| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 |  | 
 | <html> | 
 | <head> | 
 |   <title>Kaleidoscope: Implementing code generation to LLVM IR</title> | 
 |   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
 |   <meta name="author" content="Chris Lattner"> | 
 |   <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
 | </head> | 
 |  | 
 | <body> | 
 |  | 
 | <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div> | 
 |  | 
 | <ul> | 
 | <li>Chapter 3 | 
 |   <ol> | 
 |     <li><a href="#intro">Chapter 3 Introduction</a></li> | 
 |     <li><a href="#basics">Code Generation setup</a></li> | 
 |     <li><a href="#exprs">Expression Code Generation</a></li> | 
 |     <li><a href="#funcs">Function Code Generation</a></li> | 
 |     <li><a href="#driver">Driver Changes and Closing Thoughts</a></li> | 
 |     <li><a href="#code">Full Code Listing</a></li> | 
 |   </ol> | 
 | </li> | 
 | </ul> | 
 |  | 
 | <div class="doc_author"> | 
 |   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language | 
 | with LLVM</a>" tutorial.  This chapter shows you how to transform the <a  | 
 | href="LangImpl2.html">Abstract Syntax Tree built in Chapter 2</a> into LLVM IR. | 
 | This will teach you a little bit about how LLVM does things, as well as | 
 | demonstrate how easy it is to use.  It's much more work to build a lexer and | 
 | parser than it is to generate LLVM IR code. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="basics">Code Generation setup</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | In order to generate LLVM IR, we want some simple setup to get started.  First, | 
 | we define virtual codegen methods in each AST class:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | /// ExprAST - Base class for all expression nodes. | 
 | class ExprAST { | 
 | public: | 
 |   virtual ~ExprAST() {} | 
 |   <b>virtual Value *Codegen() = 0;</b> | 
 | }; | 
 |  | 
 | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
 | class NumberExprAST : public ExprAST { | 
 |   double Val; | 
 | public: | 
 |   explicit NumberExprAST(double val) : Val(val) {} | 
 |   <b>virtual Value *Codegen();</b> | 
 | }; | 
 | ... | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>The Codegen() method says to emit IR for that AST node and all things it | 
 | depends on, and they all return an LLVM Value object.  | 
 | "Value" is the class used to represent a "<a  | 
 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single | 
 | Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect | 
 | of SSA values is that their value is computed as the related instruction | 
 | executes, and it does not get a new value until (and if) the instruction | 
 | re-executes.  In order words, there is no way to "change" an SSA value.  For | 
 | more information, please read up on <a  | 
 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single | 
 | Assignment</a> - the concepts are really quite natural once you grok them.</p> | 
 |  | 
 | <p>Note that instead of adding virtual methods to the ExprAST class hierarchy, | 
 | it could also make sense to use a visitor pattern or some other way to model | 
 | this.  Again, this tutorial won't dwell on good software engineering practices: | 
 | for our purposes, adding virtual methods is simplest.</p> | 
 |  | 
 | <p>The | 
 | second thing we want is an "Error" method like we used for parser, which will | 
 | be used to report errors found during code generation (for example, use of an | 
 | undeclared parameter):</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
 |  | 
 | static Module *TheModule; | 
 | static LLVMBuilder Builder; | 
 | static std::map<std::string, Value*> NamedValues; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>The static variables will be used during code generation.  <tt>TheModule</tt> | 
 | is the LLVM construct that contains all of the functions and global variables in | 
 | a chunk of code.  In many ways, it is the top-level structure that the LLVM IR | 
 | uses to contain code.</p> | 
 |  | 
 | <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate | 
 | LLVM instructions.  Instances of the <a  | 
 | href="http://llvm.org/doxygen/LLVMBuilder_8h-source.html"><tt>LLVMBuilder</tt>  | 
 | class</a> keeps track of the current place to | 
 | insert instructions and has methods to create new instructions.</p> | 
 |  | 
 | <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the | 
 | current scope and what their LLVM representation is.  In this form of | 
 | Kaleidoscope, the only things that can be referenced are function parameters. | 
 | As such, function parameters will be in this map when generating code for their | 
 | function body.</p> | 
 |  | 
 | <p> | 
 | With these basics in place, we can start talking about how to generate code for | 
 | each expression.  Note that this assumes that the <tt>Builder</tt> has been set | 
 | up to generate code <em>into</em> something.  For now, we'll assume that this | 
 | has already been done, and we'll just use it to emit code. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="exprs">Expression Code Generation</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Generating LLVM code for expression nodes is very straight-forward: less | 
 | than 45 lines of commented code for all four of our expression nodes.  First, | 
 | we'll do numeric literals:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Value *NumberExprAST::Codegen() { | 
 |   return ConstantFP::get(Type::DoubleTy, APFloat(Val)); | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>In the LLVM IR, numeric constants are represented with the | 
 | <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt> | 
 | internally (<tt>APFloat</tt> has the capability of holding floating point | 
 | constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just | 
 | creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR | 
 | that constants are all uniqued together and shared.  For this reason, the API | 
 | uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::create(..).</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Value *VariableExprAST::Codegen() { | 
 |   // Look this variable up in the function. | 
 |   Value *V = NamedValues[Name]; | 
 |   return V ? V : ErrorV("Unknown variable name"); | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>References to variables is also quite simple here.  In the simple version | 
 | of Kaleidoscope, we assume that the variable has already been emited somewhere | 
 | and its value is available.  In practice, the only values that can be in the | 
 | <tt>NamedValues</tt> map are function arguments.  This | 
 | code simply checks to see that the specified name is in the map (if not, an  | 
 | unknown variable is being referenced) and returns the value for it.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Value *BinaryExprAST::Codegen() { | 
 |   Value *L = LHS->Codegen(); | 
 |   Value *R = RHS->Codegen(); | 
 |   if (L == 0 || R == 0) return 0; | 
 |    | 
 |   switch (Op) { | 
 |   case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
 |   case '-': return Builder.CreateSub(L, R, "subtmp"); | 
 |   case '*': return Builder.CreateMul(L, R, "multmp"); | 
 |   case '<': | 
 |     L = Builder.CreateFCmpULT(L, R, "multmp"); | 
 |     // Convert bool 0/1 to double 0.0 or 1.0 | 
 |     return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); | 
 |   default: return ErrorV("invalid binary operator"); | 
 |   } | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Binary operators start to get more interesting.  The basic idea here is that | 
 | we recursively emit code for the left-hand side of the expression, then the  | 
 | right-hand side, then we compute the result of the binary expression.  In this | 
 | code, we do a simple switch on the opcode to create the right LLVM instruction. | 
 | </p> | 
 |  | 
 | <p>In this example, the LLVM builder class is starting to show its value.   | 
 | Because it knows where to insert the newly created instruction, you just have to | 
 | specificy what instruction to create (e.g. with <tt>CreateAdd</tt>), which | 
 | operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name | 
 | for the generated instruction.  One nice thing about LLVM is that the name is  | 
 | just a hint: if there are multiple additions in a single function, the first | 
 | will be named "addtmp" and the second will be "autorenamed" by adding a suffix, | 
 | giving it a name like "addtmp42".  Local value names for instructions are purely | 
 | optional, but it makes it much easier to read the IR dumps.</p> | 
 |  | 
 | <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained to | 
 | have very strict type properties: for example, the Left and Right operators of | 
 | an <a href="../LangRef.html#i_add">add instruction</a> have to have the same | 
 | type, and that the result of the add matches the operands.  Because all values | 
 | in Kaleidoscope are doubles, this makes for very simple code for add, sub and | 
 | mul.</p> | 
 |  | 
 | <p>On the other hand, LLVM specifies that the <a  | 
 | href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value | 
 | (a one bit integer).  However, Kaleidoscope wants the value to be a 0.0 or 1.0 | 
 | value.  In order to get these semantics, we combine the fcmp instruction with | 
 | a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction | 
 | converts its input integer into a floating point value by treating the input | 
 | as an unsigned value.  In contrast, if we used the <a  | 
 | href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<' | 
 | operator would return 0.0 and -1.0, depending on the input value.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Value *CallExprAST::Codegen() { | 
 |   // Look up the name in the global module table. | 
 |   Function *CalleeF = TheModule->getFunction(Callee); | 
 |   if (CalleeF == 0) | 
 |     return ErrorV("Unknown function referenced"); | 
 |    | 
 |   // If argument mismatch error. | 
 |   if (CalleeF->arg_size() != Args.size()) | 
 |     return ErrorV("Incorrect # arguments passed"); | 
 |  | 
 |   std::vector<Value*> ArgsV; | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |     ArgsV.push_back(Args[i]->Codegen()); | 
 |     if (ArgsV.back() == 0) return 0; | 
 |   } | 
 |    | 
 |   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Code generation for function calls is quite straight-forward with LLVM.  The | 
 | code above first looks the name of the function up in the LLVM Module's symbol | 
 | table.  Recall that the LLVM Module is the container that holds all of the | 
 | functions we are JIT'ing.  By giving each function the same name as what the | 
 | user specifies, we can use the LLVM symbol table to resolve function names for | 
 | us.</p> | 
 |  | 
 | <p>Once we have the function to call, we recursively codegen each argument that | 
 | is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call | 
 | instruction</a>.  Note that LLVM uses the native C calling conventions by | 
 | default, allowing these calls to call into standard library functions like | 
 | "sin" and "cos" with no additional effort.</p> | 
 |  | 
 | <p>This wraps up our handling of the four basic expressions that we have so far | 
 | in Kaleidoscope.  Feel free to go in and add some more.  For example, by  | 
 | browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find | 
 | several other interesting instructions that are really easy to plug into our | 
 | basic framework.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="funcs">Function Code Generation</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Code generation for prototypes and functions has to handle a number of | 
 | details, which make their code less beautiful and elegant than expression code | 
 | generation, but they illustrate some important points.  First, lets talk about | 
 | code generation for prototypes: this is used both for function bodies as well | 
 | as external function declarations.  The code starts with:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Function *PrototypeAST::Codegen() { | 
 |   // Make the function type:  double(double,double) etc. | 
 |   std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); | 
 |   FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); | 
 |    | 
 |   Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This code packs a lot of power into a few lines.  Note first that this  | 
 | function returns a Function* instead of a Value*.  Because a "prototype" really | 
 | talks about the external interface for a function (not the value computed by | 
 | an expression), it makes sense for it to return the LLVM Function it corresponds | 
 | to when codegen'd.</p> | 
 |  | 
 | <p>The next step is to create | 
 | the <tt>FunctionType</tt> that should be used for a given Prototype.  Since all | 
 | function arguments in Kaleidoscope are of type double, the first line creates | 
 | a vector of "N" LLVM Double types.  It then uses the <tt>FunctionType::get</tt> | 
 | method to create a function type that takes "N" doubles as arguments, returns | 
 | one double as a result, and that is not vararg (the false parameter indicates | 
 | this).  Note that Types in LLVM are uniqued just like Constants are, so you | 
 | don't "new" a type, you "get" it.</p> | 
 |  | 
 | <p>The final line above actually creates the function that the prototype will | 
 | correspond to.  This indicates which type, linkage, and name to use, and which | 
 | module to insert into.  "<a href="LangRef.html#linkage">external linkage</a>" | 
 | means that the function may be defined outside the current module and/or that it | 
 | is callable by functions outside the module.  The Name passed in is the name the | 
 | user specified: since "<tt>TheModule</tt>" is specified, this name is registered | 
 | in "<tt>TheModule</tt>"s symbol table, which is used by the function call code | 
 | above.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   // If F conflicted, there was already something named 'Name'.  If it has a | 
 |   // body, don't allow redefinition or reextern. | 
 |   if (F->getName() != Name) { | 
 |     // Delete the one we just made and get the existing one. | 
 |     F->eraseFromParent(); | 
 |     F = TheModule->getFunction(Name); | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>The Module symbol table works just like the Function symbol table when it | 
 | comes to name conflicts: if a new function is created with a name was previously | 
 | added to the symbol table, it will get implicitly renamed when added to the | 
 | Module.  The code above exploits this fact to tell if there was a previous | 
 | definition of this function.</p> | 
 |  | 
 | <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases: | 
 | first, we want to allow 'extern'ing a function more than once, so long as the | 
 | prototypes for the externs match (since all arguments have the same type, we | 
 | just have to check that the number of arguments match).  Second, we want to | 
 | allow 'extern'ing a function and then definining a body for it.  This is useful | 
 | when defining mutually recursive functions.</p> | 
 |  | 
 | <p>In order to implement this, the code above first checks to see if there is | 
 | a collision on the name of the function.  If so, it deletes the function we just | 
 | created (by calling <tt>eraseFromParent</tt>) and then calling  | 
 | <tt>getFunction</tt> to get the existing function with the specified name.  Note | 
 | that many APIs in LLVM have "erase" forms and "remove" forms.  The "remove" form | 
 | unlinks the object from its parent (e.g. a Function from a Module) and returns | 
 | it.  The "erase" form unlinks the object and then deletes it.</p> | 
 |     | 
 | <div class="doc_code"> | 
 | <pre> | 
 |     // If F already has a body, reject this. | 
 |     if (!F->empty()) { | 
 |       ErrorF("redefinition of function"); | 
 |       return 0; | 
 |     } | 
 |      | 
 |     // If F took a different number of args, reject. | 
 |     if (F->arg_size() != Args.size()) { | 
 |       ErrorF("redefinition of function with different # args"); | 
 |       return 0; | 
 |     } | 
 |   } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>In order to verify the logic above, we first check to see if the preexisting | 
 | function is "empty".  In this case, empty means that it has no basic blocks in | 
 | it, which means it has no body.  If it has no body, this means its a forward  | 
 | declaration.  Since we don't allow anything after a full definition of the | 
 | function, the code rejects this case.  If the previous reference to a function | 
 | was an 'extern', we simply verify that the number of arguments for that | 
 | definition and this one match up.  If not, we emit an error.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   // Set names for all arguments. | 
 |   unsigned Idx = 0; | 
 |   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
 |        ++AI, ++Idx) { | 
 |     AI->setName(Args[Idx]); | 
 |      | 
 |     // Add arguments to variable symbol table. | 
 |     NamedValues[Args[Idx]] = AI; | 
 |   } | 
 |   return F; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>The last bit of code for prototypes loops over all of the arguments in the | 
 | function, setting the name of the LLVM Argument objects to match and registering | 
 | the arguments in the <tt>NamedValues</tt> map for future use by the | 
 | <tt>VariableExprAST</tt> AST node.  Once this is set up, it returns the Function | 
 | object to the caller.  Note that we don't check for conflicting  | 
 | argument names here (e.g. "extern foo(a b a)").  Doing so would be very | 
 | straight-forward.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Function *FunctionAST::Codegen() { | 
 |   NamedValues.clear(); | 
 |    | 
 |   Function *TheFunction = Proto->Codegen(); | 
 |   if (TheFunction == 0) | 
 |     return 0; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Code generation for function definitions starts out simply enough: first we | 
 | codegen the prototype and verify that it is ok.  We also clear out the | 
 | <tt>NamedValues</tt> map to make sure that there isn't anything in it from the | 
 | last function we compiled.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   // Create a new basic block to start insertion into. | 
 |   BasicBlock *BB = new BasicBlock("entry", TheFunction); | 
 |   Builder.SetInsertPoint(BB); | 
 |    | 
 |   if (Value *RetVal = Body->Codegen()) { | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Now we get to the point where the <tt>Builder</tt> is set up.  The first | 
 | line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic | 
 | block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>.  The | 
 | second line then tells the builder that new instructions should be inserted into | 
 | the end of the new basic block.  Basic blocks in LLVM are an important part | 
 | of functions that define the <a  | 
 | href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>. | 
 | Since we don't have any control flow, our functions will only contain one  | 
 | block so far.  We'll fix this in a future installment :).</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   if (Value *RetVal = Body->Codegen()) { | 
 |     // Finish off the function. | 
 |     Builder.CreateRet(RetVal); | 
 |      | 
 |     // Validate the generated code, checking for consistency. | 
 |     verifyFunction(*TheFunction); | 
 |     return TheFunction; | 
 |   } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for | 
 | the root expression of the function.  If no error happens, this emits code to | 
 | compute the expression into the entry block and returns the value that was | 
 | computed.  Assuming no error, we then create an LLVM <a  | 
 | href="../LangRef.html#i_ret">ret instruction</a>, which completes the function. | 
 | Once the function is built, we call the <tt>verifyFunction</tt> function, which | 
 | is provided by LLVM.  This function does a variety of consistency checks on the | 
 | generated code, to determine if our compiler is doing everything right.  Using | 
 | this is important: it can catch a lot of bugs.  Once the function is finished | 
 | and validated, we return it.</p> | 
 |    | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   // Error reading body, remove function. | 
 |   TheFunction->eraseFromParent(); | 
 |   return 0; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>The only piece left here is handling of the error case.  For simplicity, we | 
 | simply handle this by deleting the function we produced with the  | 
 | <tt>eraseFromParent</tt> method.  This allows the user to redefine a function | 
 | that they incorrectly typed in before: if we didn't delete it, it would live in | 
 | the symbol table, with a body, preventing future redefinition.</p> | 
 |  | 
 | <p>This code does have a bug though.  Since the <tt>PrototypeAST::Codegen</tt> | 
 | can return a previously defined forward declaration, this can actually delete | 
 | a forward declaration.  There are a number of ways to fix this bug, see what you | 
 | can come up with!  Here is a testcase:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | extern foo(a b);     # ok, defines foo. | 
 | def foo(a b) c;      # error, 'c' is invalid. | 
 | def bar() foo(1, 2); # error, unknown function "foo" | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="driver">Driver Changes and  | 
 | Closing Thoughts</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | For now, code generation to LLVM doesn't really get us much, except that we can | 
 | look at the pretty IR calls.  The sample code inserts calls to Codegen into the | 
 | "<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then | 
 | dumps out the LLVM IR.  This gives a nice way to look at the LLVM IR for simple | 
 | functions.  For example: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>4+5</b>; | 
 | ready> Read top-level expression: | 
 | define double @""() { | 
 | entry: | 
 |         %addtmp = add double 4.000000e+00, 5.000000e+00 | 
 |         ret double %addtmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Note how the parser turns the top-level expression into anonymous functions | 
 | for us.  This will be handy when we add JIT support in the next chapter.  Also | 
 | note that the code is very literally transcribed, no optimizations are being | 
 | performed.  We will add optimizations explicitly in the next chapter.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b> | 
 | ready> Read function definition: | 
 | define double @foo(double %a, double %b) { | 
 | entry: | 
 |         %multmp = mul double %a, %a | 
 |         %multmp1 = mul double 2.000000e+00, %a | 
 |         %multmp2 = mul double %multmp1, %b | 
 |         %addtmp = add double %multmp, %multmp2 | 
 |         %multmp3 = mul double %b, %b | 
 |         %addtmp4 = add double %addtmp, %multmp3 | 
 |         ret double %addtmp4 | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This shows some simple arithmetic. Notice the striking similarity to the | 
 | LLVM builder calls that we use to create the instructions.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b> | 
 | ready> Read function definition: | 
 | define double @bar(double %a) { | 
 | entry: | 
 |         %calltmp = call double @foo( double %a, double 4.000000e+00 ) | 
 |         %calltmp1 = call double @bar( double 3.133700e+04 ) | 
 |         %addtmp = add double %calltmp, %calltmp1 | 
 |         ret double %addtmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This shows some function calls.  Note that this function will take a long | 
 | time to execute if you call it.  In the future we'll add conditional control  | 
 | flow to make recursion actually be useful :).</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>extern cos(x);</b> | 
 | ready> Read extern:  | 
 | declare double @cos(double) | 
 |  | 
 | ready> <b>cos(1.234);</b> | 
 | ready> Read top-level expression: | 
 | define double @""() { | 
 | entry: | 
 |         %calltmp = call double @cos( double 1.234000e+00 ) | 
 |         ret double %calltmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This shows an extern for the libm "cos" function, and a call to it.</p> | 
 |  | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>^D</b> | 
 | ; ModuleID = 'my cool jit' | 
 |  | 
 | define double @""() { | 
 | entry: | 
 |         %addtmp = add double 4.000000e+00, 5.000000e+00 | 
 |         ret double %addtmp | 
 | } | 
 |  | 
 | define double @foo(double %a, double %b) { | 
 | entry: | 
 |         %multmp = mul double %a, %a | 
 |         %multmp1 = mul double 2.000000e+00, %a | 
 |         %multmp2 = mul double %multmp1, %b | 
 |         %addtmp = add double %multmp, %multmp2 | 
 |         %multmp3 = mul double %b, %b | 
 |         %addtmp4 = add double %addtmp, %multmp3 | 
 |         ret double %addtmp4 | 
 | } | 
 |  | 
 | define double @bar(double %a) { | 
 | entry: | 
 |         %calltmp = call double @foo( double %a, double 4.000000e+00 ) | 
 |         %calltmp1 = call double @bar( double 3.133700e+04 ) | 
 |         %addtmp = add double %calltmp, %calltmp1 | 
 |         ret double %addtmp | 
 | } | 
 |  | 
 | declare double @cos(double) | 
 |  | 
 | define double @""() { | 
 | entry: | 
 |         %calltmp = call double @cos( double 1.234000e+00 ) | 
 |         ret double %calltmp | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>When you quit the current demo, it dumps out the IR for the entire module | 
 | generated.  Here you can see the big picture with all the functions referencing | 
 | each other.</p> | 
 |  | 
 | <p>This wraps up this chapter of the Kaleidoscope tutorial.  Up next we'll | 
 | describe how to <a href="LangImpl4.html">add JIT codegen and optimizer | 
 | support</a> to this so we can actually start running code!</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | Here is the complete code listing for our running example, enhanced with the | 
 | LLVM code generator.    Because this uses the LLVM libraries, we need to link | 
 | them in.  To do this, we use the <a  | 
 | href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform | 
 | our makefile/command line about which options to use:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |    # Compile | 
 |    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy | 
 |    # Run | 
 |    ./toy | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Here is the code:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | // To build this: | 
 | // See example below. | 
 |  | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/Analysis/Verifier.h" | 
 | #include "llvm/Support/LLVMBuilder.h" | 
 | #include <cstdio> | 
 | #include <string> | 
 | #include <map> | 
 | #include <vector> | 
 | using namespace llvm; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Lexer | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
 | // of these for known things. | 
 | enum Token { | 
 |   tok_eof = -1, | 
 |  | 
 |   // commands | 
 |   tok_def = -2, tok_extern = -3, | 
 |  | 
 |   // primary | 
 |   tok_identifier = -4, tok_number = -5, | 
 | }; | 
 |  | 
 | static std::string IdentifierStr;  // Filled in if tok_identifier | 
 | static double NumVal;              // Filled in if tok_number | 
 |  | 
 | /// gettok - Return the next token from standard input. | 
 | static int gettok() { | 
 |   static int LastChar = ' '; | 
 |  | 
 |   // Skip any whitespace. | 
 |   while (isspace(LastChar)) | 
 |     LastChar = getchar(); | 
 |  | 
 |   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
 |     IdentifierStr = LastChar; | 
 |     while (isalnum((LastChar = getchar()))) | 
 |       IdentifierStr += LastChar; | 
 |  | 
 |     if (IdentifierStr == "def") return tok_def; | 
 |     if (IdentifierStr == "extern") return tok_extern; | 
 |     return tok_identifier; | 
 |   } | 
 |  | 
 |   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
 |     std::string NumStr; | 
 |     do { | 
 |       NumStr += LastChar; | 
 |       LastChar = getchar(); | 
 |     } while (isdigit(LastChar) || LastChar == '.'); | 
 |  | 
 |     NumVal = strtod(NumStr.c_str(), 0); | 
 |     return tok_number; | 
 |   } | 
 |  | 
 |   if (LastChar == '#') { | 
 |     // Comment until end of line. | 
 |     do LastChar = getchar(); | 
 |     while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); | 
 |      | 
 |     if (LastChar != EOF) | 
 |       return gettok(); | 
 |   } | 
 |    | 
 |   // Check for end of file.  Don't eat the EOF. | 
 |   if (LastChar == EOF) | 
 |     return tok_eof; | 
 |  | 
 |   // Otherwise, just return the character as its ascii value. | 
 |   int ThisChar = LastChar; | 
 |   LastChar = getchar(); | 
 |   return ThisChar; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Abstract Syntax Tree (aka Parse Tree) | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ExprAST - Base class for all expression nodes. | 
 | class ExprAST { | 
 | public: | 
 |   virtual ~ExprAST() {} | 
 |   virtual Value *Codegen() = 0; | 
 | }; | 
 |  | 
 | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
 | class NumberExprAST : public ExprAST { | 
 |   double Val; | 
 | public: | 
 |   explicit NumberExprAST(double val) : Val(val) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
 | class VariableExprAST : public ExprAST { | 
 |   std::string Name; | 
 | public: | 
 |   explicit VariableExprAST(const std::string &name) : Name(name) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// BinaryExprAST - Expression class for a binary operator. | 
 | class BinaryExprAST : public ExprAST { | 
 |   char Op; | 
 |   ExprAST *LHS, *RHS; | 
 | public: | 
 |   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)  | 
 |     : Op(op), LHS(lhs), RHS(rhs) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// CallExprAST - Expression class for function calls. | 
 | class CallExprAST : public ExprAST { | 
 |   std::string Callee; | 
 |   std::vector<ExprAST*> Args; | 
 | public: | 
 |   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
 |     : Callee(callee), Args(args) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// PrototypeAST - This class represents the "prototype" for a function, | 
 | /// which captures its argument names as well as if it is an operator. | 
 | class PrototypeAST { | 
 |   std::string Name; | 
 |   std::vector<std::string> Args; | 
 | public: | 
 |   PrototypeAST(const std::string &name, const std::vector<std::string> &args) | 
 |     : Name(name), Args(args) {} | 
 |    | 
 |   Function *Codegen(); | 
 | }; | 
 |  | 
 | /// FunctionAST - This class represents a function definition itself. | 
 | class FunctionAST { | 
 |   PrototypeAST *Proto; | 
 |   ExprAST *Body; | 
 | public: | 
 |   FunctionAST(PrototypeAST *proto, ExprAST *body) | 
 |     : Proto(proto), Body(body) {} | 
 |    | 
 |   Function *Codegen(); | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Parser | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
 | /// token the parser it looking at.  getNextToken reads another token from the | 
 | /// lexer and updates CurTok with its results. | 
 | static int CurTok; | 
 | static int getNextToken() { | 
 |   return CurTok = gettok(); | 
 | } | 
 |  | 
 | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
 | /// defined. | 
 | static std::map<char, int> BinopPrecedence; | 
 |  | 
 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
 | static int GetTokPrecedence() { | 
 |   if (!isascii(CurTok)) | 
 |     return -1; | 
 |    | 
 |   // Make sure it's a declared binop. | 
 |   int TokPrec = BinopPrecedence[CurTok]; | 
 |   if (TokPrec <= 0) return -1; | 
 |   return TokPrec; | 
 | } | 
 |  | 
 | /// Error* - These are little helper functions for error handling. | 
 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
 |  | 
 | static ExprAST *ParseExpression(); | 
 |  | 
 | /// identifierexpr | 
 | ///   ::= identifier | 
 | ///   ::= identifier '(' expression* ')' | 
 | static ExprAST *ParseIdentifierExpr() { | 
 |   std::string IdName = IdentifierStr; | 
 |    | 
 |   getNextToken();  // eat identifier. | 
 |    | 
 |   if (CurTok != '(') // Simple variable ref. | 
 |     return new VariableExprAST(IdName); | 
 |    | 
 |   // Call. | 
 |   getNextToken();  // eat ( | 
 |   std::vector<ExprAST*> Args; | 
 |   while (1) { | 
 |     ExprAST *Arg = ParseExpression(); | 
 |     if (!Arg) return 0; | 
 |     Args.push_back(Arg); | 
 |      | 
 |     if (CurTok == ')') break; | 
 |      | 
 |     if (CurTok != ',') | 
 |       return Error("Expected ')'"); | 
 |     getNextToken(); | 
 |   } | 
 |  | 
 |   // Eat the ')'. | 
 |   getNextToken(); | 
 |    | 
 |   return new CallExprAST(IdName, Args); | 
 | } | 
 |  | 
 | /// numberexpr ::= number | 
 | static ExprAST *ParseNumberExpr() { | 
 |   ExprAST *Result = new NumberExprAST(NumVal); | 
 |   getNextToken(); // consume the number | 
 |   return Result; | 
 | } | 
 |  | 
 | /// parenexpr ::= '(' expression ')' | 
 | static ExprAST *ParseParenExpr() { | 
 |   getNextToken();  // eat (. | 
 |   ExprAST *V = ParseExpression(); | 
 |   if (!V) return 0; | 
 |    | 
 |   if (CurTok != ')') | 
 |     return Error("expected ')'"); | 
 |   getNextToken();  // eat ). | 
 |   return V; | 
 | } | 
 |  | 
 | /// primary | 
 | ///   ::= identifierexpr | 
 | ///   ::= numberexpr | 
 | ///   ::= parenexpr | 
 | static ExprAST *ParsePrimary() { | 
 |   switch (CurTok) { | 
 |   default: return Error("unknown token when expecting an expression"); | 
 |   case tok_identifier: return ParseIdentifierExpr(); | 
 |   case tok_number:     return ParseNumberExpr(); | 
 |   case '(':            return ParseParenExpr(); | 
 |   } | 
 | } | 
 |  | 
 | /// binoprhs | 
 | ///   ::= ('+' primary)* | 
 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
 |   // If this is a binop, find its precedence. | 
 |   while (1) { | 
 |     int TokPrec = GetTokPrecedence(); | 
 |      | 
 |     // If this is a binop that binds at least as tightly as the current binop, | 
 |     // consume it, otherwise we are done. | 
 |     if (TokPrec < ExprPrec) | 
 |       return LHS; | 
 |      | 
 |     // Okay, we know this is a binop. | 
 |     int BinOp = CurTok; | 
 |     getNextToken();  // eat binop | 
 |      | 
 |     // Parse the primary expression after the binary operator. | 
 |     ExprAST *RHS = ParsePrimary(); | 
 |     if (!RHS) return 0; | 
 |      | 
 |     // If BinOp binds less tightly with RHS than the operator after RHS, let | 
 |     // the pending operator take RHS as its LHS. | 
 |     int NextPrec = GetTokPrecedence(); | 
 |     if (TokPrec < NextPrec) { | 
 |       RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
 |       if (RHS == 0) return 0; | 
 |     } | 
 |      | 
 |     // Merge LHS/RHS. | 
 |     LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
 |   } | 
 | } | 
 |  | 
 | /// expression | 
 | ///   ::= primary binoprhs | 
 | /// | 
 | static ExprAST *ParseExpression() { | 
 |   ExprAST *LHS = ParsePrimary(); | 
 |   if (!LHS) return 0; | 
 |    | 
 |   return ParseBinOpRHS(0, LHS); | 
 | } | 
 |  | 
 | /// prototype | 
 | ///   ::= id '(' id* ')' | 
 | static PrototypeAST *ParsePrototype() { | 
 |   if (CurTok != tok_identifier) | 
 |     return ErrorP("Expected function name in prototype"); | 
 |  | 
 |   std::string FnName = IdentifierStr; | 
 |   getNextToken(); | 
 |    | 
 |   if (CurTok != '(') | 
 |     return ErrorP("Expected '(' in prototype"); | 
 |    | 
 |   std::vector<std::string> ArgNames; | 
 |   while (getNextToken() == tok_identifier) | 
 |     ArgNames.push_back(IdentifierStr); | 
 |   if (CurTok != ')') | 
 |     return ErrorP("Expected ')' in prototype"); | 
 |    | 
 |   // success. | 
 |   getNextToken();  // eat ')'. | 
 |    | 
 |   return new PrototypeAST(FnName, ArgNames); | 
 | } | 
 |  | 
 | /// definition ::= 'def' prototype expression | 
 | static FunctionAST *ParseDefinition() { | 
 |   getNextToken();  // eat def. | 
 |   PrototypeAST *Proto = ParsePrototype(); | 
 |   if (Proto == 0) return 0; | 
 |  | 
 |   if (ExprAST *E = ParseExpression()) | 
 |     return new FunctionAST(Proto, E); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// toplevelexpr ::= expression | 
 | static FunctionAST *ParseTopLevelExpr() { | 
 |   if (ExprAST *E = ParseExpression()) { | 
 |     // Make an anonymous proto. | 
 |     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
 |     return new FunctionAST(Proto, E); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// external ::= 'extern' prototype | 
 | static PrototypeAST *ParseExtern() { | 
 |   getNextToken();  // eat extern. | 
 |   return ParsePrototype(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Code Generation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static Module *TheModule; | 
 | static LLVMBuilder Builder; | 
 | static std::map<std::string, Value*> NamedValues; | 
 |  | 
 | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
 |  | 
 | Value *NumberExprAST::Codegen() { | 
 |   return ConstantFP::get(Type::DoubleTy, APFloat(Val)); | 
 | } | 
 |  | 
 | Value *VariableExprAST::Codegen() { | 
 |   // Look this variable up in the function. | 
 |   Value *V = NamedValues[Name]; | 
 |   return V ? V : ErrorV("Unknown variable name"); | 
 | } | 
 |  | 
 | Value *BinaryExprAST::Codegen() { | 
 |   Value *L = LHS->Codegen(); | 
 |   Value *R = RHS->Codegen(); | 
 |   if (L == 0 || R == 0) return 0; | 
 |    | 
 |   switch (Op) { | 
 |   case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
 |   case '-': return Builder.CreateSub(L, R, "subtmp"); | 
 |   case '*': return Builder.CreateMul(L, R, "multmp"); | 
 |   case '<': | 
 |     L = Builder.CreateFCmpULT(L, R, "multmp"); | 
 |     // Convert bool 0/1 to double 0.0 or 1.0 | 
 |     return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); | 
 |   default: return ErrorV("invalid binary operator"); | 
 |   } | 
 | } | 
 |  | 
 | Value *CallExprAST::Codegen() { | 
 |   // Look up the name in the global module table. | 
 |   Function *CalleeF = TheModule->getFunction(Callee); | 
 |   if (CalleeF == 0) | 
 |     return ErrorV("Unknown function referenced"); | 
 |    | 
 |   // If argument mismatch error. | 
 |   if (CalleeF->arg_size() != Args.size()) | 
 |     return ErrorV("Incorrect # arguments passed"); | 
 |  | 
 |   std::vector<Value*> ArgsV; | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |     ArgsV.push_back(Args[i]->Codegen()); | 
 |     if (ArgsV.back() == 0) return 0; | 
 |   } | 
 |    | 
 |   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); | 
 | } | 
 |  | 
 | Function *PrototypeAST::Codegen() { | 
 |   // Make the function type:  double(double,double) etc. | 
 |   std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); | 
 |   FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); | 
 |    | 
 |   Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); | 
 |    | 
 |   // If F conflicted, there was already something named 'Name'.  If it has a | 
 |   // body, don't allow redefinition or reextern. | 
 |   if (F->getName() != Name) { | 
 |     // Delete the one we just made and get the existing one. | 
 |     F->eraseFromParent(); | 
 |     F = TheModule->getFunction(Name); | 
 |      | 
 |     // If F already has a body, reject this. | 
 |     if (!F->empty()) { | 
 |       ErrorF("redefinition of function"); | 
 |       return 0; | 
 |     } | 
 |      | 
 |     // If F took a different number of args, reject. | 
 |     if (F->arg_size() != Args.size()) { | 
 |       ErrorF("redefinition of function with different # args"); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |    | 
 |   // Set names for all arguments. | 
 |   unsigned Idx = 0; | 
 |   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
 |        ++AI, ++Idx) { | 
 |     AI->setName(Args[Idx]); | 
 |      | 
 |     // Add arguments to variable symbol table. | 
 |     NamedValues[Args[Idx]] = AI; | 
 |   } | 
 |    | 
 |   return F; | 
 | } | 
 |  | 
 | Function *FunctionAST::Codegen() { | 
 |   NamedValues.clear(); | 
 |    | 
 |   Function *TheFunction = Proto->Codegen(); | 
 |   if (TheFunction == 0) | 
 |     return 0; | 
 |    | 
 |   // Create a new basic block to start insertion into. | 
 |   BasicBlock *BB = new BasicBlock("entry", TheFunction); | 
 |   Builder.SetInsertPoint(BB); | 
 |    | 
 |   if (Value *RetVal = Body->Codegen()) { | 
 |     // Finish off the function. | 
 |     Builder.CreateRet(RetVal); | 
 |      | 
 |     // Validate the generated code, checking for consistency. | 
 |     verifyFunction(*TheFunction); | 
 |     return TheFunction; | 
 |   } | 
 |    | 
 |   // Error reading body, remove function. | 
 |   TheFunction->eraseFromParent(); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top-Level parsing and JIT Driver | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static void HandleDefinition() { | 
 |   if (FunctionAST *F = ParseDefinition()) { | 
 |     if (Function *LF = F->Codegen()) { | 
 |       fprintf(stderr, "Read function definition:"); | 
 |       LF->dump(); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | static void HandleExtern() { | 
 |   if (PrototypeAST *P = ParseExtern()) { | 
 |     if (Function *F = P->Codegen()) { | 
 |       fprintf(stderr, "Read extern: "); | 
 |       F->dump(); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | static void HandleTopLevelExpression() { | 
 |   // Evaluate a top level expression into an anonymous function. | 
 |   if (FunctionAST *F = ParseTopLevelExpr()) { | 
 |     if (Function *LF = F->Codegen()) { | 
 |       fprintf(stderr, "Read top-level expression:"); | 
 |       LF->dump(); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | /// top ::= definition | external | expression | ';' | 
 | static void MainLoop() { | 
 |   while (1) { | 
 |     fprintf(stderr, "ready> "); | 
 |     switch (CurTok) { | 
 |     case tok_eof:    return; | 
 |     case ';':        getNextToken(); break;  // ignore top level semicolons. | 
 |     case tok_def:    HandleDefinition(); break; | 
 |     case tok_extern: HandleExtern(); break; | 
 |     default:         HandleTopLevelExpression(); break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // "Library" functions that can be "extern'd" from user code. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// putchard - putchar that takes a double and returns 0. | 
 | extern "C"  | 
 | double putchard(double X) { | 
 |   putchar((char)X); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Main driver code. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | int main() { | 
 |   TheModule = new Module("my cool jit"); | 
 |  | 
 |   // Install standard binary operators. | 
 |   // 1 is lowest precedence. | 
 |   BinopPrecedence['<'] = 10; | 
 |   BinopPrecedence['+'] = 20; | 
 |   BinopPrecedence['-'] = 20; | 
 |   BinopPrecedence['*'] = 40;  // highest. | 
 |  | 
 |   // Prime the first token. | 
 |   fprintf(stderr, "ready> "); | 
 |   getNextToken(); | 
 |  | 
 |   MainLoop(); | 
 |   TheModule->dump(); | 
 |   return 0; | 
 | } | 
 | </pre> | 
 | </div> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <hr> | 
 | <address> | 
 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 |   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
 |   <a href="http://validator.w3.org/check/referer"><img | 
 |   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
 |  | 
 |   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
 |   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
 |   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
 | </address> | 
 | </body> | 
 | </html> |