
| default: |
| visitInstruction(B); // abort |
| } |
| } |
| |
| |
| |
| /// X86SimpleInstructionSelection - This function converts an LLVM function into |
| /// a machine code representation is a very simple peep-hole fashion. The |
| /// generated code sucks but the implementation is nice and simple. |
| /// |
| MachineFunction *X86SimpleInstructionSelection(Function &F, TargetMachine &TM) { |
| MachineFunction *Result = new MachineFunction(&F, TM); |
| ISel(Result).runOnFunction(F); |
| return Result; |
| } |