| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAGISel class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Compiler.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewISelDAGs("view-isel-dags", cl::Hidden, |
| cl::desc("Pop up a window to show isel dags as they are selected")); |
| static cl::opt<bool> |
| ViewSchedDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| #else |
| static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0; |
| #endif |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// RegisterScheduler class - Track the registration of instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| MachinePassRegistry RegisterScheduler::Registry; |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// ISHeuristic command line option for instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| namespace { |
| cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| RegisterPassParser<RegisterScheduler> > |
| ISHeuristic("sched", |
| cl::init(&createDefaultScheduler), |
| cl::desc("Instruction schedulers available:")); |
| |
| static RegisterScheduler |
| defaultListDAGScheduler("default", " Best scheduler for the target", |
| createDefaultScheduler); |
| } // namespace |
| |
| namespace { |
| /// RegsForValue - This struct represents the physical registers that a |
| /// particular value is assigned and the type information about the value. |
| /// This is needed because values can be promoted into larger registers and |
| /// expanded into multiple smaller registers than the value. |
| struct VISIBILITY_HIDDEN RegsForValue { |
| /// Regs - This list hold the register (for legal and promoted values) |
| /// or register set (for expanded values) that the value should be assigned |
| /// to. |
| std::vector<unsigned> Regs; |
| |
| /// RegVT - The value type of each register. |
| /// |
| MVT::ValueType RegVT; |
| |
| /// ValueVT - The value type of the LLVM value, which may be promoted from |
| /// RegVT or made from merging the two expanded parts. |
| MVT::ValueType ValueVT; |
| |
| RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {} |
| |
| RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt) |
| : RegVT(regvt), ValueVT(valuevt) { |
| Regs.push_back(Reg); |
| } |
| RegsForValue(const std::vector<unsigned> ®s, |
| MVT::ValueType regvt, MVT::ValueType valuevt) |
| : Regs(regs), RegVT(regvt), ValueVT(valuevt) { |
| } |
| |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from |
| /// this value and returns the result as a ValueVT value. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| SDOperand getCopyFromRegs(SelectionDAG &DAG, |
| SDOperand &Chain, SDOperand &Flag) const; |
| |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the |
| /// specified value into the registers specified by this object. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| void getCopyToRegs(SDOperand Val, SelectionDAG &DAG, |
| SDOperand &Chain, SDOperand &Flag, |
| MVT::ValueType PtrVT) const; |
| |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node |
| /// operand list. This adds the code marker and includes the number of |
| /// values added into it. |
| void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, |
| std::vector<SDOperand> &Ops) const; |
| }; |
| } |
| |
| namespace llvm { |
| //===--------------------------------------------------------------------===// |
| /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| /// for the target. |
| ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS, |
| SelectionDAG *DAG, |
| MachineBasicBlock *BB) { |
| TargetLowering &TLI = IS->getTargetLowering(); |
| |
| if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) { |
| return createTDListDAGScheduler(IS, DAG, BB); |
| } else { |
| assert(TLI.getSchedulingPreference() == |
| TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); |
| return createBURRListDAGScheduler(IS, DAG, BB); |
| } |
| } |
| |
| |
| //===--------------------------------------------------------------------===// |
| /// FunctionLoweringInfo - This contains information that is global to a |
| /// function that is used when lowering a region of the function. |
| class FunctionLoweringInfo { |
| public: |
| TargetLowering &TLI; |
| Function &Fn; |
| MachineFunction &MF; |
| SSARegMap *RegMap; |
| |
| FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); |
| |
| /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. |
| std::map<const BasicBlock*, MachineBasicBlock *> MBBMap; |
| |
| /// ValueMap - Since we emit code for the function a basic block at a time, |
| /// we must remember which virtual registers hold the values for |
| /// cross-basic-block values. |
| DenseMap<const Value*, unsigned> ValueMap; |
| |
| /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in |
| /// the entry block. This allows the allocas to be efficiently referenced |
| /// anywhere in the function. |
| std::map<const AllocaInst*, int> StaticAllocaMap; |
| |
| unsigned MakeReg(MVT::ValueType VT) { |
| return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| /// isExportedInst - Return true if the specified value is an instruction |
| /// exported from its block. |
| bool isExportedInst(const Value *V) { |
| return ValueMap.count(V); |
| } |
| |
| unsigned CreateRegForValue(const Value *V); |
| |
| unsigned InitializeRegForValue(const Value *V) { |
| unsigned &R = ValueMap[V]; |
| assert(R == 0 && "Already initialized this value register!"); |
| return R = CreateRegForValue(V); |
| } |
| }; |
| } |
| |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by |
| /// PHI nodes or outside of the basic block that defines it, or used by a |
| /// switch instruction, which may expand to multiple basic blocks. |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) { |
| if (isa<PHINode>(I)) return true; |
| BasicBlock *BB = I->getParent(); |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) || |
| // FIXME: Remove switchinst special case. |
| isa<SwitchInst>(*UI)) |
| return true; |
| return false; |
| } |
| |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the |
| /// entry block, return true. This includes arguments used by switches, since |
| /// the switch may expand into multiple basic blocks. |
| static bool isOnlyUsedInEntryBlock(Argument *A) { |
| BasicBlock *Entry = A->getParent()->begin(); |
| for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) |
| return false; // Use not in entry block. |
| return true; |
| } |
| |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, |
| Function &fn, MachineFunction &mf) |
| : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { |
| |
| // Create a vreg for each argument register that is not dead and is used |
| // outside of the entry block for the function. |
| for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); |
| AI != E; ++AI) |
| if (!isOnlyUsedInEntryBlock(AI)) |
| InitializeRegForValue(AI); |
| |
| // Initialize the mapping of values to registers. This is only set up for |
| // instruction values that are used outside of the block that defines |
| // them. |
| Function::iterator BB = Fn.begin(), EB = Fn.end(); |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { |
| const Type *Ty = AI->getAllocatedType(); |
| uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); |
| unsigned Align = |
| std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), |
| AI->getAlignment()); |
| |
| TySize *= CUI->getZExtValue(); // Get total allocated size. |
| if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. |
| StaticAllocaMap[AI] = |
| MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); |
| } |
| |
| for (; BB != EB; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) |
| if (!isa<AllocaInst>(I) || |
| !StaticAllocaMap.count(cast<AllocaInst>(I))) |
| InitializeRegForValue(I); |
| |
| // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This |
| // also creates the initial PHI MachineInstrs, though none of the input |
| // operands are populated. |
| for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { |
| MachineBasicBlock *MBB = new MachineBasicBlock(BB); |
| MBBMap[BB] = MBB; |
| MF.getBasicBlockList().push_back(MBB); |
| |
| // Create Machine PHI nodes for LLVM PHI nodes, lowering them as |
| // appropriate. |
| PHINode *PN; |
| for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){ |
| if (PN->use_empty()) continue; |
| |
| MVT::ValueType VT = TLI.getValueType(PN->getType()); |
| unsigned NumElements; |
| if (VT != MVT::Vector) |
| NumElements = TLI.getNumElements(VT); |
| else { |
| MVT::ValueType VT1,VT2; |
| NumElements = |
| TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()), |
| VT1, VT2); |
| } |
| unsigned PHIReg = ValueMap[PN]; |
| assert(PHIReg && "PHI node does not have an assigned virtual register!"); |
| const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo(); |
| for (unsigned i = 0; i != NumElements; ++i) |
| BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i); |
| } |
| } |
| } |
| |
| /// CreateRegForValue - Allocate the appropriate number of virtual registers of |
| /// the correctly promoted or expanded types. Assign these registers |
| /// consecutive vreg numbers and return the first assigned number. |
| unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { |
| MVT::ValueType VT = TLI.getValueType(V->getType()); |
| |
| // The number of multiples of registers that we need, to, e.g., split up |
| // a <2 x int64> -> 4 x i32 registers. |
| unsigned NumVectorRegs = 1; |
| |
| // If this is a vector type, figure out what type it will decompose into |
| // and how many of the elements it will use. |
| if (VT == MVT::Vector) { |
| const VectorType *PTy = cast<VectorType>(V->getType()); |
| unsigned NumElts = PTy->getNumElements(); |
| MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType()); |
| |
| // Divide the input until we get to a supported size. This will always |
| // end with a scalar if the target doesn't support vectors. |
| while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) { |
| NumElts >>= 1; |
| NumVectorRegs <<= 1; |
| } |
| if (NumElts == 1) |
| VT = EltTy; |
| else |
| VT = getVectorType(EltTy, NumElts); |
| } |
| |
| // The common case is that we will only create one register for this |
| // value. If we have that case, create and return the virtual register. |
| unsigned NV = TLI.getNumElements(VT); |
| if (NV == 1) { |
| // If we are promoting this value, pick the next largest supported type. |
| MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT); |
| unsigned Reg = MakeReg(PromotedType); |
| // If this is a vector of supported or promoted types (e.g. 4 x i16), |
| // create all of the registers. |
| for (unsigned i = 1; i != NumVectorRegs; ++i) |
| MakeReg(PromotedType); |
| return Reg; |
| } |
| |
| // If this value is represented with multiple target registers, make sure |
| // to create enough consecutive registers of the right (smaller) type. |
| VT = TLI.getTypeToExpandTo(VT); |
| unsigned R = MakeReg(VT); |
| for (unsigned i = 1; i != NV*NumVectorRegs; ++i) |
| MakeReg(VT); |
| return R; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// SelectionDAGLowering - This is the common target-independent lowering |
| /// implementation that is parameterized by a TargetLowering object. |
| /// Also, targets can overload any lowering method. |
| /// |
| namespace llvm { |
| class SelectionDAGLowering { |
| MachineBasicBlock *CurMBB; |
| |
| DenseMap<const Value*, SDOperand> NodeMap; |
| |
| /// PendingLoads - Loads are not emitted to the program immediately. We bunch |
| /// them up and then emit token factor nodes when possible. This allows us to |
| /// get simple disambiguation between loads without worrying about alias |
| /// analysis. |
| std::vector<SDOperand> PendingLoads; |
| |
| /// Case - A pair of values to record the Value for a switch case, and the |
| /// case's target basic block. |
| typedef std::pair<Constant*, MachineBasicBlock*> Case; |
| typedef std::vector<Case>::iterator CaseItr; |
| typedef std::pair<CaseItr, CaseItr> CaseRange; |
| |
| /// CaseRec - A struct with ctor used in lowering switches to a binary tree |
| /// of conditional branches. |
| struct CaseRec { |
| CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) : |
| CaseBB(bb), LT(lt), GE(ge), Range(r) {} |
| |
| /// CaseBB - The MBB in which to emit the compare and branch |
| MachineBasicBlock *CaseBB; |
| /// LT, GE - If nonzero, we know the current case value must be less-than or |
| /// greater-than-or-equal-to these Constants. |
| Constant *LT; |
| Constant *GE; |
| /// Range - A pair of iterators representing the range of case values to be |
| /// processed at this point in the binary search tree. |
| CaseRange Range; |
| }; |
| |
| typedef std::vector<CaseRec> CaseRecVector; |
| |
| /// The comparison function for sorting Case values. |
| struct CaseCmp { |
| bool operator () (const Case& C1, const Case& C2) { |
| assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first)); |
| return cast<const ConstantInt>(C1.first)->getSExtValue() < |
| cast<const ConstantInt>(C2.first)->getSExtValue(); |
| } |
| }; |
| |
| public: |
| // TLI - This is information that describes the available target features we |
| // need for lowering. This indicates when operations are unavailable, |
| // implemented with a libcall, etc. |
| TargetLowering &TLI; |
| SelectionDAG &DAG; |
| const TargetData *TD; |
| |
| /// SwitchCases - Vector of CaseBlock structures used to communicate |
| /// SwitchInst code generation information. |
| std::vector<SelectionDAGISel::CaseBlock> SwitchCases; |
| /// JTCases - Vector of JumpTable structures used to communicate |
| /// SwitchInst code generation information. |
| std::vector<SelectionDAGISel::JumpTableBlock> JTCases; |
| |
| /// FuncInfo - Information about the function as a whole. |
| /// |
| FunctionLoweringInfo &FuncInfo; |
| |
| SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, |
| FunctionLoweringInfo &funcinfo) |
| : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), |
| FuncInfo(funcinfo) { |
| } |
| |
| /// getRoot - Return the current virtual root of the Selection DAG. |
| /// |
| SDOperand getRoot() { |
| if (PendingLoads.empty()) |
| return DAG.getRoot(); |
| |
| if (PendingLoads.size() == 1) { |
| SDOperand Root = PendingLoads[0]; |
| DAG.setRoot(Root); |
| PendingLoads.clear(); |
| return Root; |
| } |
| |
| // Otherwise, we have to make a token factor node. |
| SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &PendingLoads[0], PendingLoads.size()); |
| PendingLoads.clear(); |
| DAG.setRoot(Root); |
| return Root; |
| } |
| |
| SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg); |
| |
| void visit(Instruction &I) { visit(I.getOpcode(), I); } |
| |
| void visit(unsigned Opcode, User &I) { |
| // Note: this doesn't use InstVisitor, because it has to work with |
| // ConstantExpr's in addition to instructions. |
| switch (Opcode) { |
| default: assert(0 && "Unknown instruction type encountered!"); |
| abort(); |
| // Build the switch statement using the Instruction.def file. |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \ |
| case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); |
| #include "llvm/Instruction.def" |
| } |
| } |
| |
| void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } |
| |
| SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr, |
| const Value *SV, SDOperand Root, |
| bool isVolatile); |
| |
| SDOperand getIntPtrConstant(uint64_t Val) { |
| return DAG.getConstant(Val, TLI.getPointerTy()); |
| } |
| |
| SDOperand getValue(const Value *V); |
| |
| void setValue(const Value *V, SDOperand NewN) { |
| SDOperand &N = NodeMap[V]; |
| assert(N.Val == 0 && "Already set a value for this node!"); |
| N = NewN; |
| } |
| |
| RegsForValue GetRegistersForValue(const std::string &ConstrCode, |
| MVT::ValueType VT, |
| bool OutReg, bool InReg, |
| std::set<unsigned> &OutputRegs, |
| std::set<unsigned> &InputRegs); |
| |
| void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, MachineBasicBlock *CurBB, |
| unsigned Opc); |
| bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB); |
| void ExportFromCurrentBlock(Value *V); |
| void LowerCallTo(Instruction &I, |
| const Type *CalledValueTy, unsigned CallingConv, |
| bool IsTailCall, SDOperand Callee, unsigned OpIdx); |
| |
| // Terminator instructions. |
| void visitRet(ReturnInst &I); |
| void visitBr(BranchInst &I); |
| void visitSwitch(SwitchInst &I); |
| void visitUnreachable(UnreachableInst &I) { /* noop */ } |
| |
| // Helpers for visitSwitch |
| bool handleSmallSwitchRange(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default); |
| bool handleJTSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default); |
| bool handleBTSplitSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default); |
| void visitSwitchCase(SelectionDAGISel::CaseBlock &CB); |
| void visitJumpTable(SelectionDAGISel::JumpTable &JT); |
| void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, |
| SelectionDAGISel::JumpTableHeader &JTH); |
| |
| // These all get lowered before this pass. |
| void visitInvoke(InvokeInst &I); |
| void visitInvoke(InvokeInst &I, bool AsTerminator); |
| void visitUnwind(UnwindInst &I); |
| |
| void visitScalarBinary(User &I, unsigned OpCode); |
| void visitVectorBinary(User &I, unsigned OpCode); |
| void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp); |
| void visitShift(User &I, unsigned Opcode); |
| void visitAdd(User &I) { |
| if (isa<VectorType>(I.getType())) |
| visitVectorBinary(I, ISD::VADD); |
| else if (I.getType()->isFloatingPoint()) |
| visitScalarBinary(I, ISD::FADD); |
| else |
| visitScalarBinary(I, ISD::ADD); |
| } |
| void visitSub(User &I); |
| void visitMul(User &I) { |
| if (isa<VectorType>(I.getType())) |
| visitVectorBinary(I, ISD::VMUL); |
| else if (I.getType()->isFloatingPoint()) |
| visitScalarBinary(I, ISD::FMUL); |
| else |
| visitScalarBinary(I, ISD::MUL); |
| } |
| void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); } |
| void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); } |
| void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); } |
| void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); } |
| void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); } |
| void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); } |
| void visitAnd (User &I) { visitEitherBinary(I, ISD::AND, ISD::VAND ); } |
| void visitOr (User &I) { visitEitherBinary(I, ISD::OR, ISD::VOR ); } |
| void visitXor (User &I) { visitEitherBinary(I, ISD::XOR, ISD::VXOR ); } |
| void visitShl (User &I) { visitShift(I, ISD::SHL); } |
| void visitLShr(User &I) { visitShift(I, ISD::SRL); } |
| void visitAShr(User &I) { visitShift(I, ISD::SRA); } |
| void visitICmp(User &I); |
| void visitFCmp(User &I); |
| // Visit the conversion instructions |
| void visitTrunc(User &I); |
| void visitZExt(User &I); |
| void visitSExt(User &I); |
| void visitFPTrunc(User &I); |
| void visitFPExt(User &I); |
| void visitFPToUI(User &I); |
| void visitFPToSI(User &I); |
| void visitUIToFP(User &I); |
| void visitSIToFP(User &I); |
| void visitPtrToInt(User &I); |
| void visitIntToPtr(User &I); |
| void visitBitCast(User &I); |
| |
| void visitExtractElement(User &I); |
| void visitInsertElement(User &I); |
| void visitShuffleVector(User &I); |
| |
| void visitGetElementPtr(User &I); |
| void visitSelect(User &I); |
| |
| void visitMalloc(MallocInst &I); |
| void visitFree(FreeInst &I); |
| void visitAlloca(AllocaInst &I); |
| void visitLoad(LoadInst &I); |
| void visitStore(StoreInst &I); |
| void visitPHI(PHINode &I) { } // PHI nodes are handled specially. |
| void visitCall(CallInst &I); |
| void visitInlineAsm(CallInst &I); |
| const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); |
| void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic); |
| |
| void visitVAStart(CallInst &I); |
| void visitVAArg(VAArgInst &I); |
| void visitVAEnd(CallInst &I); |
| void visitVACopy(CallInst &I); |
| |
| void visitMemIntrinsic(CallInst &I, unsigned Op); |
| |
| void visitUserOp1(Instruction &I) { |
| assert(0 && "UserOp1 should not exist at instruction selection time!"); |
| abort(); |
| } |
| void visitUserOp2(Instruction &I) { |
| assert(0 && "UserOp2 should not exist at instruction selection time!"); |
| abort(); |
| } |
| }; |
| } // end namespace llvm |
| |
| SDOperand SelectionDAGLowering::getValue(const Value *V) { |
| SDOperand &N = NodeMap[V]; |
| if (N.Val) return N; |
| |
| const Type *VTy = V->getType(); |
| MVT::ValueType VT = TLI.getValueType(VTy); |
| if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| visit(CE->getOpcode(), *CE); |
| SDOperand N1 = NodeMap[V]; |
| assert(N1.Val && "visit didn't populate the ValueMap!"); |
| return N1; |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { |
| return N = DAG.getGlobalAddress(GV, VT); |
| } else if (isa<ConstantPointerNull>(C)) { |
| return N = DAG.getConstant(0, TLI.getPointerTy()); |
| } else if (isa<UndefValue>(C)) { |
| if (!isa<VectorType>(VTy)) |
| return N = DAG.getNode(ISD::UNDEF, VT); |
| |
| // Create a VBUILD_VECTOR of undef nodes. |
| const VectorType *PTy = cast<VectorType>(VTy); |
| unsigned NumElements = PTy->getNumElements(); |
| MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); |
| |
| SmallVector<SDOperand, 8> Ops; |
| Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT)); |
| |
| // Create a VConstant node with generic Vector type. |
| Ops.push_back(DAG.getConstant(NumElements, MVT::i32)); |
| Ops.push_back(DAG.getValueType(PVT)); |
| return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, |
| &Ops[0], Ops.size()); |
| } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| return N = DAG.getConstantFP(CFP->getValue(), VT); |
| } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) { |
| unsigned NumElements = PTy->getNumElements(); |
| MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); |
| |
| // Now that we know the number and type of the elements, push a |
| // Constant or ConstantFP node onto the ops list for each element of |
| // the packed constant. |
| SmallVector<SDOperand, 8> Ops; |
| if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { |
| for (unsigned i = 0; i != NumElements; ++i) |
| Ops.push_back(getValue(CP->getOperand(i))); |
| } else { |
| assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!"); |
| SDOperand Op; |
| if (MVT::isFloatingPoint(PVT)) |
| Op = DAG.getConstantFP(0, PVT); |
| else |
| Op = DAG.getConstant(0, PVT); |
| Ops.assign(NumElements, Op); |
| } |
| |
| // Create a VBUILD_VECTOR node with generic Vector type. |
| Ops.push_back(DAG.getConstant(NumElements, MVT::i32)); |
| Ops.push_back(DAG.getValueType(PVT)); |
| return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], |
| Ops.size()); |
| } else { |
| // Canonicalize all constant ints to be unsigned. |
| return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT); |
| } |
| } |
| |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| std::map<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) |
| return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); |
| } |
| |
| unsigned InReg = FuncInfo.ValueMap[V]; |
| assert(InReg && "Value not in map!"); |
| |
| // If this type is not legal, make it so now. |
| if (VT != MVT::Vector) { |
| if (TLI.getTypeAction(VT) == TargetLowering::Expand) { |
| // Source must be expanded. This input value is actually coming from the |
| // register pair InReg and InReg+1. |
| MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT); |
| unsigned NumVals = TLI.getNumElements(VT); |
| N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT); |
| if (NumVals == 1) |
| N = DAG.getNode(ISD::BIT_CONVERT, VT, N); |
| else { |
| assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!"); |
| N = DAG.getNode(ISD::BUILD_PAIR, VT, N, |
| DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT)); |
| } |
| } else { |
| MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT); |
| N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT); |
| if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case |
| N = MVT::isFloatingPoint(VT) |
| ? DAG.getNode(ISD::FP_ROUND, VT, N) |
| : DAG.getNode(ISD::TRUNCATE, VT, N); |
| } |
| } else { |
| // Otherwise, if this is a vector, make it available as a generic vector |
| // here. |
| MVT::ValueType PTyElementVT, PTyLegalElementVT; |
| const VectorType *PTy = cast<VectorType>(VTy); |
| unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT, |
| PTyLegalElementVT); |
| |
| // Build a VBUILD_VECTOR with the input registers. |
| SmallVector<SDOperand, 8> Ops; |
| if (PTyElementVT == PTyLegalElementVT) { |
| // If the value types are legal, just VBUILD the CopyFromReg nodes. |
| for (unsigned i = 0; i != NE; ++i) |
| Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, |
| PTyElementVT)); |
| } else if (PTyElementVT < PTyLegalElementVT) { |
| // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate. |
| for (unsigned i = 0; i != NE; ++i) { |
| SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, |
| PTyElementVT); |
| if (MVT::isFloatingPoint(PTyElementVT)) |
| Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op); |
| else |
| Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op); |
| Ops.push_back(Op); |
| } |
| } else { |
| // If the register was expanded, use BUILD_PAIR. |
| assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!"); |
| for (unsigned i = 0; i != NE/2; ++i) { |
| SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, |
| PTyElementVT); |
| SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, |
| PTyElementVT); |
| Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1)); |
| } |
| } |
| |
| Ops.push_back(DAG.getConstant(NE, MVT::i32)); |
| Ops.push_back(DAG.getValueType(PTyLegalElementVT)); |
| N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size()); |
| |
| // Finally, use a VBIT_CONVERT to make this available as the appropriate |
| // vector type. |
| N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N, |
| DAG.getConstant(PTy->getNumElements(), |
| MVT::i32), |
| DAG.getValueType(TLI.getValueType(PTy->getElementType()))); |
| } |
| |
| return N; |
| } |
| |
| |
| void SelectionDAGLowering::visitRet(ReturnInst &I) { |
| if (I.getNumOperands() == 0) { |
| DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); |
| return; |
| } |
| SmallVector<SDOperand, 8> NewValues; |
| NewValues.push_back(getRoot()); |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| SDOperand RetOp = getValue(I.getOperand(i)); |
| |
| // If this is an integer return value, we need to promote it ourselves to |
| // the full width of a register, since LegalizeOp will use ANY_EXTEND rather |
| // than sign/zero. |
| // FIXME: C calling convention requires the return type to be promoted to |
| // at least 32-bit. But this is not necessary for non-C calling conventions. |
| if (MVT::isInteger(RetOp.getValueType()) && |
| RetOp.getValueType() < MVT::i64) { |
| MVT::ValueType TmpVT; |
| if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) |
| TmpVT = TLI.getTypeToTransformTo(MVT::i32); |
| else |
| TmpVT = MVT::i32; |
| const FunctionType *FTy = I.getParent()->getParent()->getFunctionType(); |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| if (FTy->paramHasAttr(0, FunctionType::SExtAttribute)) |
| ExtendKind = ISD::SIGN_EXTEND; |
| if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp); |
| } |
| NewValues.push_back(RetOp); |
| NewValues.push_back(DAG.getConstant(false, MVT::i32)); |
| } |
| DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, |
| &NewValues[0], NewValues.size())); |
| } |
| |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from |
| /// the current basic block, add it to ValueMap now so that we'll get a |
| /// CopyTo/FromReg. |
| void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) { |
| // No need to export constants. |
| if (!isa<Instruction>(V) && !isa<Argument>(V)) return; |
| |
| // Already exported? |
| if (FuncInfo.isExportedInst(V)) return; |
| |
| unsigned Reg = FuncInfo.InitializeRegForValue(V); |
| PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg)); |
| } |
| |
| bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V, |
| const BasicBlock *FromBB) { |
| // The operands of the setcc have to be in this block. We don't know |
| // how to export them from some other block. |
| if (Instruction *VI = dyn_cast<Instruction>(V)) { |
| // Can export from current BB. |
| if (VI->getParent() == FromBB) |
| return true; |
| |
| // Is already exported, noop. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // If this is an argument, we can export it if the BB is the entry block or |
| // if it is already exported. |
| if (isa<Argument>(V)) { |
| if (FromBB == &FromBB->getParent()->getEntryBlock()) |
| return true; |
| |
| // Otherwise, can only export this if it is already exported. |
| return FuncInfo.isExportedInst(V); |
| } |
| |
| // Otherwise, constants can always be exported. |
| return true; |
| } |
| |
| static bool InBlock(const Value *V, const BasicBlock *BB) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return I->getParent() == BB; |
| return true; |
| } |
| |
| /// FindMergedConditions - If Cond is an expression like |
| void SelectionDAGLowering::FindMergedConditions(Value *Cond, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB, |
| unsigned Opc) { |
| // If this node is not part of the or/and tree, emit it as a branch. |
| Instruction *BOp = dyn_cast<Instruction>(Cond); |
| |
| if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || |
| (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || |
| BOp->getParent() != CurBB->getBasicBlock() || |
| !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || |
| !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { |
| const BasicBlock *BB = CurBB->getBasicBlock(); |
| |
| // If the leaf of the tree is a comparison, merge the condition into |
| // the caseblock. |
| if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) && |
| // The operands of the cmp have to be in this block. We don't know |
| // how to export them from some other block. If this is the first block |
| // of the sequence, no exporting is needed. |
| (CurBB == CurMBB || |
| (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && |
| isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) { |
| BOp = cast<Instruction>(Cond); |
| ISD::CondCode Condition; |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { |
| switch (IC->getPredicate()) { |
| default: assert(0 && "Unknown icmp predicate opcode!"); |
| case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break; |
| case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break; |
| case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break; |
| case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break; |
| case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break; |
| case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break; |
| case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break; |
| case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break; |
| case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break; |
| case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break; |
| } |
| } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { |
| ISD::CondCode FPC, FOC; |
| switch (FC->getPredicate()) { |
| default: assert(0 && "Unknown fcmp predicate opcode!"); |
| case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; |
| case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; |
| case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; |
| case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; |
| case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; |
| case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; |
| case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; |
| case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break; |
| case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break; |
| case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; |
| case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; |
| case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; |
| case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; |
| case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; |
| case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; |
| case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; |
| } |
| if (FiniteOnlyFPMath()) |
| Condition = FOC; |
| else |
| Condition = FPC; |
| } else { |
| Condition = ISD::SETEQ; // silence warning. |
| assert(0 && "Unknown compare instruction"); |
| } |
| |
| SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0), |
| BOp->getOperand(1), TBB, FBB, CurBB); |
| SwitchCases.push_back(CB); |
| return; |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(), |
| TBB, FBB, CurBB); |
| SwitchCases.push_back(CB); |
| return; |
| } |
| |
| |
| // Create TmpBB after CurBB. |
| MachineFunction::iterator BBI = CurBB; |
| MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock()); |
| CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB); |
| |
| if (Opc == Instruction::Or) { |
| // Codegen X | Y as: |
| // jmp_if_X TBB |
| // jmp TmpBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); |
| |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); |
| } else { |
| assert(Opc == Instruction::And && "Unknown merge op!"); |
| // Codegen X & Y as: |
| // jmp_if_X TmpBB |
| // jmp FBB |
| // TmpBB: |
| // jmp_if_Y TBB |
| // jmp FBB |
| // |
| // This requires creation of TmpBB after CurBB. |
| |
| // Emit the LHS condition. |
| FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); |
| |
| // Emit the RHS condition into TmpBB. |
| FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); |
| } |
| } |
| |
| /// If the set of cases should be emitted as a series of branches, return true. |
| /// If we should emit this as a bunch of and/or'd together conditions, return |
| /// false. |
| static bool |
| ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) { |
| if (Cases.size() != 2) return true; |
| |
| // If this is two comparisons of the same values or'd or and'd together, they |
| // will get folded into a single comparison, so don't emit two blocks. |
| if ((Cases[0].CmpLHS == Cases[1].CmpLHS && |
| Cases[0].CmpRHS == Cases[1].CmpRHS) || |
| (Cases[0].CmpRHS == Cases[1].CmpLHS && |
| Cases[0].CmpLHS == Cases[1].CmpRHS)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void SelectionDAGLowering::visitBr(BranchInst &I) { |
| // Update machine-CFG edges. |
| MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| if (I.isUnconditional()) { |
| // If this is not a fall-through branch, emit the branch. |
| if (Succ0MBB != NextBlock) |
| DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), |
| DAG.getBasicBlock(Succ0MBB))); |
| |
| // Update machine-CFG edges. |
| CurMBB->addSuccessor(Succ0MBB); |
| |
| return; |
| } |
| |
| // If this condition is one of the special cases we handle, do special stuff |
| // now. |
| Value *CondVal = I.getCondition(); |
| MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| // If this is a series of conditions that are or'd or and'd together, emit |
| // this as a sequence of branches instead of setcc's with and/or operations. |
| // For example, instead of something like: |
| // cmp A, B |
| // C = seteq |
| // cmp D, E |
| // F = setle |
| // or C, F |
| // jnz foo |
| // Emit: |
| // cmp A, B |
| // je foo |
| // cmp D, E |
| // jle foo |
| // |
| if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { |
| if (BOp->hasOneUse() && |
| (BOp->getOpcode() == Instruction::And || |
| BOp->getOpcode() == Instruction::Or)) { |
| FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); |
| // If the compares in later blocks need to use values not currently |
| // exported from this block, export them now. This block should always |
| // be the first entry. |
| assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); |
| |
| // Allow some cases to be rejected. |
| if (ShouldEmitAsBranches(SwitchCases)) { |
| for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { |
| ExportFromCurrentBlock(SwitchCases[i].CmpLHS); |
| ExportFromCurrentBlock(SwitchCases[i].CmpRHS); |
| } |
| |
| // Emit the branch for this block. |
| visitSwitchCase(SwitchCases[0]); |
| SwitchCases.erase(SwitchCases.begin()); |
| return; |
| } |
| |
| // Okay, we decided not to do this, remove any inserted MBB's and clear |
| // SwitchCases. |
| for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) |
| CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB); |
| |
| SwitchCases.clear(); |
| } |
| } |
| |
| // Create a CaseBlock record representing this branch. |
| SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(), |
| Succ0MBB, Succ1MBB, CurMBB); |
| // Use visitSwitchCase to actually insert the fast branch sequence for this |
| // cond branch. |
| visitSwitchCase(CB); |
| } |
| |
| /// visitSwitchCase - Emits the necessary code to represent a single node in |
| /// the binary search tree resulting from lowering a switch instruction. |
| void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) { |
| SDOperand Cond; |
| SDOperand CondLHS = getValue(CB.CmpLHS); |
| |
| // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to |
| // handle common cases produced by branch lowering. |
| if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ) |
| Cond = CondLHS; |
| else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) { |
| SDOperand True = DAG.getConstant(1, CondLHS.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True); |
| } else |
| Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| // If the lhs block is the next block, invert the condition so that we can |
| // fall through to the lhs instead of the rhs block. |
| if (CB.TrueBB == NextBlock) { |
| std::swap(CB.TrueBB, CB.FalseBB); |
| SDOperand True = DAG.getConstant(1, Cond.getValueType()); |
| Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); |
| } |
| SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, |
| DAG.getBasicBlock(CB.TrueBB)); |
| if (CB.FalseBB == NextBlock) |
| DAG.setRoot(BrCond); |
| else |
| DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, |
| DAG.getBasicBlock(CB.FalseBB))); |
| // Update successor info |
| CurMBB->addSuccessor(CB.TrueBB); |
| CurMBB->addSuccessor(CB.FalseBB); |
| } |
| |
| /// visitJumpTable - Emit JumpTable node in the current MBB |
| void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) { |
| // Emit the code for the jump table |
| assert(JT.Reg != -1UL && "Should lower JT Header first!"); |
| MVT::ValueType PTy = TLI.getPointerTy(); |
| SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy); |
| SDOperand Table = DAG.getJumpTable(JT.JTI, PTy); |
| DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1), |
| Table, Index)); |
| return; |
| } |
| |
| /// visitJumpTableHeader - This function emits necessary code to produce index |
| /// in the JumpTable from switch case. |
| void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT, |
| SelectionDAGISel::JumpTableHeader &JTH) { |
| // Subtract the lowest switch case value from the value being switched on |
| // and conditional branch to default mbb if the result is greater than the |
| // difference between smallest and largest cases. |
| SDOperand SwitchOp = getValue(JTH.SValue); |
| MVT::ValueType VT = SwitchOp.getValueType(); |
| SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, |
| DAG.getConstant(JTH.First, VT)); |
| |
| // The SDNode we just created, which holds the value being switched on |
| // minus the the smallest case value, needs to be copied to a virtual |
| // register so it can be used as an index into the jump table in a |
| // subsequent basic block. This value may be smaller or larger than the |
| // target's pointer type, and therefore require extension or truncating. |
| if (VT > TLI.getPointerTy()) |
| SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB); |
| else |
| SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB); |
| |
| unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); |
| SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp); |
| JT.Reg = JumpTableReg; |
| |
| // Emit the range check for the jump table, and branch to the default |
| // block for the switch statement if the value being switched on exceeds |
| // the largest case in the switch. |
| SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB, |
| DAG.getConstant(JTH.Last-JTH.First,VT), |
| ISD::SETUGT); |
| |
| // Set NextBlock to be the MBB immediately after the current one, if any. |
| // This is used to avoid emitting unnecessary branches to the next block. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, |
| DAG.getBasicBlock(JT.Default)); |
| |
| if (JT.MBB == NextBlock) |
| DAG.setRoot(BrCond); |
| else |
| DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, |
| DAG.getBasicBlock(JT.MBB))); |
| } |
| |
| |
| void SelectionDAGLowering::visitInvoke(InvokeInst &I) { |
| assert(0 && "Should never be visited directly"); |
| } |
| void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) { |
| // Retrieve successors. |
| MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; |
| MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; |
| |
| if (!AsTerminator) { |
| // Mark landing pad so that it doesn't get deleted in branch folding. |
| LandingPad->setIsLandingPad(); |
| |
| // Insert a label before the invoke call to mark the try range. |
| // This can be used to detect deletion of the invoke via the |
| // MachineModuleInfo. |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| unsigned BeginLabel = MMI->NextLabelID(); |
| DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), |
| DAG.getConstant(BeginLabel, MVT::i32))); |
| |
| LowerCallTo(I, I.getCalledValue()->getType(), |
| I.getCallingConv(), |
| false, |
| getValue(I.getOperand(0)), |
| 3); |
| |
| // Insert a label before the invoke call to mark the try range. |
| // This can be used to detect deletion of the invoke via the |
| // MachineModuleInfo. |
| unsigned EndLabel = MMI->NextLabelID(); |
| DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), |
| DAG.getConstant(EndLabel, MVT::i32))); |
| |
| // Inform MachineModuleInfo of range. |
| MMI->addInvoke(LandingPad, BeginLabel, EndLabel); |
| |
| // Update successor info |
| CurMBB->addSuccessor(Return); |
| CurMBB->addSuccessor(LandingPad); |
| } else { |
| // Drop into normal successor. |
| DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), |
| DAG.getBasicBlock(Return))); |
| } |
| } |
| |
| void SelectionDAGLowering::visitUnwind(UnwindInst &I) { |
| } |
| |
| /// handleSmaaSwitchCaseRange - Emit a series of specific tests (suitable for |
| /// small case ranges). |
| bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default) { |
| Case& BackCase = *(CR.Range.second-1); |
| |
| // Size is the number of Cases represented by this range. |
| unsigned Size = CR.Range.second - CR.Range.first; |
| if (Size >=3) |
| return false; |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = CurMBB->getParent(); |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CR.CaseBB; |
| |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| // TODO: If any two of the cases has the same destination, and if one value |
| // is the same as the other, but has one bit unset that the other has set, |
| // use bit manipulation to do two compares at once. For example: |
| // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" |
| |
| // Rearrange the case blocks so that the last one falls through if possible. |
| if (NextBlock && Default != NextBlock && BackCase.second != NextBlock) { |
| // The last case block won't fall through into 'NextBlock' if we emit the |
| // branches in this order. See if rearranging a case value would help. |
| for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { |
| if (I->second == NextBlock) { |
| std::swap(*I, BackCase); |
| break; |
| } |
| } |
| } |
| |
| // Create a CaseBlock record representing a conditional branch to |
| // the Case's target mbb if the value being switched on SV is equal |
| // to C. |
| MachineBasicBlock *CurBlock = CR.CaseBB; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { |
| MachineBasicBlock *FallThrough; |
| if (I != E-1) { |
| FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock()); |
| CurMF->getBasicBlockList().insert(BBI, FallThrough); |
| } else { |
| // If the last case doesn't match, go to the default block. |
| FallThrough = Default; |
| } |
| |
| SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, I->first, |
| I->second, FallThrough, CurBlock); |
| |
| // If emitting the first comparison, just call visitSwitchCase to emit the |
| // code into the current block. Otherwise, push the CaseBlock onto the |
| // vector to be later processed by SDISel, and insert the node's MBB |
| // before the next MBB. |
| if (CurBlock == CurMBB) |
| visitSwitchCase(CB); |
| else |
| SwitchCases.push_back(CB); |
| |
| CurBlock = FallThrough; |
| } |
| |
| return true; |
| } |
| |
| /// handleJTSwitchCase - Emit jumptable for current switch case range |
| bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default) { |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| |
| // Size is the number of Cases represented by this range. |
| unsigned Size = CR.Range.second - CR.Range.first; |
| |
| uint64_t First = cast<ConstantInt>(FrontCase.first)->getSExtValue(); |
| uint64_t Last = cast<ConstantInt>(BackCase.first)->getSExtValue(); |
| |
| if ((!TLI.isOperationLegal(ISD::BR_JT, MVT::Other) && |
| !TLI.isOperationLegal(ISD::BRIND, MVT::Other)) || |
| Size <= 5) |
| return false; |
| |
| double Density = (double)Size / (double)((Last - First) + 1ULL); |
| if (Density < 0.3125) |
| return false; |
| |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = CurMBB->getParent(); |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CR.CaseBB; |
| |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| // Create a new basic block to hold the code for loading the address |
| // of the jump table, and jumping to it. Update successor information; |
| // we will either branch to the default case for the switch, or the jump |
| // table. |
| MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB); |
| CurMF->getBasicBlockList().insert(BBI, JumpTableBB); |
| CR.CaseBB->addSuccessor(Default); |
| CR.CaseBB->addSuccessor(JumpTableBB); |
| |
| // Build a vector of destination BBs, corresponding to each target |
| // of the jump table. If the value of the jump table slot corresponds to |
| // a case statement, push the case's BB onto the vector, otherwise, push |
| // the default BB. |
| std::vector<MachineBasicBlock*> DestBBs; |
| int64_t TEI = First; |
| for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) |
| if (cast<ConstantInt>(I->first)->getSExtValue() == TEI) { |
| DestBBs.push_back(I->second); |
| ++I; |
| } else { |
| DestBBs.push_back(Default); |
| } |
| |
| // Update successor info. Add one edge to each unique successor. |
| // Vector bool would be better, but vector<bool> is really slow. |
| std::vector<unsigned char> SuccsHandled; |
| SuccsHandled.resize(CR.CaseBB->getParent()->getNumBlockIDs()); |
| |
| for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), |
| E = DestBBs.end(); I != E; ++I) { |
| if (!SuccsHandled[(*I)->getNumber()]) { |
| SuccsHandled[(*I)->getNumber()] = true; |
| JumpTableBB->addSuccessor(*I); |
| } |
| } |
| |
| // Create a jump table index for this jump table, or return an existing |
| // one. |
| unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); |
| |
| // Set the jump table information so that we can codegen it as a second |
| // MachineBasicBlock |
| SelectionDAGISel::JumpTable JT(-1UL, JTI, JumpTableBB, Default); |
| SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB, |
| (CR.CaseBB == CurMBB)); |
| if (CR.CaseBB == CurMBB) |
| visitJumpTableHeader(JT, JTH); |
| |
| JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT)); |
| |
| return true; |
| } |
| |
| /// handleBTSplitSwitchCase - emit comparison and split binary search tree into |
| /// 2 subtrees. |
| bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR, |
| CaseRecVector& WorkList, |
| Value* SV, |
| MachineBasicBlock* Default) { |
| // Get the MachineFunction which holds the current MBB. This is used when |
| // inserting any additional MBBs necessary to represent the switch. |
| MachineFunction *CurMF = CurMBB->getParent(); |
| |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CR.CaseBB; |
| |
| if (++BBI != CurMBB->getParent()->end()) |
| NextBlock = BBI; |
| |
| Case& FrontCase = *CR.Range.first; |
| Case& BackCase = *(CR.Range.second-1); |
| const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); |
| |
| // Size is the number of Cases represented by this range. |
| unsigned Size = CR.Range.second - CR.Range.first; |
| |
| uint64_t First = cast<ConstantInt>(FrontCase.first)->getSExtValue(); |
| uint64_t Last = cast<ConstantInt>(BackCase.first)->getSExtValue(); |
| double Density = 0; |
| CaseItr Pivot; |
| |
| // Select optimal pivot, maximizing sum density of LHS and RHS. This will |
| // (heuristically) allow us to emit JumpTable's later. |
| unsigned LSize = 1; |
| unsigned RSize = Size-1; |
| for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; |
| J!=E; ++I, ++J, ++LSize, --RSize) { |
| uint64_t LEnd = cast<ConstantInt>(I->first)->getSExtValue(); |
| uint64_t RBegin = cast<ConstantInt>(J->first)->getSExtValue(); |
| double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL); |
| double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL); |
| if (Density < (LDensity + RDensity)) { |
| Pivot = J; |
| Density = LDensity + RDensity; |
| } |
| } |
| |
| CaseRange LHSR(CR.Range.first, Pivot); |
| CaseRange RHSR(Pivot, CR.Range.second); |
| Constant *C = Pivot->first; |
| MachineBasicBlock *FalseBB = 0, *TrueBB = 0; |
| |
| // We know that we branch to the LHS if the Value being switched on is |
| // less than the Pivot value, C. We use this to optimize our binary |
| // tree a bit, by recognizing that if SV is greater than or equal to the |
| // LHS's Case Value, and that Case Value is exactly one less than the |
| // Pivot's Value, then we can branch directly to the LHS's Target, |
| // rather than creating a leaf node for it. |
| if ((LHSR.second - LHSR.first) == 1 && |
| LHSR.first->first == CR.GE && |
| cast<ConstantInt>(C)->getZExtValue() == |
| (cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) { |
| TrueBB = LHSR.first->second; |
| } else { |
| TrueBB = new MachineBasicBlock(LLVMBB); |
| CurMF->getBasicBlockList().insert(BBI, TrueBB); |
| WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); |
| } |
| |
| // Similar to the optimization above, if the Value being switched on is |
| // known to be less than the Constant CR.LT, and the current Case Value |
| // is CR.LT - 1, then we can branch directly to the target block for |
| // the current Case Value, rather than emitting a RHS leaf node for it. |
| if ((RHSR.second - RHSR.first) == 1 && CR.LT && |
| cast<ConstantInt>(RHSR.first->first)->getZExtValue() == |
| (cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) { |
| FalseBB = RHSR.first->second; |
| } else { |
| FalseBB = new MachineBasicBlock(LLVMBB); |
| CurMF->getBasicBlockList().insert(BBI, FalseBB); |
| WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); |
| } |
| |
| // Create a CaseBlock record representing a conditional branch to |
| // the LHS node if the value being switched on SV is less than C. |
| // Otherwise, branch to LHS. |
| SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, TrueBB, FalseBB, |
| CR.CaseBB); |
| |
| if (CR.CaseBB == CurMBB) |
| visitSwitchCase(CB); |
| else |
| SwitchCases.push_back(CB); |
| |
| return true; |
| } |
| |
| void SelectionDAGLowering::visitSwitch(SwitchInst &I) { |
| // Figure out which block is immediately after the current one. |
| MachineBasicBlock *NextBlock = 0; |
| MachineFunction::iterator BBI = CurMBB; |
| |
| MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()]; |
| |
| // If there is only the default destination, branch to it if it is not the |
| // next basic block. Otherwise, just fall through. |
| if (I.getNumOperands() == 2) { |
| // Update machine-CFG edges. |
| |
| // If this is not a fall-through branch, emit the branch. |
| if (Default != NextBlock) |
| DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), |
| DAG.getBasicBlock(Default))); |
| |
| CurMBB->addSuccessor(Default); |
| return; |
| } |
| |
| // If there are any non-default case statements, create a vector of Cases |
| // representing each one, and sort the vector so that we can efficiently |
| // create a binary search tree from them. |
| std::vector<Case> Cases; |
| |
| for (unsigned i = 1; i < I.getNumSuccessors(); ++i) { |
| MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)]; |
| Cases.push_back(Case(I.getSuccessorValue(i), SMBB)); |
| } |
| std::sort(Cases.begin(), Cases.end(), CaseCmp()); |
| |
| // Get the Value to be switched on and default basic blocks, which will be |
| // inserted into CaseBlock records, representing basic blocks in the binary |
| // search tree. |
| Value *SV = I.getOperand(0); |
| |
| // Push the initial CaseRec onto the worklist |
| CaseRecVector WorkList; |
| WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); |
| |
| while (!WorkList.empty()) { |
| // Grab a record representing a case range to process off the worklist |
| CaseRec CR = WorkList.back(); |
| WorkList.pop_back(); |
| |
| // If the range has few cases (two or less) emit a series of specific |
| // tests. |
| if (handleSmallSwitchRange(CR, WorkList, SV, Default)) |
| continue; |
| |
| // If the switch has more than 5 blocks, and at least 31.25% dense, and the |
| // target supports indirect branches, then emit a jump table rather than |
| // lowering the switch to a binary tree of conditional branches. |
| if (handleJTSwitchCase(CR, WorkList, SV, Default)) |
| continue; |
| |
| // Emit binary tree. We need to pick a pivot, and push left and right ranges |
| // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. |
| handleBTSplitSwitchCase(CR, WorkList, SV, Default); |
| } |
| } |
| |
| |
| void SelectionDAGLowering::visitSub(User &I) { |
| // -0.0 - X --> fneg |
| const Type *Ty = I.getType(); |
| if (isa<VectorType>(Ty)) { |
| visitVectorBinary(I, ISD::VSUB); |
| } else if (Ty->isFloatingPoint()) { |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) |
| if (CFP->isExactlyValue(-0.0)) { |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); |
| return; |
| } |
| visitScalarBinary(I, ISD::FSUB); |
| } else |
| visitScalarBinary(I, ISD::SUB); |
| } |
| |
| void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) { |
| SDOperand Op1 = getValue(I.getOperand(0)); |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| |
| setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2)); |
| } |
| |
| void |
| SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) { |
| assert(isa<VectorType>(I.getType())); |
| const VectorType *Ty = cast<VectorType>(I.getType()); |
| SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType())); |
| |
| setValue(&I, DAG.getNode(OpCode, MVT::Vector, |
| getValue(I.getOperand(0)), |
| getValue(I.getOperand(1)), |
| DAG.getConstant(Ty->getNumElements(), MVT::i32), |
| Typ)); |
| } |
| |
| void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp, |
| unsigned VectorOp) { |
| if (isa<VectorType>(I.getType())) |
| visitVectorBinary(I, VectorOp); |
| else |
| visitScalarBinary(I, ScalarOp); |
| } |
| |
| void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { |
| SDOperand Op1 = getValue(I.getOperand(0)); |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| |
| if (TLI.getShiftAmountTy() < Op2.getValueType()) |
| Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2); |
| else if (TLI.getShiftAmountTy() > Op2.getValueType()) |
| Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); |
| |
| setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); |
| } |
| |
| void SelectionDAGLowering::visitICmp(User &I) { |
| ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) |
| predicate = IC->getPredicate(); |
| else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) |
| predicate = ICmpInst::Predicate(IC->getPredicate()); |
| SDOperand Op1 = getValue(I.getOperand(0)); |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Opcode; |
| switch (predicate) { |
| case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break; |
| case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break; |
| case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break; |
| case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break; |
| case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break; |
| case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break; |
| case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break; |
| case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break; |
| case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break; |
| case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break; |
| default: |
| assert(!"Invalid ICmp predicate value"); |
| Opcode = ISD::SETEQ; |
| break; |
| } |
| setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); |
| } |
| |
| void SelectionDAGLowering::visitFCmp(User &I) { |
| FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; |
| if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) |
| predicate = FC->getPredicate(); |
| else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) |
| predicate = FCmpInst::Predicate(FC->getPredicate()); |
| SDOperand Op1 = getValue(I.getOperand(0)); |
| SDOperand Op2 = getValue(I.getOperand(1)); |
| ISD::CondCode Condition, FOC, FPC; |
| switch (predicate) { |
| case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; |
| case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; |
| case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; |
| case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; |
| case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; |
| case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; |
| case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; |
| case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break; |
| case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break; |
| case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; |
| case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; |
| case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; |
| case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; |
| case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; |
| case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; |
| case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; |
| default: |
| assert(!"Invalid FCmp predicate value"); |
| FOC = FPC = ISD::SETFALSE; |
| break; |
| } |
| if (FiniteOnlyFPMath()) |
| Condition = FOC; |
| else |
| Condition = FPC; |
| setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition)); |
| } |
| |
| void SelectionDAGLowering::visitSelect(User &I) { |
| SDOperand Cond = getValue(I.getOperand(0)); |
| SDOperand TrueVal = getValue(I.getOperand(1)); |
| SDOperand FalseVal = getValue(I.getOperand(2)); |
| if (!isa<VectorType>(I.getType())) { |
| setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, |
| TrueVal, FalseVal)); |
| } else { |
| setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal, |
| *(TrueVal.Val->op_end()-2), |
| *(TrueVal.Val->op_end()-1))); |
| } |
| } |
| |
| |
| void SelectionDAGLowering::visitTrunc(User &I) { |
| // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitZExt(User &I) { |
| // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // ZExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitSExt(User &I) { |
| // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
| // SExt also can't be a cast to bool for same reason. So, nothing much to do |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitFPTrunc(User &I) { |
| // FPTrunc is never a no-op cast, no need to check |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitFPExt(User &I){ |
| // FPTrunc is never a no-op cast, no need to check |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitFPToUI(User &I) { |
| // FPToUI is never a no-op cast, no need to check |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitFPToSI(User &I) { |
| // FPToSI is never a no-op cast, no need to check |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitUIToFP(User &I) { |
| // UIToFP is never a no-op cast, no need to check |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitSIToFP(User &I){ |
| // UIToFP is never a no-op cast, no need to check |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitPtrToInt(User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType SrcVT = N.getValueType(); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| SDOperand Result; |
| if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT)) |
| Result = DAG.getNode(ISD::TRUNCATE, DestVT, N); |
| else |
| // Note: ZERO_EXTEND can handle cases where the sizes are equal too |
| Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N); |
| setValue(&I, Result); |
| } |
| |
| void SelectionDAGLowering::visitIntToPtr(User &I) { |
| // What to do depends on the size of the integer and the size of the pointer. |
| // We can either truncate, zero extend, or no-op, accordingly. |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType SrcVT = N.getValueType(); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT)) |
| setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N)); |
| else |
| // Note: ZERO_EXTEND can handle cases where the sizes are equal too |
| setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N)); |
| } |
| |
| void SelectionDAGLowering::visitBitCast(User &I) { |
| SDOperand N = getValue(I.getOperand(0)); |
| MVT::ValueType DestVT = TLI.getValueType(I.getType()); |
| if (DestVT == MVT::Vector) { |
| // This is a cast to a vector from something else. |
| // Get information about the output vector. |
| const VectorType *DestTy = cast<VectorType>(I.getType()); |
| MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType()); |
| setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N, |
| DAG.getConstant(DestTy->getNumElements(),MVT::i32), |
| DAG.getValueType(EltVT))); |
| return; |
| } |
| MVT::ValueType SrcVT = N.getValueType(); |
| if (SrcVT == MVT::Vector) { |
| // This is a cast from a vctor to something else. |
| // Get information about the input vector. |
| setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N)); |
| return; |
| } |
| |
| // BitCast assures us that source and destination are the same size so this |
| // is either a BIT_CONVERT or a no-op. |
| if (DestVT != N.getValueType()) |
| setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types |
| else |
| setValue(&I, N); // noop cast. |
| } |
| |
| void SelectionDAGLowering::visitInsertElement(User &I) { |
| SDOperand InVec = getValue(I.getOperand(0)); |
| SDOperand InVal = getValue(I.getOperand(1)); |
| SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), |
| getValue(I.getOperand(2))); |
| |
| SDOperand Num = *(InVec.Val->op_end()-2); |
| SDOperand Typ = *(InVec.Val->op_end()-1); |
| setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector, |
| InVec, InVal, InIdx, Num, Typ)); |
| } |
| |
| void SelectionDAGLowering::visitExtractElement(User &I) { |
| SDOperand InVec = getValue(I.getOperand(0)); |
| SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), |
| getValue(I.getOperand(1))); |
| SDOperand Typ = *(InVec.Val->op_end()-1); |
| setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, |
| TLI.getValueType(I.getType()), InVec, InIdx)); |
| } |
| |
| void SelectionDAGLowering::visitShuffleVector(User &I) { |
| SDOperand V1 = getValue(I.getOperand(0)); |
| SDOperand V2 = getValue(I.getOperand(1)); |
| SDOperand Mask = getValue(I.getOperand(2)); |
| |
| SDOperand Num = *(V1.Val->op_end()-2); |
| SDOperand Typ = *(V2.Val->op_end()-1); |
| setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, |
| V1, V2, Mask, Num, Typ)); |
| } |
| |
| |
| void SelectionDAGLowering::visitGetElementPtr(User &I) { |
| SDOperand N = getValue(I.getOperand(0)); |
| const Type *Ty = I.getOperand(0)->getType(); |
| |
| for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); |
| OI != E; ++OI) { |
| Value *Idx = *OI; |
| if (const StructType *StTy = dyn_cast<StructType>(Ty)) { |
| unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); |
| if (Field) { |
| // N = N + Offset |
| uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, |
| getIntPtrConstant(Offset)); |
| } |
| Ty = StTy->getElementType(Field); |
| } else { |
| Ty = cast<SequentialType>(Ty)->getElementType(); |
| |
| // If this is a constant subscript, handle it quickly. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { |
| if (CI->getZExtValue() == 0) continue; |
| uint64_t Offs = |
| TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs)); |
| continue; |
| } |
| |
| // N = N + Idx * ElementSize; |
| uint64_t ElementSize = TD->getTypeSize(Ty); |
| SDOperand IdxN = getValue(Idx); |
| |
| // If the index is smaller or larger than intptr_t, truncate or extend |
| // it. |
| if (IdxN.getValueType() < N.getValueType()) { |
| IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); |
| } else if (IdxN.getValueType() > N.getValueType()) |
| IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); |
| |
| // If this is a multiply by a power of two, turn it into a shl |
| // immediately. This is a very common case. |
| if (isPowerOf2_64(ElementSize)) { |
| unsigned Amt = Log2_64(ElementSize); |
| IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, |
| DAG.getConstant(Amt, TLI.getShiftAmountTy())); |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); |
| continue; |
| } |
| |
| SDOperand Scale = getIntPtrConstant(ElementSize); |
| IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); |
| N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); |
| } |
| } |
| setValue(&I, N); |
| } |
| |
| void SelectionDAGLowering::visitAlloca(AllocaInst &I) { |
| // If this is a fixed sized alloca in the entry block of the function, |
| // allocate it statically on the stack. |
| if (FuncInfo.StaticAllocaMap.count(&I)) |
| return; // getValue will auto-populate this. |
| |
| const Type *Ty = I.getAllocatedType(); |
| uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); |
| unsigned Align = |
| std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), |
| I.getAlignment()); |
| |
| SDOperand AllocSize = getValue(I.getArraySize()); |
| MVT::ValueType IntPtr = TLI.getPointerTy(); |
| if (IntPtr < AllocSize.getValueType()) |
| AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); |
| else if (IntPtr > AllocSize.getValueType()) |
| AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); |
| |
| AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, |
| getIntPtrConstant(TySize)); |
| |
| // Handle alignment. If the requested alignment is less than or equal to the |
| // stack alignment, ignore it and round the size of the allocation up to the |
| // stack alignment size. If the size is greater than the stack alignment, we |
| // note this in the DYNAMIC_STACKALLOC node. |
| unsigned StackAlign = |
| TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); |
| if (Align <= StackAlign) { |
| Align = 0; |
| // Add SA-1 to the size. |
| AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, |
| getIntPtrConstant(StackAlign-1)); |
| // Mask out the low bits for alignment purposes. |
| AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, |
| getIntPtrConstant(~(uint64_t)(StackAlign-1))); |
| } |
| |
| SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) }; |
| const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(), |
| MVT::Other); |
| SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3); |
| setValue(&I, DSA); |
| DAG.setRoot(DSA.getValue(1)); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); |
| } |
| |
| void SelectionDAGLowering::visitLoad(LoadInst &I) { |
| SDOperand Ptr = getValue(I.getOperand(0)); |
| |
| SDOperand Root; |
| if (I.isVolatile()) |
| Root = getRoot(); |
| else { |
| // Do not serialize non-volatile loads against each other. |
| Root = DAG.getRoot(); |
| } |
| |
| setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0), |
| Root, I.isVolatile())); |
| } |
| |
| SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr, |
| const Value *SV, SDOperand Root, |
| bool isVolatile) { |
| SDOperand L; |
| if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) { |
| MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); |
| L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, |
| DAG.getSrcValue(SV)); |
| } else { |
| L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile); |
| } |
| |
| if (isVolatile) |
| DAG.setRoot(L.getValue(1)); |
| else |
| PendingLoads.push_back(L.getValue(1)); |
| |
| return L; |
| } |
| |
| |
| void SelectionDAGLowering::visitStore(StoreInst &I) { |
| Value *SrcV = I.getOperand(0); |
| SDOperand Src = getValue(SrcV); |
| SDOperand Ptr = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0, |
| I.isVolatile())); |
| } |
| |
| /// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot |
| /// access memory and has no other side effects at all. |
| static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) { |
| #define GET_NO_MEMORY_INTRINSICS |
| #include "llvm/Intrinsics.gen" |
| #undef GET_NO_MEMORY_INTRINSICS |
| return false; |
| } |
| |
| // IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't |
| // have any side-effects or if it only reads memory. |
| static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) { |
| #define GET_SIDE_EFFECT_INFO |
| #include "llvm/Intrinsics.gen" |
| #undef GET_SIDE_EFFECT_INFO |
| return false; |
| } |
| |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC |
| /// node. |
| void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, |
| unsigned Intrinsic) { |
| bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic); |
| bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic); |
| |
| // Build the operand list. |
| SmallVector<SDOperand, 8> Ops; |
| if (HasChain) { // If this intrinsic has side-effects, chainify it. |
| if (OnlyLoad) { |
| // We don't need to serialize loads against other loads. |
| Ops.push_back(DAG.getRoot()); |
| } else { |
| Ops.push_back(getRoot()); |
| } |
| } |
| |
| // Add the intrinsic ID as an integer operand. |
| Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); |
| |
| // Add all operands of the call to the operand list. |
| for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { |
| SDOperand Op = getValue(I.getOperand(i)); |
| |
| // If this is a vector type, force it to the right vector type. |
| if (Op.getValueType() == MVT::Vector) { |
| const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType()); |
| MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType()); |
| |
| MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements()); |
| assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?"); |
| Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op); |
| } |
| |
| assert(TLI.isTypeLegal(Op.getValueType()) && |
| "Intrinsic uses a non-legal type?"); |
| Ops.push_back(Op); |
| } |
| |
| std::vector<MVT::ValueType> VTs; |
| if (I.getType() != Type::VoidTy) { |
| MVT::ValueType VT = TLI.getValueType(I.getType()); |
| if (VT == MVT::Vector) { |
| const VectorType *DestTy = cast<VectorType>(I.getType()); |
| MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType()); |
| |
| VT = MVT::getVectorType(EltVT, DestTy->getNumElements()); |
| assert(VT != MVT::Other && "Intrinsic uses a non-legal type?"); |
| } |
| |
| assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?"); |
| VTs.push_back(VT); |
| } |
| if (HasChain) |
| VTs.push_back(MVT::Other); |
| |
| const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs); |
| |
| // Create the node. |
| SDOperand Result; |
| if (!HasChain) |
| Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(), |
| &Ops[0], Ops.size()); |
| else if (I.getType() != Type::VoidTy) |
| Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(), |
| &Ops[0], Ops.size()); |
| else |
| Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(), |
| &Ops[0], Ops.size()); |
| |
| if (HasChain) { |
| SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1); |
| if (OnlyLoad) |
| PendingLoads.push_back(Chain); |
| else |
| DAG.setRoot(Chain); |
| } |
| if (I.getType() != Type::VoidTy) { |
| if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { |
| MVT::ValueType EVT = TLI.getValueType(PTy->getElementType()); |
| Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result, |
| DAG.getConstant(PTy->getNumElements(), MVT::i32), |
| DAG.getValueType(EVT)); |
| } |
| setValue(&I, Result); |
| } |
| } |
| |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If |
| /// we want to emit this as a call to a named external function, return the name |
| /// otherwise lower it and return null. |
| const char * |
| SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { |
| switch (Intrinsic) { |
| default: |
| // By default, turn this into a target intrinsic node. |
| visitTargetIntrinsic(I, Intrinsic); |
| return 0; |
| case Intrinsic::vastart: visitVAStart(I); return 0; |
| case Intrinsic::vaend: visitVAEnd(I); return 0; |
| case Intrinsic::vacopy: visitVACopy(I); return 0; |
| case Intrinsic::returnaddress: |
| setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::frameaddress: |
| setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::setjmp: |
| return "_setjmp"+!TLI.usesUnderscoreSetJmp(); |
| break; |
| case Intrinsic::longjmp: |
| return "_longjmp"+!TLI.usesUnderscoreLongJmp(); |
| break; |
| case Intrinsic::memcpy_i32: |
| case Intrinsic::memcpy_i64: |
| visitMemIntrinsic(I, ISD::MEMCPY); |
| return 0; |
| case Intrinsic::memset_i32: |
| case Intrinsic::memset_i64: |
| visitMemIntrinsic(I, ISD::MEMSET); |
| return 0; |
| case Intrinsic::memmove_i32: |
| case Intrinsic::memmove_i64: |
| visitMemIntrinsic(I, ISD::MEMMOVE); |
| return 0; |
| |
| case Intrinsic::dbg_stoppoint: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); |
| if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) { |
| SDOperand Ops[5]; |
| |
| Ops[0] = getRoot(); |
| Ops[1] = getValue(SPI.getLineValue()); |
| Ops[2] = getValue(SPI.getColumnValue()); |
| |
| DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext()); |
| assert(DD && "Not a debug information descriptor"); |
| CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD); |
| |
| Ops[3] = DAG.getString(CompileUnit->getFileName()); |
| Ops[4] = DAG.getString(CompileUnit->getDirectory()); |
| |
| DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5)); |
| } |
| |
| return 0; |
| } |
| case Intrinsic::dbg_region_start: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I); |
| if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) { |
| unsigned LabelID = MMI->RecordRegionStart(RSI.getContext()); |
| DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(), |
| DAG.getConstant(LabelID, MVT::i32))); |
| } |
| |
| return 0; |
| } |
| case Intrinsic::dbg_region_end: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I); |
| if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) { |
| unsigned LabelID = MMI->RecordRegionEnd(REI.getContext()); |
| DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, |
| getRoot(), DAG.getConstant(LabelID, MVT::i32))); |
| } |
| |
| return 0; |
| } |
| case Intrinsic::dbg_func_start: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I); |
| if (MMI && FSI.getSubprogram() && |
| MMI->Verify(FSI.getSubprogram())) { |
| unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram()); |
| DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, |
| getRoot(), DAG.getConstant(LabelID, MVT::i32))); |
| } |
| |
| return 0; |
| } |
| case Intrinsic::dbg_declare: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| DbgDeclareInst &DI = cast<DbgDeclareInst>(I); |
| if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) { |
| SDOperand AddressOp = getValue(DI.getAddress()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) |
| MMI->RecordVariable(DI.getVariable(), FI->getIndex()); |
| } |
| |
| return 0; |
| } |
| |
| case Intrinsic::eh_exception: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| |
| if (MMI) { |
| // Add a label to mark the beginning of the landing pad. Deletion of the |
| // landing pad can thus be detected via the MachineModuleInfo. |
| unsigned LabelID = MMI->addLandingPad(CurMBB); |
| DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(), |
| DAG.getConstant(LabelID, MVT::i32))); |
| |
| // Mark exception register as live in. |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| if (Reg) CurMBB->addLiveIn(Reg); |
| |
| // Insert the EXCEPTIONADDR instruction. |
| SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); |
| SDOperand Ops[1]; |
| Ops[0] = DAG.getRoot(); |
| SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1); |
| setValue(&I, Op); |
| DAG.setRoot(Op.getValue(1)); |
| } else { |
| setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); |
| } |
| return 0; |
| } |
| |
| case Intrinsic::eh_selector: |
| case Intrinsic::eh_filter:{ |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| |
| if (MMI) { |
| // Inform the MachineModuleInfo of the personality for this landing pad. |
| ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2)); |
| assert(CE && CE->getOpcode() == Instruction::BitCast && |
| isa<Function>(CE->getOperand(0)) && |
| "Personality should be a function"); |
| MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0))); |
| if (Intrinsic == Intrinsic::eh_filter) |
| MMI->setIsFilterLandingPad(CurMBB); |
| |
| // Gather all the type infos for this landing pad and pass them along to |
| // MachineModuleInfo. |
| std::vector<GlobalVariable *> TyInfo; |
| for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) { |
| ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i)); |
| if (CE && CE->getOpcode() == Instruction::BitCast && |
| isa<GlobalVariable>(CE->getOperand(0))) { |
| TyInfo.push_back(cast<GlobalVariable>(CE->getOperand(0))); |
| } else { |
| ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i)); |
| assert(CI && CI->getZExtValue() == 0 && |
| "TypeInfo must be a global variable typeinfo or NULL"); |
| TyInfo.push_back(NULL); |
| } |
| } |
| MMI->addCatchTypeInfo(CurMBB, TyInfo); |
| |
| // Mark exception selector register as live in. |
| unsigned Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) CurMBB->addLiveIn(Reg); |
| |
| // Insert the EHSELECTION instruction. |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); |
| SDOperand Ops[2]; |
| Ops[0] = getValue(I.getOperand(1)); |
| Ops[1] = getRoot(); |
| SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2); |
| setValue(&I, Op); |
| DAG.setRoot(Op.getValue(1)); |
| } else { |
| setValue(&I, DAG.getConstant(0, MVT::i32)); |
| } |
| |
| return 0; |
| } |
| |
| case Intrinsic::eh_typeid_for: { |
| MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); |
| |
| if (MMI) { |
| // Find the type id for the given typeinfo. |
| GlobalVariable *GV = NULL; |
| ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(1)); |
| if (CE && CE->getOpcode() == Instruction::BitCast && |
| isa<GlobalVariable>(CE->getOperand(0))) { |
| GV = cast<GlobalVariable>(CE->getOperand(0)); |
| } else { |
| ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); |
| assert(CI && CI->getZExtValue() == 0 && |
| "TypeInfo must be a global variable typeinfo or NULL"); |
| GV = NULL; |
| } |
| |
| unsigned TypeID = MMI->getTypeIDFor(GV); |
| setValue(&I, DAG.getConstant(TypeID, MVT::i32)); |
| } else { |
| setValue(&I, DAG.getConstant(0, MVT::i32)); |
| } |
| |
| return 0; |
| } |
| |
| case Intrinsic::sqrt_f32: |
| case Intrinsic::sqrt_f64: |
| setValue(&I, DAG.getNode(ISD::FSQRT, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::powi_f32: |
| case Intrinsic::powi_f64: |
| setValue(&I, DAG.getNode(ISD::FPOWI, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)))); |
| return 0; |
| case Intrinsic::pcmarker: { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); |
| return 0; |
| } |
| case Intrinsic::readcyclecounter: { |
| SDOperand Op = getRoot(); |
| SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, |
| DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2, |
| &Op, 1); |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::bswap_i16: |
| case Intrinsic::bswap_i32: |
| case Intrinsic::bswap_i64: |
| setValue(&I, DAG.getNode(ISD::BSWAP, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::cttz_i8: |
| case Intrinsic::cttz_i16: |
| case Intrinsic::cttz_i32: |
| case Intrinsic::cttz_i64: |
| setValue(&I, DAG.getNode(ISD::CTTZ, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::ctlz_i8: |
| case Intrinsic::ctlz_i16: |
| case Intrinsic::ctlz_i32: |
| case Intrinsic::ctlz_i64: |
| setValue(&I, DAG.getNode(ISD::CTLZ, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::ctpop_i8: |
| case Intrinsic::ctpop_i16: |
| case Intrinsic::ctpop_i32: |
| case Intrinsic::ctpop_i64: |
| setValue(&I, DAG.getNode(ISD::CTPOP, |
| getValue(I.getOperand(1)).getValueType(), |
| getValue(I.getOperand(1)))); |
| return 0; |
| case Intrinsic::stacksave: { |
| SDOperand Op = getRoot(); |
| SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, |
| DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1); |
| setValue(&I, Tmp); |
| DAG.setRoot(Tmp.getValue(1)); |
| return 0; |
| } |
| case Intrinsic::stackrestore: { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); |
| return 0; |
| } |
| case Intrinsic::prefetch: |
| // FIXME: Currently discarding prefetches. |
| return 0; |
| } |
| } |
| |
| |
| void SelectionDAGLowering::LowerCallTo(Instruction &I, |
| const Type *CalledValueTy, |
| unsigned CallingConv, |
| bool IsTailCall, |
| SDOperand Callee, unsigned OpIdx) { |
| const PointerType *PT = cast<PointerType>(CalledValueTy); |
| const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Args.reserve(I.getNumOperands()); |
| for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) { |
| Value *Arg = I.getOperand(i); |
| SDOperand ArgNode = getValue(Arg); |
| Entry.Node = ArgNode; Entry.Ty = Arg->getType(); |
| Entry.isSExt = FTy->paramHasAttr(i, FunctionType::SExtAttribute); |
| Entry.isZExt = FTy->paramHasAttr(i, FunctionType::ZExtAttribute); |
| Entry.isInReg = FTy->paramHasAttr(i, FunctionType::InRegAttribute); |
| Entry.isSRet = FTy->paramHasAttr(i, FunctionType::StructRetAttribute); |
| Args.push_back(Entry); |
| } |
| |
| std::pair<SDOperand,SDOperand> Result = |
| TLI.LowerCallTo(getRoot(), I.getType(), |
| FTy->paramHasAttr(0,FunctionType::SExtAttribute), |
| FTy->isVarArg(), CallingConv, IsTailCall, |
| Callee, Args, DAG); |
| if (I.getType() != Type::VoidTy) |
| setValue(&I, Result.first); |
| DAG.setRoot(Result.second); |
| } |
| |
| |
| void SelectionDAGLowering::visitCall(CallInst &I) { |
| const char *RenameFn = 0; |
| if (Function *F = I.getCalledFunction()) { |
| if (F->isDeclaration()) |
| if (unsigned IID = F->getIntrinsicID()) { |
| RenameFn = visitIntrinsicCall(I, IID); |
| if (!RenameFn) |
| return; |
| } else { // Not an LLVM intrinsic. |
| const std::string &Name = F->getName(); |
| if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) { |
| if (I.getNumOperands() == 3 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType() && |
| I.getType() == I.getOperand(2)->getType()) { |
| SDOperand LHS = getValue(I.getOperand(1)); |
| SDOperand RHS = getValue(I.getOperand(2)); |
| setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(), |
| LHS, RHS)); |
| return; |
| } |
| } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) { |
| if (I.getNumOperands() == 2 && // Basic sanity checks. |
| I.getOperand(1)->getType()->isFloatingPoint() && |
| I.getType() == I.getOperand(1)->getType()) { |
| SDOperand Tmp = getValue(I.getOperand(1)); |
| setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); |
| return; |
| } |
| } |
| } |
| } else if (isa<InlineAsm>(I.getOperand(0))) { |
| visitInlineAsm(I); |
| return; |
| } |
| |
| SDOperand Callee; |
| if (!RenameFn) |
| Callee = getValue(I.getOperand(0)); |
| else |
| Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); |
| |
| LowerCallTo(I, I.getCalledValue()->getType(), |
| I.getCallingConv(), |
| I.isTailCall(), |
| Callee, |
| 1); |
| } |
| |
| |
| SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG, |
| SDOperand &Chain, SDOperand &Flag)const{ |
| SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag); |
| Chain = Val.getValue(1); |
| Flag = Val.getValue(2); |
| |
| // If the result was expanded, copy from the top part. |
| if (Regs.size() > 1) { |
| assert(Regs.size() == 2 && |
| "Cannot expand to more than 2 elts yet!"); |
| SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag); |
| Chain = Hi.getValue(1); |
| Flag = Hi.getValue(2); |
| if (DAG.getTargetLoweringInfo().isLittleEndian()) |
| return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi); |
| else |
| return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val); |
| } |
| |
| // Otherwise, if the return value was promoted or extended, truncate it to the |
| // appropriate type. |
| if (RegVT == ValueVT) |
| return Val; |
| |
| if (MVT::isVector(RegVT)) { |
| assert(ValueVT == MVT::Vector && "Unknown vector conversion!"); |
| return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val, |
| DAG.getConstant(MVT::getVectorNumElements(RegVT), |
| MVT::i32), |
| DAG.getValueType(MVT::getVectorBaseType(RegVT))); |
| } |
| |
| if (MVT::isInteger(RegVT)) { |
| if (ValueVT < RegVT) |
| return DAG.getNode(ISD::TRUNCATE, ValueVT, Val); |
| else |
| return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val); |
| } |
| |
| assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT)); |
| return DAG.getNode(ISD::FP_ROUND, ValueVT, Val); |
| } |
| |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the |
| /// specified value into the registers specified by this object. This uses |
| /// Chain/Flag as the input and updates them for the output Chain/Flag. |
| void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG, |
| SDOperand &Chain, SDOperand &Flag, |
| MVT::ValueType PtrVT) const { |
| if (Regs.size() == 1) { |
| // If there is a single register and the types differ, this must be |
| // a promotion. |
| if (RegVT != ValueVT) { |
| if (MVT::isVector(RegVT)) { |
| assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?"); |
| Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val); |
| } else if (MVT::isInteger(RegVT)) { |
| if (RegVT < ValueVT) |
| Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val); |
| else |
| Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val); |
| } else |
| Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val); |
| } |
| Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag); |
| Flag = Chain.getValue(1); |
| } else { |
| std::vector<unsigned> R(Regs); |
| if (!DAG.getTargetLoweringInfo().isLittleEndian()) |
| std::reverse(R.begin(), R.end()); |
| |
| for (unsigned i = 0, e = R.size(); i != e; ++i) { |
| SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val, |
| DAG.getConstant(i, PtrVT)); |
| Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag); |
| Flag = Chain.getValue(1); |
| } |
| } |
| } |
| |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node |
| /// operand list. This adds the code marker and includes the number of |
| /// values added into it. |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG, |
| std::vector<SDOperand> &Ops) const { |
| Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32)); |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(Regs[i], RegVT)); |
| } |
| |
| /// isAllocatableRegister - If the specified register is safe to allocate, |
| /// i.e. it isn't a stack pointer or some other special register, return the |
| /// register class for the register. Otherwise, return null. |
| static const TargetRegisterClass * |
| isAllocatableRegister(unsigned Reg, MachineFunction &MF, |
| const TargetLowering &TLI, const MRegisterInfo *MRI) { |
| MVT::ValueType FoundVT = MVT::Other; |
| const TargetRegisterClass *FoundRC = 0; |
| for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(), |
| E = MRI->regclass_end(); RCI != E; ++RCI) { |
| MVT::ValueType ThisVT = MVT::Other; |
| |
| const TargetRegisterClass *RC = *RCI; |
| // If none of the the value types for this register class are valid, we |
| // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| I != E; ++I) { |
| if (TLI.isTypeLegal(*I)) { |
| // If we have already found this register in a different register class, |
| // choose the one with the largest VT specified. For example, on |
| // PowerPC, we favor f64 register classes over f32. |
| if (FoundVT == MVT::Other || |
| MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) { |
| ThisVT = *I; |
| break; |
| } |
| } |
| } |
| |
| if (ThisVT == MVT::Other) continue; |
| |
| // NOTE: This isn't ideal. In particular, this might allocate the |
| // frame pointer in functions that need it (due to them not being taken |
| // out of allocation, because a variable sized allocation hasn't been seen |
| // yet). This is a slight code pessimization, but should still work. |
| for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), |
| E = RC->allocation_order_end(MF); I != E; ++I) |
| if (*I == Reg) { |
| // We found a matching register class. Keep looking at others in case |
| // we find one with larger registers that this physreg is also in. |
| FoundRC = RC; |
| FoundVT = ThisVT; |
| break; |
| } |
| } |
| return FoundRC; |
| } |
| |
| RegsForValue SelectionDAGLowering:: |
| GetRegistersForValue(const std::string &ConstrCode, |
| MVT::ValueType VT, bool isOutReg, bool isInReg, |
| std::set<unsigned> &OutputRegs, |
| std::set<unsigned> &InputRegs) { |
| std::pair<unsigned, const TargetRegisterClass*> PhysReg = |
| TLI.getRegForInlineAsmConstraint(ConstrCode, VT); |
| std::vector<unsigned> Regs; |
| |
| unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1; |
| MVT::ValueType RegVT; |
| MVT::ValueType ValueVT = VT; |
| |
| // If this is a constraint for a specific physical register, like {r17}, |
| // assign it now. |
| if (PhysReg.first) { |
| if (VT == MVT::Other) |
| ValueVT = *PhysReg.second->vt_begin(); |
| |
| // Get the actual register value type. This is important, because the user |
| // may have asked for (e.g.) the AX register in i32 type. We need to |
| // remember that AX is actually i16 to get the right extension. |
| RegVT = *PhysReg.second->vt_begin(); |
| |
| // This is a explicit reference to a physical register. |
| Regs.push_back(PhysReg.first); |
| |
| // If this is an expanded reference, add the rest of the regs to Regs. |
| if (NumRegs != 1) { |
| TargetRegisterClass::iterator I = PhysReg.second->begin(); |
| TargetRegisterClass::iterator E = PhysReg.second->end(); |
| for (; *I != PhysReg.first; ++I) |
| assert(I != E && "Didn't find reg!"); |
| |
| // Already added the first reg. |
| --NumRegs; ++I; |
| for (; NumRegs; --NumRegs, ++I) { |
| assert(I != E && "Ran out of registers to allocate!"); |
| Regs.push_back(*I); |
| } |
| } |
| return RegsForValue(Regs, RegVT, ValueVT); |
| } |
| |
| // Otherwise, if this was a reference to an LLVM register class, create vregs |
| // for this reference. |
| std::vector<unsigned> RegClassRegs; |
| if (PhysReg.second) { |
| // If this is an early clobber or tied register, our regalloc doesn't know |
| // how to maintain the constraint. If it isn't, go ahead and create vreg |
| // and let the regalloc do the right thing. |
| if (!isOutReg || !isInReg) { |
| if (VT == MVT::Other) |
| ValueVT = *PhysReg.second->vt_begin(); |
| RegVT = *PhysReg.second->vt_begin(); |
| |
| // Create the appropriate number of virtual registers. |
| SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap(); |
| for (; NumRegs; --NumRegs) |
| Regs.push_back(RegMap->createVirtualRegister(PhysReg.second)); |
| |
| return RegsForValue(Regs, RegVT, ValueVT); |
| } |
| |
| // Otherwise, we can't allocate it. Let the code below figure out how to |
| // maintain these constraints. |
| RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end()); |
| |
| } else { |
| // This is a reference to a register class that doesn't directly correspond |
| // to an LLVM register class. Allocate NumRegs consecutive, available, |
| // registers from the class. |
| RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT); |
| } |
| |
| const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo(); |
| MachineFunction &MF = *CurMBB->getParent(); |
| unsigned NumAllocated = 0; |
| for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { |
| unsigned Reg = RegClassRegs[i]; |
| // See if this register is available. |
| if ((isOutReg && OutputRegs.count(Reg)) || // Already used. |
| (isInReg && InputRegs.count(Reg))) { // Already used. |
| // Make sure we find consecutive registers. |
| NumAllocated = 0; |
| continue; |
| } |
| |
| // Check to see if this register is allocatable (i.e. don't give out the |
| // stack pointer). |
| const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI); |
| if (!RC) { |
| // Make sure we find consecutive registers. |
| NumAllocated = 0; |
| continue; |
| } |
| |
| // Okay, this register is good, we can use it. |
| ++NumAllocated; |
| |
| // If we allocated enough consecutive |
| if (NumAllocated == NumRegs) { |
| unsigned RegStart = (i-NumAllocated)+1; |
| unsigned RegEnd = i+1; |
| // Mark all of the allocated registers used. |
| for (unsigned i = RegStart; i != RegEnd; ++i) { |
| unsigned Reg = RegClassRegs[i]; |
| Regs.push_back(Reg); |
| if (isOutReg) OutputRegs.insert(Reg); // Mark reg used. |
| if (isInReg) InputRegs.insert(Reg); // Mark reg used. |
| } |
| |
| return RegsForValue(Regs, *RC->vt_begin(), VT); |
| } |
| } |
| |
| // Otherwise, we couldn't allocate enough registers for this. |
| return RegsForValue(); |
| } |
| |
| /// getConstraintGenerality - Return an integer indicating how general CT is. |
| static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { |
| switch (CT) { |
| default: assert(0 && "Unknown constraint type!"); |
| case TargetLowering::C_Other: |
| case TargetLowering::C_Unknown: |
| return 0; |
| case TargetLowering::C_Register: |
| return 1; |
| case TargetLowering::C_RegisterClass: |
| return 2; |
| case TargetLowering::C_Memory: |
| return 3; |
| } |
| } |
| |
| static std::string GetMostGeneralConstraint(std::vector<std::string> &C, |
| const TargetLowering &TLI) { |
| assert(!C.empty() && "Must have at least one constraint"); |
| if (C.size() == 1) return C[0]; |
| |
| std::string *Current = &C[0]; |
| // If we have multiple constraints, try to pick the most general one ahead |
| // of time. This isn't a wonderful solution, but handles common cases. |
| TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0]); |
| for (unsigned j = 1, e = C.size(); j != e; ++j) { |
| TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j]); |
| if (getConstraintGenerality(ThisFlavor) > |
| getConstraintGenerality(Flavor)) { |
| // This constraint letter is more general than the previous one, |
| // use it. |
| Flavor = ThisFlavor; |
| Current = &C[j]; |
| } |
| } |
| return *Current; |
| } |
| |
| |
| /// visitInlineAsm - Handle a call to an InlineAsm object. |
| /// |
| void SelectionDAGLowering::visitInlineAsm(CallInst &I) { |
| InlineAsm *IA = cast<InlineAsm>(I.getOperand(0)); |
| |
| SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), |
| MVT::Other); |
| |
| std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints(); |
| std::vector<MVT::ValueType> ConstraintVTs; |
| |
| /// AsmNodeOperands - A list of pairs. The first element is a register, the |
| /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set |
| /// if it is a def of that register. |
| std::vector<SDOperand> AsmNodeOperands; |
| AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain |
| AsmNodeOperands.push_back(AsmStr); |
| |
| SDOperand Chain = getRoot(); |
| SDOperand Flag; |
| |
| // We fully assign registers here at isel time. This is not optimal, but |
| // should work. For register classes that correspond to LLVM classes, we |
| // could let the LLVM RA do its thing, but we currently don't. Do a prepass |
| // over the constraints, collecting fixed registers that we know we can't use. |
| std::set<unsigned> OutputRegs, InputRegs; |
| unsigned OpNum = 1; |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| std::string ConstraintCode = |
| GetMostGeneralConstraint(Constraints[i].Codes, TLI); |
| |
| MVT::ValueType OpVT; |
| |
| // Compute the value type for each operand and add it to ConstraintVTs. |
| switch (Constraints[i].Type) { |
| case InlineAsm::isOutput: |
| if (!Constraints[i].isIndirectOutput) { |
| assert(I.getType() != Type::VoidTy && "Bad inline asm!"); |
| OpVT = TLI.getValueType(I.getType()); |
| } else { |
| const Type *OpTy = I.getOperand(OpNum)->getType(); |
| OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType()); |
| OpNum++; // Consumes a call operand. |
| } |
| break; |
| case InlineAsm::isInput: |
| OpVT = TLI.getValueType(I.getOperand(OpNum)->getType()); |
| OpNum++; // Consumes a call operand. |
| break; |
| case InlineAsm::isClobber: |
| OpVT = MVT::Other; |
| break; |
| } |
| |
| ConstraintVTs.push_back(OpVT); |
| |
| if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0) |
| continue; // Not assigned a fixed reg. |
| |
| // Build a list of regs that this operand uses. This always has a single |
| // element for promoted/expanded operands. |
| RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT, |
| false, false, |
| OutputRegs, InputRegs); |
| |
| switch (Constraints[i].Type) { |
| case InlineAsm::isOutput: |
| // We can't assign any other output to this register. |
| OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| // If this is an early-clobber output, it cannot be assigned to the same |
| // value as the input reg. |
| if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput) |
| InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| break; |
| case InlineAsm::isInput: |
| // We can't assign any other input to this register. |
| InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| break; |
| case InlineAsm::isClobber: |
| // Clobbered regs cannot be used as inputs or outputs. |
| InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end()); |
| break; |
| } |
| } |
| |
| // Loop over all of the inputs, copying the operand values into the |
| // appropriate registers and processing the output regs. |
| RegsForValue RetValRegs; |
| std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; |
| OpNum = 1; |
| |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| std::string ConstraintCode = |
| GetMostGeneralConstraint(Constraints[i].Codes, TLI); |
| |
| switch (Constraints[i].Type) { |
| case InlineAsm::isOutput: { |
| TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass; |
| if (ConstraintCode.size() == 1) // not a physreg name. |
| CTy = TLI.getConstraintType(ConstraintCode); |
| |
| if (CTy == TargetLowering::C_Memory) { |
| // Memory output. |
| SDOperand InOperandVal = getValue(I.getOperand(OpNum)); |
| |
| // Check that the operand (the address to store to) isn't a float. |
| if (!MVT::isInteger(InOperandVal.getValueType())) |
| assert(0 && "MATCH FAIL!"); |
| |
| if (!Constraints[i].isIndirectOutput) |
| assert(0 && "MATCH FAIL!"); |
| |
| OpNum++; // Consumes a call operand. |
| |
| // Extend/truncate to the right pointer type if needed. |
| MVT::ValueType PtrType = TLI.getPointerTy(); |
| if (InOperandVal.getValueType() < PtrType) |
| InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal); |
| else if (InOperandVal.getValueType() > PtrType) |
| InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal); |
| |
| // Add information to the INLINEASM node to know about this output. |
| unsigned ResOpType = 4/*MEM*/ | (1 << 3); |
| AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32)); |
| AsmNodeOperands.push_back(InOperandVal); |
| break; |
| } |
| |
| // Otherwise, this is a register output. |
| assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!"); |
| |
| // If this is an early-clobber output, or if there is an input |
| // constraint that matches this, we need to reserve the input register |
| // so no other inputs allocate to it. |
| bool UsesInputRegister = false; |
| if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput) |
| UsesInputRegister = true; |
| |
| // Copy the output from the appropriate register. Find a register that |
| // we can use. |
| RegsForValue Regs = |
| GetRegistersForValue(ConstraintCode, ConstraintVTs[i], |
| true, UsesInputRegister, |
| OutputRegs, InputRegs); |
| if (Regs.Regs.empty()) { |
| cerr << "Couldn't allocate output reg for contraint '" |
| << ConstraintCode << "'!\n"; |
| exit(1); |
| } |
| |
| if (!Constraints[i].isIndirectOutput) { |
| assert(RetValRegs.Regs.empty() && |
| "Cannot have multiple output constraints yet!"); |
| assert(I.getType() != Type::VoidTy && "Bad inline asm!"); |
| RetValRegs = Regs; |
| } else { |
| IndirectStoresToEmit.push_back(std::make_pair(Regs, |
| I.getOperand(OpNum))); |
| OpNum++; // Consumes a call operand. |
| } |
| |
| // Add information to the INLINEASM node to know that this register is |
| // set. |
| Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands); |
| break; |
| } |
| case InlineAsm::isInput: { |
| SDOperand InOperandVal = getValue(I.getOperand(OpNum)); |
| OpNum++; // Consumes a call operand. |
| |
| if (isdigit(ConstraintCode[0])) { // Matching constraint? |
| // If this is required to match an output register we have already set, |
| // just use its register. |
| unsigned OperandNo = atoi(ConstraintCode.c_str()); |
| |
| // Scan until we find the definition we already emitted of this operand. |
| // When we find it, create a RegsForValue operand. |
| unsigned CurOp = 2; // The first operand. |
| for (; OperandNo; --OperandNo) { |
| // Advance to the next operand. |
| unsigned NumOps = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); |
| assert(((NumOps & 7) == 2 /*REGDEF*/ || |
| (NumOps & 7) == 4 /*MEM*/) && |
| "Skipped past definitions?"); |
| CurOp += (NumOps>>3)+1; |
| } |
| |
| unsigned NumOps = |
| cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue(); |
| if ((NumOps & 7) == 2 /*REGDEF*/) { |
| // Add NumOps>>3 registers to MatchedRegs. |
| RegsForValue MatchedRegs; |
| MatchedRegs.ValueVT = InOperandVal.getValueType(); |
| MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType(); |
| for (unsigned i = 0, e = NumOps>>3; i != e; ++i) { |
| unsigned Reg = |
| cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg(); |
| MatchedRegs.Regs.push_back(Reg); |
| } |
| |
| // Use the produced MatchedRegs object to |
| MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, |
| TLI.getPointerTy()); |
| MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands); |
| break; |
| } else { |
| assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!"); |
| assert(0 && "matching constraints for memory operands unimp"); |
| } |
| } |
| |
| TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass; |
| if (ConstraintCode.size() == 1) // not a physreg name. |
| CTy = TLI.getConstraintType(ConstraintCode); |
| |
| if (CTy == TargetLowering::C_Other) { |
| InOperandVal = TLI.isOperandValidForConstraint(InOperandVal, |
| ConstraintCode[0], DAG); |
| if (!InOperandVal.Val) { |
| cerr << "Invalid operand for inline asm constraint '" |
| << ConstraintCode << "'!\n"; |
| exit(1); |
| } |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = 3 /*IMM*/ | (1 << 3); |
| AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32)); |
| AsmNodeOperands.push_back(InOperandVal); |
| break; |
| } else if (CTy == TargetLowering::C_Memory) { |
| // Memory input. |
| |
| // If the operand is a float, spill to a constant pool entry to get its |
| // address. |
| if (ConstantFP *Val = dyn_cast<ConstantFP>(I.getOperand(OpNum-1))) |
| InOperandVal = DAG.getConstantPool(Val, TLI.getPointerTy()); |
| |
| if (!MVT::isInteger(InOperandVal.getValueType())) { |
| cerr << "Match failed, cannot handle this yet!\n"; |
| InOperandVal.Val->dump(); |
| exit(1); |
| } |
| |
| // Extend/truncate to the right pointer type if needed. |
| MVT::ValueType PtrType = TLI.getPointerTy(); |
| if (InOperandVal.getValueType() < PtrType) |
| InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal); |
| else if (InOperandVal.getValueType() > PtrType) |
| InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal); |
| |
| // Add information to the INLINEASM node to know about this input. |
| unsigned ResOpType = 4/*MEM*/ | (1 << 3); |
| AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32)); |
| AsmNodeOperands.push_back(InOperandVal); |
| break; |
| } |
| |
| assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!"); |
| |
| // Copy the input into the appropriate registers. |
| RegsForValue InRegs = |
| GetRegistersForValue(ConstraintCode, ConstraintVTs[i], |
| false, true, OutputRegs, InputRegs); |
| // FIXME: should be match fail. |
| assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!"); |
| |
| InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy()); |
| |
| InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands); |
| break; |
| } |
| case InlineAsm::isClobber: { |
| RegsForValue ClobberedRegs = |
| GetRegistersForValue(ConstraintCode, MVT::Other, false, false, |
| OutputRegs, InputRegs); |
| // Add the clobbered value to the operand list, so that the register |
| // allocator is aware that the physreg got clobbered. |
| if (!ClobberedRegs.Regs.empty()) |
| ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands); |
| break; |
| } |
| } |
| } |
| |
| // Finish up input operands. |
| AsmNodeOperands[0] = Chain; |
| if (Flag.Val) AsmNodeOperands.push_back(Flag); |
| |
| Chain = DAG.getNode(ISD::INLINEASM, |
| DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2, |
| &AsmNodeOperands[0], AsmNodeOperands.size()); |
| Flag = Chain.getValue(1); |
| |
| // If this asm returns a register value, copy the result from that register |
| // and set it as the value of the call. |
| if (!RetValRegs.Regs.empty()) |
| setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag)); |
| |
| std::vector<std::pair<SDOperand, Value*> > StoresToEmit; |
| |
| // Process indirect outputs, first output all of the flagged copies out of |
| // physregs. |
| for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { |
| RegsForValue &OutRegs = IndirectStoresToEmit[i].first; |
| Value *Ptr = IndirectStoresToEmit[i].second; |
| SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag); |
| StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); |
| } |
| |
| // Emit the non-flagged stores from the physregs. |
| SmallVector<SDOperand, 8> OutChains; |
| for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) |
| OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first, |
| getValue(StoresToEmit[i].second), |
| StoresToEmit[i].second, 0)); |
| if (!OutChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| DAG.setRoot(Chain); |
| } |
| |
| |
| void SelectionDAGLowering::visitMalloc(MallocInst &I) { |
| SDOperand Src = getValue(I.getOperand(0)); |
| |
| MVT::ValueType IntPtr = TLI.getPointerTy(); |
| |
| if (IntPtr < Src.getValueType()) |
| Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); |
| else if (IntPtr > Src.getValueType()) |
| Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); |
| |
| // Scale the source by the type size. |
| uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType()); |
| Src = DAG.getNode(ISD::MUL, Src.getValueType(), |
| Src, getIntPtrConstant(ElementSize)); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = Src; |
| Entry.Ty = TLI.getTargetData()->getIntPtrType(); |
| Args.push_back(Entry); |
| |
| std::pair<SDOperand,SDOperand> Result = |
| TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true, |
| DAG.getExternalSymbol("malloc", IntPtr), |
| Args, DAG); |
| setValue(&I, Result.first); // Pointers always fit in registers |
| DAG.setRoot(Result.second); |
| } |
| |
| void SelectionDAGLowering::visitFree(FreeInst &I) { |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Node = getValue(I.getOperand(0)); |
| Entry.Ty = TLI.getTargetData()->getIntPtrType(); |
| Args.push_back(Entry); |
| MVT::ValueType IntPtr = TLI.getPointerTy(); |
| std::pair<SDOperand,SDOperand> Result = |
| TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true, |
| DAG.getExternalSymbol("free", IntPtr), Args, DAG); |
| DAG.setRoot(Result.second); |
| } |
| |
| // InsertAtEndOfBasicBlock - This method should be implemented by targets that |
| // mark instructions with the 'usesCustomDAGSchedInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and the scheduler passes ownership of it to this method. |
| MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *MBB) { |
| cerr << "If a target marks an instruction with " |
| << "'usesCustomDAGSchedInserter', it must implement " |
| << "TargetLowering::InsertAtEndOfBasicBlock!\n"; |
| abort(); |
| return 0; |
| } |
| |
| void SelectionDAGLowering::visitVAStart(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(1)))); |
| } |
| |
| void SelectionDAGLowering::visitVAArg(VAArgInst &I) { |
| SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), |
| getValue(I.getOperand(0)), |
| DAG.getSrcValue(I.getOperand(0))); |
| setValue(&I, V); |
| DAG.setRoot(V.getValue(1)); |
| } |
| |
| void SelectionDAGLowering::visitVAEnd(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(1)))); |
| } |
| |
| void SelectionDAGLowering::visitVACopy(CallInst &I) { |
| DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), |
| getValue(I.getOperand(1)), |
| getValue(I.getOperand(2)), |
| DAG.getSrcValue(I.getOperand(1)), |
| DAG.getSrcValue(I.getOperand(2)))); |
| } |
| |
| /// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either |
| /// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate. |
| static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg, |
| unsigned &i, SelectionDAG &DAG, |
| TargetLowering &TLI) { |
| if (TLI.getTypeAction(VT) != TargetLowering::Expand) |
| return SDOperand(Arg, i++); |
| |
| MVT::ValueType EVT = TLI.getTypeToTransformTo(VT); |
| unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT); |
| if (NumVals == 1) { |
| return DAG.getNode(ISD::BIT_CONVERT, VT, |
| ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI)); |
| } else if (NumVals == 2) { |
| SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI); |
| SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI); |
| if (!TLI.isLittleEndian()) |
| std::swap(Lo, Hi); |
| return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); |
| } else { |
| // Value scalarized into many values. Unimp for now. |
| assert(0 && "Cannot expand i64 -> i16 yet!"); |
| } |
| return SDOperand(); |
| } |
| |
| /// TargetLowering::LowerArguments - This is the default LowerArguments |
| /// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all |
| /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be |
| /// integrated into SDISel. |
| std::vector<SDOperand> |
| TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { |
| const FunctionType *FTy = F.getFunctionType(); |
| // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(DAG.getRoot()); |
| Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy())); |
| Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy())); |
| |
| // Add one result value for each formal argument. |
| std::vector<MVT::ValueType> RetVals; |
| unsigned j = 1; |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); |
| I != E; ++I, ++j) { |
| MVT::ValueType VT = getValueType(I->getType()); |
| unsigned Flags = ISD::ParamFlags::NoFlagSet; |
| unsigned OriginalAlignment = |
| getTargetData()->getABITypeAlignment(I->getType()); |
| |
| // FIXME: Distinguish between a formal with no [sz]ext attribute from one |
| // that is zero extended! |
| if (FTy->paramHasAttr(j, FunctionType::ZExtAttribute)) |
| Flags &= ~(ISD::ParamFlags::SExt); |
| if (FTy->paramHasAttr(j, FunctionType::SExtAttribute)) |
| Flags |= ISD::ParamFlags::SExt; |
| if (FTy->paramHasAttr(j, FunctionType::InRegAttribute)) |
| Flags |= ISD::ParamFlags::InReg; |
| if (FTy->paramHasAttr(j, FunctionType::StructRetAttribute)) |
| Flags |= ISD::ParamFlags::StructReturn; |
| Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs); |
| |
| switch (getTypeAction(VT)) { |
| default: assert(0 && "Unknown type action!"); |
| case Legal: |
| RetVals.push_back(VT); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| break; |
| case Promote: |
| RetVals.push_back(getTypeToTransformTo(VT)); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| break; |
| case Expand: |
| if (VT != MVT::Vector) { |
| // If this is a large integer, it needs to be broken up into small |
| // integers. Figure out what the destination type is and how many small |
| // integers it turns into. |
| MVT::ValueType NVT = getTypeToExpandTo(VT); |
| unsigned NumVals = getNumElements(VT); |
| for (unsigned i = 0; i != NumVals; ++i) { |
| RetVals.push_back(NVT); |
| // if it isn't first piece, alignment must be 1 |
| if (i > 0) |
| Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) | |
| (1 << ISD::ParamFlags::OrigAlignmentOffs); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| } |
| } else { |
| // Otherwise, this is a vector type. We only support legal vectors |
| // right now. |
| unsigned NumElems = cast<VectorType>(I->getType())->getNumElements(); |
| const Type *EltTy = cast<VectorType>(I->getType())->getElementType(); |
| |
| // Figure out if there is a Packed type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); |
| if (TVT != MVT::Other && isTypeLegal(TVT)) { |
| RetVals.push_back(TVT); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| } else { |
| assert(0 && "Don't support illegal by-val vector arguments yet!"); |
| } |
| } |
| break; |
| } |
| } |
| |
| RetVals.push_back(MVT::Other); |
| |
| // Create the node. |
| SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, |
| DAG.getNodeValueTypes(RetVals), RetVals.size(), |
| &Ops[0], Ops.size()).Val; |
| |
| DAG.setRoot(SDOperand(Result, Result->getNumValues()-1)); |
| |
| // Set up the return result vector. |
| Ops.clear(); |
| unsigned i = 0; |
| unsigned Idx = 1; |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; |
| ++I, ++Idx) { |
| MVT::ValueType VT = getValueType(I->getType()); |
| |
| switch (getTypeAction(VT)) { |
| default: assert(0 && "Unknown type action!"); |
| case Legal: |
| Ops.push_back(SDOperand(Result, i++)); |
| break; |
| case Promote: { |
| SDOperand Op(Result, i++); |
| if (MVT::isInteger(VT)) { |
| if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute)) |
| Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op, |
| DAG.getValueType(VT)); |
| else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute)) |
| Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op, |
| DAG.getValueType(VT)); |
| Op = DAG.getNode(ISD::TRUNCATE, VT, Op); |
| } else { |
| assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); |
| Op = DAG.getNode(ISD::FP_ROUND, VT, Op); |
| } |
| Ops.push_back(Op); |
| break; |
| } |
| case Expand: |
| if (VT != MVT::Vector) { |
| // If this is a large integer or a floating point node that needs to be |
| // expanded, it needs to be reassembled from small integers. Figure out |
| // what the source elt type is and how many small integers it is. |
| Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this)); |
| } else { |
| // Otherwise, this is a vector type. We only support legal vectors |
| // right now. |
| const VectorType *PTy = cast<VectorType>(I->getType()); |
| unsigned NumElems = PTy->getNumElements(); |
| const Type *EltTy = PTy->getElementType(); |
| |
| // Figure out if there is a Packed type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); |
| if (TVT != MVT::Other && isTypeLegal(TVT)) { |
| SDOperand N = SDOperand(Result, i++); |
| // Handle copies from generic vectors to registers. |
| N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N, |
| DAG.getConstant(NumElems, MVT::i32), |
| DAG.getValueType(getValueType(EltTy))); |
| Ops.push_back(N); |
| } else { |
| assert(0 && "Don't support illegal by-val vector arguments yet!"); |
| abort(); |
| } |
| } |
| break; |
| } |
| } |
| return Ops; |
| } |
| |
| |
| /// ExpandScalarCallArgs - Recursively expand call argument node by |
| /// bit_converting it or extract a pair of elements from the larger node. |
| static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg, |
| unsigned Flags, |
| SmallVector<SDOperand, 32> &Ops, |
| SelectionDAG &DAG, |
| TargetLowering &TLI, |
| bool isFirst = true) { |
| |
| if (TLI.getTypeAction(VT) != TargetLowering::Expand) { |
| // if it isn't first piece, alignment must be 1 |
| if (!isFirst) |
| Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) | |
| (1 << ISD::ParamFlags::OrigAlignmentOffs); |
| Ops.push_back(Arg); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| return; |
| } |
| |
| MVT::ValueType EVT = TLI.getTypeToTransformTo(VT); |
| unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT); |
| if (NumVals == 1) { |
| Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg); |
| ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst); |
| } else if (NumVals == 2) { |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg, |
| DAG.getConstant(0, TLI.getPointerTy())); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg, |
| DAG.getConstant(1, TLI.getPointerTy())); |
| if (!TLI.isLittleEndian()) |
| std::swap(Lo, Hi); |
| ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst); |
| ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false); |
| } else { |
| // Value scalarized into many values. Unimp for now. |
| assert(0 && "Cannot expand i64 -> i16 yet!"); |
| } |
| } |
| |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo |
| /// implementation, which just inserts an ISD::CALL node, which is later custom |
| /// lowered by the target to something concrete. FIXME: When all targets are |
| /// migrated to using ISD::CALL, this hook should be integrated into SDISel. |
| std::pair<SDOperand, SDOperand> |
| TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, |
| bool RetTyIsSigned, bool isVarArg, |
| unsigned CallingConv, bool isTailCall, |
| SDOperand Callee, |
| ArgListTy &Args, SelectionDAG &DAG) { |
| SmallVector<SDOperand, 32> Ops; |
| Ops.push_back(Chain); // Op#0 - Chain |
| Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC |
| Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg |
| Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail |
| Ops.push_back(Callee); |
| |
| // Handle all of the outgoing arguments. |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| MVT::ValueType VT = getValueType(Args[i].Ty); |
| SDOperand Op = Args[i].Node; |
| unsigned Flags = ISD::ParamFlags::NoFlagSet; |
| unsigned OriginalAlignment = |
| getTargetData()->getABITypeAlignment(Args[i].Ty); |
| |
| if (Args[i].isSExt) |
| Flags |= ISD::ParamFlags::SExt; |
| if (Args[i].isZExt) |
| Flags |= ISD::ParamFlags::ZExt; |
| if (Args[i].isInReg) |
| Flags |= ISD::ParamFlags::InReg; |
| if (Args[i].isSRet) |
| Flags |= ISD::ParamFlags::StructReturn; |
| Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs; |
| |
| switch (getTypeAction(VT)) { |
| default: assert(0 && "Unknown type action!"); |
| case Legal: |
| Ops.push_back(Op); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| break; |
| case Promote: |
| if (MVT::isInteger(VT)) { |
| unsigned ExtOp; |
| if (Args[i].isSExt) |
| ExtOp = ISD::SIGN_EXTEND; |
| else if (Args[i].isZExt) |
| ExtOp = ISD::ZERO_EXTEND; |
| else |
| ExtOp = ISD::ANY_EXTEND; |
| Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op); |
| } else { |
| assert(MVT::isFloatingPoint(VT) && "Not int or FP?"); |
| Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op); |
| } |
| Ops.push_back(Op); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| break; |
| case Expand: |
| if (VT != MVT::Vector) { |
| // If this is a large integer, it needs to be broken down into small |
| // integers. Figure out what the source elt type is and how many small |
| // integers it is. |
| ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this); |
| } else { |
| // Otherwise, this is a vector type. We only support legal vectors |
| // right now. |
| const VectorType *PTy = cast<VectorType>(Args[i].Ty); |
| unsigned NumElems = PTy->getNumElements(); |
| const Type *EltTy = PTy->getElementType(); |
| |
| // Figure out if there is a Packed type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); |
| if (TVT != MVT::Other && isTypeLegal(TVT)) { |
| // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type. |
| Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op); |
| Ops.push_back(Op); |
| Ops.push_back(DAG.getConstant(Flags, MVT::i32)); |
| } else { |
| assert(0 && "Don't support illegal by-val vector call args yet!"); |
| abort(); |
| } |
| } |
| break; |
| } |
| } |
| |
| // Figure out the result value types. |
| SmallVector<MVT::ValueType, 4> RetTys; |
| |
| if (RetTy != Type::VoidTy) { |
| MVT::ValueType VT = getValueType(RetTy); |
| switch (getTypeAction(VT)) { |
| default: assert(0 && "Unknown type action!"); |
| case Legal: |
| RetTys.push_back(VT); |
| break; |
| case Promote: |
| RetTys.push_back(getTypeToTransformTo(VT)); |
| break; |
| case Expand: |
| if (VT != MVT::Vector) { |
| // If this is a large integer, it needs to be reassembled from small |
| // integers. Figure out what the source elt type is and how many small |
| // integers it is. |
| MVT::ValueType NVT = getTypeToExpandTo(VT); |
| unsigned NumVals = getNumElements(VT); |
| for (unsigned i = 0; i != NumVals; ++i) |
| RetTys.push_back(NVT); |
| } else { |
| // Otherwise, this is a vector type. We only support legal vectors |
| // right now. |
| const VectorType *PTy = cast<VectorType>(RetTy); |
| unsigned NumElems = PTy->getNumElements(); |
| const Type *EltTy = PTy->getElementType(); |
| |
| // Figure out if there is a Packed type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems); |
| if (TVT != MVT::Other && isTypeLegal(TVT)) { |
| RetTys.push_back(TVT); |
| } else { |
| assert(0 && "Don't support illegal by-val vector call results yet!"); |
| abort(); |
| } |
| } |
| } |
| } |
| |
| RetTys.push_back(MVT::Other); // Always has a chain. |
| |
| // Finally, create the CALL node. |
| SDOperand Res = DAG.getNode(ISD::CALL, |
| DAG.getVTList(&RetTys[0], RetTys.size()), |
| &Ops[0], Ops.size()); |
| |
| // This returns a pair of operands. The first element is the |
| // return value for the function (if RetTy is not VoidTy). The second |
| // element is the outgoing token chain. |
| SDOperand ResVal; |
| if (RetTys.size() != 1) { |
| MVT::ValueType VT = getValueType(RetTy); |
| if (RetTys.size() == 2) { |
| ResVal = Res; |
| |
| // If this value was promoted, truncate it down. |
| if (ResVal.getValueType() != VT) { |
| if (VT == MVT::Vector) { |
| // Insert a VBIT_CONVERT to convert from the packed result type to the |
| // MVT::Vector type. |
| unsigned NumElems = cast<VectorType>(RetTy)->getNumElements(); |
| const Type *EltTy = cast<VectorType>(RetTy)->getElementType(); |
| |
| // Figure out if there is a Packed type corresponding to this Vector |
| // type. If so, convert to the vector type. |
| MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems); |
| if (TVT != MVT::Other && isTypeLegal(TVT)) { |
| // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a |
| // "N x PTyElementVT" MVT::Vector type. |
| ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal, |
| DAG.getConstant(NumElems, MVT::i32), |
| DAG.getValueType(getValueType(EltTy))); |
| } else { |
| abort(); |
| } |
| } else if (MVT::isInteger(VT)) { |
| unsigned AssertOp = ISD::AssertSext; |
| if (!RetTyIsSigned) |
| AssertOp = ISD::AssertZext; |
| ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal, |
| DAG.getValueType(VT)); |
| ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal); |
| } else { |
| assert(MVT::isFloatingPoint(VT)); |
| if (getTypeAction(VT) == Expand) |
| ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal); |
| else |
| ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal); |
| } |
| } |
| } else if (RetTys.size() == 3) { |
| ResVal = DAG.getNode(ISD::BUILD_PAIR, VT, |
| Res.getValue(0), Res.getValue(1)); |
| |
| } else { |
| assert(0 && "Case not handled yet!"); |
| } |
| } |
| |
| return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1)); |
| } |
| |
| SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| assert(0 && "LowerOperation not implemented for this target!"); |
| abort(); |
| return SDOperand(); |
| } |
| |
| SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op, |
| SelectionDAG &DAG) { |
| assert(0 && "CustomPromoteOperation not implemented for this target!"); |
| abort(); |
| return SDOperand(); |
| } |
| |
| /// getMemsetValue - Vectorized representation of the memset value |
| /// operand. |
| static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT, |
| SelectionDAG &DAG) { |
| MVT::ValueType CurVT = VT; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { |
| uint64_t Val = C->getValue() & 255; |
| unsigned Shift = 8; |
| while (CurVT != MVT::i8) { |
| Val = (Val << Shift) | Val; |
| Shift <<= 1; |
| CurVT = (MVT::ValueType)((unsigned)CurVT - 1); |
| } |
| return DAG.getConstant(Val, VT); |
| } else { |
| Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value); |
| unsigned Shift = 8; |
| while (CurVT != MVT::i8) { |
| Value = |
| DAG.getNode(ISD::OR, VT, |
| DAG.getNode(ISD::SHL, VT, Value, |
| DAG.getConstant(Shift, MVT::i8)), Value); |
| Shift <<= 1; |
| CurVT = (MVT::ValueType)((unsigned)CurVT - 1); |
| } |
| |
| return Value; |
| } |
| } |
| |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only |
| /// used when a memcpy is turned into a memset when the source is a constant |
| /// string ptr. |
| static SDOperand getMemsetStringVal(MVT::ValueType VT, |
| SelectionDAG &DAG, TargetLowering &TLI, |
| std::string &Str, unsigned Offset) { |
| uint64_t Val = 0; |
| unsigned MSB = getSizeInBits(VT) / 8; |
| if (TLI.isLittleEndian()) |
| Offset = Offset + MSB - 1; |
| for (unsigned i = 0; i != MSB; ++i) { |
| Val = (Val << 8) | (unsigned char)Str[Offset]; |
| Offset += TLI.isLittleEndian() ? -1 : 1; |
| } |
| return DAG.getConstant(Val, VT); |
| } |
| |
| /// getMemBasePlusOffset - Returns base and offset node for the |
| static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset, |
| SelectionDAG &DAG, TargetLowering &TLI) { |
| MVT::ValueType VT = Base.getValueType(); |
| return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT)); |
| } |
| |
| /// MeetsMaxMemopRequirement - Determines if the number of memory ops required |
| /// to replace the memset / memcpy is below the threshold. It also returns the |
| /// types of the sequence of memory ops to perform memset / memcpy. |
| static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps, |
| unsigned Limit, uint64_t Size, |
| unsigned Align, TargetLowering &TLI) { |
| MVT::ValueType VT; |
| |
| if (TLI.allowsUnalignedMemoryAccesses()) { |
| VT = MVT::i64; |
| } else { |
| switch (Align & 7) { |
| case 0: |
| VT = MVT::i64; |
| break; |
| case 4: |
| VT = MVT::i32; |
| break; |
| case 2: |
| VT = MVT::i16; |
| break; |
| default: |
| VT = MVT::i8; |
| break; |
| } |
| } |
| |
| MVT::ValueType LVT = MVT::i64; |
| while (!TLI.isTypeLegal(LVT)) |
| LVT = (MVT::ValueType)((unsigned)LVT - 1); |
| assert(MVT::isInteger(LVT)); |
| |
| if (VT > LVT) |
| VT = LVT; |
| |
| unsigned NumMemOps = 0; |
| while (Size != 0) { |
| unsigned VTSize = getSizeInBits(VT) / 8; |
| while (VTSize > Size) { |
| VT = (MVT::ValueType)((unsigned)VT - 1); |
| VTSize >>= 1; |
| } |
| assert(MVT::isInteger(VT)); |
| |
| if (++NumMemOps > Limit) |
| return false; |
| MemOps.push_back(VT); |
| Size -= VTSize; |
| } |
| |
| return true; |
| } |
| |
| void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { |
| SDOperand Op1 = getValue(I.getOperand(1)); |
| SDOperand Op2 = getValue(I.getOperand(2)); |
| SDOperand Op3 = getValue(I.getOperand(3)); |
| SDOperand Op4 = getValue(I.getOperand(4)); |
| unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue(); |
| if (Align == 0) Align = 1; |
| |
| if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) { |
| std::vector<MVT::ValueType> MemOps; |
| |
| // Expand memset / memcpy to a series of load / store ops |
| // if the size operand falls below a certain threshold. |
| SmallVector<SDOperand, 8> OutChains; |
| switch (Op) { |
| default: break; // Do nothing for now. |
| case ISD::MEMSET: { |
| if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(), |
| Size->getValue(), Align, TLI)) { |
| unsigned NumMemOps = MemOps.size(); |
| unsigned Offset = 0; |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT::ValueType VT = MemOps[i]; |
| unsigned VTSize = getSizeInBits(VT) / 8; |
| SDOperand Value = getMemsetValue(Op2, VT, DAG); |
| SDOperand Store = DAG.getStore(getRoot(), Value, |
| getMemBasePlusOffset(Op1, Offset, DAG, TLI), |
| I.getOperand(1), Offset); |
| OutChains.push_back(Store); |
| Offset += VTSize; |
| } |
| } |
| break; |
| } |
| case ISD::MEMCPY: { |
| if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(), |
| Size->getValue(), Align, TLI)) { |
| unsigned NumMemOps = MemOps.size(); |
| unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0; |
| GlobalAddressSDNode *G = NULL; |
| std::string Str; |
| bool CopyFromStr = false; |
| |
| if (Op2.getOpcode() == ISD::GlobalAddress) |
| G = cast<GlobalAddressSDNode>(Op2); |
| else if (Op2.getOpcode() == ISD::ADD && |
| Op2.getOperand(0).getOpcode() == ISD::GlobalAddress && |
| Op2.getOperand(1).getOpcode() == ISD::Constant) { |
| G = cast<GlobalAddressSDNode>(Op2.getOperand(0)); |
| SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue(); |
| } |
| if (G) { |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal()); |
| if (GV && GV->isConstant()) { |
| Str = GV->getStringValue(false); |
| if (!Str.empty()) { |
| CopyFromStr = true; |
| SrcOff += SrcDelta; |
| } |
| } |
| } |
| |
| for (unsigned i = 0; i < NumMemOps; i++) { |
| MVT::ValueType VT = MemOps[i]; |
| unsigned VTSize = getSizeInBits(VT) / 8; |
| SDOperand Value, Chain, Store; |
| |
| if (CopyFromStr) { |
| Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff); |
| Chain = getRoot(); |
| Store = |
| DAG.getStore(Chain, Value, |
| getMemBasePlusOffset(Op1, DstOff, DAG, TLI), |
| I.getOperand(1), DstOff); |
| } else { |
| Value = DAG.getLoad(VT, getRoot(), |
| getMemBasePlusOffset(Op2, SrcOff, DAG, TLI), |
| I.getOperand(2), SrcOff); |
| Chain = Value.getValue(1); |
| Store = |
| DAG.getStore(Chain, Value, |
| getMemBasePlusOffset(Op1, DstOff, DAG, TLI), |
| I.getOperand(1), DstOff); |
| } |
| OutChains.push_back(Store); |
| SrcOff += VTSize; |
| DstOff += VTSize; |
| } |
| } |
| break; |
| } |
| } |
| |
| if (!OutChains.empty()) { |
| DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &OutChains[0], OutChains.size())); |
| return; |
| } |
| } |
| |
| DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAGISel code |
| //===----------------------------------------------------------------------===// |
| |
| unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { |
| return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AliasAnalysis>(); |
| AU.setPreservesAll(); |
| } |
| |
| |
| |
| bool SelectionDAGISel::runOnFunction(Function &Fn) { |
| MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); |
| RegMap = MF.getSSARegMap(); |
| DOUT << "\n\n\n=== " << Fn.getName() << "\n"; |
| |
| FunctionLoweringInfo FuncInfo(TLI, Fn, MF); |
| |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| SelectBasicBlock(I, MF, FuncInfo); |
| |
| // Add function live-ins to entry block live-in set. |
| BasicBlock *EntryBB = &Fn.getEntryBlock(); |
| BB = FuncInfo.MBBMap[EntryBB]; |
| if (!MF.livein_empty()) |
| for (MachineFunction::livein_iterator I = MF.livein_begin(), |
| E = MF.livein_end(); I != E; ++I) |
| BB->addLiveIn(I->first); |
| |
| return true; |
| } |
| |
| SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, |
| unsigned Reg) { |
| SDOperand Op = getValue(V); |
| assert((Op.getOpcode() != ISD::CopyFromReg || |
| cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && |
| "Copy from a reg to the same reg!"); |
| |
| // If this type is not legal, we must make sure to not create an invalid |
| // register use. |
| MVT::ValueType SrcVT = Op.getValueType(); |
| MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT); |
| if (SrcVT == DestVT) { |
| return DAG.getCopyToReg(getRoot(), Reg, Op); |
| } else if (SrcVT == MVT::Vector) { |
| // Handle copies from generic vectors to registers. |
| MVT::ValueType PTyElementVT, PTyLegalElementVT; |
| unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()), |
| PTyElementVT, PTyLegalElementVT); |
| |
| // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT" |
| // MVT::Vector type. |
| Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op, |
| DAG.getConstant(NE, MVT::i32), |
| DAG.getValueType(PTyElementVT)); |
| |
| // Loop over all of the elements of the resultant vector, |
| // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then |
| // copying them into output registers. |
| SmallVector<SDOperand, 8> OutChains; |
| SDOperand Root = getRoot(); |
| for (unsigned i = 0; i != NE; ++i) { |
| SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT, |
| Op, DAG.getConstant(i, TLI.getPointerTy())); |
| if (PTyElementVT == PTyLegalElementVT) { |
| // Elements are legal. |
| OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt)); |
| } else if (PTyLegalElementVT > PTyElementVT) { |
| // Elements are promoted. |
| if (MVT::isFloatingPoint(PTyLegalElementVT)) |
| Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt); |
| else |
| Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt); |
| OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt)); |
| } else { |
| // Elements are expanded. |
| // The src value is expanded into multiple registers. |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT, |
| Elt, DAG.getConstant(0, TLI.getPointerTy())); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT, |
| Elt, DAG.getConstant(1, TLI.getPointerTy())); |
| OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo)); |
| OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi)); |
| } |
| } |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) { |
| // The src value is promoted to the register. |
| if (MVT::isFloatingPoint(SrcVT)) |
| Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op); |
| else |
| Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op); |
| return DAG.getCopyToReg(getRoot(), Reg, Op); |
| } else { |
| DestVT = TLI.getTypeToExpandTo(SrcVT); |
| unsigned NumVals = TLI.getNumElements(SrcVT); |
| if (NumVals == 1) |
| return DAG.getCopyToReg(getRoot(), Reg, |
| DAG.getNode(ISD::BIT_CONVERT, DestVT, Op)); |
| assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!"); |
| // The src value is expanded into multiple registers. |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, |
| Op, DAG.getConstant(0, TLI.getPointerTy())); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, |
| Op, DAG.getConstant(1, TLI.getPointerTy())); |
| Op = DAG.getCopyToReg(getRoot(), Reg, Lo); |
| return DAG.getCopyToReg(Op, Reg+1, Hi); |
| } |
| } |
| |
| void SelectionDAGISel:: |
| LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL, |
| std::vector<SDOperand> &UnorderedChains) { |
| // If this is the entry block, emit arguments. |
| Function &F = *LLVMBB->getParent(); |
| FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; |
| SDOperand OldRoot = SDL.DAG.getRoot(); |
| std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG); |
| |
| unsigned a = 0; |
| for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); |
| AI != E; ++AI, ++a) |
| if (!AI->use_empty()) { |
| SDL.setValue(AI, Args[a]); |
| |
| // If this argument is live outside of the entry block, insert a copy from |
| // whereever we got it to the vreg that other BB's will reference it as. |
| DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI); |
| if (VMI != FuncInfo.ValueMap.end()) { |
| SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second); |
| UnorderedChains.push_back(Copy); |
| } |
| } |
| |
| // Finally, if the target has anything special to do, allow it to do so. |
| // FIXME: this should insert code into the DAG! |
| EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); |
| } |
| |
| void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, |
| std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate, |
| FunctionLoweringInfo &FuncInfo) { |
| SelectionDAGLowering SDL(DAG, TLI, FuncInfo); |
| |
| std::vector<SDOperand> UnorderedChains; |
| |
| // Lower any arguments needed in this block if this is the entry block. |
| if (LLVMBB == &LLVMBB->getParent()->getEntryBlock()) |
| LowerArguments(LLVMBB, SDL, UnorderedChains); |
| |
| BB = FuncInfo.MBBMap[LLVMBB]; |
| SDL.setCurrentBasicBlock(BB); |
| |
| // Lower all of the non-terminator instructions. |
| for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); |
| I != E; ++I) |
| SDL.visit(*I); |
| |
| // Lower call part of invoke. |
| InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator()); |
| if (Invoke) SDL.visitInvoke(*Invoke, false); |
| |
| // Ensure that all instructions which are used outside of their defining |
| // blocks are available as virtual registers. |
| for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) |
| if (!I->use_empty() && !isa<PHINode>(I)) { |
| DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I); |
| if (VMI != FuncInfo.ValueMap.end()) |
| UnorderedChains.push_back( |
| SDL.CopyValueToVirtualRegister(I, VMI->second)); |
| } |
| |
| // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to |
| // ensure constants are generated when needed. Remember the virtual registers |
| // that need to be added to the Machine PHI nodes as input. We cannot just |
| // directly add them, because expansion might result in multiple MBB's for one |
| // BB. As such, the start of the BB might correspond to a different MBB than |
| // the end. |
| // |
| TerminatorInst *TI = LLVMBB->getTerminator(); |
| |
| // Emit constants only once even if used by multiple PHI nodes. |
| std::map<Constant*, unsigned> ConstantsOut; |
| |
| // Vector bool would be better, but vector<bool> is really slow. |
| std::vector<unsigned char> SuccsHandled; |
| if (TI->getNumSuccessors()) |
| SuccsHandled.resize(BB->getParent()->getNumBlockIDs()); |
| |
| // Check successor nodes PHI nodes that expect a constant to be available from |
| // this block. |
| for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { |
| BasicBlock *SuccBB = TI->getSuccessor(succ); |
| if (!isa<PHINode>(SuccBB->begin())) continue; |
| MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; |
| |
| // If this terminator has multiple identical successors (common for |
| // switches), only handle each succ once. |
| unsigned SuccMBBNo = SuccMBB->getNumber(); |
| if (SuccsHandled[SuccMBBNo]) continue; |
| SuccsHandled[SuccMBBNo] = true; |
| |
| MachineBasicBlock::iterator MBBI = SuccMBB->begin(); |
| PHINode *PN; |
| |
| // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| // nodes and Machine PHI nodes, but the incoming operands have not been |
| // emitted yet. |
| for (BasicBlock::iterator I = SuccBB->begin(); |
| (PN = dyn_cast<PHINode>(I)); ++I) { |
| // Ignore dead phi's. |
| if (PN->use_empty()) continue; |
| |
| unsigned Reg; |
| Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); |
| |
| if (Constant *C = dyn_cast<Constant>(PHIOp)) { |
| unsigned &RegOut = ConstantsOut[C]; |
| if (RegOut == 0) { |
| RegOut = FuncInfo.CreateRegForValue(C); |
| UnorderedChains.push_back( |
| SDL.CopyValueToVirtualRegister(C, RegOut)); |
| } |
| Reg = RegOut; |
| } else { |
| Reg = FuncInfo.ValueMap[PHIOp]; |
| if (Reg == 0) { |
| assert(isa<AllocaInst>(PHIOp) && |
| FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && |
| "Didn't codegen value into a register!??"); |
| Reg = FuncInfo.CreateRegForValue(PHIOp); |
| UnorderedChains.push_back( |
| SDL.CopyValueToVirtualRegister(PHIOp, Reg)); |
| } |
| } |
| |
| // Remember that this register needs to added to the machine PHI node as |
| // the input for this MBB. |
| MVT::ValueType VT = TLI.getValueType(PN->getType()); |
| unsigned NumElements; |
| if (VT != MVT::Vector) |
| NumElements = TLI.getNumElements(VT); |
| else { |
| MVT::ValueType VT1,VT2; |
| NumElements = |
| TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()), |
| VT1, VT2); |
| } |
| for (unsigned i = 0, e = NumElements; i != e; ++i) |
| PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); |
| } |
| } |
| ConstantsOut.clear(); |
| |
| // Turn all of the unordered chains into one factored node. |
| if (!UnorderedChains.empty()) { |
| SDOperand Root = SDL.getRoot(); |
| if (Root.getOpcode() != ISD::EntryToken) { |
| unsigned i = 0, e = UnorderedChains.size(); |
| for (; i != e; ++i) { |
| assert(UnorderedChains[i].Val->getNumOperands() > 1); |
| if (UnorderedChains[i].Val->getOperand(0) == Root) |
| break; // Don't add the root if we already indirectly depend on it. |
| } |
| |
| if (i == e) |
| UnorderedChains.push_back(Root); |
| } |
| DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &UnorderedChains[0], UnorderedChains.size())); |
| } |
| |
| // Lower the terminator after the copies are emitted. |
| if (Invoke) { |
| // Just the branch part of invoke. |
| SDL.visitInvoke(*Invoke, true); |
| } else { |
| SDL.visit(*LLVMBB->getTerminator()); |
| } |
| |
| // Copy over any CaseBlock records that may now exist due to SwitchInst |
| // lowering, as well as any jump table information. |
| SwitchCases.clear(); |
| SwitchCases = SDL.SwitchCases; |
| JTCases.clear(); |
| JTCases = SDL.JTCases; |
| |
| // Make sure the root of the DAG is up-to-date. |
| DAG.setRoot(SDL.getRoot()); |
| } |
| |
| void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) { |
| // Get alias analysis for load/store combining. |
| AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); |
| |
| // Run the DAG combiner in pre-legalize mode. |
| DAG.Combine(false, AA); |
| |
| DOUT << "Lowered selection DAG:\n"; |
| DEBUG(DAG.dump()); |
| |
| // Second step, hack on the DAG until it only uses operations and types that |
| // the target supports. |
| DAG.Legalize(); |
| |
| DOUT << "Legalized selection DAG:\n"; |
| DEBUG(DAG.dump()); |
| |
| // Run the DAG combiner in post-legalize mode. |
| DAG.Combine(true, AA); |
| |
| if (ViewISelDAGs) DAG.viewGraph(); |
| |
| // Third, instruction select all of the operations to machine code, adding the |
| // code to the MachineBasicBlock. |
| InstructionSelectBasicBlock(DAG); |
| |
| DOUT << "Selected machine code:\n"; |
| DEBUG(BB->dump()); |
| } |
| |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, |
| FunctionLoweringInfo &FuncInfo) { |
| std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate; |
| { |
| SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); |
| CurDAG = &DAG; |
| |
| // First step, lower LLVM code to some DAG. This DAG may use operations and |
| // types that are not supported by the target. |
| BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); |
| |
| // Second step, emit the lowered DAG as machine code. |
| CodeGenAndEmitDAG(DAG); |
| } |
| |
| // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| // PHI nodes in successors. |
| if (SwitchCases.empty() && JTCases.empty()) { |
| for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = PHINodesToUpdate[i].first; |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| PHI->addRegOperand(PHINodesToUpdate[i].second, false); |
| PHI->addMachineBasicBlockOperand(BB); |
| } |
| return; |
| } |
| |
| // If the JumpTable record is filled in, then we need to emit a jump table. |
| // Updating the PHI nodes is tricky in this case, since we need to determine |
| // whether the PHI is a successor of the range check MBB or the jump table MBB |
| for (unsigned i = 0, e = JTCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!JTCases[i].first.Emitted) { |
| SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); |
| CurDAG = &HSDAG; |
| SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo); |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = JTCases[i].first.HeaderBB; |
| HSDL.setCurrentBasicBlock(BB); |
| // Emit the code |
| HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first); |
| HSDAG.setRoot(HSDL.getRoot()); |
| CodeGenAndEmitDAG(HSDAG); |
| } |
| |
| SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); |
| CurDAG = &JSDAG; |
| SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo); |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = JTCases[i].second.MBB; |
| JSDL.setCurrentBasicBlock(BB); |
| // Emit the code |
| JSDL.visitJumpTable(JTCases[i].second); |
| JSDAG.setRoot(JSDL.getRoot()); |
| CodeGenAndEmitDAG(JSDAG); |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) { |
| MachineInstr *PHI = PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| if (PHIBB == JTCases[i].second.Default) { |
| PHI->addRegOperand(PHINodesToUpdate[pi].second, false); |
| PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB); |
| } |
| if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) { |
| PHI->addRegOperand(PHINodesToUpdate[pi].second, false); |
| PHI->addMachineBasicBlockOperand(BB); |
| } |
| } |
| } |
| |
| // If the switch block involved a branch to one of the actual successors, we |
| // need to update PHI nodes in that block. |
| for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = PHINodesToUpdate[i].first; |
| assert(PHI->getOpcode() == TargetInstrInfo::PHI && |
| "This is not a machine PHI node that we are updating!"); |
| if (BB->isSuccessor(PHI->getParent())) { |
| PHI->addRegOperand(PHINodesToUpdate[i].second, false); |
| PHI->addMachineBasicBlockOperand(BB); |
| } |
| } |
| |
| // If we generated any switch lowering information, build and codegen any |
| // additional DAGs necessary. |
| for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) { |
| SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>()); |
| CurDAG = &SDAG; |
| SelectionDAGLowering SDL(SDAG, TLI, FuncInfo); |
| |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SwitchCases[i].ThisBB; |
| SDL.setCurrentBasicBlock(BB); |
| |
| // Emit the code |
| SDL.visitSwitchCase(SwitchCases[i]); |
| SDAG.setRoot(SDL.getRoot()); |
| CodeGenAndEmitDAG(SDAG); |
| |
| // Handle any PHI nodes in successors of this chunk, as if we were coming |
| // from the original BB before switch expansion. Note that PHI nodes can |
| // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| // handle them the right number of times. |
| while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS. |
| for (MachineBasicBlock::iterator Phi = BB->begin(); |
| Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){ |
| // This value for this PHI node is recorded in PHINodesToUpdate, get it. |
| for (unsigned pn = 0; ; ++pn) { |
| assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!"); |
| if (PHINodesToUpdate[pn].first == Phi) { |
| Phi->addRegOperand(PHINodesToUpdate[pn].second, false); |
| Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB); |
| break; |
| } |
| } |
| } |
| |
| // Don't process RHS if same block as LHS. |
| if (BB == SwitchCases[i].FalseBB) |
| SwitchCases[i].FalseBB = 0; |
| |
| // If we haven't handled the RHS, do so now. Otherwise, we're done. |
| SwitchCases[i].TrueBB = SwitchCases[i].FalseBB; |
| SwitchCases[i].FalseBB = 0; |
| } |
| assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each |
| /// target node in the graph. |
| void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) { |
| if (ViewSchedDAGs) DAG.viewGraph(); |
| |
| RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); |
| |
| if (!Ctor) { |
| Ctor = ISHeuristic; |
| RegisterScheduler::setDefault(Ctor); |
| } |
| |
| ScheduleDAG *SL = Ctor(this, &DAG, BB); |
| BB = SL->Run(); |
| delete SL; |
| } |
| |
| |
| HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { |
| return new HazardRecognizer(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions used by the generated instruction selector. |
| //===----------------------------------------------------------------------===// |
| // Calls to these methods are generated by tblgen. |
| |
| /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) { |
| uint64_t ActualMask = RHS->getValue(); |
| uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType()); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask & ~DesiredMask) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| uint64_t NeededMask = DesiredMask & ~ActualMask; |
| if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask)) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) { |
| uint64_t ActualMask = RHS->getValue(); |
| uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType()); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask & ~DesiredMask) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| uint64_t NeededMask = DesiredMask & ~ActualMask; |
| |
| uint64_t KnownZero, KnownOne; |
| getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); |
| |
| // If all the missing bits in the or are already known to be set, match! |
| if ((NeededMask & KnownOne) == NeededMask) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| /// by tblgen. Others should not call it. |
| void SelectionDAGISel:: |
| SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) { |
| std::vector<SDOperand> InOps; |
| std::swap(InOps, Ops); |
| |
| Ops.push_back(InOps[0]); // input chain. |
| Ops.push_back(InOps[1]); // input asm string. |
| |
| unsigned i = 2, e = InOps.size(); |
| if (InOps[e-1].getValueType() == MVT::Flag) |
| --e; // Don't process a flag operand if it is here. |
| |
| while (i != e) { |
| unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue(); |
| if ((Flags & 7) != 4 /*MEM*/) { |
| // Just skip over this operand, copying the operands verbatim. |
| Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1); |
| i += (Flags >> 3) + 1; |
| } else { |
| assert((Flags >> 3) == 1 && "Memory operand with multiple values?"); |
| // Otherwise, this is a memory operand. Ask the target to select it. |
| std::vector<SDOperand> SelOps; |
| if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) { |
| cerr << "Could not match memory address. Inline asm failure!\n"; |
| exit(1); |
| } |
| |
| // Add this to the output node. |
| Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3), |
| MVT::i32)); |
| Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); |
| i += 2; |
| } |
| } |
| |
| // Add the flag input back if present. |
| if (e != InOps.size()) |
| Ops.push_back(InOps.back()); |
| } |