| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAGISel class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "ScheduleDAGSDNodes.h" |
| #include "SelectionDAGBuilder.h" |
| #include "FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionAnalysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/DwarfWriter.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, |
| cl::desc("Enable verbose messages in the \"fast\" " |
| "instruction selector")); |
| static cl::opt<bool> |
| EnableFastISelAbort("fast-isel-abort", cl::Hidden, |
| cl::desc("Enable abort calls when \"fast\" instruction fails")); |
| static cl::opt<bool> |
| SchedLiveInCopies("schedule-livein-copies", cl::Hidden, |
| cl::desc("Schedule copies of livein registers"), |
| cl::init(false)); |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the first " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize types")); |
| static cl::opt<bool> |
| ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize")); |
| static cl::opt<bool> |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the second " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the post legalize types" |
| " dag combine pass")); |
| static cl::opt<bool> |
| ViewISelDAGs("view-isel-dags", cl::Hidden, |
| cl::desc("Pop up a window to show isel dags as they are selected")); |
| static cl::opt<bool> |
| ViewSchedDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| static cl::opt<bool> |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden, |
| cl::desc("Pop up a window to show SUnit dags after they are processed")); |
| #else |
| static const bool ViewDAGCombine1 = false, |
| ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, |
| ViewDAGCombine2 = false, |
| ViewDAGCombineLT = false, |
| ViewISelDAGs = false, ViewSchedDAGs = false, |
| ViewSUnitDAGs = false; |
| #endif |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// RegisterScheduler class - Track the registration of instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| MachinePassRegistry RegisterScheduler::Registry; |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// ISHeuristic command line option for instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| RegisterPassParser<RegisterScheduler> > |
| ISHeuristic("pre-RA-sched", |
| cl::init(&createDefaultScheduler), |
| cl::desc("Instruction schedulers available (before register" |
| " allocation):")); |
| |
| static RegisterScheduler |
| defaultListDAGScheduler("default", "Best scheduler for the target", |
| createDefaultScheduler); |
| |
| namespace llvm { |
| //===--------------------------------------------------------------------===// |
| /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| /// for the target. |
| ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, |
| CodeGenOpt::Level OptLevel) { |
| const TargetLowering &TLI = IS->getTargetLowering(); |
| |
| if (OptLevel == CodeGenOpt::None) |
| return createFastDAGScheduler(IS, OptLevel); |
| if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) |
| return createTDListDAGScheduler(IS, OptLevel); |
| assert(TLI.getSchedulingPreference() == |
| TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); |
| return createBURRListDAGScheduler(IS, OptLevel); |
| } |
| } |
| |
| // EmitInstrWithCustomInserter - This method should be implemented by targets |
| // that mark instructions with the 'usesCustomInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and this method is called to expand it into a sequence of |
| // instructions, potentially also creating new basic blocks and control flow. |
| // When new basic blocks are inserted and the edges from MBB to its successors |
| // are modified, the method should insert pairs of <OldSucc, NewSucc> into the |
| // DenseMap. |
| MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB, |
| DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const { |
| #ifndef NDEBUG |
| dbgs() << "If a target marks an instruction with " |
| "'usesCustomInserter', it must implement " |
| "TargetLowering::EmitInstrWithCustomInserter!"; |
| #endif |
| llvm_unreachable(0); |
| return 0; |
| } |
| |
| /// EmitLiveInCopy - Emit a copy for a live in physical register. If the |
| /// physical register has only a single copy use, then coalesced the copy |
| /// if possible. |
| static void EmitLiveInCopy(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &InsertPos, |
| unsigned VirtReg, unsigned PhysReg, |
| const TargetRegisterClass *RC, |
| DenseMap<MachineInstr*, unsigned> &CopyRegMap, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const TargetInstrInfo &TII) { |
| unsigned NumUses = 0; |
| MachineInstr *UseMI = NULL; |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg), |
| UE = MRI.use_end(); UI != UE; ++UI) { |
| UseMI = &*UI; |
| if (++NumUses > 1) |
| break; |
| } |
| |
| // If the number of uses is not one, or the use is not a move instruction, |
| // don't coalesce. Also, only coalesce away a virtual register to virtual |
| // register copy. |
| bool Coalesced = false; |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| if (NumUses == 1 && |
| TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) && |
| TargetRegisterInfo::isVirtualRegister(DstReg)) { |
| VirtReg = DstReg; |
| Coalesced = true; |
| } |
| |
| // Now find an ideal location to insert the copy. |
| MachineBasicBlock::iterator Pos = InsertPos; |
| while (Pos != MBB->begin()) { |
| MachineInstr *PrevMI = prior(Pos); |
| DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI); |
| // copyRegToReg might emit multiple instructions to do a copy. |
| unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second; |
| if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg)) |
| // This is what the BB looks like right now: |
| // r1024 = mov r0 |
| // ... |
| // r1 = mov r1024 |
| // |
| // We want to insert "r1025 = mov r1". Inserting this copy below the |
| // move to r1024 makes it impossible for that move to be coalesced. |
| // |
| // r1025 = mov r1 |
| // r1024 = mov r0 |
| // ... |
| // r1 = mov 1024 |
| // r2 = mov 1025 |
| break; // Woot! Found a good location. |
| --Pos; |
| } |
| |
| bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC); |
| assert(Emitted && "Unable to issue a live-in copy instruction!\n"); |
| (void) Emitted; |
| |
| CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg)); |
| if (Coalesced) { |
| if (&*InsertPos == UseMI) ++InsertPos; |
| MBB->erase(UseMI); |
| } |
| } |
| |
| /// EmitLiveInCopies - If this is the first basic block in the function, |
| /// and if it has live ins that need to be copied into vregs, emit the |
| /// copies into the block. |
| static void EmitLiveInCopies(MachineBasicBlock *EntryMBB, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const TargetInstrInfo &TII) { |
| if (SchedLiveInCopies) { |
| // Emit the copies at a heuristically-determined location in the block. |
| DenseMap<MachineInstr*, unsigned> CopyRegMap; |
| MachineBasicBlock::iterator InsertPos = EntryMBB->begin(); |
| for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), |
| E = MRI.livein_end(); LI != E; ++LI) |
| if (LI->second) { |
| const TargetRegisterClass *RC = MRI.getRegClass(LI->second); |
| EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first, |
| RC, CopyRegMap, MRI, TRI, TII); |
| } |
| } else { |
| // Emit the copies into the top of the block. |
| for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), |
| E = MRI.livein_end(); LI != E; ++LI) |
| if (LI->second) { |
| const TargetRegisterClass *RC = MRI.getRegClass(LI->second); |
| bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(), |
| LI->second, LI->first, RC, RC); |
| assert(Emitted && "Unable to issue a live-in copy instruction!\n"); |
| (void) Emitted; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAGISel code |
| //===----------------------------------------------------------------------===// |
| |
| SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) : |
| MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()), |
| FuncInfo(new FunctionLoweringInfo(TLI)), |
| CurDAG(new SelectionDAG(TLI, *FuncInfo)), |
| SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)), |
| GFI(), |
| OptLevel(OL), |
| DAGSize(0) |
| {} |
| |
| SelectionDAGISel::~SelectionDAGISel() { |
| delete SDB; |
| delete CurDAG; |
| delete FuncInfo; |
| } |
| |
| unsigned SelectionDAGISel::MakeReg(EVT VT) { |
| return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<GCModuleInfo>(); |
| AU.addPreserved<GCModuleInfo>(); |
| AU.addRequired<DwarfWriter>(); |
| AU.addPreserved<DwarfWriter>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { |
| Function &Fn = *mf.getFunction(); |
| |
| // Do some sanity-checking on the command-line options. |
| assert((!EnableFastISelVerbose || EnableFastISel) && |
| "-fast-isel-verbose requires -fast-isel"); |
| assert((!EnableFastISelAbort || EnableFastISel) && |
| "-fast-isel-abort requires -fast-isel"); |
| |
| // Get alias analysis for load/store combining. |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| MF = &mf; |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| |
| if (Fn.hasGC()) |
| GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn); |
| else |
| GFI = 0; |
| RegInfo = &MF->getRegInfo(); |
| DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); |
| |
| MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>(); |
| DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>(); |
| CurDAG->init(*MF, MMI, DW); |
| FuncInfo->set(Fn, *MF, EnableFastISel); |
| SDB->init(GFI, *AA); |
| |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator())) |
| // Mark landing pad. |
| FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); |
| |
| SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII); |
| |
| // If the first basic block in the function has live ins that need to be |
| // copied into vregs, emit the copies into the top of the block before |
| // emitting the code for the block. |
| EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII); |
| |
| // Add function live-ins to entry block live-in set. |
| for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(), |
| E = RegInfo->livein_end(); I != E; ++I) |
| MF->begin()->addLiveIn(I->first); |
| |
| #ifndef NDEBUG |
| assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() && |
| "Not all catch info was assigned to a landing pad!"); |
| #endif |
| |
| FuncInfo->clear(); |
| |
| return true; |
| } |
| |
| /// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is |
| /// attached with this instruction. |
| static void SetDebugLoc(unsigned MDDbgKind, Instruction *I, |
| SelectionDAGBuilder *SDB, |
| FastISel *FastIS, MachineFunction *MF) { |
| if (isa<DbgInfoIntrinsic>(I)) return; |
| |
| if (MDNode *Dbg = I->getMetadata(MDDbgKind)) { |
| DILocation DILoc(Dbg); |
| DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo()); |
| |
| SDB->setCurDebugLoc(Loc); |
| |
| if (FastIS) |
| FastIS->setCurDebugLoc(Loc); |
| |
| // If the function doesn't have a default debug location yet, set |
| // it. This is kind of a hack. |
| if (MF->getDefaultDebugLoc().isUnknown()) |
| MF->setDefaultDebugLoc(Loc); |
| } |
| } |
| |
| /// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown. |
| static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) { |
| SDB->setCurDebugLoc(DebugLoc::getUnknownLoc()); |
| if (FastIS) |
| FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc()); |
| } |
| |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, |
| BasicBlock::iterator Begin, |
| BasicBlock::iterator End, |
| bool &HadTailCall) { |
| SDB->setCurrentBasicBlock(BB); |
| unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg"); |
| |
| // Lower all of the non-terminator instructions. If a call is emitted |
| // as a tail call, cease emitting nodes for this block. |
| for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { |
| SetDebugLoc(MDDbgKind, I, SDB, 0, MF); |
| |
| if (!isa<TerminatorInst>(I)) { |
| SDB->visit(*I); |
| |
| // Set the current debug location back to "unknown" so that it doesn't |
| // spuriously apply to subsequent instructions. |
| ResetDebugLoc(SDB, 0); |
| } |
| } |
| |
| if (!SDB->HasTailCall) { |
| // Ensure that all instructions which are used outside of their defining |
| // blocks are available as virtual registers. Invoke is handled elsewhere. |
| for (BasicBlock::iterator I = Begin; I != End; ++I) |
| if (!isa<PHINode>(I) && !isa<InvokeInst>(I)) |
| SDB->CopyToExportRegsIfNeeded(I); |
| |
| // Handle PHI nodes in successor blocks. |
| if (End == LLVMBB->end()) { |
| HandlePHINodesInSuccessorBlocks(LLVMBB); |
| |
| // Lower the terminator after the copies are emitted. |
| SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF); |
| SDB->visit(*LLVMBB->getTerminator()); |
| ResetDebugLoc(SDB, 0); |
| } |
| } |
| |
| // Make sure the root of the DAG is up-to-date. |
| CurDAG->setRoot(SDB->getControlRoot()); |
| |
| // Final step, emit the lowered DAG as machine code. |
| CodeGenAndEmitDAG(); |
| HadTailCall = SDB->HasTailCall; |
| SDB->clear(); |
| } |
| |
| namespace { |
| /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted |
| /// nodes from the worklist. |
| class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener { |
| SmallVector<SDNode*, 128> &Worklist; |
| public: |
| SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {} |
| |
| virtual void NodeDeleted(SDNode *N, SDNode *E) { |
| Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N), |
| Worklist.end()); |
| } |
| |
| virtual void NodeUpdated(SDNode *N) { |
| // Ignore updates. |
| } |
| }; |
| } |
| |
| /// TrivialTruncElim - Eliminate some trivial nops that can result from |
| /// ShrinkDemandedOps: (trunc (ext n)) -> n. |
| static bool TrivialTruncElim(SDValue Op, |
| TargetLowering::TargetLoweringOpt &TLO) { |
| SDValue N0 = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| if ((N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND) && |
| N0.getOperand(0).getValueType() == VT) { |
| return TLO.CombineTo(Op, N0.getOperand(0)); |
| } |
| return false; |
| } |
| |
| /// ShrinkDemandedOps - A late transformation pass that shrink expressions |
| /// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts |
| /// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. |
| void SelectionDAGISel::ShrinkDemandedOps() { |
| SmallVector<SDNode*, 128> Worklist; |
| |
| // Add all the dag nodes to the worklist. |
| Worklist.reserve(CurDAG->allnodes_size()); |
| for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), |
| E = CurDAG->allnodes_end(); I != E; ++I) |
| Worklist.push_back(I); |
| |
| APInt Mask; |
| APInt KnownZero; |
| APInt KnownOne; |
| |
| TargetLowering::TargetLoweringOpt TLO(*CurDAG, true); |
| while (!Worklist.empty()) { |
| SDNode *N = Worklist.pop_back_val(); |
| |
| if (N->use_empty() && N != CurDAG->getRoot().getNode()) { |
| CurDAG->DeleteNode(N); |
| continue; |
| } |
| |
| // Run ShrinkDemandedOp on scalar binary operations. |
| if (N->getNumValues() == 1 && |
| N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) { |
| unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits(); |
| APInt Demanded = APInt::getAllOnesValue(BitWidth); |
| APInt KnownZero, KnownOne; |
| if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded, |
| KnownZero, KnownOne, TLO) || |
| (N->getOpcode() == ISD::TRUNCATE && |
| TrivialTruncElim(SDValue(N, 0), TLO))) { |
| // Revisit the node. |
| Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N), |
| Worklist.end()); |
| Worklist.push_back(N); |
| |
| // Replace the old value with the new one. |
| DEBUG(errs() << "\nReplacing "; |
| TLO.Old.getNode()->dump(CurDAG); |
| errs() << "\nWith: "; |
| TLO.New.getNode()->dump(CurDAG); |
| errs() << '\n'); |
| |
| Worklist.push_back(TLO.New.getNode()); |
| |
| SDOPsWorkListRemover DeadNodes(Worklist); |
| CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); |
| |
| if (TLO.Old.getNode()->use_empty()) { |
| for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); |
| i != e; ++i) { |
| SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode(); |
| if (OpNode->hasOneUse()) { |
| Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), |
| OpNode), Worklist.end()); |
| Worklist.push_back(OpNode); |
| } |
| } |
| |
| Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), |
| TLO.Old.getNode()), Worklist.end()); |
| CurDAG->DeleteNode(TLO.Old.getNode()); |
| } |
| } |
| } |
| } |
| } |
| |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
| SmallPtrSet<SDNode*, 128> VisitedNodes; |
| SmallVector<SDNode*, 128> Worklist; |
| |
| Worklist.push_back(CurDAG->getRoot().getNode()); |
| |
| APInt Mask; |
| APInt KnownZero; |
| APInt KnownOne; |
| |
| do { |
| SDNode *N = Worklist.pop_back_val(); |
| |
| // If we've already seen this node, ignore it. |
| if (!VisitedNodes.insert(N)) |
| continue; |
| |
| // Otherwise, add all chain operands to the worklist. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| Worklist.push_back(N->getOperand(i).getNode()); |
| |
| // If this is a CopyToReg with a vreg dest, process it. |
| if (N->getOpcode() != ISD::CopyToReg) |
| continue; |
| |
| unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DestReg)) |
| continue; |
| |
| // Ignore non-scalar or non-integer values. |
| SDValue Src = N->getOperand(2); |
| EVT SrcVT = Src.getValueType(); |
| if (!SrcVT.isInteger() || SrcVT.isVector()) |
| continue; |
| |
| unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); |
| Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); |
| CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); |
| |
| // Only install this information if it tells us something. |
| if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) { |
| DestReg -= TargetRegisterInfo::FirstVirtualRegister; |
| if (DestReg >= FuncInfo->LiveOutRegInfo.size()) |
| FuncInfo->LiveOutRegInfo.resize(DestReg+1); |
| FunctionLoweringInfo::LiveOutInfo &LOI = |
| FuncInfo->LiveOutRegInfo[DestReg]; |
| LOI.NumSignBits = NumSignBits; |
| LOI.KnownOne = KnownOne; |
| LOI.KnownZero = KnownZero; |
| } |
| } while (!Worklist.empty()); |
| } |
| |
| void SelectionDAGISel::CodeGenAndEmitDAG() { |
| std::string GroupName; |
| if (TimePassesIsEnabled) |
| GroupName = "Instruction Selection and Scheduling"; |
| std::string BlockName; |
| if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || |
| ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || |
| ViewSUnitDAGs) |
| BlockName = MF->getFunction()->getNameStr() + ":" + |
| BB->getBasicBlock()->getNameStr(); |
| |
| DEBUG(dbgs() << "Initial selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); |
| |
| // Run the DAG combiner in pre-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining 1", GroupName); |
| CurDAG->Combine(Unrestricted, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(Unrestricted, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized lowered selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| // Second step, hack on the DAG until it only uses operations and types that |
| // the target supports. |
| if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + |
| BlockName); |
| |
| bool Changed; |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Type Legalization", GroupName); |
| Changed = CurDAG->LegalizeTypes(); |
| } else { |
| Changed = CurDAG->LegalizeTypes(); |
| } |
| |
| DEBUG(dbgs() << "Type-legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (Changed) { |
| if (ViewDAGCombineLT) |
| CurDAG->viewGraph("dag-combine-lt input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining after legalize types", GroupName); |
| CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| } |
| |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Vector Legalization", GroupName); |
| Changed = CurDAG->LegalizeVectors(); |
| } else { |
| Changed = CurDAG->LegalizeVectors(); |
| } |
| |
| if (Changed) { |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Type Legalization 2", GroupName); |
| CurDAG->LegalizeTypes(); |
| } else { |
| CurDAG->LegalizeTypes(); |
| } |
| |
| if (ViewDAGCombineLT) |
| CurDAG->viewGraph("dag-combine-lv input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining after legalize vectors", GroupName); |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| } |
| |
| if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); |
| |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Legalization", GroupName); |
| CurDAG->Legalize(OptLevel); |
| } else { |
| CurDAG->Legalize(OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); |
| |
| // Run the DAG combiner in post-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining 2", GroupName); |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); |
| |
| if (OptLevel != CodeGenOpt::None) { |
| ShrinkDemandedOps(); |
| ComputeLiveOutVRegInfo(); |
| } |
| |
| // Third, instruction select all of the operations to machine code, adding the |
| // code to the MachineBasicBlock. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Selection", GroupName); |
| InstructionSelect(); |
| } else { |
| InstructionSelect(); |
| } |
| |
| DEBUG(dbgs() << "Selected selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); |
| |
| // Schedule machine code. |
| ScheduleDAGSDNodes *Scheduler = CreateScheduler(); |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Scheduling", GroupName); |
| Scheduler->Run(CurDAG, BB, BB->end()); |
| } else { |
| Scheduler->Run(CurDAG, BB, BB->end()); |
| } |
| |
| if (ViewSUnitDAGs) Scheduler->viewGraph(); |
| |
| // Emit machine code to BB. This can change 'BB' to the last block being |
| // inserted into. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Creation", GroupName); |
| BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); |
| } else { |
| BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); |
| } |
| |
| // Free the scheduler state. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName); |
| delete Scheduler; |
| } else { |
| delete Scheduler; |
| } |
| |
| DEBUG(dbgs() << "Selected machine code:\n"); |
| DEBUG(BB->dump()); |
| } |
| |
| void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, |
| MachineFunction &MF, |
| MachineModuleInfo *MMI, |
| DwarfWriter *DW, |
| const TargetInstrInfo &TII) { |
| // Initialize the Fast-ISel state, if needed. |
| FastISel *FastIS = 0; |
| if (EnableFastISel) |
| FastIS = TLI.createFastISel(MF, MMI, DW, |
| FuncInfo->ValueMap, |
| FuncInfo->MBBMap, |
| FuncInfo->StaticAllocaMap |
| #ifndef NDEBUG |
| , FuncInfo->CatchInfoLost |
| #endif |
| ); |
| |
| unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg"); |
| |
| // Iterate over all basic blocks in the function. |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { |
| BasicBlock *LLVMBB = &*I; |
| BB = FuncInfo->MBBMap[LLVMBB]; |
| |
| BasicBlock::iterator const Begin = LLVMBB->begin(); |
| BasicBlock::iterator const End = LLVMBB->end(); |
| BasicBlock::iterator BI = Begin; |
| |
| // Lower any arguments needed in this block if this is the entry block. |
| bool SuppressFastISel = false; |
| if (LLVMBB == &Fn.getEntryBlock()) { |
| LowerArguments(LLVMBB); |
| |
| // If any of the arguments has the byval attribute, forgo |
| // fast-isel in the entry block. |
| if (FastIS) { |
| unsigned j = 1; |
| for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); |
| I != E; ++I, ++j) |
| if (Fn.paramHasAttr(j, Attribute::ByVal)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) |
| dbgs() << "FastISel skips entry block due to byval argument\n"; |
| SuppressFastISel = true; |
| break; |
| } |
| } |
| } |
| |
| if (MMI && BB->isLandingPad()) { |
| // Add a label to mark the beginning of the landing pad. Deletion of the |
| // landing pad can thus be detected via the MachineModuleInfo. |
| unsigned LabelID = MMI->addLandingPad(BB); |
| |
| const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL); |
| BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID); |
| |
| // Mark exception register as live in. |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| if (Reg) BB->addLiveIn(Reg); |
| |
| // Mark exception selector register as live in. |
| Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) BB->addLiveIn(Reg); |
| |
| // FIXME: Hack around an exception handling flaw (PR1508): the personality |
| // function and list of typeids logically belong to the invoke (or, if you |
| // like, the basic block containing the invoke), and need to be associated |
| // with it in the dwarf exception handling tables. Currently however the |
| // information is provided by an intrinsic (eh.selector) that can be moved |
| // to unexpected places by the optimizers: if the unwind edge is critical, |
| // then breaking it can result in the intrinsics being in the successor of |
| // the landing pad, not the landing pad itself. This results |
| // in exceptions not being caught because no typeids are associated with |
| // the invoke. This may not be the only way things can go wrong, but it |
| // is the only way we try to work around for the moment. |
| BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); |
| |
| if (Br && Br->isUnconditional()) { // Critical edge? |
| BasicBlock::iterator I, E; |
| for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) |
| if (isa<EHSelectorInst>(I)) |
| break; |
| |
| if (I == E) |
| // No catch info found - try to extract some from the successor. |
| CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo); |
| } |
| } |
| |
| // Before doing SelectionDAG ISel, see if FastISel has been requested. |
| if (FastIS && !SuppressFastISel) { |
| // Emit code for any incoming arguments. This must happen before |
| // beginning FastISel on the entry block. |
| if (LLVMBB == &Fn.getEntryBlock()) { |
| CurDAG->setRoot(SDB->getControlRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| FastIS->startNewBlock(BB); |
| // Do FastISel on as many instructions as possible. |
| for (; BI != End; ++BI) { |
| // Just before the terminator instruction, insert instructions to |
| // feed PHI nodes in successor blocks. |
| if (isa<TerminatorInst>(BI)) |
| if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) { |
| ResetDebugLoc(SDB, FastIS); |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel miss: "; |
| BI->dump(); |
| } |
| assert(!EnableFastISelAbort && |
| "FastISel didn't handle a PHI in a successor"); |
| break; |
| } |
| |
| SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF); |
| |
| // Try to select the instruction with FastISel. |
| if (FastIS->SelectInstruction(BI)) { |
| ResetDebugLoc(SDB, FastIS); |
| continue; |
| } |
| |
| // Clear out the debug location so that it doesn't carry over to |
| // unrelated instructions. |
| ResetDebugLoc(SDB, FastIS); |
| |
| // Then handle certain instructions as single-LLVM-Instruction blocks. |
| if (isa<CallInst>(BI)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel missed call: "; |
| BI->dump(); |
| } |
| |
| if (!BI->getType()->isVoidTy()) { |
| unsigned &R = FuncInfo->ValueMap[BI]; |
| if (!R) |
| R = FuncInfo->CreateRegForValue(BI); |
| } |
| |
| bool HadTailCall = false; |
| SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall); |
| |
| // If the call was emitted as a tail call, we're done with the block. |
| if (HadTailCall) { |
| BI = End; |
| break; |
| } |
| |
| // If the instruction was codegen'd with multiple blocks, |
| // inform the FastISel object where to resume inserting. |
| FastIS->setCurrentBlock(BB); |
| continue; |
| } |
| |
| // Otherwise, give up on FastISel for the rest of the block. |
| // For now, be a little lenient about non-branch terminators. |
| if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel miss: "; |
| BI->dump(); |
| } |
| if (EnableFastISelAbort) |
| // The "fast" selector couldn't handle something and bailed. |
| // For the purpose of debugging, just abort. |
| llvm_unreachable("FastISel didn't select the entire block"); |
| } |
| break; |
| } |
| } |
| |
| // Run SelectionDAG instruction selection on the remainder of the block |
| // not handled by FastISel. If FastISel is not run, this is the entire |
| // block. |
| if (BI != End) { |
| bool HadTailCall; |
| SelectBasicBlock(LLVMBB, BI, End, HadTailCall); |
| } |
| |
| FinishBasicBlock(); |
| } |
| |
| delete FastIS; |
| } |
| |
| void |
| SelectionDAGISel::FinishBasicBlock() { |
| |
| DEBUG(dbgs() << "Target-post-processed machine code:\n"); |
| DEBUG(BB->dump()); |
| |
| DEBUG(dbgs() << "Total amount of phi nodes to update: " |
| << SDB->PHINodesToUpdate.size() << "\n"); |
| DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) |
| dbgs() << "Node " << i << " : (" |
| << SDB->PHINodesToUpdate[i].first |
| << ", " << SDB->PHINodesToUpdate[i].second << ")\n"); |
| |
| // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| // PHI nodes in successors. |
| if (SDB->SwitchCases.empty() && |
| SDB->JTCases.empty() && |
| SDB->BitTestCases.empty()) { |
| for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| SDB->PHINodesToUpdate.clear(); |
| return; |
| } |
| |
| for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDB->BitTestCases[i].Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->BitTestCases[i].Parent; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDB->visitBitTestHeader(SDB->BitTestCases[i]); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| |
| for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->BitTestCases[i].Cases[j].ThisBB; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| if (j+1 != ej) |
| SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB, |
| SDB->BitTestCases[i].Reg, |
| SDB->BitTestCases[i].Cases[j]); |
| else |
| SDB->visitBitTestCase(SDB->BitTestCases[i].Default, |
| SDB->BitTestCases[i].Reg, |
| SDB->BitTestCases[i].Cases[j]); |
| |
| |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // This is "default" BB. We have two jumps to it. From "header" BB and |
| // from last "case" BB. |
| if (PHIBB == SDB->BitTestCases[i].Default) { |
| PHI->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); |
| PHI->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. |
| back().ThisBB)); |
| } |
| // One of "cases" BB. |
| for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); |
| j != ej; ++j) { |
| MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; |
| if (cBB->isSuccessor(PHIBB)) { |
| PHI->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(cBB)); |
| } |
| } |
| } |
| } |
| SDB->BitTestCases.clear(); |
| |
| // If the JumpTable record is filled in, then we need to emit a jump table. |
| // Updating the PHI nodes is tricky in this case, since we need to determine |
| // whether the PHI is a successor of the range check MBB or the jump table MBB |
| for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDB->JTCases[i].first.Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->JTCases[i].first.HeaderBB; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->JTCases[i].second.MBB; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDB->visitJumpTable(SDB->JTCases[i].second); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // "default" BB. We can go there only from header BB. |
| if (PHIBB == SDB->JTCases[i].second.Default) { |
| PHI->addOperand |
| (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand |
| (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); |
| } |
| // JT BB. Just iterate over successors here |
| if (BB->isSuccessor(PHIBB)) { |
| PHI->addOperand |
| (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| } |
| } |
| SDB->JTCases.clear(); |
| |
| // If the switch block involved a branch to one of the actual successors, we |
| // need to update PHI nodes in that block. |
| for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| if (BB->isSuccessor(PHI->getParent())) { |
| PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| } |
| |
| // If we generated any switch lowering information, build and codegen any |
| // additional DAGs necessary. |
| for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB; |
| SDB->setCurrentBasicBlock(BB); |
| |
| // Emit the code |
| SDB->visitSwitchCase(SDB->SwitchCases[i]); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| |
| // Handle any PHI nodes in successors of this chunk, as if we were coming |
| // from the original BB before switch expansion. Note that PHI nodes can |
| // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| // handle them the right number of times. |
| while ((BB = SDB->SwitchCases[i].TrueBB)) { // Handle LHS and RHS. |
| // If new BB's are created during scheduling, the edges may have been |
| // updated. That is, the edge from ThisBB to BB may have been split and |
| // BB's predecessor is now another block. |
| DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI = |
| SDB->EdgeMapping.find(BB); |
| if (EI != SDB->EdgeMapping.end()) |
| ThisBB = EI->second; |
| |
| // BB may have been removed from the CFG if a branch was constant folded. |
| if (ThisBB->isSuccessor(BB)) { |
| for (MachineBasicBlock::iterator Phi = BB->begin(); |
| Phi != BB->end() && Phi->isPHI(); |
| ++Phi) { |
| // This value for this PHI node is recorded in PHINodesToUpdate. |
| for (unsigned pn = 0; ; ++pn) { |
| assert(pn != SDB->PHINodesToUpdate.size() && |
| "Didn't find PHI entry!"); |
| if (SDB->PHINodesToUpdate[pn].first == Phi) { |
| Phi->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pn].second, |
| false)); |
| Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Don't process RHS if same block as LHS. |
| if (BB == SDB->SwitchCases[i].FalseBB) |
| SDB->SwitchCases[i].FalseBB = 0; |
| |
| // If we haven't handled the RHS, do so now. Otherwise, we're done. |
| SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB; |
| SDB->SwitchCases[i].FalseBB = 0; |
| } |
| assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0); |
| SDB->clear(); |
| } |
| SDB->SwitchCases.clear(); |
| |
| SDB->PHINodesToUpdate.clear(); |
| } |
| |
| |
| /// Create the scheduler. If a specific scheduler was specified |
| /// via the SchedulerRegistry, use it, otherwise select the |
| /// one preferred by the target. |
| /// |
| ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { |
| RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); |
| |
| if (!Ctor) { |
| Ctor = ISHeuristic; |
| RegisterScheduler::setDefault(Ctor); |
| } |
| |
| return Ctor(this, OptLevel); |
| } |
| |
| ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { |
| return new ScheduleHazardRecognizer(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions used by the generated instruction selector. |
| //===----------------------------------------------------------------------===// |
| // Calls to these methods are generated by tblgen. |
| |
| /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| |
| APInt KnownZero, KnownOne; |
| CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); |
| |
| // If all the missing bits in the or are already known to be set, match! |
| if ((NeededMask & KnownOne) == NeededMask) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| /// by tblgen. Others should not call it. |
| void SelectionDAGISel:: |
| SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { |
| std::vector<SDValue> InOps; |
| std::swap(InOps, Ops); |
| |
| Ops.push_back(InOps[0]); // input chain. |
| Ops.push_back(InOps[1]); // input asm string. |
| |
| unsigned i = 2, e = InOps.size(); |
| if (InOps[e-1].getValueType() == MVT::Flag) |
| --e; // Don't process a flag operand if it is here. |
| |
| while (i != e) { |
| unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); |
| if ((Flags & 7) != 4 /*MEM*/) { |
| // Just skip over this operand, copying the operands verbatim. |
| Ops.insert(Ops.end(), InOps.begin()+i, |
| InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); |
| i += InlineAsm::getNumOperandRegisters(Flags) + 1; |
| } else { |
| assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && |
| "Memory operand with multiple values?"); |
| // Otherwise, this is a memory operand. Ask the target to select it. |
| std::vector<SDValue> SelOps; |
| if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) { |
| llvm_report_error("Could not match memory address. Inline asm" |
| " failure!"); |
| } |
| |
| // Add this to the output node. |
| Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3), |
| MVT::i32)); |
| Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); |
| i += 2; |
| } |
| } |
| |
| // Add the flag input back if present. |
| if (e != InOps.size()) |
| Ops.push_back(InOps.back()); |
| } |
| |
| /// findFlagUse - Return use of EVT::Flag value produced by the specified |
| /// SDNode. |
| /// |
| static SDNode *findFlagUse(SDNode *N) { |
| unsigned FlagResNo = N->getNumValues()-1; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDUse &Use = I.getUse(); |
| if (Use.getResNo() == FlagResNo) |
| return Use.getUser(); |
| } |
| return NULL; |
| } |
| |
| /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". |
| /// This function recursively traverses up the operand chain, ignoring |
| /// certain nodes. |
| static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, |
| SDNode *Root, |
| SmallPtrSet<SDNode*, 16> &Visited) { |
| // The NodeID's are given uniques ID's where a node ID is guaranteed to be |
| // greater than all of its (recursive) operands. If we scan to a point where |
| // 'use' is smaller than the node we're scanning for, then we know we will |
| // never find it. |
| // |
| // The Use may be -1 (unassigned) if it is a newly allocated node. This can |
| // happen because we scan down to newly selected nodes in the case of flag |
| // uses. |
| if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) |
| return false; |
| |
| // Don't revisit nodes if we already scanned it and didn't fail, we know we |
| // won't fail if we scan it again. |
| if (!Visited.insert(Use)) |
| return false; |
| |
| for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { |
| SDNode *N = Use->getOperand(i).getNode(); |
| if (N == Def) { |
| if (Use == ImmedUse || Use == Root) |
| continue; // We are not looking for immediate use. |
| assert(N != Root); |
| return true; |
| } |
| |
| // Traverse up the operand chain. |
| if (findNonImmUse(N, Def, ImmedUse, Root, Visited)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// isNonImmUse - Start searching from Root up the DAG to check is Def can |
| /// be reached. Return true if that's the case. However, ignore direct uses |
| /// by ImmedUse (which would be U in the example illustrated in |
| /// IsLegalToFold) and by Root (which can happen in the store case). |
| /// FIXME: to be really generic, we should allow direct use by any node |
| /// that is being folded. But realisticly since we only fold loads which |
| /// have one non-chain use, we only need to watch out for load/op/store |
| /// and load/op/cmp case where the root (store / cmp) may reach the load via |
| /// its chain operand. |
| static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) { |
| SmallPtrSet<SDNode*, 16> Visited; |
| return findNonImmUse(Root, Def, ImmedUse, Root, Visited); |
| } |
| |
| /// IsProfitableToFold - Returns true if it's profitable to fold the specific |
| /// operand node N of U during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| SDNode *Root) const { |
| if (OptLevel == CodeGenOpt::None) return false; |
| return N.hasOneUse(); |
| } |
| |
| /// IsLegalToFold - Returns true if the specific operand node N of |
| /// U can be folded during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const { |
| if (OptLevel == CodeGenOpt::None) return false; |
| |
| // If Root use can somehow reach N through a path that that doesn't contain |
| // U then folding N would create a cycle. e.g. In the following |
| // diagram, Root can reach N through X. If N is folded into into Root, then |
| // X is both a predecessor and a successor of U. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ / // |
| // \ / // |
| // [Root*] // |
| // |
| // * indicates nodes to be folded together. |
| // |
| // If Root produces a flag, then it gets (even more) interesting. Since it |
| // will be "glued" together with its flag use in the scheduler, we need to |
| // check if it might reach N. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ \ // |
| // \ | // |
| // [Root*] | // |
| // ^ | // |
| // f | // |
| // | / // |
| // [Y] / // |
| // ^ / // |
| // f / // |
| // | / // |
| // [FU] // |
| // |
| // If FU (flag use) indirectly reaches N (the load), and Root folds N |
| // (call it Fold), then X is a predecessor of FU and a successor of |
| // Fold. But since Fold and FU are flagged together, this will create |
| // a cycle in the scheduling graph. |
| |
| EVT VT = Root->getValueType(Root->getNumValues()-1); |
| while (VT == MVT::Flag) { |
| SDNode *FU = findFlagUse(Root); |
| if (FU == NULL) |
| break; |
| Root = FU; |
| VT = Root->getValueType(Root->getNumValues()-1); |
| } |
| |
| return !isNonImmUse(Root, N.getNode(), U); |
| } |
| |
| SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { |
| std::vector<SDValue> Ops(N->op_begin(), N->op_end()); |
| SelectInlineAsmMemoryOperands(Ops); |
| |
| std::vector<EVT> VTs; |
| VTs.push_back(MVT::Other); |
| VTs.push_back(MVT::Flag); |
| SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| return New.getNode(); |
| } |
| |
| SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { |
| return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); |
| } |
| |
| SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) { |
| SDValue Chain = N->getOperand(0); |
| unsigned C = cast<LabelSDNode>(N)->getLabelID(); |
| SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32); |
| return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL, |
| MVT::Other, Tmp, Chain); |
| } |
| |
| |
| /// ChainNotReachable - Returns true if Chain does not reach Op. |
| static bool ChainNotReachable(SDNode *Chain, SDNode *Op) { |
| if (Chain->getOpcode() == ISD::EntryToken) |
| return true; |
| if (Chain->getOpcode() == ISD::TokenFactor) |
| return false; |
| if (Chain->getNumOperands() > 0) { |
| SDValue C0 = Chain->getOperand(0); |
| if (C0.getValueType() == MVT::Other) |
| return C0.getNode() != Op && ChainNotReachable(C0.getNode(), Op); |
| } |
| return true; |
| } |
| |
| /// IsChainCompatible - Returns true if Chain is Op or Chain does not reach Op. |
| /// This is used to ensure that there are no nodes trapped between Chain, which |
| /// is the first chain node discovered in a pattern and Op, a later node, that |
| /// will not be selected into the pattern. |
| static bool IsChainCompatible(SDNode *Chain, SDNode *Op) { |
| return Chain == Op || ChainNotReachable(Chain, Op); |
| } |
| |
| |
| /// GetVBR - decode a vbr encoding whose top bit is set. |
| ALWAYS_INLINE static uint64_t |
| GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { |
| assert(Val >= 128 && "Not a VBR"); |
| Val &= 127; // Remove first vbr bit. |
| |
| unsigned Shift = 7; |
| uint64_t NextBits; |
| do { |
| NextBits = MatcherTable[Idx++]; |
| Val |= (NextBits&127) << Shift; |
| Shift += 7; |
| } while (NextBits & 128); |
| |
| return Val; |
| } |
| |
| /// ISelUpdater - helper class to handle updates of the |
| /// instruciton selection graph. |
| namespace { |
| class ISelUpdater : public SelectionDAG::DAGUpdateListener { |
| SelectionDAG::allnodes_iterator &ISelPosition; |
| public: |
| explicit ISelUpdater(SelectionDAG::allnodes_iterator &isp) |
| : ISelPosition(isp) {} |
| |
| /// NodeDeleted - Handle nodes deleted from the graph. If the |
| /// node being deleted is the current ISelPosition node, update |
| /// ISelPosition. |
| /// |
| virtual void NodeDeleted(SDNode *N, SDNode *E) { |
| if (ISelPosition == SelectionDAG::allnodes_iterator(N)) |
| ++ISelPosition; |
| } |
| |
| /// NodeUpdated - Ignore updates for now. |
| virtual void NodeUpdated(SDNode *N) {} |
| }; |
| } |
| |
| #if 0 |
| /// ReplaceUses - replace all uses of the old node F with the use |
| /// of the new node T. |
| static void ReplaceUses(SDValue F, SDValue T) { |
| ISelUpdater ISU(ISelPosition); |
| CurDAG->ReplaceAllUsesOfValueWith(F, T, &ISU); |
| } |
| #endif |
| |
| /// UpdateChainsAndFlags - When a match is complete, this method updates uses of |
| /// interior flag and chain results to use the new flag and chain results. |
| static void UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain, |
| const SmallVectorImpl<SDNode*> &ChainNodesMatched, |
| SDValue InputFlag, |
| const SmallVectorImpl<SDNode*> &FlagResultNodesMatched, |
| bool isMorphNodeTo, SelectionDAG *CurDAG) { |
| // Now that all the normal results are replaced, we replace the chain and |
| // flag results if present. |
| if (!ChainNodesMatched.empty()) { |
| assert(InputChain.getNode() != 0 && |
| "Matched input chains but didn't produce a chain"); |
| // Loop over all of the nodes we matched that produced a chain result. |
| // Replace all the chain results with the final chain we ended up with. |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| SDNode *ChainNode = ChainNodesMatched[i]; |
| |
| // Don't replace the results of the root node if we're doing a |
| // MorphNodeTo. |
| if (ChainNode == NodeToMatch && isMorphNodeTo) |
| continue; |
| |
| SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); |
| if (ChainVal.getValueType() == MVT::Flag) |
| ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); |
| assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); |
| CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); |
| } |
| } |
| |
| // If the result produces a flag, update any flag results in the matched |
| // pattern with the flag result. |
| if (InputFlag.getNode() != 0) { |
| // Handle any interior nodes explicitly marked. |
| for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) { |
| SDNode *FRN = FlagResultNodesMatched[i]; |
| assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag && |
| "Doesn't have a flag result"); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), |
| InputFlag); |
| } |
| } |
| |
| DEBUG(errs() << "ISEL: Match complete!\n"); |
| } |
| |
| |
| |
| struct MatchScope { |
| /// FailIndex - If this match fails, this is the index to continue with. |
| unsigned FailIndex; |
| |
| /// NodeStack - The node stack when the scope was formed. |
| SmallVector<SDValue, 4> NodeStack; |
| |
| /// NumRecordedNodes - The number of recorded nodes when the scope was formed. |
| unsigned NumRecordedNodes; |
| |
| /// NumMatchedMemRefs - The number of matched memref entries. |
| unsigned NumMatchedMemRefs; |
| |
| /// InputChain/InputFlag - The current chain/flag |
| SDValue InputChain, InputFlag; |
| |
| /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. |
| bool HasChainNodesMatched, HasFlagResultNodesMatched; |
| }; |
| |
| SDNode *SelectionDAGISel:: |
| SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, |
| unsigned TableSize) { |
| // FIXME: Should these even be selected? Handle these cases in the caller? |
| switch (NodeToMatch->getOpcode()) { |
| default: |
| break; |
| case ISD::EntryToken: // These nodes remain the same. |
| case ISD::BasicBlock: |
| case ISD::Register: |
| case ISD::HANDLENODE: |
| case ISD::TargetConstant: |
| case ISD::TargetConstantFP: |
| case ISD::TargetConstantPool: |
| case ISD::TargetFrameIndex: |
| case ISD::TargetExternalSymbol: |
| case ISD::TargetBlockAddress: |
| case ISD::TargetJumpTable: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::TargetGlobalAddress: |
| case ISD::TokenFactor: |
| case ISD::CopyFromReg: |
| case ISD::CopyToReg: |
| return 0; |
| case ISD::AssertSext: |
| case ISD::AssertZext: |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), |
| NodeToMatch->getOperand(0)); |
| return 0; |
| case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); |
| case ISD::EH_LABEL: return Select_EH_LABEL(NodeToMatch); |
| case ISD::UNDEF: return Select_UNDEF(NodeToMatch); |
| } |
| |
| assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); |
| |
| // Set up the node stack with NodeToMatch as the only node on the stack. |
| SmallVector<SDValue, 8> NodeStack; |
| SDValue N = SDValue(NodeToMatch, 0); |
| NodeStack.push_back(N); |
| |
| // MatchScopes - Scopes used when matching, if a match failure happens, this |
| // indicates where to continue checking. |
| SmallVector<MatchScope, 8> MatchScopes; |
| |
| // RecordedNodes - This is the set of nodes that have been recorded by the |
| // state machine. |
| SmallVector<SDValue, 8> RecordedNodes; |
| |
| // MatchedMemRefs - This is the set of MemRef's we've seen in the input |
| // pattern. |
| SmallVector<MachineMemOperand*, 2> MatchedMemRefs; |
| |
| // These are the current input chain and flag for use when generating nodes. |
| // Various Emit operations change these. For example, emitting a copytoreg |
| // uses and updates these. |
| SDValue InputChain, InputFlag; |
| |
| // ChainNodesMatched - If a pattern matches nodes that have input/output |
| // chains, the OPC_EmitMergeInputChains operation is emitted which indicates |
| // which ones they are. The result is captured into this list so that we can |
| // update the chain results when the pattern is complete. |
| SmallVector<SDNode*, 3> ChainNodesMatched; |
| SmallVector<SDNode*, 3> FlagResultNodesMatched; |
| |
| DEBUG(errs() << "ISEL: Starting pattern match on root node: "; |
| NodeToMatch->dump(CurDAG); |
| errs() << '\n'); |
| |
| // Interpreter starts at opcode #0. |
| unsigned MatcherIndex = 0; |
| while (1) { |
| assert(MatcherIndex < TableSize && "Invalid index"); |
| BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; |
| switch (Opcode) { |
| case OPC_Scope: { |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| assert(NumToSkip != 0 && |
| "First entry of OPC_Scope shouldn't be 0, scope has no children?"); |
| |
| // Push a MatchScope which indicates where to go if the first child fails |
| // to match. |
| MatchScope NewEntry; |
| NewEntry.FailIndex = MatcherIndex+NumToSkip; |
| NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); |
| NewEntry.NumRecordedNodes = RecordedNodes.size(); |
| NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); |
| NewEntry.InputChain = InputChain; |
| NewEntry.InputFlag = InputFlag; |
| NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); |
| NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty(); |
| MatchScopes.push_back(NewEntry); |
| continue; |
| } |
| case OPC_RecordNode: |
| // Remember this node, it may end up being an operand in the pattern. |
| RecordedNodes.push_back(N); |
| continue; |
| |
| case OPC_RecordChild0: case OPC_RecordChild1: |
| case OPC_RecordChild2: case OPC_RecordChild3: |
| case OPC_RecordChild4: case OPC_RecordChild5: |
| case OPC_RecordChild6: case OPC_RecordChild7: { |
| unsigned ChildNo = Opcode-OPC_RecordChild0; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| |
| RecordedNodes.push_back(N->getOperand(ChildNo)); |
| continue; |
| } |
| case OPC_RecordMemRef: |
| MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); |
| continue; |
| |
| case OPC_CaptureFlagInput: |
| // If the current node has an input flag, capture it in InputFlag. |
| if (N->getNumOperands() != 0 && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) |
| InputFlag = N->getOperand(N->getNumOperands()-1); |
| continue; |
| |
| case OPC_MoveChild: { |
| unsigned ChildNo = MatcherTable[MatcherIndex++]; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| N = N.getOperand(ChildNo); |
| NodeStack.push_back(N); |
| continue; |
| } |
| |
| case OPC_MoveParent: |
| // Pop the current node off the NodeStack. |
| NodeStack.pop_back(); |
| assert(!NodeStack.empty() && "Node stack imbalance!"); |
| N = NodeStack.back(); |
| continue; |
| |
| case OPC_CheckSame: { |
| // Accept if it is exactly the same as a previously recorded node. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| if (N != RecordedNodes[RecNo]) break; |
| continue; |
| } |
| case OPC_CheckPatternPredicate: |
| if (!CheckPatternPredicate(MatcherTable[MatcherIndex++])) break; |
| continue; |
| case OPC_CheckPredicate: |
| if (!CheckNodePredicate(N.getNode(), MatcherTable[MatcherIndex++])) break; |
| continue; |
| case OPC_CheckComplexPat: |
| if (!CheckComplexPattern(NodeToMatch, N, |
| MatcherTable[MatcherIndex++], RecordedNodes)) |
| break; |
| continue; |
| case OPC_CheckOpcode: |
| if (N->getOpcode() != MatcherTable[MatcherIndex++]) break; |
| continue; |
| |
| case OPC_CheckMultiOpcode: { |
| unsigned NumOps = MatcherTable[MatcherIndex++]; |
| bool OpcodeEquals = false; |
| for (unsigned i = 0; i != NumOps; ++i) |
| OpcodeEquals |= N->getOpcode() == MatcherTable[MatcherIndex++]; |
| if (!OpcodeEquals) break; |
| continue; |
| } |
| |
| case OPC_CheckType: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (N.getValueType() != VT) { |
| // Handle the case when VT is iPTR. |
| if (VT != MVT::iPTR || N.getValueType() != TLI.getPointerTy()) |
| break; |
| } |
| continue; |
| } |
| case OPC_CheckChild0Type: case OPC_CheckChild1Type: |
| case OPC_CheckChild2Type: case OPC_CheckChild3Type: |
| case OPC_CheckChild4Type: case OPC_CheckChild5Type: |
| case OPC_CheckChild6Type: case OPC_CheckChild7Type: { |
| unsigned ChildNo = Opcode-OPC_CheckChild0Type; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| EVT ChildVT = N.getOperand(ChildNo).getValueType(); |
| if (ChildVT != VT) { |
| // Handle the case when VT is iPTR. |
| if (VT != MVT::iPTR || ChildVT != TLI.getPointerTy()) |
| break; |
| } |
| continue; |
| } |
| case OPC_CheckCondCode: |
| if (cast<CondCodeSDNode>(N)->get() != |
| (ISD::CondCode)MatcherTable[MatcherIndex++]) break; |
| continue; |
| case OPC_CheckValueType: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (cast<VTSDNode>(N)->getVT() != VT) { |
| // Handle the case when VT is iPTR. |
| if (VT != MVT::iPTR || cast<VTSDNode>(N)->getVT() != TLI.getPointerTy()) |
| break; |
| } |
| continue; |
| } |
| case OPC_CheckInteger: { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); |
| if (C == 0 || C->getSExtValue() != Val) |
| break; |
| continue; |
| } |
| case OPC_CheckAndImm: { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::AND) break; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (C == 0 || !CheckAndMask(N.getOperand(0), C, Val)) |
| break; |
| continue; |
| } |
| case OPC_CheckOrImm: { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::OR) break; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (C == 0 || !CheckOrMask(N.getOperand(0), C, Val)) |
| break; |
| continue; |
| } |
| |
| case OPC_CheckFoldableChainNode: { |
| assert(NodeStack.size() != 1 && "No parent node"); |
| // Verify that all intermediate nodes between the root and this one have |
| // a single use. |
| bool HasMultipleUses = false; |
| for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) |
| if (!NodeStack[i].hasOneUse()) { |
| HasMultipleUses = true; |
| break; |
| } |
| if (HasMultipleUses) break; |
| |
| // Check to see that the target thinks this is profitable to fold and that |
| // we can fold it without inducing cycles in the graph. |
| if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch) || |
| !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch)) |
| break; |
| |
| continue; |
| } |
| case OPC_CheckChainCompatible: { |
| unsigned PrevNode = MatcherTable[MatcherIndex++]; |
| assert(PrevNode < RecordedNodes.size() && "Invalid CheckChainCompatible"); |
| SDValue PrevChainedNode = RecordedNodes[PrevNode]; |
| SDValue ThisChainedNode = RecordedNodes.back(); |
| |
| // We have two nodes with chains, verify that their input chains are good. |
| assert(PrevChainedNode.getOperand(0).getValueType() == MVT::Other && |
| ThisChainedNode.getOperand(0).getValueType() == MVT::Other && |
| "Invalid chained nodes"); |
| |
| if (!IsChainCompatible(// Input chain of the previous node. |
| PrevChainedNode.getOperand(0).getNode(), |
| // Node with chain. |
| ThisChainedNode.getNode())) |
| break; |
| continue; |
| } |
| |
| case OPC_EmitInteger: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT)); |
| continue; |
| } |
| case OPC_EmitRegister: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| unsigned RegNo = MatcherTable[MatcherIndex++]; |
| RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT)); |
| continue; |
| } |
| |
| case OPC_EmitConvertToTarget: { |
| // Convert from IMM/FPIMM to target version. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| SDValue Imm = RecordedNodes[RecNo]; |
| |
| if (Imm->getOpcode() == ISD::Constant) { |
| int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); |
| Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); |
| } else if (Imm->getOpcode() == ISD::ConstantFP) { |
| const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); |
| Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); |
| } |
| |
| RecordedNodes.push_back(Imm); |
| continue; |
| } |
| |
| case OPC_EmitMergeInputChains: { |
| assert(InputChain.getNode() == 0 && |
| "EmitMergeInputChains should be the first chain producing node"); |
| // This node gets a list of nodes we matched in the input that have |
| // chains. We want to token factor all of the input chains to these nodes |
| // together. However, if any of the input chains is actually one of the |
| // nodes matched in this pattern, then we have an intra-match reference. |
| // Ignore these because the newly token factored chain should not refer to |
| // the old nodes. |
| unsigned NumChains = MatcherTable[MatcherIndex++]; |
| assert(NumChains != 0 && "Can't TF zero chains"); |
| |
| assert(ChainNodesMatched.empty() && |
| "Should only have one EmitMergeInputChains per match"); |
| |
| // Handle the first chain. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode()); |
| |
| // If the chained node is not the root, we can't fold it if it has |
| // multiple uses. |
| // FIXME: What if other value results of the node have uses not matched by |
| // this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| |
| // The common case here is that we have exactly one chain, which is really |
| // cheap to handle, just do it. |
| if (NumChains == 1) { |
| InputChain = RecordedNodes[RecNo].getOperand(0); |
| assert(InputChain.getValueType() == MVT::Other && "Not a chain"); |
| continue; |
| } |
| |
| // Read all of the chained nodes. |
| for (unsigned i = 1; i != NumChains; ++i) { |
| RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode()); |
| |
| // FIXME: What if other value results of the node have uses not matched |
| // by this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| } |
| |
| // Walk all the chained nodes, adding the input chains if they are not in |
| // ChainedNodes (and this, not in the matched pattern). This is an N^2 |
| // algorithm, but # chains is usually 2 here, at most 3 for MSP430. |
| SmallVector<SDValue, 3> InputChains; |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| SDValue InChain = ChainNodesMatched[i]->getOperand(0); |
| assert(InChain.getValueType() == MVT::Other && "Not a chain"); |
| bool Invalid = false; |
| for (unsigned j = 0; j != e; ++j) |
| Invalid |= ChainNodesMatched[j] == InChain.getNode(); |
| if (!Invalid) |
| InputChains.push_back(InChain); |
| } |
| |
| SDValue Res; |
| if (InputChains.size() == 1) |
| InputChain = InputChains[0]; |
| else |
| InputChain = CurDAG->getNode(ISD::TokenFactor, |
| NodeToMatch->getDebugLoc(), MVT::Other, |
| &InputChains[0], InputChains.size()); |
| continue; |
| } |
| |
| case OPC_EmitCopyToReg: { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| unsigned DestPhysReg = MatcherTable[MatcherIndex++]; |
| |
| if (InputChain.getNode() == 0) |
| InputChain = CurDAG->getEntryNode(); |
| |
| InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), |
| DestPhysReg, RecordedNodes[RecNo], |
| InputFlag); |
| |
| InputFlag = InputChain.getValue(1); |
| continue; |
| } |
| |
| case OPC_EmitNodeXForm: { |
| unsigned XFormNo = MatcherTable[MatcherIndex++]; |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo)); |
| continue; |
| } |
| |
| case OPC_EmitNode: |
| case OPC_MorphNodeTo: { |
| uint16_t TargetOpc = MatcherTable[MatcherIndex++]; |
| TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; |
| // Get the result VT list. |
| unsigned NumVTs = MatcherTable[MatcherIndex++]; |
| SmallVector<EVT, 4> VTs; |
| for (unsigned i = 0; i != NumVTs; ++i) { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; |
| VTs.push_back(VT); |
| } |
| |
| if (EmitNodeInfo & OPFL_Chain) |
| VTs.push_back(MVT::Other); |
| if (EmitNodeInfo & OPFL_FlagOutput) |
| VTs.push_back(MVT::Flag); |
| |
| // FIXME: Use faster version for the common 'one VT' case? |
| SDVTList VTList = CurDAG->getVTList(VTs.data(), VTs.size()); |
| |
| // Get the operand list. |
| unsigned NumOps = MatcherTable[MatcherIndex++]; |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| if (RecNo & 128) |
| RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); |
| |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); |
| Ops.push_back(RecordedNodes[RecNo]); |
| } |
| |
| // If there are variadic operands to add, handle them now. |
| if (EmitNodeInfo & OPFL_VariadicInfo) { |
| // Determine the start index to copy from. |
| unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); |
| FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; |
| assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && |
| "Invalid variadic node"); |
| // Copy all of the variadic operands, not including a potential flag |
| // input. |
| for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); |
| i != e; ++i) { |
| SDValue V = NodeToMatch->getOperand(i); |
| if (V.getValueType() == MVT::Flag) break; |
| Ops.push_back(V); |
| } |
| } |
| |
| // If this has chain/flag inputs, add them. |
| if (EmitNodeInfo & OPFL_Chain) |
| Ops.push_back(InputChain); |
| if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0) |
| Ops.push_back(InputFlag); |
| |
| // Create the node. |
| SDNode *Res = 0; |
| if (Opcode != OPC_MorphNodeTo) { |
| // If this is a normal EmitNode command, just create the new node and |
| // add the results to the RecordedNodes list. |
| Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), |
| VTList, Ops.data(), Ops.size()); |
| |
| // Add all the non-flag/non-chain results to the RecordedNodes list. |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break; |
| RecordedNodes.push_back(SDValue(Res, i)); |
| } |
| |
| } else { |
| // It is possible we're using MorphNodeTo to replace a node with no |
| // normal results with one that has a normal result (or we could be |
| // adding a chain) and the input could have flags and chains as well. |
| // In this case we need to shifting the operands down. |
| // FIXME: This is a horrible hack and broken in obscure cases, no worse |
| // than the old isel though. We should sink this into MorphNodeTo. |
| int OldFlagResultNo = -1, OldChainResultNo = -1; |
| |
| unsigned NTMNumResults = NodeToMatch->getNumValues(); |
| if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Flag) { |
| OldFlagResultNo = NTMNumResults-1; |
| if (NTMNumResults != 1 && |
| NodeToMatch->getValueType(NTMNumResults-2) == MVT::Other) |
| OldChainResultNo = NTMNumResults-2; |
| } else if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Other) |
| OldChainResultNo = NTMNumResults-1; |
| |
| Res = CurDAG->MorphNodeTo(NodeToMatch, ~TargetOpc, VTList, |
| Ops.data(), Ops.size()); |
| |
| // MorphNodeTo can operate in two ways: if an existing node with the |
| // specified operands exists, it can just return it. Otherwise, it |
| // updates the node in place to have the requested operands. |
| if (Res == NodeToMatch) { |
| // If we updated the node in place, reset the node ID. To the isel, |
| // this should be just like a newly allocated machine node. |
| Res->setNodeId(-1); |
| } |
| |
| unsigned ResNumResults = Res->getNumValues(); |
| // Move the flag if needed. |
| if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 && |
| (unsigned)OldFlagResultNo != ResNumResults-1) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, |
| OldFlagResultNo), |
| SDValue(Res, ResNumResults-1)); |
| |
| if ((EmitNodeInfo & OPFL_FlagOutput) != 0) |
| --ResNumResults; |
| |
| // Move the chain reference if needed. |
| if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && |
| (unsigned)OldChainResultNo != ResNumResults-1) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, |
| OldChainResultNo), |
| SDValue(Res, ResNumResults-1)); |
| |
| if (Res != NodeToMatch) { |
| // Otherwise, no replacement happened because the node already exists. |
| CurDAG->ReplaceAllUsesWith(NodeToMatch, Res); |
| } |
| } |
| |
| // If the node had chain/flag results, update our notion of the current |
| // chain and flag. |
| if (VTs.back() == MVT::Flag) { |
| InputFlag = SDValue(Res, VTs.size()-1); |
| if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-2); |
| } else if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-1); |
| |
| // If the OPFL_MemRefs flag is set on this node, slap all of the |
| // accumulated memrefs onto it. |
| // |
| // FIXME: This is vastly incorrect for patterns with multiple outputs |
| // instructions that access memory and for ComplexPatterns that match |
| // loads. |
| if (EmitNodeInfo & OPFL_MemRefs) { |
| MachineSDNode::mmo_iterator MemRefs = |
| MF->allocateMemRefsArray(MatchedMemRefs.size()); |
| std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs); |
| cast<MachineSDNode>(Res) |
| ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size()); |
| } |
| |
| DEBUG(errs() << " " |
| << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") |
| << " node: "; Res->dump(CurDAG); errs() << "\n"); |
| |
| // If this was a MorphNodeTo then we're completely done! |
| if (Opcode == OPC_MorphNodeTo) { |
| // Update chain and flag uses. |
| UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched, |
| InputFlag, FlagResultNodesMatched, true, CurDAG); |
| return 0; |
| } |
| |
| continue; |
| } |
| |
| case OPC_MarkFlagResults: { |
| unsigned NumNodes = MatcherTable[MatcherIndex++]; |
| |
| // Read and remember all the flag-result nodes. |
| for (unsigned i = 0; i != NumNodes; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| if (RecNo & 128) |
| RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); |
| |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode()); |
| } |
| continue; |
| } |
| |
| case OPC_CompleteMatch: { |
| // The match has been completed, and any new nodes (if any) have been |
| // created. Patch up references to the matched dag to use the newly |
| // created nodes. |
| unsigned NumResults = MatcherTable[MatcherIndex++]; |
| |
| for (unsigned i = 0; i != NumResults; ++i) { |
| unsigned ResSlot = MatcherTable[MatcherIndex++]; |
| if (ResSlot & 128) |
| ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); |
| |
| assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); |
| SDValue Res = RecordedNodes[ResSlot]; |
| |
| // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program |
| // after (parallel) on input patterns are removed. This would also |
| // allow us to stop encoding #results in OPC_CompleteMatch's table |
| // entry. |
| if (NodeToMatch->getNumValues() <= i || |
| NodeToMatch->getValueType(i) == MVT::Other || |
| NodeToMatch->getValueType(i) == MVT::Flag) |
| break; |
| assert((NodeToMatch->getValueType(i) == Res.getValueType() || |
| NodeToMatch->getValueType(i) == MVT::iPTR || |
| Res.getValueType() == MVT::iPTR || |
| NodeToMatch->getValueType(i).getSizeInBits() == |
| Res.getValueType().getSizeInBits()) && |
| "invalid replacement"); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); |
| } |
| |
| // If the root node defines a flag, add it to the flag nodes to update |
| // list. |
| if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag) |
| FlagResultNodesMatched.push_back(NodeToMatch); |
| |
| // Update chain and flag uses. |
| UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched, |
| InputFlag, FlagResultNodesMatched, false, CurDAG); |
| |
| assert(NodeToMatch->use_empty() && |
| "Didn't replace all uses of the node?"); |
| |
| // FIXME: We just return here, which interacts correctly with SelectRoot |
| // above. We should fix this to not return an SDNode* anymore. |
| return 0; |
| } |
| } |
| |
| // If the code reached this point, then the match failed. See if there is |
| // another child to try in the current 'Scope', otherwise pop it until we |
| // find a case to check. |
| while (1) { |
| if (MatchScopes.empty()) { |
| CannotYetSelect(NodeToMatch); |
| return 0; |
| } |
| |
| // Restore the interpreter state back to the point where the scope was |
| // formed. |
| MatchScope &LastScope = MatchScopes.back(); |
| RecordedNodes.resize(LastScope.NumRecordedNodes); |
| NodeStack.clear(); |
| NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); |
| N = NodeStack.back(); |
| |
| DEBUG(errs() << " Match failed at index " << MatcherIndex |
| << " continuing at " << LastScope.FailIndex << "\n"); |
| |
| if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) |
| MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); |
| MatcherIndex = LastScope.FailIndex; |
| |
| InputChain = LastScope.InputChain; |
| InputFlag = LastScope.InputFlag; |
| if (!LastScope.HasChainNodesMatched) |
| ChainNodesMatched.clear(); |
| if (!LastScope.HasFlagResultNodesMatched) |
| FlagResultNodesMatched.clear(); |
| |
| // Check to see what the offset is at the new MatcherIndex. If it is zero |
| // we have reached the end of this scope, otherwise we have another child |
| // in the current scope to try. |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| |
| // If we have another child in this scope to match, update FailIndex and |
| // try it. |
| if (NumToSkip != 0) { |
| LastScope.FailIndex = MatcherIndex+NumToSkip; |
| break; |
| } |
| |
| // End of this scope, pop it and try the next child in the containing |
| // scope. |
| MatchScopes.pop_back(); |
| } |
| } |
| } |
| |
| |
| |
| void SelectionDAGISel::CannotYetSelect(SDNode *N) { |
| if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| N->getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| N->getOpcode() == ISD::INTRINSIC_VOID) |
| return CannotYetSelectIntrinsic(N); |
| |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Cannot yet select: "; |
| N->printrFull(Msg, CurDAG); |
| llvm_report_error(Msg.str()); |
| } |
| |
| void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) { |
| dbgs() << "Cannot yet select: "; |
| unsigned iid = |
| cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() == |
| MVT::Other))->getZExtValue(); |
| if (iid < Intrinsic::num_intrinsics) |
| llvm_report_error("Cannot yet select: intrinsic %" + |
| Intrinsic::getName((Intrinsic::ID)iid)); |
| else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo()) |
| llvm_report_error(Twine("Cannot yet select: target intrinsic %") + |
| tii->getName(iid)); |
| } |
| |
| char SelectionDAGISel::ID = 0; |