| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements the ScheduleDAGInstrs class, which implements re-scheduling | 
 | // of MachineInstrs. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "sched-instrs" | 
 | #include "ScheduleDAGInstrs.h" | 
 | #include "llvm/Operator.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Target/TargetSubtarget.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | using namespace llvm; | 
 |  | 
 | ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, | 
 |                                      const MachineLoopInfo &mli, | 
 |                                      const MachineDominatorTree &mdt) | 
 |   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), | 
 |     InstrItins(mf.getTarget().getInstrItineraryData()), | 
 |     Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) { | 
 |   DbgValueVec.clear(); | 
 | } | 
 |  | 
 | /// Run - perform scheduling. | 
 | /// | 
 | void ScheduleDAGInstrs::Run(MachineBasicBlock *bb, | 
 |                             MachineBasicBlock::iterator begin, | 
 |                             MachineBasicBlock::iterator end, | 
 |                             unsigned endcount) { | 
 |   BB = bb; | 
 |   Begin = begin; | 
 |   InsertPosIndex = endcount; | 
 |  | 
 |   ScheduleDAG::Run(bb, end); | 
 | } | 
 |  | 
 | /// getUnderlyingObjectFromInt - This is the function that does the work of | 
 | /// looking through basic ptrtoint+arithmetic+inttoptr sequences. | 
 | static const Value *getUnderlyingObjectFromInt(const Value *V) { | 
 |   do { | 
 |     if (const Operator *U = dyn_cast<Operator>(V)) { | 
 |       // If we find a ptrtoint, we can transfer control back to the | 
 |       // regular getUnderlyingObjectFromInt. | 
 |       if (U->getOpcode() == Instruction::PtrToInt) | 
 |         return U->getOperand(0); | 
 |       // If we find an add of a constant or a multiplied value, it's | 
 |       // likely that the other operand will lead us to the base | 
 |       // object. We don't have to worry about the case where the | 
 |       // object address is somehow being computed by the multiply, | 
 |       // because our callers only care when the result is an | 
 |       // identifibale object. | 
 |       if (U->getOpcode() != Instruction::Add || | 
 |           (!isa<ConstantInt>(U->getOperand(1)) && | 
 |            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) | 
 |         return V; | 
 |       V = U->getOperand(0); | 
 |     } else { | 
 |       return V; | 
 |     } | 
 |     assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); | 
 |   } while (1); | 
 | } | 
 |  | 
 | /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject | 
 | /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. | 
 | static const Value *getUnderlyingObject(const Value *V) { | 
 |   // First just call Value::getUnderlyingObject to let it do what it does. | 
 |   do { | 
 |     V = V->getUnderlyingObject(); | 
 |     // If it found an inttoptr, use special code to continue climing. | 
 |     if (Operator::getOpcode(V) != Instruction::IntToPtr) | 
 |       break; | 
 |     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); | 
 |     // If that succeeded in finding a pointer, continue the search. | 
 |     if (!O->getType()->isPointerTy()) | 
 |       break; | 
 |     V = O; | 
 |   } while (1); | 
 |   return V; | 
 | } | 
 |  | 
 | /// getUnderlyingObjectForInstr - If this machine instr has memory reference | 
 | /// information and it can be tracked to a normal reference to a known | 
 | /// object, return the Value for that object. Otherwise return null. | 
 | static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, | 
 |                                                 const MachineFrameInfo *MFI, | 
 |                                                 bool &MayAlias) { | 
 |   MayAlias = true; | 
 |   if (!MI->hasOneMemOperand() || | 
 |       !(*MI->memoperands_begin())->getValue() || | 
 |       (*MI->memoperands_begin())->isVolatile()) | 
 |     return 0; | 
 |  | 
 |   const Value *V = (*MI->memoperands_begin())->getValue(); | 
 |   if (!V) | 
 |     return 0; | 
 |  | 
 |   V = getUnderlyingObject(V); | 
 |   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { | 
 |     // For now, ignore PseudoSourceValues which may alias LLVM IR values | 
 |     // because the code that uses this function has no way to cope with | 
 |     // such aliases. | 
 |     if (PSV->isAliased(MFI)) | 
 |       return 0; | 
 |      | 
 |     MayAlias = PSV->mayAlias(MFI); | 
 |     return V; | 
 |   } | 
 |  | 
 |   if (isIdentifiedObject(V)) | 
 |     return V; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) { | 
 |   if (MachineLoop *ML = MLI.getLoopFor(BB)) | 
 |     if (BB == ML->getLoopLatch()) { | 
 |       MachineBasicBlock *Header = ML->getHeader(); | 
 |       for (MachineBasicBlock::livein_iterator I = Header->livein_begin(), | 
 |            E = Header->livein_end(); I != E; ++I) | 
 |         LoopLiveInRegs.insert(*I); | 
 |       LoopRegs.VisitLoop(ML); | 
 |     } | 
 | } | 
 |  | 
 | /// AddSchedBarrierDeps - Add dependencies from instructions in the current | 
 | /// list of instructions being scheduled to scheduling barrier by adding | 
 | /// the exit SU to the register defs and use list. This is because we want to | 
 | /// make sure instructions which define registers that are either used by | 
 | /// the terminator or are live-out are properly scheduled. This is | 
 | /// especially important when the definition latency of the return value(s) | 
 | /// are too high to be hidden by the branch or when the liveout registers | 
 | /// used by instructions in the fallthrough block. | 
 | void ScheduleDAGInstrs::AddSchedBarrierDeps() { | 
 |   MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0; | 
 |   ExitSU.setInstr(ExitMI); | 
 |   bool AllDepKnown = ExitMI && | 
 |     (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier()); | 
 |   if (ExitMI && AllDepKnown) { | 
 |     // If it's a call or a barrier, add dependencies on the defs and uses of | 
 |     // instruction. | 
 |     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { | 
 |       const MachineOperand &MO = ExitMI->getOperand(i); | 
 |       if (!MO.isReg() || MO.isDef()) continue; | 
 |       unsigned Reg = MO.getReg(); | 
 |       if (Reg == 0) continue; | 
 |  | 
 |       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); | 
 |       Uses[Reg].push_back(&ExitSU); | 
 |     } | 
 |   } else { | 
 |     // For others, e.g. fallthrough, conditional branch, assume the exit | 
 |     // uses all the registers that are livein to the successor blocks. | 
 |     SmallSet<unsigned, 8> Seen; | 
 |     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), | 
 |            SE = BB->succ_end(); SI != SE; ++SI) | 
 |       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), | 
 |              E = (*SI)->livein_end(); I != E; ++I) {     | 
 |         unsigned Reg = *I; | 
 |         if (Seen.insert(Reg)) | 
 |           Uses[Reg].push_back(&ExitSU); | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 | void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) { | 
 |   // We'll be allocating one SUnit for each instruction, plus one for | 
 |   // the region exit node. | 
 |   SUnits.reserve(BB->size()); | 
 |  | 
 |   // We build scheduling units by walking a block's instruction list from bottom | 
 |   // to top. | 
 |  | 
 |   // Remember where a generic side-effecting instruction is as we procede. | 
 |   SUnit *BarrierChain = 0, *AliasChain = 0; | 
 |  | 
 |   // Memory references to specific known memory locations are tracked | 
 |   // so that they can be given more precise dependencies. We track | 
 |   // separately the known memory locations that may alias and those | 
 |   // that are known not to alias | 
 |   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; | 
 |   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; | 
 |  | 
 |   // Keep track of dangling debug references to registers. | 
 |   std::vector<std::pair<MachineInstr*, unsigned> > | 
 |     DanglingDebugValue(TRI->getNumRegs(), | 
 |     std::make_pair(static_cast<MachineInstr*>(0), 0)); | 
 |  | 
 |   // Check to see if the scheduler cares about latencies. | 
 |   bool UnitLatencies = ForceUnitLatencies(); | 
 |  | 
 |   // Ask the target if address-backscheduling is desirable, and if so how much. | 
 |   const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>(); | 
 |   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); | 
 |  | 
 |   // Remove any stale debug info; sometimes BuildSchedGraph is called again | 
 |   // without emitting the info from the previous call. | 
 |   DbgValueVec.clear(); | 
 |  | 
 |   // Model data dependencies between instructions being scheduled and the | 
 |   // ExitSU. | 
 |   AddSchedBarrierDeps(); | 
 |  | 
 |   // Walk the list of instructions, from bottom moving up. | 
 |   for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin; | 
 |        MII != MIE; --MII) { | 
 |     MachineInstr *MI = prior(MII); | 
 |     // DBG_VALUE does not have SUnit's built, so just remember these for later | 
 |     // reinsertion. | 
 |     if (MI->isDebugValue()) { | 
 |       if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() && | 
 |           MI->getOperand(0).getReg()) | 
 |         DanglingDebugValue[MI->getOperand(0).getReg()] = | 
 |              std::make_pair(MI, DbgValueVec.size()); | 
 |       DbgValueVec.push_back(MI); | 
 |       continue; | 
 |     } | 
 |     const TargetInstrDesc &TID = MI->getDesc(); | 
 |     assert(!TID.isTerminator() && !MI->isLabel() && | 
 |            "Cannot schedule terminators or labels!"); | 
 |     // Create the SUnit for this MI. | 
 |     SUnit *SU = NewSUnit(MI); | 
 |     SU->isCall = TID.isCall(); | 
 |     SU->isCommutable = TID.isCommutable(); | 
 |  | 
 |     // Assign the Latency field of SU using target-provided information. | 
 |     if (UnitLatencies) | 
 |       SU->Latency = 1; | 
 |     else | 
 |       ComputeLatency(SU); | 
 |  | 
 |     // Add register-based dependencies (data, anti, and output). | 
 |     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { | 
 |       const MachineOperand &MO = MI->getOperand(j); | 
 |       if (!MO.isReg()) continue; | 
 |       unsigned Reg = MO.getReg(); | 
 |       if (Reg == 0) continue; | 
 |  | 
 |       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); | 
 |  | 
 |       if (MO.isDef() && DanglingDebugValue[Reg].first!=0) { | 
 |         SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first); | 
 |         DbgValueVec[DanglingDebugValue[Reg].second] = 0; | 
 |         DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0); | 
 |       } | 
 |  | 
 |       std::vector<SUnit *> &UseList = Uses[Reg]; | 
 |       std::vector<SUnit *> &DefList = Defs[Reg]; | 
 |       // Optionally add output and anti dependencies. For anti | 
 |       // dependencies we use a latency of 0 because for a multi-issue | 
 |       // target we want to allow the defining instruction to issue | 
 |       // in the same cycle as the using instruction. | 
 |       // TODO: Using a latency of 1 here for output dependencies assumes | 
 |       //       there's no cost for reusing registers. | 
 |       SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; | 
 |       unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1; | 
 |       for (unsigned i = 0, e = DefList.size(); i != e; ++i) { | 
 |         SUnit *DefSU = DefList[i]; | 
 |         if (DefSU == &ExitSU) | 
 |           continue; | 
 |         if (DefSU != SU && | 
 |             (Kind != SDep::Output || !MO.isDead() || | 
 |              !DefSU->getInstr()->registerDefIsDead(Reg))) | 
 |           DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg)); | 
 |       } | 
 |       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { | 
 |         std::vector<SUnit *> &DefList = Defs[*Alias]; | 
 |         for (unsigned i = 0, e = DefList.size(); i != e; ++i) { | 
 |           SUnit *DefSU = DefList[i]; | 
 |           if (DefSU == &ExitSU) | 
 |             continue; | 
 |           if (DefSU != SU && | 
 |               (Kind != SDep::Output || !MO.isDead() || | 
 |                !DefSU->getInstr()->registerDefIsDead(*Alias))) | 
 |             DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias)); | 
 |         } | 
 |       } | 
 |  | 
 |       if (MO.isDef()) { | 
 |         // Add any data dependencies. | 
 |         unsigned DataLatency = SU->Latency; | 
 |         for (unsigned i = 0, e = UseList.size(); i != e; ++i) { | 
 |           SUnit *UseSU = UseList[i]; | 
 |           if (UseSU == SU) | 
 |             continue; | 
 |           unsigned LDataLatency = DataLatency; | 
 |           // Optionally add in a special extra latency for nodes that | 
 |           // feed addresses. | 
 |           // TODO: Do this for register aliases too. | 
 |           // TODO: Perhaps we should get rid of | 
 |           // SpecialAddressLatency and just move this into | 
 |           // adjustSchedDependency for the targets that care about it. | 
 |           if (SpecialAddressLatency != 0 && !UnitLatencies && | 
 |               UseSU != &ExitSU) { | 
 |             MachineInstr *UseMI = UseSU->getInstr(); | 
 |             const TargetInstrDesc &UseTID = UseMI->getDesc(); | 
 |             int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg); | 
 |             assert(RegUseIndex >= 0 && "UseMI doesn's use register!"); | 
 |             if (RegUseIndex >= 0 && | 
 |                 (UseTID.mayLoad() || UseTID.mayStore()) && | 
 |                 (unsigned)RegUseIndex < UseTID.getNumOperands() && | 
 |                 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass()) | 
 |               LDataLatency += SpecialAddressLatency; | 
 |           } | 
 |           // Adjust the dependence latency using operand def/use | 
 |           // information (if any), and then allow the target to | 
 |           // perform its own adjustments. | 
 |           const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg); | 
 |           if (!UnitLatencies) { | 
 |             ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); | 
 |             ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); | 
 |           } | 
 |           UseSU->addPred(dep); | 
 |         } | 
 |         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { | 
 |           std::vector<SUnit *> &UseList = Uses[*Alias]; | 
 |           for (unsigned i = 0, e = UseList.size(); i != e; ++i) { | 
 |             SUnit *UseSU = UseList[i]; | 
 |             if (UseSU == SU) | 
 |               continue; | 
 |             const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias); | 
 |             if (!UnitLatencies) { | 
 |               ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); | 
 |               ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); | 
 |             } | 
 |             UseSU->addPred(dep); | 
 |           } | 
 |         } | 
 |  | 
 |         // If a def is going to wrap back around to the top of the loop, | 
 |         // backschedule it. | 
 |         if (!UnitLatencies && DefList.empty()) { | 
 |           LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg); | 
 |           if (I != LoopRegs.Deps.end()) { | 
 |             const MachineOperand *UseMO = I->second.first; | 
 |             unsigned Count = I->second.second; | 
 |             const MachineInstr *UseMI = UseMO->getParent(); | 
 |             unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); | 
 |             const TargetInstrDesc &UseTID = UseMI->getDesc(); | 
 |             // TODO: If we knew the total depth of the region here, we could | 
 |             // handle the case where the whole loop is inside the region but | 
 |             // is large enough that the isScheduleHigh trick isn't needed. | 
 |             if (UseMOIdx < UseTID.getNumOperands()) { | 
 |               // Currently, we only support scheduling regions consisting of | 
 |               // single basic blocks. Check to see if the instruction is in | 
 |               // the same region by checking to see if it has the same parent. | 
 |               if (UseMI->getParent() != MI->getParent()) { | 
 |                 unsigned Latency = SU->Latency; | 
 |                 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) | 
 |                   Latency += SpecialAddressLatency; | 
 |                 // This is a wild guess as to the portion of the latency which | 
 |                 // will be overlapped by work done outside the current | 
 |                 // scheduling region. | 
 |                 Latency -= std::min(Latency, Count); | 
 |                 // Add the artifical edge. | 
 |                 ExitSU.addPred(SDep(SU, SDep::Order, Latency, | 
 |                                     /*Reg=*/0, /*isNormalMemory=*/false, | 
 |                                     /*isMustAlias=*/false, | 
 |                                     /*isArtificial=*/true)); | 
 |               } else if (SpecialAddressLatency > 0 && | 
 |                          UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { | 
 |                 // The entire loop body is within the current scheduling region | 
 |                 // and the latency of this operation is assumed to be greater | 
 |                 // than the latency of the loop. | 
 |                 // TODO: Recursively mark data-edge predecessors as | 
 |                 //       isScheduleHigh too. | 
 |                 SU->isScheduleHigh = true; | 
 |               } | 
 |             } | 
 |             LoopRegs.Deps.erase(I); | 
 |           } | 
 |         } | 
 |  | 
 |         UseList.clear(); | 
 |         if (!MO.isDead()) | 
 |           DefList.clear(); | 
 |         DefList.push_back(SU); | 
 |       } else { | 
 |         UseList.push_back(SU); | 
 |       } | 
 |     } | 
 |  | 
 |     // Add chain dependencies. | 
 |     // Chain dependencies used to enforce memory order should have | 
 |     // latency of 0 (except for true dependency of Store followed by | 
 |     // aliased Load... we estimate that with a single cycle of latency | 
 |     // assuming the hardware will bypass) | 
 |     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable | 
 |     // after stack slots are lowered to actual addresses. | 
 |     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and | 
 |     // produce more precise dependence information. | 
 | #define STORE_LOAD_LATENCY 1 | 
 |     unsigned TrueMemOrderLatency = 0; | 
 |     if (TID.isCall() || TID.hasUnmodeledSideEffects() || | 
 |         (MI->hasVolatileMemoryRef() &&  | 
 |          (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) { | 
 |       // Be conservative with these and add dependencies on all memory | 
 |       // references, even those that are known to not alias. | 
 |       for (std::map<const Value *, SUnit *>::iterator I =  | 
 |              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { | 
 |         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |       } | 
 |       for (std::map<const Value *, std::vector<SUnit *> >::iterator I = | 
 |              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { | 
 |         for (unsigned i = 0, e = I->second.size(); i != e; ++i) | 
 |           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
 |       } | 
 |       NonAliasMemDefs.clear(); | 
 |       NonAliasMemUses.clear(); | 
 |       // Add SU to the barrier chain. | 
 |       if (BarrierChain) | 
 |         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |       BarrierChain = SU; | 
 |  | 
 |       // fall-through | 
 |     new_alias_chain: | 
 |       // Chain all possibly aliasing memory references though SU. | 
 |       if (AliasChain) | 
 |         AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |       AliasChain = SU; | 
 |       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) | 
 |         PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
 |       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), | 
 |            E = AliasMemDefs.end(); I != E; ++I) { | 
 |         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |       } | 
 |       for (std::map<const Value *, std::vector<SUnit *> >::iterator I = | 
 |            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { | 
 |         for (unsigned i = 0, e = I->second.size(); i != e; ++i) | 
 |           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
 |       } | 
 |       PendingLoads.clear(); | 
 |       AliasMemDefs.clear(); | 
 |       AliasMemUses.clear(); | 
 |     } else if (TID.mayStore()) { | 
 |       bool MayAlias = true; | 
 |       TrueMemOrderLatency = STORE_LOAD_LATENCY; | 
 |       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { | 
 |         // A store to a specific PseudoSourceValue. Add precise dependencies. | 
 |         // Record the def in MemDefs, first adding a dep if there is | 
 |         // an existing def. | 
 |         std::map<const Value *, SUnit *>::iterator I =  | 
 |           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); | 
 |         std::map<const Value *, SUnit *>::iterator IE =  | 
 |           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); | 
 |         if (I != IE) { | 
 |           I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, | 
 |                                   /*isNormalMemory=*/true)); | 
 |           I->second = SU; | 
 |         } else { | 
 |           if (MayAlias) | 
 |             AliasMemDefs[V] = SU; | 
 |           else | 
 |             NonAliasMemDefs[V] = SU; | 
 |         } | 
 |         // Handle the uses in MemUses, if there are any. | 
 |         std::map<const Value *, std::vector<SUnit *> >::iterator J = | 
 |           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); | 
 |         std::map<const Value *, std::vector<SUnit *> >::iterator JE = | 
 |           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); | 
 |         if (J != JE) { | 
 |           for (unsigned i = 0, e = J->second.size(); i != e; ++i) | 
 |             J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, | 
 |                                        /*Reg=*/0, /*isNormalMemory=*/true)); | 
 |           J->second.clear(); | 
 |         } | 
 |         if (MayAlias) { | 
 |           // Add dependencies from all the PendingLoads, i.e. loads | 
 |           // with no underlying object. | 
 |           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) | 
 |             PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); | 
 |           // Add dependence on alias chain, if needed. | 
 |           if (AliasChain) | 
 |             AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |         } | 
 |         // Add dependence on barrier chain, if needed. | 
 |         if (BarrierChain) | 
 |           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |       } else { | 
 |         // Treat all other stores conservatively. | 
 |         goto new_alias_chain; | 
 |       } | 
 |  | 
 |       if (!ExitSU.isPred(SU)) | 
 |         // Push store's up a bit to avoid them getting in between cmp | 
 |         // and branches. | 
 |         ExitSU.addPred(SDep(SU, SDep::Order, 0, | 
 |                             /*Reg=*/0, /*isNormalMemory=*/false, | 
 |                             /*isMustAlias=*/false, | 
 |                             /*isArtificial=*/true)); | 
 |     } else if (TID.mayLoad()) { | 
 |       bool MayAlias = true; | 
 |       TrueMemOrderLatency = 0; | 
 |       if (MI->isInvariantLoad(AA)) { | 
 |         // Invariant load, no chain dependencies needed! | 
 |       } else { | 
 |         if (const Value *V =  | 
 |             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { | 
 |           // A load from a specific PseudoSourceValue. Add precise dependencies. | 
 |           std::map<const Value *, SUnit *>::iterator I =  | 
 |             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); | 
 |           std::map<const Value *, SUnit *>::iterator IE =  | 
 |             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); | 
 |           if (I != IE) | 
 |             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, | 
 |                                     /*isNormalMemory=*/true)); | 
 |           if (MayAlias) | 
 |             AliasMemUses[V].push_back(SU); | 
 |           else  | 
 |             NonAliasMemUses[V].push_back(SU); | 
 |         } else { | 
 |           // A load with no underlying object. Depend on all | 
 |           // potentially aliasing stores. | 
 |           for (std::map<const Value *, SUnit *>::iterator I =  | 
 |                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) | 
 |             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |            | 
 |           PendingLoads.push_back(SU); | 
 |           MayAlias = true; | 
 |         } | 
 |          | 
 |         // Add dependencies on alias and barrier chains, if needed. | 
 |         if (MayAlias && AliasChain) | 
 |           AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |         if (BarrierChain) | 
 |           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); | 
 |       }  | 
 |     } | 
 |   } | 
 |  | 
 |   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { | 
 |     Defs[i].clear(); | 
 |     Uses[i].clear(); | 
 |   } | 
 |   PendingLoads.clear(); | 
 | } | 
 |  | 
 | void ScheduleDAGInstrs::FinishBlock() { | 
 |   // Nothing to do. | 
 | } | 
 |  | 
 | void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { | 
 |   // Compute the latency for the node. | 
 |   if (!InstrItins || InstrItins->isEmpty()) { | 
 |     SU->Latency = 1; | 
 |  | 
 |     // Simplistic target-independent heuristic: assume that loads take | 
 |     // extra time. | 
 |     if (SU->getInstr()->getDesc().mayLoad()) | 
 |       SU->Latency += 2; | 
 |   } else { | 
 |     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr()); | 
 |   } | 
 | } | 
 |  | 
 | void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,  | 
 |                                               SDep& dep) const { | 
 |   if (!InstrItins || InstrItins->isEmpty()) | 
 |     return; | 
 |    | 
 |   // For a data dependency with a known register... | 
 |   if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) | 
 |     return; | 
 |  | 
 |   const unsigned Reg = dep.getReg(); | 
 |  | 
 |   // ... find the definition of the register in the defining | 
 |   // instruction | 
 |   MachineInstr *DefMI = Def->getInstr(); | 
 |   int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); | 
 |   if (DefIdx != -1) { | 
 |     const MachineOperand &MO = DefMI->getOperand(DefIdx); | 
 |     if (MO.isReg() && MO.isImplicit() && | 
 |         DefIdx >= (int)DefMI->getDesc().getNumOperands()) { | 
 |       // This is an implicit def, getOperandLatency() won't return the correct | 
 |       // latency. e.g. | 
 |       //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def> | 
 |       //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ... | 
 |       // What we want is to compute latency between def of %D6/%D7 and use of | 
 |       // %Q3 instead. | 
 |       DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI); | 
 |     } | 
 |     MachineInstr *UseMI = Use->getInstr(); | 
 |     // For all uses of the register, calculate the maxmimum latency | 
 |     int Latency = -1; | 
 |     if (UseMI) { | 
 |       for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { | 
 |         const MachineOperand &MO = UseMI->getOperand(i); | 
 |         if (!MO.isReg() || !MO.isUse()) | 
 |           continue; | 
 |         unsigned MOReg = MO.getReg(); | 
 |         if (MOReg != Reg) | 
 |           continue; | 
 |  | 
 |         int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx, | 
 |                                               UseMI, i); | 
 |         Latency = std::max(Latency, UseCycle); | 
 |       } | 
 |     } else { | 
 |       // UseMI is null, then it must be a scheduling barrier. | 
 |       if (!InstrItins || InstrItins->isEmpty()) | 
 |         return; | 
 |       unsigned DefClass = DefMI->getDesc().getSchedClass(); | 
 |       Latency = InstrItins->getOperandCycle(DefClass, DefIdx); | 
 |     } | 
 |  | 
 |     // If we found a latency, then replace the existing dependence latency. | 
 |     if (Latency >= 0) | 
 |       dep.setLatency(Latency); | 
 |   } | 
 | } | 
 |  | 
 | void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { | 
 |   SU->getInstr()->dump(); | 
 | } | 
 |  | 
 | std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { | 
 |   std::string s; | 
 |   raw_string_ostream oss(s); | 
 |   if (SU == &EntrySU) | 
 |     oss << "<entry>"; | 
 |   else if (SU == &ExitSU) | 
 |     oss << "<exit>"; | 
 |   else | 
 |     SU->getInstr()->print(oss); | 
 |   return oss.str(); | 
 | } | 
 |  | 
 | // EmitSchedule - Emit the machine code in scheduled order. | 
 | MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() { | 
 |   // For MachineInstr-based scheduling, we're rescheduling the instructions in | 
 |   // the block, so start by removing them from the block. | 
 |   while (Begin != InsertPos) { | 
 |     MachineBasicBlock::iterator I = Begin; | 
 |     ++Begin; | 
 |     BB->remove(I); | 
 |   } | 
 |  | 
 |   // First reinsert any remaining debug_values; these are either constants, | 
 |   // or refer to live-in registers.  The beginning of the block is the right | 
 |   // place for the latter.  The former might reasonably be placed elsewhere | 
 |   // using some kind of ordering algorithm, but right now it doesn't matter. | 
 |   for (int i = DbgValueVec.size()-1; i>=0; --i) | 
 |     if (DbgValueVec[i]) | 
 |       BB->insert(InsertPos, DbgValueVec[i]); | 
 |  | 
 |   // Then re-insert them according to the given schedule. | 
 |   for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
 |     SUnit *SU = Sequence[i]; | 
 |     if (!SU) { | 
 |       // Null SUnit* is a noop. | 
 |       EmitNoop(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     BB->insert(InsertPos, SU->getInstr()); | 
 |     for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i) | 
 |       BB->insert(InsertPos, SU->DbgInstrList[i]); | 
 |   } | 
 |  | 
 |   // Update the Begin iterator, as the first instruction in the block | 
 |   // may have been scheduled later. | 
 |   if (!DbgValueVec.empty()) { | 
 |     for (int i = DbgValueVec.size()-1; i>=0; --i) | 
 |       if (DbgValueVec[i]!=0) { | 
 |         Begin = DbgValueVec[DbgValueVec.size()-1]; | 
 |         break; | 
 |       } | 
 |   } else if (!Sequence.empty()) | 
 |     Begin = Sequence[0]->getInstr(); | 
 |  | 
 |   DbgValueVec.clear(); | 
 |   return BB; | 
 | } |