| //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that AArch64 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "aarch64-isel" |
| #include "AArch64.h" |
| #include "AArch64ISelLowering.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64TargetMachine.h" |
| #include "AArch64TargetObjectFile.h" |
| #include "Utils/AArch64BaseInfo.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/IR/CallingConv.h" |
| |
| using namespace llvm; |
| |
| static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) { |
| const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>(); |
| |
| if (Subtarget->isTargetLinux()) |
| return new AArch64LinuxTargetObjectFile(); |
| if (Subtarget->isTargetELF()) |
| return new TargetLoweringObjectFileELF(); |
| llvm_unreachable("unknown subtarget type"); |
| } |
| |
| AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM) |
| : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) { |
| |
| // SIMD compares set the entire lane's bits to 1 |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // Scalar register <-> type mapping |
| addRegisterClass(MVT::i32, &AArch64::GPR32RegClass); |
| addRegisterClass(MVT::i64, &AArch64::GPR64RegClass); |
| addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); |
| addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); |
| addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); |
| addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); |
| |
| computeRegisterProperties(); |
| |
| // We combine OR nodes for bitfield and NEON BSL operations. |
| setTargetDAGCombine(ISD::OR); |
| |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::SRA); |
| |
| // AArch64 does not have i1 loads, or much of anything for i1 really. |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); |
| setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); |
| |
| setStackPointerRegisterToSaveRestore(AArch64::XSP); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| |
| // We'll lower globals to wrappers for selection. |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| |
| // A64 instructions have the comparison predicate attached to the user of the |
| // result, but having a separate comparison is valuable for matching. |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| setOperationAction(ISD::SETCC, MVT::i64, Custom); |
| setOperationAction(ISD::SETCC, MVT::f32, Custom); |
| setOperationAction(ISD::SETCC, MVT::f64, Custom); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY, MVT::Other, Custom); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| |
| setOperationAction(ISD::BlockAddress, MVT::i64, Custom); |
| |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
| |
| // Legal floating-point operations. |
| setOperationAction(ISD::FABS, MVT::f32, Legal); |
| setOperationAction(ISD::FABS, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FCEIL, MVT::f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FFLOOR, MVT::f32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FNEG, MVT::f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FRINT, MVT::f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FSQRT, MVT::f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FTRUNC, MVT::f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Legal); |
| |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f128, Legal); |
| |
| // Illegal floating-point operations. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FEXP, MVT::f32, Expand); |
| setOperationAction(ISD::FEXP, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FEXP2, MVT::f32, Expand); |
| setOperationAction(ISD::FEXP2, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FLOG, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FLOG2, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FLOG10, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FPOWI, MVT::f32, Expand); |
| setOperationAction(ISD::FPOWI, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FREM, MVT::f32, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| |
| // Virtually no operation on f128 is legal, but LLVM can't expand them when |
| // there's a valid register class, so we need custom operations in most cases. |
| setOperationAction(ISD::FABS, MVT::f128, Expand); |
| setOperationAction(ISD::FADD, MVT::f128, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); |
| setOperationAction(ISD::FCOS, MVT::f128, Expand); |
| setOperationAction(ISD::FDIV, MVT::f128, Custom); |
| setOperationAction(ISD::FMA, MVT::f128, Expand); |
| setOperationAction(ISD::FMUL, MVT::f128, Custom); |
| setOperationAction(ISD::FNEG, MVT::f128, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::f128, Expand); |
| setOperationAction(ISD::FPOW, MVT::f128, Expand); |
| setOperationAction(ISD::FREM, MVT::f128, Expand); |
| setOperationAction(ISD::FRINT, MVT::f128, Expand); |
| setOperationAction(ISD::FSIN, MVT::f128, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f128, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f128, Expand); |
| setOperationAction(ISD::FSUB, MVT::f128, Custom); |
| setOperationAction(ISD::FTRUNC, MVT::f128, Expand); |
| setOperationAction(ISD::SETCC, MVT::f128, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f128, Custom); |
| setOperationAction(ISD::SELECT, MVT::f128, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); |
| setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); |
| |
| // Lowering for many of the conversions is actually specified by the non-f128 |
| // type. The LowerXXX function will be trivial when f128 isn't involved. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); |
| |
| // This prevents LLVM trying to compress double constants into a floating |
| // constant-pool entry and trying to load from there. It's of doubtful benefit |
| // for A64: we'd need LDR followed by FCVT, I believe. |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand); |
| |
| setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| |
| setExceptionPointerRegister(AArch64::X0); |
| setExceptionSelectorRegister(AArch64::X1); |
| } |
| |
| EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { |
| // It's reasonably important that this value matches the "natural" legal |
| // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself |
| // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64). |
| if (!VT.isVector()) return MVT::i32; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord, |
| unsigned &LdrOpc, |
| unsigned &StrOpc) { |
| static unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword, |
| AArch64::LDXR_word, AArch64::LDXR_dword}; |
| static unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword, |
| AArch64::LDAXR_word, AArch64::LDAXR_dword}; |
| static unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword, |
| AArch64::STXR_word, AArch64::STXR_dword}; |
| static unsigned StoreRels[] = {AArch64::STLXR_byte, AArch64::STLXR_hword, |
| AArch64::STLXR_word, AArch64::STLXR_dword}; |
| |
| unsigned *LoadOps, *StoreOps; |
| if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent) |
| LoadOps = LoadAcqs; |
| else |
| LoadOps = LoadBares; |
| |
| if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent) |
| StoreOps = StoreRels; |
| else |
| StoreOps = StoreBares; |
| |
| assert(isPowerOf2_32(Size) && Size <= 8 && |
| "unsupported size for atomic binary op!"); |
| |
| LdrOpc = LoadOps[Log2_32(Size)]; |
| StrOpc = StoreOps[Log2_32(Size)]; |
| } |
| |
| MachineBasicBlock * |
| AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, |
| unsigned Size, |
| unsigned BinOpcode) const { |
| // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *MF = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned incr = MI->getOperand(2).getReg(); |
| AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm()); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| |
| unsigned ldrOpc, strOpc; |
| getExclusiveOperation(Size, Ord, ldrOpc, strOpc); |
| |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| const TargetRegisterClass *TRC |
| = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // ldxr dest, ptr |
| // <binop> scratch, dest, incr |
| // stxr stxr_status, scratch, ptr |
| // cbnz stxr_status, loopMBB |
| // fallthrough --> exitMBB |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| if (BinOpcode) { |
| // All arithmetic operations we'll be creating are designed to take an extra |
| // shift or extend operand, which we can conveniently set to zero. |
| |
| // Operand order needs to go the other way for NAND. |
| if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl) |
| BuildMI(BB, dl, TII->get(BinOpcode), scratch) |
| .addReg(incr).addReg(dest).addImm(0); |
| else |
| BuildMI(BB, dl, TII->get(BinOpcode), scratch) |
| .addReg(dest).addReg(incr).addImm(0); |
| } |
| |
| // From the stxr, the register is GPR32; from the cmp it's GPR32wsp |
| unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); |
| |
| BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr); |
| BuildMI(BB, dl, TII->get(AArch64::CBNZw)) |
| .addReg(stxr_status).addMBB(loopMBB); |
| |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size, |
| unsigned CmpOp, |
| A64CC::CondCodes Cond) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *MF = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned incr = MI->getOperand(2).getReg(); |
| AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm()); |
| |
| unsigned oldval = dest; |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const TargetRegisterClass *TRC, *TRCsp; |
| if (Size == 8) { |
| TRC = &AArch64::GPR64RegClass; |
| TRCsp = &AArch64::GPR64xspRegClass; |
| } else { |
| TRC = &AArch64::GPR32RegClass; |
| TRCsp = &AArch64::GPR32wspRegClass; |
| } |
| |
| unsigned ldrOpc, strOpc; |
| getExclusiveOperation(Size, Ord, ldrOpc, strOpc); |
| |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| unsigned scratch = MRI.createVirtualRegister(TRC); |
| MRI.constrainRegClass(scratch, TRCsp); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // ldxr dest, ptr |
| // cmp incr, dest (, sign extend if necessary) |
| // csel scratch, dest, incr, cond |
| // stxr stxr_status, scratch, ptr |
| // cbnz stxr_status, loopMBB |
| // fallthrough --> exitMBB |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| |
| // Build compare and cmov instructions. |
| MRI.constrainRegClass(incr, TRCsp); |
| BuildMI(BB, dl, TII->get(CmpOp)) |
| .addReg(incr).addReg(oldval).addImm(0); |
| |
| BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc), |
| scratch) |
| .addReg(oldval).addReg(incr).addImm(Cond); |
| |
| unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); |
| |
| BuildMI(BB, dl, TII->get(strOpc), stxr_status) |
| .addReg(scratch).addReg(ptr); |
| BuildMI(BB, dl, TII->get(AArch64::CBNZw)) |
| .addReg(stxr_status).addMBB(loopMBB); |
| |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size) const { |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned oldval = MI->getOperand(2).getReg(); |
| unsigned newval = MI->getOperand(3).getReg(); |
| AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm()); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const TargetRegisterClass *TRCsp; |
| TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass; |
| |
| unsigned ldrOpc, strOpc; |
| getExclusiveOperation(Size, Ord, ldrOpc, strOpc); |
| |
| MachineFunction *MF = BB->getParent(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; // insert the new blocks after the current block |
| |
| MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loop1MBB); |
| MF->insert(It, loop2MBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loop1MBB |
| BB->addSuccessor(loop1MBB); |
| |
| // loop1MBB: |
| // ldxr dest, [ptr] |
| // cmp dest, oldval |
| // b.ne exitMBB |
| BB = loop1MBB; |
| BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); |
| |
| unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl; |
| MRI.constrainRegClass(dest, TRCsp); |
| BuildMI(BB, dl, TII->get(CmpOp)) |
| .addReg(dest).addReg(oldval).addImm(0); |
| BuildMI(BB, dl, TII->get(AArch64::Bcc)) |
| .addImm(A64CC::NE).addMBB(exitMBB); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // loop2MBB: |
| // strex stxr_status, newval, [ptr] |
| // cbnz stxr_status, loop1MBB |
| BB = loop2MBB; |
| unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); |
| MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); |
| |
| BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr); |
| BuildMI(BB, dl, TII->get(AArch64::CBNZw)) |
| .addReg(stxr_status).addMBB(loop1MBB); |
| BB->addSuccessor(loop1MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| // We materialise the F128CSEL pseudo-instruction using conditional branches |
| // and loads, giving an instruciton sequence like: |
| // str q0, [sp] |
| // b.ne IfTrue |
| // b Finish |
| // IfTrue: |
| // str q1, [sp] |
| // Finish: |
| // ldr q0, [sp] |
| // |
| // Using virtual registers would probably not be beneficial since COPY |
| // instructions are expensive for f128 (there's no actual instruction to |
| // implement them). |
| // |
| // An alternative would be to do an integer-CSEL on some address. E.g.: |
| // mov x0, sp |
| // add x1, sp, #16 |
| // str q0, [x0] |
| // str q1, [x1] |
| // csel x0, x0, x1, ne |
| // ldr q0, [x0] |
| // |
| // It's unclear which approach is actually optimal. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| MachineFunction *MF = MBB->getParent(); |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| DebugLoc DL = MI->getDebugLoc(); |
| MachineFunction::iterator It = MBB; |
| ++It; |
| |
| unsigned DestReg = MI->getOperand(0).getReg(); |
| unsigned IfTrueReg = MI->getOperand(1).getReg(); |
| unsigned IfFalseReg = MI->getOperand(2).getReg(); |
| unsigned CondCode = MI->getOperand(3).getImm(); |
| bool NZCVKilled = MI->getOperand(4).isKill(); |
| |
| MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, TrueBB); |
| MF->insert(It, EndBB); |
| |
| // Transfer rest of current basic-block to EndBB |
| EndBB->splice(EndBB->begin(), MBB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| MBB->end()); |
| EndBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // We need somewhere to store the f128 value needed. |
| int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16); |
| |
| // [... start of incoming MBB ...] |
| // str qIFFALSE, [sp] |
| // b.cc IfTrue |
| // b Done |
| BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR)) |
| .addReg(IfFalseReg) |
| .addFrameIndex(ScratchFI) |
| .addImm(0); |
| BuildMI(MBB, DL, TII->get(AArch64::Bcc)) |
| .addImm(CondCode) |
| .addMBB(TrueBB); |
| BuildMI(MBB, DL, TII->get(AArch64::Bimm)) |
| .addMBB(EndBB); |
| MBB->addSuccessor(TrueBB); |
| MBB->addSuccessor(EndBB); |
| |
| // IfTrue: |
| // str qIFTRUE, [sp] |
| BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR)) |
| .addReg(IfTrueReg) |
| .addFrameIndex(ScratchFI) |
| .addImm(0); |
| |
| // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the |
| // blocks. |
| TrueBB->addSuccessor(EndBB); |
| |
| // Done: |
| // ldr qDEST, [sp] |
| // [... rest of incoming MBB ...] |
| if (!NZCVKilled) |
| EndBB->addLiveIn(AArch64::NZCV); |
| MachineInstr *StartOfEnd = EndBB->begin(); |
| BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg) |
| .addFrameIndex(ScratchFI) |
| .addImm(0); |
| |
| MI->eraseFromParent(); |
| return EndBB; |
| } |
| |
| MachineBasicBlock * |
| AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("Unhandled instruction with custom inserter"); |
| case AArch64::F128CSEL: |
| return EmitF128CSEL(MI, MBB); |
| case AArch64::ATOMIC_LOAD_ADD_I8: |
| return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl); |
| case AArch64::ATOMIC_LOAD_ADD_I16: |
| return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl); |
| case AArch64::ATOMIC_LOAD_ADD_I32: |
| return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl); |
| case AArch64::ATOMIC_LOAD_ADD_I64: |
| return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl); |
| |
| case AArch64::ATOMIC_LOAD_SUB_I8: |
| return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl); |
| case AArch64::ATOMIC_LOAD_SUB_I16: |
| return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl); |
| case AArch64::ATOMIC_LOAD_SUB_I32: |
| return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl); |
| case AArch64::ATOMIC_LOAD_SUB_I64: |
| return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl); |
| |
| case AArch64::ATOMIC_LOAD_AND_I8: |
| return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl); |
| case AArch64::ATOMIC_LOAD_AND_I16: |
| return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl); |
| case AArch64::ATOMIC_LOAD_AND_I32: |
| return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl); |
| case AArch64::ATOMIC_LOAD_AND_I64: |
| return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl); |
| |
| case AArch64::ATOMIC_LOAD_OR_I8: |
| return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl); |
| case AArch64::ATOMIC_LOAD_OR_I16: |
| return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl); |
| case AArch64::ATOMIC_LOAD_OR_I32: |
| return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl); |
| case AArch64::ATOMIC_LOAD_OR_I64: |
| return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl); |
| |
| case AArch64::ATOMIC_LOAD_XOR_I8: |
| return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl); |
| case AArch64::ATOMIC_LOAD_XOR_I16: |
| return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl); |
| case AArch64::ATOMIC_LOAD_XOR_I32: |
| return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl); |
| case AArch64::ATOMIC_LOAD_XOR_I64: |
| return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl); |
| |
| case AArch64::ATOMIC_LOAD_NAND_I8: |
| return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl); |
| case AArch64::ATOMIC_LOAD_NAND_I16: |
| return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl); |
| case AArch64::ATOMIC_LOAD_NAND_I32: |
| return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl); |
| case AArch64::ATOMIC_LOAD_NAND_I64: |
| return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl); |
| |
| case AArch64::ATOMIC_LOAD_MIN_I8: |
| return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT); |
| case AArch64::ATOMIC_LOAD_MIN_I16: |
| return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT); |
| case AArch64::ATOMIC_LOAD_MIN_I32: |
| return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT); |
| case AArch64::ATOMIC_LOAD_MIN_I64: |
| return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT); |
| |
| case AArch64::ATOMIC_LOAD_MAX_I8: |
| return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT); |
| case AArch64::ATOMIC_LOAD_MAX_I16: |
| return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT); |
| case AArch64::ATOMIC_LOAD_MAX_I32: |
| return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT); |
| case AArch64::ATOMIC_LOAD_MAX_I64: |
| return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT); |
| |
| case AArch64::ATOMIC_LOAD_UMIN_I8: |
| return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI); |
| case AArch64::ATOMIC_LOAD_UMIN_I16: |
| return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI); |
| case AArch64::ATOMIC_LOAD_UMIN_I32: |
| return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI); |
| case AArch64::ATOMIC_LOAD_UMIN_I64: |
| return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI); |
| |
| case AArch64::ATOMIC_LOAD_UMAX_I8: |
| return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO); |
| case AArch64::ATOMIC_LOAD_UMAX_I16: |
| return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO); |
| case AArch64::ATOMIC_LOAD_UMAX_I32: |
| return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO); |
| case AArch64::ATOMIC_LOAD_UMAX_I64: |
| return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO); |
| |
| case AArch64::ATOMIC_SWAP_I8: |
| return emitAtomicBinary(MI, MBB, 1, 0); |
| case AArch64::ATOMIC_SWAP_I16: |
| return emitAtomicBinary(MI, MBB, 2, 0); |
| case AArch64::ATOMIC_SWAP_I32: |
| return emitAtomicBinary(MI, MBB, 4, 0); |
| case AArch64::ATOMIC_SWAP_I64: |
| return emitAtomicBinary(MI, MBB, 8, 0); |
| |
| case AArch64::ATOMIC_CMP_SWAP_I8: |
| return emitAtomicCmpSwap(MI, MBB, 1); |
| case AArch64::ATOMIC_CMP_SWAP_I16: |
| return emitAtomicCmpSwap(MI, MBB, 2); |
| case AArch64::ATOMIC_CMP_SWAP_I32: |
| return emitAtomicCmpSwap(MI, MBB, 4); |
| case AArch64::ATOMIC_CMP_SWAP_I64: |
| return emitAtomicCmpSwap(MI, MBB, 8); |
| } |
| } |
| |
| |
| const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC"; |
| case AArch64ISD::Call: return "AArch64ISD::Call"; |
| case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV"; |
| case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad"; |
| case AArch64ISD::BFI: return "AArch64ISD::BFI"; |
| case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; |
| case AArch64ISD::Ret: return "AArch64ISD::Ret"; |
| case AArch64ISD::SBFX: return "AArch64ISD::SBFX"; |
| case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC"; |
| case AArch64ISD::SETCC: return "AArch64ISD::SETCC"; |
| case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; |
| case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; |
| case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL"; |
| case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; |
| case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall"; |
| |
| default: return NULL; |
| } |
| } |
| |
| static const uint16_t AArch64FPRArgRegs[] = { |
| AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, |
| AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7 |
| }; |
| static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs); |
| |
| static const uint16_t AArch64ArgRegs[] = { |
| AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, |
| AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 |
| }; |
| static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs); |
| |
| static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| // Mark all remaining general purpose registers as allocated. We don't |
| // backtrack: if (for example) an i128 gets put on the stack, no subsequent |
| // i64 will go in registers (C.11). |
| for (unsigned i = 0; i < NumArgRegs; ++i) |
| State.AllocateReg(AArch64ArgRegs[i]); |
| |
| return false; |
| } |
| |
| #include "AArch64GenCallingConv.inc" |
| |
| CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { |
| |
| switch(CC) { |
| default: llvm_unreachable("Unsupported calling convention"); |
| case CallingConv::Fast: |
| case CallingConv::C: |
| return CC_A64_APCS; |
| } |
| } |
| |
| void |
| AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, |
| SDLoc DL, SDValue &Chain) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| AArch64MachineFunctionInfo *FuncInfo |
| = MF.getInfo<AArch64MachineFunctionInfo>(); |
| |
| SmallVector<SDValue, 8> MemOps; |
| |
| unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs, |
| NumArgRegs); |
| unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs, |
| NumFPRArgRegs); |
| |
| unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR); |
| int GPRIdx = 0; |
| if (GPRSaveSize != 0) { |
| GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); |
| |
| SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); |
| |
| for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) { |
| unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); |
| SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, |
| MachinePointerInfo::getStack(i * 8), |
| false, false, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, |
| DAG.getConstant(8, getPointerTy())); |
| } |
| } |
| |
| unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); |
| int FPRIdx = 0; |
| if (FPRSaveSize != 0) { |
| FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); |
| |
| SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); |
| |
| for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { |
| unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i], |
| &AArch64::FPR128RegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); |
| SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, |
| MachinePointerInfo::getStack(i * 16), |
| false, false, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, |
| DAG.getConstant(16, getPointerTy())); |
| } |
| } |
| |
| int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true); |
| |
| FuncInfo->setVariadicStackIdx(StackIdx); |
| FuncInfo->setVariadicGPRIdx(GPRIdx); |
| FuncInfo->setVariadicGPRSize(GPRSaveSize); |
| FuncInfo->setVariadicFPRIdx(FPRIdx); |
| FuncInfo->setVariadicFPRSize(FPRSaveSize); |
| |
| if (!MemOps.empty()) { |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], |
| MemOps.size()); |
| } |
| } |
| |
| |
| SDValue |
| AArch64TargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SDLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| AArch64MachineFunctionInfo *FuncInfo |
| = MF.getInfo<AArch64MachineFunctionInfo>(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); |
| |
| SmallVector<SDValue, 16> ArgValues; |
| |
| SDValue ArgValue; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| |
| if (Flags.isByVal()) { |
| // Byval is used for small structs and HFAs in the PCS, but the system |
| // should work in a non-compliant manner for larger structs. |
| EVT PtrTy = getPointerTy(); |
| int Size = Flags.getByValSize(); |
| unsigned NumRegs = (Size + 7) / 8; |
| |
| unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs, |
| VA.getLocMemOffset(), |
| false); |
| SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); |
| InVals.push_back(FrameIdxN); |
| |
| continue; |
| } else if (VA.isRegLoc()) { |
| MVT RegVT = VA.getLocVT(); |
| const TargetRegisterClass *RC = getRegClassFor(RegVT); |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| } else { // VA.isRegLoc() |
| assert(VA.isMemLoc()); |
| |
| int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, |
| VA.getLocMemOffset(), true); |
| |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(FI), |
| false, false, false, 0); |
| |
| |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::SExt: |
| case CCValAssign::ZExt: |
| case CCValAssign::AExt: { |
| unsigned DestSize = VA.getValVT().getSizeInBits(); |
| unsigned DestSubReg; |
| |
| switch (DestSize) { |
| case 8: DestSubReg = AArch64::sub_8; break; |
| case 16: DestSubReg = AArch64::sub_16; break; |
| case 32: DestSubReg = AArch64::sub_32; break; |
| case 64: DestSubReg = AArch64::sub_64; break; |
| default: llvm_unreachable("Unexpected argument promotion"); |
| } |
| |
| ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, |
| VA.getValVT(), ArgValue, |
| DAG.getTargetConstant(DestSubReg, MVT::i32)), |
| 0); |
| break; |
| } |
| } |
| |
| InVals.push_back(ArgValue); |
| } |
| |
| if (isVarArg) |
| SaveVarArgRegisters(CCInfo, DAG, dl, Chain); |
| |
| unsigned StackArgSize = CCInfo.getNextStackOffset(); |
| if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { |
| // This is a non-standard ABI so by fiat I say we're allowed to make full |
| // use of the stack area to be popped, which must be aligned to 16 bytes in |
| // any case: |
| StackArgSize = RoundUpToAlignment(StackArgSize, 16); |
| |
| // If we're expected to restore the stack (e.g. fastcc) then we'll be adding |
| // a multiple of 16. |
| FuncInfo->setArgumentStackToRestore(StackArgSize); |
| |
| // This realignment carries over to the available bytes below. Our own |
| // callers will guarantee the space is free by giving an aligned value to |
| // CALLSEQ_START. |
| } |
| // Even if we're not expected to free up the space, it's useful to know how |
| // much is there while considering tail calls (because we can reuse it). |
| FuncInfo->setBytesInStackArgArea(StackArgSize); |
| |
| return Chain; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| SDLoc dl, SelectionDAG &DAG) const { |
| // CCValAssign - represent the assignment of the return value to a location. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slots. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| |
| // Analyze outgoing return values. |
| CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv)); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| // PCS: "If the type, T, of the result of a function is such that |
| // void func(T arg) would require that arg be passed as a value in a |
| // register (or set of registers) according to the rules in 5.4, then the |
| // result is returned in the same registers as would be used for such an |
| // argument. |
| // |
| // Otherwise, the caller shall reserve a block of memory of sufficient |
| // size and alignment to hold the result. The address of the memory block |
| // shall be passed as an additional argument to the function in x8." |
| // |
| // This is implemented in two places. The register-return values are dealt |
| // with here, more complex returns are passed as an sret parameter, which |
| // means we don't have to worry about it during actual return. |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Only register-returns should be created by PCS"); |
| |
| |
| SDValue Arg = OutVals[i]; |
| |
| // There's no convenient note in the ABI about this as there is for normal |
| // arguments, but it says return values are passed in the same registers as |
| // an argument would be. I believe that includes the comments about |
| // unspecified higher bits, putting the burden of widening on the *caller* |
| // for return values. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| case CCValAssign::ZExt: |
| case CCValAssign::AExt: |
| // Floating-point values should only be extended when they're going into |
| // memory, which can't happen here so an integer extend is acceptable. |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, |
| &RetOps[0], RetOps.size()); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &dl = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| AArch64MachineFunctionInfo *FuncInfo |
| = MF.getInfo<AArch64MachineFunctionInfo>(); |
| bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet(); |
| bool IsSibCall = false; |
| |
| if (IsTailCall) { |
| IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), |
| Outs, OutVals, Ins, DAG); |
| |
| // A sibling call is one where we're under the usual C ABI and not planning |
| // to change that but can still do a tail call: |
| if (!TailCallOpt && IsTailCall) |
| IsSibCall = true; |
| } |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); |
| |
| // On AArch64 (and all other architectures I'm aware of) the most this has to |
| // do is adjust the stack pointer. |
| unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16); |
| if (IsSibCall) { |
| // Since we're not changing the ABI to make this a tail call, the memory |
| // operands are already available in the caller's incoming argument space. |
| NumBytes = 0; |
| } |
| |
| // FPDiff is the byte offset of the call's argument area from the callee's. |
| // Stores to callee stack arguments will be placed in FixedStackSlots offset |
| // by this amount for a tail call. In a sibling call it must be 0 because the |
| // caller will deallocate the entire stack and the callee still expects its |
| // arguments to begin at SP+0. Completely unused for non-tail calls. |
| int FPDiff = 0; |
| |
| if (IsTailCall && !IsSibCall) { |
| unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); |
| |
| // FPDiff will be negative if this tail call requires more space than we |
| // would automatically have in our incoming argument space. Positive if we |
| // can actually shrink the stack. |
| FPDiff = NumReusableBytes - NumBytes; |
| |
| // The stack pointer must be 16-byte aligned at all times it's used for a |
| // memory operation, which in practice means at *all* times and in |
| // particular across call boundaries. Therefore our own arguments started at |
| // a 16-byte aligned SP and the delta applied for the tail call should |
| // satisfy the same constraint. |
| assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); |
| } |
| |
| if (!IsSibCall) |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| dl); |
| |
| SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP, |
| getPointerTy()); |
| |
| SmallVector<SDValue, 8> MemOpChains; |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| SDValue Arg = OutVals[i]; |
| |
| // Callee does the actual widening, so all extensions just use an implicit |
| // definition of the rest of the Loc. Aesthetically, this would be nicer as |
| // an ANY_EXTEND, but that isn't valid for floating-point types and this |
| // alternative works on integer types too. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| case CCValAssign::ZExt: |
| case CCValAssign::AExt: { |
| unsigned SrcSize = VA.getValVT().getSizeInBits(); |
| unsigned SrcSubReg; |
| |
| switch (SrcSize) { |
| case 8: SrcSubReg = AArch64::sub_8; break; |
| case 16: SrcSubReg = AArch64::sub_16; break; |
| case 32: SrcSubReg = AArch64::sub_32; break; |
| case 64: SrcSubReg = AArch64::sub_64; break; |
| default: llvm_unreachable("Unexpected argument promotion"); |
| } |
| |
| Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, |
| VA.getLocVT(), |
| DAG.getUNDEF(VA.getLocVT()), |
| Arg, |
| DAG.getTargetConstant(SrcSubReg, MVT::i32)), |
| 0); |
| |
| break; |
| } |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.isRegLoc()) { |
| // A normal register (sub-) argument. For now we just note it down because |
| // we want to copy things into registers as late as possible to avoid |
| // register-pressure (and possibly worse). |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| continue; |
| } |
| |
| assert(VA.isMemLoc() && "unexpected argument location"); |
| |
| SDValue DstAddr; |
| MachinePointerInfo DstInfo; |
| if (IsTailCall) { |
| uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() : |
| VA.getLocVT().getSizeInBits(); |
| OpSize = (OpSize + 7) / 8; |
| int32_t Offset = VA.getLocMemOffset() + FPDiff; |
| int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); |
| |
| DstAddr = DAG.getFrameIndex(FI, getPointerTy()); |
| DstInfo = MachinePointerInfo::getFixedStack(FI); |
| |
| // Make sure any stack arguments overlapping with where we're storing are |
| // loaded before this eventual operation. Otherwise they'll be clobbered. |
| Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); |
| } else { |
| SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()); |
| |
| DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset()); |
| } |
| |
| if (Flags.isByVal()) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64); |
| SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode, |
| Flags.getByValAlign(), |
| /*isVolatile = */ false, |
| /*alwaysInline = */ false, |
| DstInfo, MachinePointerInfo(0)); |
| MemOpChains.push_back(Cpy); |
| } else { |
| // Normal stack argument, put it where it's needed. |
| SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo, |
| false, false, 0); |
| MemOpChains.push_back(Store); |
| } |
| } |
| |
| // The loads and stores generated above shouldn't clash with each |
| // other. Combining them with this TokenFactor notes that fact for the rest of |
| // the backend. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Most of the rest of the instructions need to be glued together; we don't |
| // want assignments to actual registers used by a call to be rearranged by a |
| // well-meaning scheduler. |
| SDValue InFlag; |
| |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // The linker is responsible for inserting veneers when necessary to put a |
| // function call destination in range, so we don't need to bother with a |
| // wrapper here. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const char *Sym = S->getSymbol(); |
| Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| } |
| |
| // We don't usually want to end the call-sequence here because we would tidy |
| // the frame up *after* the call, however in the ABI-changing tail-call case |
| // we've carefully laid out the parameters so that when sp is reset they'll be |
| // in the correct location. |
| if (IsTailCall && !IsSibCall) { |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag, dl); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // We produce the following DAG scheme for the actual call instruction: |
| // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag? |
| // |
| // Most arguments aren't going to be used and just keep the values live as |
| // far as LLVM is concerned. It's expected to be selected as simply "bl |
| // callee" (for a direct, non-tail call). |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| if (IsTailCall) { |
| // Each tail call may have to adjust the stack by a different amount, so |
| // this information must travel along with the operation for eventual |
| // consumption by emitEpilogue. |
| Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); |
| } |
| |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| |
| // Add a register mask operand representing the call-preserved registers. This |
| // is used later in codegen to constrain register-allocation. |
| const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| // If we needed glue, put it in as the last argument. |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| if (IsTailCall) { |
| return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); |
| } |
| |
| Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Now we can reclaim the stack, just as well do it before working out where |
| // our return value is. |
| if (!IsSibCall) { |
| uint64_t CalleePopBytes |
| = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0; |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(CalleePopBytes, true), |
| InFlag, dl); |
| InFlag = Chain.getValue(1); |
| } |
| |
| return LowerCallResult(Chain, InFlag, CallConv, |
| IsVarArg, Ins, dl, DAG, InVals); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SDLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv)); |
| |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign VA = RVLocs[i]; |
| |
| // Return values that are too big to fit into registers should use an sret |
| // pointer, so this can be a lot simpler than the main argument code. |
| assert(VA.isRegLoc() && "Memory locations not expected for call return"); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), |
| InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); |
| break; |
| case CCValAssign::ZExt: |
| case CCValAssign::SExt: |
| case CCValAssign::AExt: |
| // Floating-point arguments only get extended/truncated if they're going |
| // in memory, so using the integer operation is acceptable here. |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| bool |
| AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool IsVarArg, |
| bool IsCalleeStructRet, |
| bool IsCallerStructRet, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| |
| // For CallingConv::C this function knows whether the ABI needs |
| // changing. That's not true for other conventions so they will have to opt in |
| // manually. |
| if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) |
| return false; |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const Function *CallerF = MF.getFunction(); |
| CallingConv::ID CallerCC = CallerF->getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| // Byval parameters hand the function a pointer directly into the stack area |
| // we want to reuse during a tail call. Working around this *is* possible (see |
| // X86) but less efficient and uglier in LowerCall. |
| for (Function::const_arg_iterator i = CallerF->arg_begin(), |
| e = CallerF->arg_end(); i != e; ++i) |
| if (i->hasByValAttr()) |
| return false; |
| |
| if (getTargetMachine().Options.GuaranteedTailCallOpt) { |
| if (IsTailCallConvention(CalleeCC) && CCMatch) |
| return true; |
| return false; |
| } |
| |
| // Now we search for cases where we can use a tail call without changing the |
| // ABI. Sibcall is used in some places (particularly gcc) to refer to this |
| // concept. |
| |
| // I want anyone implementing a new calling convention to think long and hard |
| // about this assert. |
| assert((!IsVarArg || CalleeCC == CallingConv::C) |
| && "Unexpected variadic calling convention"); |
| |
| if (IsVarArg && !Outs.empty()) { |
| // At least two cases here: if caller is fastcc then we can't have any |
| // memory arguments (we'd be expected to clean up the stack afterwards). If |
| // caller is C then we could potentially use its argument area. |
| |
| // FIXME: for now we take the most conservative of these in both cases: |
| // disallow all variadic memory operands. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) |
| if (!ArgLocs[i].isRegLoc()) |
| return false; |
| } |
| |
| // If the calling conventions do not match, then we'd better make sure the |
| // results are returned in the same way as what the caller expects. |
| if (!CCMatch) { |
| SmallVector<CCValAssign, 16> RVLocs1; |
| CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs1, *DAG.getContext()); |
| CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC)); |
| |
| SmallVector<CCValAssign, 16> RVLocs2; |
| CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs2, *DAG.getContext()); |
| CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC)); |
| |
| if (RVLocs1.size() != RVLocs2.size()) |
| return false; |
| for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { |
| if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) |
| return false; |
| if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) |
| return false; |
| if (RVLocs1[i].isRegLoc()) { |
| if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) |
| return false; |
| } else { |
| if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) |
| return false; |
| } |
| } |
| } |
| |
| // Nothing more to check if the callee is taking no arguments |
| if (Outs.empty()) |
| return true; |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); |
| |
| const AArch64MachineFunctionInfo *FuncInfo |
| = MF.getInfo<AArch64MachineFunctionInfo>(); |
| |
| // If the stack arguments for this call would fit into our own save area then |
| // the call can be made tail. |
| return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); |
| } |
| |
| bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, |
| bool TailCallOpt) const { |
| return CallCC == CallingConv::Fast && TailCallOpt; |
| } |
| |
| bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { |
| return CallCC == CallingConv::Fast; |
| } |
| |
| SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, |
| SelectionDAG &DAG, |
| MachineFrameInfo *MFI, |
| int ClobberedFI) const { |
| SmallVector<SDValue, 8> ArgChains; |
| int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); |
| int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; |
| |
| // Include the original chain at the beginning of the list. When this is |
| // used by target LowerCall hooks, this helps legalize find the |
| // CALLSEQ_BEGIN node. |
| ArgChains.push_back(Chain); |
| |
| // Add a chain value for each stack argument corresponding |
| for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), |
| UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) |
| if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) |
| if (FI->getIndex() < 0) { |
| int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); |
| int64_t InLastByte = InFirstByte; |
| InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; |
| |
| if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| ArgChains.push_back(SDValue(L, 1)); |
| } |
| |
| // Build a tokenfactor for all the chains. |
| return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, |
| &ArgChains[0], ArgChains.size()); |
| } |
| |
| static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) { |
| switch (CC) { |
| case ISD::SETEQ: return A64CC::EQ; |
| case ISD::SETGT: return A64CC::GT; |
| case ISD::SETGE: return A64CC::GE; |
| case ISD::SETLT: return A64CC::LT; |
| case ISD::SETLE: return A64CC::LE; |
| case ISD::SETNE: return A64CC::NE; |
| case ISD::SETUGT: return A64CC::HI; |
| case ISD::SETUGE: return A64CC::HS; |
| case ISD::SETULT: return A64CC::LO; |
| case ISD::SETULE: return A64CC::LS; |
| default: llvm_unreachable("Unexpected condition code"); |
| } |
| } |
| |
| bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const { |
| // icmp is implemented using adds/subs immediate, which take an unsigned |
| // 12-bit immediate, optionally shifted left by 12 bits. |
| |
| // Symmetric by using adds/subs |
| if (Val < 0) |
| Val = -Val; |
| |
| return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0; |
| } |
| |
| SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS, |
| ISD::CondCode CC, SDValue &A64cc, |
| SelectionDAG &DAG, SDLoc &dl) const { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| int64_t C = 0; |
| EVT VT = RHSC->getValueType(0); |
| bool knownInvalid = false; |
| |
| // I'm not convinced the rest of LLVM handles these edge cases properly, but |
| // we can at least get it right. |
| if (isSignedIntSetCC(CC)) { |
| C = RHSC->getSExtValue(); |
| } else if (RHSC->getZExtValue() > INT64_MAX) { |
| // A 64-bit constant not representable by a signed 64-bit integer is far |
| // too big to fit into a SUBS immediate anyway. |
| knownInvalid = true; |
| } else { |
| C = RHSC->getZExtValue(); |
| } |
| |
| if (!knownInvalid && !isLegalICmpImmediate(C)) { |
| // Constant does not fit, try adjusting it by one? |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| if (isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| RHS = DAG.getConstant(C-1, VT); |
| } |
| break; |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| if (isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| RHS = DAG.getConstant(C-1, VT); |
| } |
| break; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| if (isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| RHS = DAG.getConstant(C+1, VT); |
| } |
| break; |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| if (isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| RHS = DAG.getConstant(C+1, VT); |
| } |
| break; |
| } |
| } |
| } |
| |
| A64CC::CondCodes CondCode = IntCCToA64CC(CC); |
| A64cc = DAG.getConstant(CondCode, MVT::i32); |
| return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| DAG.getCondCode(CC)); |
| } |
| |
| static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC, |
| A64CC::CondCodes &Alternative) { |
| A64CC::CondCodes CondCode = A64CC::Invalid; |
| Alternative = A64CC::Invalid; |
| |
| switch (CC) { |
| default: llvm_unreachable("Unknown FP condition!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: CondCode = A64CC::EQ; break; |
| case ISD::SETGT: |
| case ISD::SETOGT: CondCode = A64CC::GT; break; |
| case ISD::SETGE: |
| case ISD::SETOGE: CondCode = A64CC::GE; break; |
| case ISD::SETOLT: CondCode = A64CC::MI; break; |
| case ISD::SETOLE: CondCode = A64CC::LS; break; |
| case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break; |
| case ISD::SETO: CondCode = A64CC::VC; break; |
| case ISD::SETUO: CondCode = A64CC::VS; break; |
| case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break; |
| case ISD::SETUGT: CondCode = A64CC::HI; break; |
| case ISD::SETUGE: CondCode = A64CC::PL; break; |
| case ISD::SETLT: |
| case ISD::SETULT: CondCode = A64CC::LT; break; |
| case ISD::SETLE: |
| case ISD::SETULE: CondCode = A64CC::LE; break; |
| case ISD::SETNE: |
| case ISD::SETUNE: CondCode = A64CC::NE; break; |
| } |
| return CondCode; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT PtrVT = getPointerTy(); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| |
| switch(getTargetMachine().getCodeModel()) { |
| case CodeModel::Small: |
| // The most efficient code is PC-relative anyway for the small memory model, |
| // so we don't need to worry about relocation model. |
| return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
| DAG.getTargetBlockAddress(BA, PtrVT, 0, |
| AArch64II::MO_NO_FLAG), |
| DAG.getTargetBlockAddress(BA, PtrVT, 0, |
| AArch64II::MO_LO12), |
| DAG.getConstant(/*Alignment=*/ 4, MVT::i32)); |
| case CodeModel::Large: |
| return DAG.getNode( |
| AArch64ISD::WrapperLarge, DL, PtrVT, |
| DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3), |
| DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC), |
| DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC), |
| DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC)); |
| default: |
| llvm_unreachable("Only small and large code models supported now"); |
| } |
| } |
| |
| |
| // (BRCOND chain, val, dest) |
| SDValue |
| AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue Chain = Op.getOperand(0); |
| SDValue TheBit = Op.getOperand(1); |
| SDValue DestBB = Op.getOperand(2); |
| |
| // AArch64 BooleanContents is the default UndefinedBooleanContent, which means |
| // that as the consumer we are responsible for ignoring rubbish in higher |
| // bits. |
| TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, |
| DAG.getConstant(1, MVT::i32)); |
| |
| SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, |
| DAG.getConstant(0, TheBit.getValueType()), |
| DAG.getCondCode(ISD::SETNE)); |
| |
| return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain, |
| A64CMP, DAG.getConstant(A64CC::NE, MVT::i32), |
| DestBB); |
| } |
| |
| // (BR_CC chain, condcode, lhs, rhs, dest) |
| SDValue |
| AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue DestBB = Op.getOperand(4); |
| |
| if (LHS.getValueType() == MVT::f128) { |
| // f128 comparisons are lowered to runtime calls by a routine which sets |
| // LHS, RHS and CC appropriately for the rest of this function to continue. |
| softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| |
| // If softenSetCCOperands returned a scalar, we need to compare the result |
| // against zero to select between true and false values. |
| if (RHS.getNode() == 0) { |
| RHS = DAG.getConstant(0, LHS.getValueType()); |
| CC = ISD::SETNE; |
| } |
| } |
| |
| if (LHS.getValueType().isInteger()) { |
| SDValue A64cc; |
| |
| // Integers are handled in a separate function because the combinations of |
| // immediates and tests can get hairy and we may want to fiddle things. |
| SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); |
| |
| return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, |
| Chain, CmpOp, A64cc, DestBB); |
| } |
| |
| // Note that some LLVM floating-point CondCodes can't be lowered to a single |
| // conditional branch, hence FPCCToA64CC can set a second test, where either |
| // passing is sufficient. |
| A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; |
| CondCode = FPCCToA64CC(CC, Alternative); |
| SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); |
| SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| DAG.getCondCode(CC)); |
| SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, |
| Chain, SetCC, A64cc, DestBB); |
| |
| if (Alternative != A64CC::Invalid) { |
| A64cc = DAG.getConstant(Alternative, MVT::i32); |
| A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, |
| A64BR_CC, SetCC, A64cc, DestBB); |
| |
| } |
| |
| return A64BR_CC; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG, |
| RTLIB::Libcall Call) const { |
| ArgListTy Args; |
| ArgListEntry Entry; |
| for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { |
| EVT ArgVT = Op.getOperand(i).getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy; |
| Entry.isSExt = false; |
| Entry.isZExt = false; |
| Args.push_back(Entry); |
| } |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy()); |
| |
| Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); |
| |
| // By default, the input chain to this libcall is the entry node of the |
| // function. If the libcall is going to be emitted as a tail call then |
| // isUsedByReturnOnly will change it to the right chain if the return |
| // node which is being folded has a non-entry input chain. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| // isTailCall may be true since the callee does not reference caller stack |
| // frame. Check if it's in the right position. |
| SDValue TCChain = InChain; |
| bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain); |
| if (isTailCall) |
| InChain = TCChain; |
| |
| TargetLowering:: |
| CallLoweringInfo CLI(InChain, RetTy, false, false, false, false, |
| 0, getLibcallCallingConv(Call), isTailCall, |
| /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, |
| Callee, Args, DAG, SDLoc(Op)); |
| std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); |
| |
| if (!CallInfo.second.getNode()) |
| // It's a tailcall, return the chain (which is the DAG root). |
| return DAG.getRoot(); |
| |
| return CallInfo.first; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { |
| if (Op.getOperand(0).getValueType() != MVT::f128) { |
| // It's legal except when f128 is involved |
| return Op; |
| } |
| |
| RTLIB::Libcall LC; |
| LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| SDValue SrcVal = Op.getOperand(0); |
| return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, |
| /*isSigned*/ false, SDLoc(Op)); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); |
| |
| RTLIB::Libcall LC; |
| LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| return LowerF128ToCall(Op, DAG, LC); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, |
| bool IsSigned) const { |
| if (Op.getOperand(0).getValueType() != MVT::f128) { |
| // It's legal except when f128 is involved |
| return Op; |
| } |
| |
| RTLIB::Libcall LC; |
| if (IsSigned) |
| LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| else |
| LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| return LowerF128ToCall(Op, DAG, LC); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(getTargetMachine().getCodeModel() == CodeModel::Large); |
| assert(getTargetMachine().getRelocationModel() == Reloc::Static); |
| |
| EVT PtrVT = getPointerTy(); |
| SDLoc dl(Op); |
| const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = GN->getGlobal(); |
| |
| SDValue GlobalAddr = DAG.getNode( |
| AArch64ISD::WrapperLarge, dl, PtrVT, |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3), |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC), |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC), |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC)); |
| |
| if (GN->getOffset() != 0) |
| return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr, |
| DAG.getConstant(GN->getOffset(), PtrVT)); |
| |
| return GlobalAddr; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(getTargetMachine().getCodeModel() == CodeModel::Small); |
| |
| EVT PtrVT = getPointerTy(); |
| SDLoc dl(Op); |
| const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = GN->getGlobal(); |
| unsigned Alignment = GV->getAlignment(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) { |
| // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate |
| // to zero when they remain undefined. In PIC mode the GOT can take care of |
| // this, but in absolute mode we use a constant pool load. |
| SDValue PoolAddr; |
| PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, |
| DAG.getTargetConstantPool(GV, PtrVT, 0, 0, |
| AArch64II::MO_NO_FLAG), |
| DAG.getTargetConstantPool(GV, PtrVT, 0, 0, |
| AArch64II::MO_LO12), |
| DAG.getConstant(8, MVT::i32)); |
| SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr, |
| MachinePointerInfo::getConstantPool(), |
| /*isVolatile=*/ false, |
| /*isNonTemporal=*/ true, |
| /*isInvariant=*/ true, 8); |
| if (GN->getOffset() != 0) |
| return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr, |
| DAG.getConstant(GN->getOffset(), PtrVT)); |
| |
| return GlobalAddr; |
| } |
| |
| if (Alignment == 0) { |
| const PointerType *GVPtrTy = cast<PointerType>(GV->getType()); |
| if (GVPtrTy->getElementType()->isSized()) { |
| Alignment |
| = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType()); |
| } else { |
| // Be conservative if we can't guess, not that it really matters: |
| // functions and labels aren't valid for loads, and the methods used to |
| // actually calculate an address work with any alignment. |
| Alignment = 1; |
| } |
| } |
| |
| unsigned char HiFixup, LoFixup; |
| bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM); |
| |
| if (UseGOT) { |
| HiFixup = AArch64II::MO_GOT; |
| LoFixup = AArch64II::MO_GOT_LO12; |
| Alignment = 8; |
| } else { |
| HiFixup = AArch64II::MO_NO_FLAG; |
| LoFixup = AArch64II::MO_LO12; |
| } |
| |
| // AArch64's small model demands the following sequence: |
| // ADRP x0, somewhere |
| // ADD x0, x0, #:lo12:somewhere ; (or LDR directly). |
| SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| HiFixup), |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| LoFixup), |
| DAG.getConstant(Alignment, MVT::i32)); |
| |
| if (UseGOT) { |
| GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(), |
| GlobalRef); |
| } |
| |
| if (GN->getOffset() != 0) |
| return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef, |
| DAG.getConstant(GN->getOffset(), PtrVT)); |
| |
| return GlobalRef; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op, |
| SelectionDAG &DAG) const { |
| // TableGen doesn't have easy access to the CodeModel or RelocationModel, so |
| // we make those distinctions here. |
| |
| switch (getTargetMachine().getCodeModel()) { |
| case CodeModel::Small: |
| return LowerGlobalAddressELFSmall(Op, DAG); |
| case CodeModel::Large: |
| return LowerGlobalAddressELFLarge(Op, DAG); |
| default: |
| llvm_unreachable("Only small and large code models supported now"); |
| } |
| } |
| |
| SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr, |
| SDValue DescAddr, |
| SDLoc DL, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = getPointerTy(); |
| |
| // The function we need to call is simply the first entry in the GOT for this |
| // descriptor, load it in preparation. |
| SDValue Func, Chain; |
| Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), |
| DescAddr); |
| |
| // The function takes only one argument: the address of the descriptor itself |
| // in X0. |
| SDValue Glue; |
| Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); |
| Glue = Chain.getValue(1); |
| |
| // Finally, there's a special calling-convention which means that the lookup |
| // must preserve all registers (except X0, obviously). |
| const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| const AArch64RegisterInfo *A64RI |
| = static_cast<const AArch64RegisterInfo *>(TRI); |
| const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask(); |
| |
| // We're now ready to populate the argument list, as with a normal call: |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Func); |
| Ops.push_back(SymAddr); |
| Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| Ops.push_back(Glue); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0], |
| Ops.size()); |
| Glue = Chain.getValue(1); |
| |
| // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it |
| // back to the generic handling code. |
| return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(getSubtarget()->isTargetELF() && |
| "TLS not implemented for non-ELF targets"); |
| assert(getTargetMachine().getCodeModel() == CodeModel::Small |
| && "TLS only supported in small memory model"); |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| |
| TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); |
| |
| SDValue TPOff; |
| EVT PtrVT = getPointerTy(); |
| SDLoc DL(Op); |
| const GlobalValue *GV = GA->getGlobal(); |
| |
| SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); |
| |
| if (Model == TLSModel::InitialExec) { |
| TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| AArch64II::MO_GOTTPREL), |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| AArch64II::MO_GOTTPREL_LO12), |
| DAG.getConstant(8, MVT::i32)); |
| TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), |
| TPOff); |
| } else if (Model == TLSModel::LocalExec) { |
| SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| AArch64II::MO_TPREL_G1); |
| SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| AArch64II::MO_TPREL_G0_NC); |
| |
| TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, |
| DAG.getTargetConstant(0, MVT::i32)), 0); |
| TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, |
| TPOff, LoVar, |
| DAG.getTargetConstant(0, MVT::i32)), 0); |
| } else if (Model == TLSModel::GeneralDynamic) { |
| // Accesses used in this sequence go via the TLS descriptor which lives in |
| // the GOT. Prepare an address we can use to handle this. |
| SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| AArch64II::MO_TLSDESC); |
| SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| AArch64II::MO_TLSDESC_LO12); |
| SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
| HiDesc, LoDesc, |
| DAG.getConstant(8, MVT::i32)); |
| SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0); |
| |
| TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); |
| } else if (Model == TLSModel::LocalDynamic) { |
| // Local-dynamic accesses proceed in two phases. A general-dynamic TLS |
| // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate |
| // the beginning of the module's TLS region, followed by a DTPREL offset |
| // calculation. |
| |
| // These accesses will need deduplicating if there's more than one. |
| AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction() |
| .getInfo<AArch64MachineFunctionInfo>(); |
| MFI->incNumLocalDynamicTLSAccesses(); |
| |
| |
| // Get the location of _TLS_MODULE_BASE_: |
| SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, |
| AArch64II::MO_TLSDESC); |
| SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, |
| AArch64II::MO_TLSDESC_LO12); |
| SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, |
| HiDesc, LoDesc, |
| DAG.getConstant(8, MVT::i32)); |
| SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT); |
| |
| ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); |
| |
| // Get the variable's offset from _TLS_MODULE_BASE_ |
| SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| AArch64II::MO_DTPREL_G1); |
| SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, |
| AArch64II::MO_DTPREL_G0_NC); |
| |
| TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, |
| DAG.getTargetConstant(0, MVT::i32)), 0); |
| TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, |
| TPOff, LoVar, |
| DAG.getTargetConstant(0, MVT::i32)), 0); |
| } else |
| llvm_unreachable("Unsupported TLS access model"); |
| |
| |
| return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, |
| bool IsSigned) const { |
| if (Op.getValueType() != MVT::f128) { |
| // Legal for everything except f128. |
| return Op; |
| } |
| |
| RTLIB::Libcall LC; |
| if (IsSigned) |
| LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| else |
| LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| return LowerF128ToCall(Op, DAG, LC); |
| } |
| |
| |
| SDValue |
| AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| SDLoc dl(JT); |
| EVT PtrVT = getPointerTy(); |
| |
| // When compiling PIC, jump tables get put in the code section so a static |
| // relocation-style is acceptable for both cases. |
| switch (getTargetMachine().getCodeModel()) { |
| case CodeModel::Small: |
| return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, |
| DAG.getTargetJumpTable(JT->getIndex(), PtrVT), |
| DAG.getTargetJumpTable(JT->getIndex(), PtrVT, |
| AArch64II::MO_LO12), |
| DAG.getConstant(1, MVT::i32)); |
| case CodeModel::Large: |
| return DAG.getNode( |
| AArch64ISD::WrapperLarge, dl, PtrVT, |
| DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3), |
| DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC), |
| DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC), |
| DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC)); |
| default: |
| llvm_unreachable("Only small and large code models supported now"); |
| } |
| } |
| |
| // (SELECT_CC lhs, rhs, iftrue, iffalse, condcode) |
| SDValue |
| AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue IfTrue = Op.getOperand(2); |
| SDValue IfFalse = Op.getOperand(3); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| |
| if (LHS.getValueType() == MVT::f128) { |
| // f128 comparisons are lowered to libcalls, but slot in nicely here |
| // afterwards. |
| softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| |
| // If softenSetCCOperands returned a scalar, we need to compare the result |
| // against zero to select between true and false values. |
| if (RHS.getNode() == 0) { |
| RHS = DAG.getConstant(0, LHS.getValueType()); |
| CC = ISD::SETNE; |
| } |
| } |
| |
| if (LHS.getValueType().isInteger()) { |
| SDValue A64cc; |
| |
| // Integers are handled in a separate function because the combinations of |
| // immediates and tests can get hairy and we may want to fiddle things. |
| SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); |
| |
| return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), |
| CmpOp, IfTrue, IfFalse, A64cc); |
| } |
| |
| // Note that some LLVM floating-point CondCodes can't be lowered to a single |
| // conditional branch, hence FPCCToA64CC can set a second test, where either |
| // passing is sufficient. |
| A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; |
| CondCode = FPCCToA64CC(CC, Alternative); |
| SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); |
| SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| DAG.getCondCode(CC)); |
| SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, |
| Op.getValueType(), |
| SetCC, IfTrue, IfFalse, A64cc); |
| |
| if (Alternative != A64CC::Invalid) { |
| A64cc = DAG.getConstant(Alternative, MVT::i32); |
| A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), |
| SetCC, IfTrue, A64SELECT_CC, A64cc); |
| |
| } |
| |
| return A64SELECT_CC; |
| } |
| |
| // (SELECT testbit, iftrue, iffalse) |
| SDValue |
| AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue TheBit = Op.getOperand(0); |
| SDValue IfTrue = Op.getOperand(1); |
| SDValue IfFalse = Op.getOperand(2); |
| |
| // AArch64 BooleanContents is the default UndefinedBooleanContent, which means |
| // that as the consumer we are responsible for ignoring rubbish in higher |
| // bits. |
| TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, |
| DAG.getConstant(1, MVT::i32)); |
| SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, |
| DAG.getConstant(0, TheBit.getValueType()), |
| DAG.getCondCode(ISD::SETNE)); |
| |
| return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), |
| A64CMP, IfTrue, IfFalse, |
| DAG.getConstant(A64CC::NE, MVT::i32)); |
| } |
| |
| // (SETCC lhs, rhs, condcode) |
| SDValue |
| AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| EVT VT = Op.getValueType(); |
| |
| if (LHS.getValueType() == MVT::f128) { |
| // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS |
| // for the rest of the function (some i32 or i64 values). |
| softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| |
| // If softenSetCCOperands returned a scalar, use it. |
| if (RHS.getNode() == 0) { |
| assert(LHS.getValueType() == Op.getValueType() && |
| "Unexpected setcc expansion!"); |
| return LHS; |
| } |
| } |
| |
| if (LHS.getValueType().isInteger()) { |
| SDValue A64cc; |
| |
| // Integers are handled in a separate function because the combinations of |
| // immediates and tests can get hairy and we may want to fiddle things. |
| SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); |
| |
| return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, |
| CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT), |
| A64cc); |
| } |
| |
| // Note that some LLVM floating-point CondCodes can't be lowered to a single |
| // conditional branch, hence FPCCToA64CC can set a second test, where either |
| // passing is sufficient. |
| A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; |
| CondCode = FPCCToA64CC(CC, Alternative); |
| SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); |
| SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, |
| DAG.getCondCode(CC)); |
| SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, |
| CmpOp, DAG.getConstant(1, VT), |
| DAG.getConstant(0, VT), A64cc); |
| |
| if (Alternative != A64CC::Invalid) { |
| A64cc = DAG.getConstant(Alternative, MVT::i32); |
| A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, |
| DAG.getConstant(1, VT), A64SELECT_CC, A64cc); |
| } |
| |
| return A64SELECT_CC; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { |
| const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| |
| // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes |
| // rather than just 8. |
| return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), |
| Op.getOperand(1), Op.getOperand(2), |
| DAG.getConstant(32, MVT::i32), 8, false, false, |
| MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| // The layout of the va_list struct is specified in the AArch64 Procedure Call |
| // Standard, section B.3. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| AArch64MachineFunctionInfo *FuncInfo |
| = MF.getInfo<AArch64MachineFunctionInfo>(); |
| SDLoc DL(Op); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue VAList = Op.getOperand(1); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| SmallVector<SDValue, 4> MemOps; |
| |
| // void *__stack at offset 0 |
| SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(), |
| getPointerTy()); |
| MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, |
| MachinePointerInfo(SV), false, false, 0)); |
| |
| // void *__gr_top at offset 8 |
| int GPRSize = FuncInfo->getVariadicGPRSize(); |
| if (GPRSize > 0) { |
| SDValue GRTop, GRTopAddr; |
| |
| GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| DAG.getConstant(8, getPointerTy())); |
| |
| GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy()); |
| GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, |
| DAG.getConstant(GPRSize, getPointerTy())); |
| |
| MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, |
| MachinePointerInfo(SV, 8), |
| false, false, 0)); |
| } |
| |
| // void *__vr_top at offset 16 |
| int FPRSize = FuncInfo->getVariadicFPRSize(); |
| if (FPRSize > 0) { |
| SDValue VRTop, VRTopAddr; |
| VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| DAG.getConstant(16, getPointerTy())); |
| |
| VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy()); |
| VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, |
| DAG.getConstant(FPRSize, getPointerTy())); |
| |
| MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, |
| MachinePointerInfo(SV, 16), |
| false, false, 0)); |
| } |
| |
| // int __gr_offs at offset 24 |
| SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| DAG.getConstant(24, getPointerTy())); |
| MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), |
| GROffsAddr, MachinePointerInfo(SV, 24), |
| false, false, 0)); |
| |
| // int __vr_offs at offset 28 |
| SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, |
| DAG.getConstant(28, getPointerTy())); |
| MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), |
| VROffsAddr, MachinePointerInfo(SV, 28), |
| false, false, 0)); |
| |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], |
| MemOps.size()); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Don't know how to custom lower this!"); |
| case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128); |
| case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128); |
| case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128); |
| case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128); |
| case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true); |
| case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false); |
| case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true); |
| case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false); |
| case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); |
| case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); |
| |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::BR_CC: return LowerBR_CC(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::VACOPY: return LowerVACOPY(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformANDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // We're looking for an SRA/SHL pair which form an SBFX. |
| |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| if (!isa<ConstantSDNode>(N->getOperand(1))) |
| return SDValue(); |
| |
| uint64_t TruncMask = N->getConstantOperandVal(1); |
| if (!isMask_64(TruncMask)) |
| return SDValue(); |
| |
| uint64_t Width = CountPopulation_64(TruncMask); |
| SDValue Shift = N->getOperand(0); |
| |
| if (Shift.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| if (!isa<ConstantSDNode>(Shift->getOperand(1))) |
| return SDValue(); |
| uint64_t LSB = Shift->getConstantOperandVal(1); |
| |
| if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) |
| return SDValue(); |
| |
| return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0), |
| DAG.getConstant(LSB, MVT::i64), |
| DAG.getConstant(LSB + Width - 1, MVT::i64)); |
| } |
| |
| /// For a true bitfield insert, the bits getting into that contiguous mask |
| /// should come from the low part of an existing value: they must be formed from |
| /// a compatible SHL operation (unless they're already low). This function |
| /// checks that condition and returns the least-significant bit that's |
| /// intended. If the operation not a field preparation, -1 is returned. |
| static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT, |
| SDValue &MaskedVal, uint64_t Mask) { |
| if (!isShiftedMask_64(Mask)) |
| return -1; |
| |
| // Now we need to alter MaskedVal so that it is an appropriate input for a BFI |
| // instruction. BFI will do a left-shift by LSB before applying the mask we've |
| // spotted, so in general we should pre-emptively "undo" that by making sure |
| // the incoming bits have had a right-shift applied to them. |
| // |
| // This right shift, however, will combine with existing left/right shifts. In |
| // the simplest case of a completely straight bitfield operation, it will be |
| // expected to completely cancel out with an existing SHL. More complicated |
| // cases (e.g. bitfield to bitfield copy) may still need a real shift before |
| // the BFI. |
| |
| uint64_t LSB = countTrailingZeros(Mask); |
| int64_t ShiftRightRequired = LSB; |
| if (MaskedVal.getOpcode() == ISD::SHL && |
| isa<ConstantSDNode>(MaskedVal.getOperand(1))) { |
| ShiftRightRequired -= MaskedVal.getConstantOperandVal(1); |
| MaskedVal = MaskedVal.getOperand(0); |
| } else if (MaskedVal.getOpcode() == ISD::SRL && |
| isa<ConstantSDNode>(MaskedVal.getOperand(1))) { |
| ShiftRightRequired += MaskedVal.getConstantOperandVal(1); |
| MaskedVal = MaskedVal.getOperand(0); |
| } |
| |
| if (ShiftRightRequired > 0) |
| MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal, |
| DAG.getConstant(ShiftRightRequired, MVT::i64)); |
| else if (ShiftRightRequired < 0) { |
| // We could actually end up with a residual left shift, for example with |
| // "struc.bitfield = val << 1". |
| MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal, |
| DAG.getConstant(-ShiftRightRequired, MVT::i64)); |
| } |
| |
| return LSB; |
| } |
| |
| /// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by |
| /// a mask and an extension. Returns true if a BFI was found and provides |
| /// information on its surroundings. |
| static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask, |
| bool &Extended) { |
| Extended = false; |
| if (N.getOpcode() == ISD::ZERO_EXTEND) { |
| Extended = true; |
| N = N.getOperand(0); |
| } |
| |
| if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) { |
| Mask = N->getConstantOperandVal(1); |
| N = N.getOperand(0); |
| } else { |
| // Mask is the whole width. |
| Mask = -1ULL >> (64 - N.getValueType().getSizeInBits()); |
| } |
| |
| if (N.getOpcode() == AArch64ISD::BFI) { |
| BFI = N; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which |
| /// is roughly equivalent to (and (BFI ...), mask). This form is used because it |
| /// can often be further combined with a larger mask. Ultimately, we want mask |
| /// to be 2^32-1 or 2^64-1 so the AND can be skipped. |
| static SDValue tryCombineToBFI(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| assert(N->getOpcode() == ISD::OR && "Unexpected root"); |
| |
| // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or |
| // abandon the effort. |
| SDValue LHS = N->getOperand(0); |
| if (LHS.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| uint64_t LHSMask; |
| if (isa<ConstantSDNode>(LHS.getOperand(1))) |
| LHSMask = LHS->getConstantOperandVal(1); |
| else |
| return SDValue(); |
| |
| // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask |
| // is or abandon the effort. |
| SDValue RHS = N->getOperand(1); |
| if (RHS.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| uint64_t RHSMask; |
| if (isa<ConstantSDNode>(RHS.getOperand(1))) |
| RHSMask = RHS->getConstantOperandVal(1); |
| else |
| return SDValue(); |
| |
| // Can't do anything if the masks are incompatible. |
| if (LHSMask & RHSMask) |
| return SDValue(); |
| |
| // Now we need one of the masks to be a contiguous field. Without loss of |
| // generality that should be the RHS one. |
| SDValue Bitfield = LHS.getOperand(0); |
| if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) { |
| // We know that LHS is a candidate new value, and RHS isn't already a better |
| // one. |
| std::swap(LHS, RHS); |
| std::swap(LHSMask, RHSMask); |
| } |
| |
| // We've done our best to put the right operands in the right places, all we |
| // can do now is check whether a BFI exists. |
| Bitfield = RHS.getOperand(0); |
| int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask); |
| if (LSB == -1) |
| return SDValue(); |
| |
| uint32_t Width = CountPopulation_64(RHSMask); |
| assert(Width && "Expected non-zero bitfield width"); |
| |
| SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, |
| LHS.getOperand(0), Bitfield, |
| DAG.getConstant(LSB, MVT::i64), |
| DAG.getConstant(Width, MVT::i64)); |
| |
| // Mask is trivial |
| if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits()))) |
| return BFI; |
| |
| return DAG.getNode(ISD::AND, DL, VT, BFI, |
| DAG.getConstant(LHSMask | RHSMask, VT)); |
| } |
| |
| /// Search for the bitwise combining (with careful masks) of a MaskedBFI and its |
| /// original input. This is surprisingly common because SROA splits things up |
| /// into i8 chunks, so the originally detected MaskedBFI may actually only act |
| /// on the low (say) byte of a word. This is then orred into the rest of the |
| /// word afterwards. |
| /// |
| /// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)). |
| /// |
| /// If MASK1 and MASK2 are compatible, we can fold the whole thing into the |
| /// MaskedBFI. We can also deal with a certain amount of extend/truncate being |
| /// involved. |
| static SDValue tryCombineToLargerBFI(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // First job is to hunt for a MaskedBFI on either the left or right. Swap |
| // operands if it's actually on the right. |
| SDValue BFI; |
| SDValue PossExtraMask; |
| uint64_t ExistingMask = 0; |
| bool Extended = false; |
| if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended)) |
| PossExtraMask = N->getOperand(1); |
| else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended)) |
| PossExtraMask = N->getOperand(0); |
| else |
| return SDValue(); |
| |
| // We can only combine a BFI with another compatible mask. |
| if (PossExtraMask.getOpcode() != ISD::AND || |
| !isa<ConstantSDNode>(PossExtraMask.getOperand(1))) |
| return SDValue(); |
| |
| uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1); |
| |
| // Masks must be compatible. |
| if (ExtraMask & ExistingMask) |
| return SDValue(); |
| |
| SDValue OldBFIVal = BFI.getOperand(0); |
| SDValue NewBFIVal = BFI.getOperand(1); |
| if (Extended) { |
| // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be |
| // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments |
| // need to be made compatible. |
| assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32 |
| && "Invalid types for BFI"); |
| OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal); |
| NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal); |
| } |
| |
| // We need the MaskedBFI to be combined with a mask of the *same* value. |
| if (PossExtraMask.getOperand(0) != OldBFIVal) |
| return SDValue(); |
| |
| BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, |
| OldBFIVal, NewBFIVal, |
| BFI.getOperand(2), BFI.getOperand(3)); |
| |
| // If the masking is trivial, we don't need to create it. |
| if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits()))) |
| return BFI; |
| |
| return DAG.getNode(ISD::AND, DL, VT, BFI, |
| DAG.getConstant(ExtraMask | ExistingMask, VT)); |
| } |
| |
| /// An EXTR instruction is made up of two shifts, ORed together. This helper |
| /// searches for and classifies those shifts. |
| static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, |
| bool &FromHi) { |
| if (N.getOpcode() == ISD::SHL) |
| FromHi = false; |
| else if (N.getOpcode() == ISD::SRL) |
| FromHi = true; |
| else |
| return false; |
| |
| if (!isa<ConstantSDNode>(N.getOperand(1))) |
| return false; |
| |
| ShiftAmount = N->getConstantOperandVal(1); |
| Src = N->getOperand(0); |
| return true; |
| } |
| |
| /// EXTR instruction extracts a contiguous chunk of bits from two existing |
| /// registers viewed as a high/low pair. This function looks for the pattern: |
| /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an |
| /// EXTR. Can't quite be done in TableGen because the two immediates aren't |
| /// independent. |
| static SDValue tryCombineToEXTR(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| assert(N->getOpcode() == ISD::OR && "Unexpected root"); |
| |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| SDValue LHS; |
| uint32_t ShiftLHS = 0; |
| bool LHSFromHi = 0; |
| if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) |
| return SDValue(); |
| |
| SDValue RHS; |
| uint32_t ShiftRHS = 0; |
| bool RHSFromHi = 0; |
| if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) |
| return SDValue(); |
| |
| // If they're both trying to come from the high part of the register, they're |
| // not really an EXTR. |
| if (LHSFromHi == RHSFromHi) |
| return SDValue(); |
| |
| if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) |
| return SDValue(); |
| |
| if (LHSFromHi) { |
| std::swap(LHS, RHS); |
| std::swap(ShiftLHS, ShiftRHS); |
| } |
| |
| return DAG.getNode(AArch64ISD::EXTR, DL, VT, |
| LHS, RHS, |
| DAG.getConstant(ShiftRHS, MVT::i64)); |
| } |
| |
| /// Target-specific dag combine xforms for ISD::OR |
| static SDValue PerformORCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| // Attempt to recognise bitfield-insert operations. |
| SDValue Res = tryCombineToBFI(N, DCI, Subtarget); |
| if (Res.getNode()) |
| return Res; |
| |
| // Attempt to combine an existing MaskedBFI operation into one with a larger |
| // mask. |
| Res = tryCombineToLargerBFI(N, DCI, Subtarget); |
| if (Res.getNode()) |
| return Res; |
| |
| Res = tryCombineToEXTR(N, DCI); |
| if (Res.getNode()) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| /// Target-specific dag combine xforms for ISD::SRA |
| static SDValue PerformSRACombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| // We're looking for an SRA/SHL pair which form an SBFX. |
| |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| if (!isa<ConstantSDNode>(N->getOperand(1))) |
| return SDValue(); |
| |
| uint64_t ExtraSignBits = N->getConstantOperandVal(1); |
| SDValue Shift = N->getOperand(0); |
| |
| if (Shift.getOpcode() != ISD::SHL) |
| return SDValue(); |
| |
| if (!isa<ConstantSDNode>(Shift->getOperand(1))) |
| return SDValue(); |
| |
| uint64_t BitsOnLeft = Shift->getConstantOperandVal(1); |
| uint64_t Width = VT.getSizeInBits() - ExtraSignBits; |
| uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft; |
| |
| if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) |
| return SDValue(); |
| |
| return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0), |
| DAG.getConstant(LSB, MVT::i64), |
| DAG.getConstant(LSB + Width - 1, MVT::i64)); |
| } |
| |
| |
| SDValue |
| AArch64TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::AND: return PerformANDCombine(N, DCI); |
| case ISD::OR: return PerformORCombine(N, DCI, getSubtarget()); |
| case ISD::SRA: return PerformSRACombine(N, DCI); |
| } |
| return SDValue(); |
| } |
| |
| AArch64TargetLowering::ConstraintType |
| AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'w': // An FP/SIMD vector register |
| return C_RegisterClass; |
| case 'I': // Constant that can be used with an ADD instruction |
| case 'J': // Constant that can be used with a SUB instruction |
| case 'K': // Constant that can be used with a 32-bit logical instruction |
| case 'L': // Constant that can be used with a 64-bit logical instruction |
| case 'M': // Constant that can be used as a 32-bit MOV immediate |
| case 'N': // Constant that can be used as a 64-bit MOV immediate |
| case 'Y': // Floating point constant zero |
| case 'Z': // Integer constant zero |
| return C_Other; |
| case 'Q': // A memory reference with base register and no offset |
| return C_Memory; |
| case 'S': // A symbolic address |
| return C_Other; |
| } |
| } |
| |
| // FIXME: Ump, Utf, Usa, Ush |
| // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes, |
| // whatever they may be |
| // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be |
| // Usa: An absolute symbolic address |
| // Ush: The high part (bits 32:12) of a pc-relative symbolic address |
| assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa" |
| && Constraint != "Ush" && "Unimplemented constraints"); |
| |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| TargetLowering::ConstraintWeight |
| AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info, |
| const char *Constraint) const { |
| |
| llvm_unreachable("Constraint weight unimplemented"); |
| } |
| |
| void |
| AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0, 0); |
| |
| // Only length 1 constraints are C_Other. |
| if (Constraint.size() != 1) return; |
| |
| // Only C_Other constraints get lowered like this. That means constants for us |
| // so return early if there's no hope the constraint can be lowered. |
| |
| switch(Constraint[0]) { |
| default: break; |
| case 'I': case 'J': case 'K': case 'L': |
| case 'M': case 'N': case 'Z': { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) |
| return; |
| |
| uint64_t CVal = C->getZExtValue(); |
| uint32_t Bits; |
| |
| switch (Constraint[0]) { |
| default: |
| // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J' |
| // is a peculiarly useless SUB constraint. |
| llvm_unreachable("Unimplemented C_Other constraint"); |
| case 'I': |
| if (CVal <= 0xfff) |
| break; |
| return; |
| case 'K': |
| if (A64Imms::isLogicalImm(32, CVal, Bits)) |
| break; |
| return; |
| case 'L': |
| if (A64Imms::isLogicalImm(64, CVal, Bits)) |
| break; |
| return; |
| case 'Z': |
| if (CVal == 0) |
| break; |
| return; |
| } |
| |
| Result = DAG.getTargetConstant(CVal, Op.getValueType()); |
| break; |
| } |
| case 'S': { |
| // An absolute symbolic address or label reference. |
| if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
| Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), |
| GA->getValueType(0)); |
| } else if (const BlockAddressSDNode *BA |
| = dyn_cast<BlockAddressSDNode>(Op)) { |
| Result = DAG.getTargetBlockAddress(BA->getBlockAddress(), |
| BA->getValueType(0)); |
| } else if (const ExternalSymbolSDNode *ES |
| = dyn_cast<ExternalSymbolSDNode>(Op)) { |
| Result = DAG.getTargetExternalSymbol(ES->getSymbol(), |
| ES->getValueType(0)); |
| } else |
| return; |
| break; |
| } |
| case 'Y': |
| if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| if (CFP->isExactlyValue(0.0)) { |
| Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0)); |
| break; |
| } |
| } |
| return; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| // It's an unknown constraint for us. Let generic code have a go. |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| AArch64TargetLowering::getRegForInlineAsmConstraint( |
| const std::string &Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': |
| if (VT.getSizeInBits() <= 32) |
| return std::make_pair(0U, &AArch64::GPR32RegClass); |
| else if (VT == MVT::i64) |
| return std::make_pair(0U, &AArch64::GPR64RegClass); |
| break; |
| case 'w': |
| if (VT == MVT::f16) |
| return std::make_pair(0U, &AArch64::FPR16RegClass); |
| else if (VT == MVT::f32) |
| return std::make_pair(0U, &AArch64::FPR32RegClass); |
| else if (VT == MVT::f64) |
| return std::make_pair(0U, &AArch64::FPR64RegClass); |
| else if (VT.getSizeInBits() == 64) |
| return std::make_pair(0U, &AArch64::VPR64RegClass); |
| else if (VT == MVT::f128) |
| return std::make_pair(0U, &AArch64::FPR128RegClass); |
| else if (VT.getSizeInBits() == 128) |
| return std::make_pair(0U, &AArch64::VPR128RegClass); |
| break; |
| } |
| } |
| |
| // Use the default implementation in TargetLowering to convert the register |
| // constraint into a member of a register class. |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |