| //===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the PowerPC implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCInstrInfo.h" |
| #include "PPCInstrBuilder.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCPredicates.h" |
| #include "PPCGenInstrInfo.inc" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetAsmInfo.h" |
| using namespace llvm; |
| |
| extern cl::opt<bool> EnablePPC32RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. |
| extern cl::opt<bool> EnablePPC64RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. |
| |
| PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) |
| : TargetInstrInfoImpl(PPCInsts, array_lengthof(PPCInsts)), TM(tm), |
| RI(*TM.getSubtargetImpl(), *this) {} |
| |
| /// getPointerRegClass - Return the register class to use to hold pointers. |
| /// This is used for addressing modes. |
| const TargetRegisterClass *PPCInstrInfo::getPointerRegClass() const { |
| if (TM.getSubtargetImpl()->isPPC64()) |
| return &PPC::G8RCRegClass; |
| else |
| return &PPC::GPRCRegClass; |
| } |
| |
| |
| bool PPCInstrInfo::isMoveInstr(const MachineInstr& MI, |
| unsigned& sourceReg, |
| unsigned& destReg) const { |
| unsigned oc = MI.getOpcode(); |
| if (oc == PPC::OR || oc == PPC::OR8 || oc == PPC::VOR || |
| oc == PPC::OR4To8 || oc == PPC::OR8To4) { // or r1, r2, r2 |
| assert(MI.getNumOperands() >= 3 && |
| MI.getOperand(0).isReg() && |
| MI.getOperand(1).isReg() && |
| MI.getOperand(2).isReg() && |
| "invalid PPC OR instruction!"); |
| if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { |
| sourceReg = MI.getOperand(1).getReg(); |
| destReg = MI.getOperand(0).getReg(); |
| return true; |
| } |
| } else if (oc == PPC::ADDI) { // addi r1, r2, 0 |
| assert(MI.getNumOperands() >= 3 && |
| MI.getOperand(0).isReg() && |
| MI.getOperand(2).isImm() && |
| "invalid PPC ADDI instruction!"); |
| if (MI.getOperand(1).isReg() && MI.getOperand(2).getImm() == 0) { |
| sourceReg = MI.getOperand(1).getReg(); |
| destReg = MI.getOperand(0).getReg(); |
| return true; |
| } |
| } else if (oc == PPC::ORI) { // ori r1, r2, 0 |
| assert(MI.getNumOperands() >= 3 && |
| MI.getOperand(0).isReg() && |
| MI.getOperand(1).isReg() && |
| MI.getOperand(2).isImm() && |
| "invalid PPC ORI instruction!"); |
| if (MI.getOperand(2).getImm() == 0) { |
| sourceReg = MI.getOperand(1).getReg(); |
| destReg = MI.getOperand(0).getReg(); |
| return true; |
| } |
| } else if (oc == PPC::FMRS || oc == PPC::FMRD || |
| oc == PPC::FMRSD) { // fmr r1, r2 |
| assert(MI.getNumOperands() >= 2 && |
| MI.getOperand(0).isReg() && |
| MI.getOperand(1).isReg() && |
| "invalid PPC FMR instruction"); |
| sourceReg = MI.getOperand(1).getReg(); |
| destReg = MI.getOperand(0).getReg(); |
| return true; |
| } else if (oc == PPC::MCRF) { // mcrf cr1, cr2 |
| assert(MI.getNumOperands() >= 2 && |
| MI.getOperand(0).isReg() && |
| MI.getOperand(1).isReg() && |
| "invalid PPC MCRF instruction"); |
| sourceReg = MI.getOperand(1).getReg(); |
| destReg = MI.getOperand(0).getReg(); |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case PPC::LD: |
| case PPC::LWZ: |
| case PPC::LFS: |
| case PPC::LFD: |
| if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && |
| MI->getOperand(2).isFI()) { |
| FrameIndex = MI->getOperand(2).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case PPC::STD: |
| case PPC::STW: |
| case PPC::STFS: |
| case PPC::STFD: |
| if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && |
| MI->getOperand(2).isFI()) { |
| FrameIndex = MI->getOperand(2).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| // commuteInstruction - We can commute rlwimi instructions, but only if the |
| // rotate amt is zero. We also have to munge the immediates a bit. |
| MachineInstr * |
| PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| |
| // Normal instructions can be commuted the obvious way. |
| if (MI->getOpcode() != PPC::RLWIMI) |
| return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); |
| |
| // Cannot commute if it has a non-zero rotate count. |
| if (MI->getOperand(3).getImm() != 0) |
| return 0; |
| |
| // If we have a zero rotate count, we have: |
| // M = mask(MB,ME) |
| // Op0 = (Op1 & ~M) | (Op2 & M) |
| // Change this to: |
| // M = mask((ME+1)&31, (MB-1)&31) |
| // Op0 = (Op2 & ~M) | (Op1 & M) |
| |
| // Swap op1/op2 |
| unsigned Reg0 = MI->getOperand(0).getReg(); |
| unsigned Reg1 = MI->getOperand(1).getReg(); |
| unsigned Reg2 = MI->getOperand(2).getReg(); |
| bool Reg1IsKill = MI->getOperand(1).isKill(); |
| bool Reg2IsKill = MI->getOperand(2).isKill(); |
| bool ChangeReg0 = false; |
| // If machine instrs are no longer in two-address forms, update |
| // destination register as well. |
| if (Reg0 == Reg1) { |
| // Must be two address instruction! |
| assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && |
| "Expecting a two-address instruction!"); |
| Reg2IsKill = false; |
| ChangeReg0 = true; |
| } |
| |
| // Masks. |
| unsigned MB = MI->getOperand(4).getImm(); |
| unsigned ME = MI->getOperand(5).getImm(); |
| |
| if (NewMI) { |
| // Create a new instruction. |
| unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); |
| bool Reg0IsDead = MI->getOperand(0).isDead(); |
| return BuildMI(MF, MI->getDesc()) |
| .addReg(Reg0, true, false, false, Reg0IsDead) |
| .addReg(Reg2, false, false, Reg2IsKill) |
| .addReg(Reg1, false, false, Reg1IsKill) |
| .addImm((ME+1) & 31) |
| .addImm((MB-1) & 31); |
| } |
| |
| if (ChangeReg0) |
| MI->getOperand(0).setReg(Reg2); |
| MI->getOperand(2).setReg(Reg1); |
| MI->getOperand(1).setReg(Reg2); |
| MI->getOperand(2).setIsKill(Reg1IsKill); |
| MI->getOperand(1).setIsKill(Reg2IsKill); |
| |
| // Swap the mask around. |
| MI->getOperand(4).setImm((ME+1) & 31); |
| MI->getOperand(5).setImm((MB-1) & 31); |
| return MI; |
| } |
| |
| void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| BuildMI(MBB, MI, get(PPC::NOP)); |
| } |
| |
| |
| // Branch analysis. |
| bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond) const { |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) |
| return false; |
| |
| // Get the last instruction in the block. |
| MachineInstr *LastInst = I; |
| |
| // If there is only one terminator instruction, process it. |
| if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { |
| if (LastInst->getOpcode() == PPC::B) { |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } else if (LastInst->getOpcode() == PPC::BCC) { |
| // Block ends with fall-through condbranch. |
| TBB = LastInst->getOperand(2).getMBB(); |
| Cond.push_back(LastInst->getOperand(0)); |
| Cond.push_back(LastInst->getOperand(1)); |
| return false; |
| } |
| // Otherwise, don't know what this is. |
| return true; |
| } |
| |
| // Get the instruction before it if it's a terminator. |
| MachineInstr *SecondLastInst = I; |
| |
| // If there are three terminators, we don't know what sort of block this is. |
| if (SecondLastInst && I != MBB.begin() && |
| isUnpredicatedTerminator(--I)) |
| return true; |
| |
| // If the block ends with PPC::B and PPC:BCC, handle it. |
| if (SecondLastInst->getOpcode() == PPC::BCC && |
| LastInst->getOpcode() == PPC::B) { |
| TBB = SecondLastInst->getOperand(2).getMBB(); |
| Cond.push_back(SecondLastInst->getOperand(0)); |
| Cond.push_back(SecondLastInst->getOperand(1)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two PPC:Bs, handle it. The second one is not |
| // executed, so remove it. |
| if (SecondLastInst->getOpcode() == PPC::B && |
| LastInst->getOpcode() == PPC::B) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| I = LastInst; |
| I->eraseFromParent(); |
| return false; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin()) return 0; |
| --I; |
| if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (I->getOpcode() != PPC::BCC) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned |
| PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const SmallVectorImpl<MachineOperand> &Cond) const { |
| // Shouldn't be a fall through. |
| assert(TBB && "InsertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0) && |
| "PPC branch conditions have two components!"); |
| |
| // One-way branch. |
| if (FBB == 0) { |
| if (Cond.empty()) // Unconditional branch |
| BuildMI(&MBB, get(PPC::B)).addMBB(TBB); |
| else // Conditional branch |
| BuildMI(&MBB, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); |
| return 1; |
| } |
| |
| // Two-way Conditional Branch. |
| BuildMI(&MBB, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); |
| BuildMI(&MBB, get(PPC::B)).addMBB(FBB); |
| return 2; |
| } |
| |
| bool PPCInstrInfo::copyRegToReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, unsigned SrcReg, |
| const TargetRegisterClass *DestRC, |
| const TargetRegisterClass *SrcRC) const { |
| if (DestRC != SrcRC) { |
| // Not yet supported! |
| return false; |
| } |
| |
| if (DestRC == PPC::GPRCRegisterClass) { |
| BuildMI(MBB, MI, get(PPC::OR), DestReg).addReg(SrcReg).addReg(SrcReg); |
| } else if (DestRC == PPC::G8RCRegisterClass) { |
| BuildMI(MBB, MI, get(PPC::OR8), DestReg).addReg(SrcReg).addReg(SrcReg); |
| } else if (DestRC == PPC::F4RCRegisterClass) { |
| BuildMI(MBB, MI, get(PPC::FMRS), DestReg).addReg(SrcReg); |
| } else if (DestRC == PPC::F8RCRegisterClass) { |
| BuildMI(MBB, MI, get(PPC::FMRD), DestReg).addReg(SrcReg); |
| } else if (DestRC == PPC::CRRCRegisterClass) { |
| BuildMI(MBB, MI, get(PPC::MCRF), DestReg).addReg(SrcReg); |
| } else if (DestRC == PPC::VRRCRegisterClass) { |
| BuildMI(MBB, MI, get(PPC::VOR), DestReg).addReg(SrcReg).addReg(SrcReg); |
| } else if (DestRC == PPC::CRBITRCRegisterClass) { |
| BuildMI(MBB, MI, get(PPC::CROR), DestReg).addReg(SrcReg).addReg(SrcReg); |
| } else { |
| // Attempt to copy register that is not GPR or FPR |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, |
| unsigned SrcReg, bool isKill, |
| int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const{ |
| if (RC == PPC::GPRCRegisterClass) { |
| if (SrcReg != PPC::LR) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::STW)) |
| .addReg(SrcReg, false, false, isKill), |
| FrameIdx)); |
| } else { |
| // FIXME: this spills LR immediately to memory in one step. To do this, |
| // we use R11, which we know cannot be used in the prolog/epilog. This is |
| // a hack. |
| NewMIs.push_back(BuildMI(MF, get(PPC::MFLR), PPC::R11)); |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::STW)) |
| .addReg(PPC::R11, false, false, isKill), |
| FrameIdx)); |
| } |
| } else if (RC == PPC::G8RCRegisterClass) { |
| if (SrcReg != PPC::LR8) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::STD)) |
| .addReg(SrcReg, false, false, isKill), FrameIdx)); |
| } else { |
| // FIXME: this spills LR immediately to memory in one step. To do this, |
| // we use R11, which we know cannot be used in the prolog/epilog. This is |
| // a hack. |
| NewMIs.push_back(BuildMI(MF, get(PPC::MFLR8), PPC::X11)); |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::STD)) |
| .addReg(PPC::X11, false, false, isKill), FrameIdx)); |
| } |
| } else if (RC == PPC::F8RCRegisterClass) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::STFD)) |
| .addReg(SrcReg, false, false, isKill), FrameIdx)); |
| } else if (RC == PPC::F4RCRegisterClass) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::STFS)) |
| .addReg(SrcReg, false, false, isKill), FrameIdx)); |
| } else if (RC == PPC::CRRCRegisterClass) { |
| if ((EnablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || |
| (EnablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { |
| // FIXME (64-bit): Enable |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::SPILL_CR)) |
| .addReg(SrcReg, false, false, isKill), |
| FrameIdx)); |
| return true; |
| } else { |
| // FIXME: We use R0 here, because it isn't available for RA. We need to |
| // store the CR in the low 4-bits of the saved value. First, issue a MFCR |
| // to save all of the CRBits. |
| NewMIs.push_back(BuildMI(MF, get(PPC::MFCR), PPC::R0)); |
| |
| // If the saved register wasn't CR0, shift the bits left so that they are |
| // in CR0's slot. |
| if (SrcReg != PPC::CR0) { |
| unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(SrcReg)*4; |
| // rlwinm r0, r0, ShiftBits, 0, 31. |
| NewMIs.push_back(BuildMI(MF, get(PPC::RLWINM), PPC::R0) |
| .addReg(PPC::R0).addImm(ShiftBits).addImm(0).addImm(31)); |
| } |
| |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::STW)) |
| .addReg(PPC::R0, false, false, isKill), |
| FrameIdx)); |
| } |
| } else if (RC == PPC::CRBITRCRegisterClass) { |
| // FIXME: We use CRi here because there is no mtcrf on a bit. Since the |
| // backend currently only uses CR1EQ as an individual bit, this should |
| // not cause any bug. If we need other uses of CR bits, the following |
| // code may be invalid. |
| unsigned Reg = 0; |
| if (SrcReg >= PPC::CR0LT || SrcReg <= PPC::CR0UN) |
| Reg = PPC::CR0; |
| else if (SrcReg >= PPC::CR1LT || SrcReg <= PPC::CR1UN) |
| Reg = PPC::CR1; |
| else if (SrcReg >= PPC::CR2LT || SrcReg <= PPC::CR2UN) |
| Reg = PPC::CR2; |
| else if (SrcReg >= PPC::CR3LT || SrcReg <= PPC::CR3UN) |
| Reg = PPC::CR3; |
| else if (SrcReg >= PPC::CR4LT || SrcReg <= PPC::CR4UN) |
| Reg = PPC::CR4; |
| else if (SrcReg >= PPC::CR5LT || SrcReg <= PPC::CR5UN) |
| Reg = PPC::CR5; |
| else if (SrcReg >= PPC::CR6LT || SrcReg <= PPC::CR6UN) |
| Reg = PPC::CR6; |
| else if (SrcReg >= PPC::CR7LT || SrcReg <= PPC::CR7UN) |
| Reg = PPC::CR7; |
| |
| return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, |
| PPC::CRRCRegisterClass, NewMIs); |
| |
| } else if (RC == PPC::VRRCRegisterClass) { |
| // We don't have indexed addressing for vector loads. Emit: |
| // R0 = ADDI FI# |
| // STVX VAL, 0, R0 |
| // |
| // FIXME: We use R0 here, because it isn't available for RA. |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::ADDI), PPC::R0), |
| FrameIdx, 0, 0)); |
| NewMIs.push_back(BuildMI(MF, get(PPC::STVX)) |
| .addReg(SrcReg, false, false, isKill).addReg(PPC::R0).addReg(PPC::R0)); |
| } else { |
| assert(0 && "Unknown regclass!"); |
| abort(); |
| } |
| |
| return false; |
| } |
| |
| void |
| PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned SrcReg, bool isKill, int FrameIdx, |
| const TargetRegisterClass *RC) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| |
| if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) { |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setSpillsCR(); |
| } |
| |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| } |
| |
| void PPCInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, |
| bool isKill, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const{ |
| if (Addr[0].isFI()) { |
| if (StoreRegToStackSlot(MF, SrcReg, isKill, |
| Addr[0].getIndex(), RC, NewMIs)) { |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setSpillsCR(); |
| } |
| |
| return; |
| } |
| |
| unsigned Opc = 0; |
| if (RC == PPC::GPRCRegisterClass) { |
| Opc = PPC::STW; |
| } else if (RC == PPC::G8RCRegisterClass) { |
| Opc = PPC::STD; |
| } else if (RC == PPC::F8RCRegisterClass) { |
| Opc = PPC::STFD; |
| } else if (RC == PPC::F4RCRegisterClass) { |
| Opc = PPC::STFS; |
| } else if (RC == PPC::VRRCRegisterClass) { |
| Opc = PPC::STVX; |
| } else { |
| assert(0 && "Unknown regclass!"); |
| abort(); |
| } |
| MachineInstrBuilder MIB = BuildMI(MF, get(Opc)) |
| .addReg(SrcReg, false, false, isKill); |
| for (unsigned i = 0, e = Addr.size(); i != e; ++i) { |
| MachineOperand &MO = Addr[i]; |
| if (MO.isReg()) |
| MIB.addReg(MO.getReg()); |
| else if (MO.isImm()) |
| MIB.addImm(MO.getImm()); |
| else |
| MIB.addFrameIndex(MO.getIndex()); |
| } |
| NewMIs.push_back(MIB); |
| return; |
| } |
| |
| void |
| PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs)const{ |
| if (RC == PPC::GPRCRegisterClass) { |
| if (DestReg != PPC::LR) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::LWZ), DestReg), |
| FrameIdx)); |
| } else { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::LWZ), PPC::R11), |
| FrameIdx)); |
| NewMIs.push_back(BuildMI(MF, get(PPC::MTLR)).addReg(PPC::R11)); |
| } |
| } else if (RC == PPC::G8RCRegisterClass) { |
| if (DestReg != PPC::LR8) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::LD), DestReg), |
| FrameIdx)); |
| } else { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::LD), PPC::R11), |
| FrameIdx)); |
| NewMIs.push_back(BuildMI(MF, get(PPC::MTLR8)).addReg(PPC::R11)); |
| } |
| } else if (RC == PPC::F8RCRegisterClass) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::LFD), DestReg), |
| FrameIdx)); |
| } else if (RC == PPC::F4RCRegisterClass) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::LFS), DestReg), |
| FrameIdx)); |
| } else if (RC == PPC::CRRCRegisterClass) { |
| // FIXME: We use R0 here, because it isn't available for RA. |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::LWZ), PPC::R0), |
| FrameIdx)); |
| |
| // If the reloaded register isn't CR0, shift the bits right so that they are |
| // in the right CR's slot. |
| if (DestReg != PPC::CR0) { |
| unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(DestReg)*4; |
| // rlwinm r11, r11, 32-ShiftBits, 0, 31. |
| NewMIs.push_back(BuildMI(MF, get(PPC::RLWINM), PPC::R0) |
| .addReg(PPC::R0).addImm(32-ShiftBits).addImm(0).addImm(31)); |
| } |
| |
| NewMIs.push_back(BuildMI(MF, get(PPC::MTCRF), DestReg).addReg(PPC::R0)); |
| } else if (RC == PPC::CRBITRCRegisterClass) { |
| |
| unsigned Reg = 0; |
| if (DestReg >= PPC::CR0LT || DestReg <= PPC::CR0UN) |
| Reg = PPC::CR0; |
| else if (DestReg >= PPC::CR1LT || DestReg <= PPC::CR1UN) |
| Reg = PPC::CR1; |
| else if (DestReg >= PPC::CR2LT || DestReg <= PPC::CR2UN) |
| Reg = PPC::CR2; |
| else if (DestReg >= PPC::CR3LT || DestReg <= PPC::CR3UN) |
| Reg = PPC::CR3; |
| else if (DestReg >= PPC::CR4LT || DestReg <= PPC::CR4UN) |
| Reg = PPC::CR4; |
| else if (DestReg >= PPC::CR5LT || DestReg <= PPC::CR5UN) |
| Reg = PPC::CR5; |
| else if (DestReg >= PPC::CR6LT || DestReg <= PPC::CR6UN) |
| Reg = PPC::CR6; |
| else if (DestReg >= PPC::CR7LT || DestReg <= PPC::CR7UN) |
| Reg = PPC::CR7; |
| |
| return LoadRegFromStackSlot(MF, Reg, FrameIdx, |
| PPC::CRRCRegisterClass, NewMIs); |
| |
| } else if (RC == PPC::VRRCRegisterClass) { |
| // We don't have indexed addressing for vector loads. Emit: |
| // R0 = ADDI FI# |
| // Dest = LVX 0, R0 |
| // |
| // FIXME: We use R0 here, because it isn't available for RA. |
| NewMIs.push_back(addFrameReference(BuildMI(MF, get(PPC::ADDI), PPC::R0), |
| FrameIdx, 0, 0)); |
| NewMIs.push_back(BuildMI(MF, get(PPC::LVX),DestReg).addReg(PPC::R0) |
| .addReg(PPC::R0)); |
| } else { |
| assert(0 && "Unknown regclass!"); |
| abort(); |
| } |
| } |
| |
| void |
| PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| LoadRegFromStackSlot(MF, DestReg, FrameIdx, RC, NewMIs); |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| } |
| |
| void PPCInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs)const{ |
| if (Addr[0].isFI()) { |
| LoadRegFromStackSlot(MF, DestReg, Addr[0].getIndex(), RC, NewMIs); |
| return; |
| } |
| |
| unsigned Opc = 0; |
| if (RC == PPC::GPRCRegisterClass) { |
| assert(DestReg != PPC::LR && "Can't handle this yet!"); |
| Opc = PPC::LWZ; |
| } else if (RC == PPC::G8RCRegisterClass) { |
| assert(DestReg != PPC::LR8 && "Can't handle this yet!"); |
| Opc = PPC::LD; |
| } else if (RC == PPC::F8RCRegisterClass) { |
| Opc = PPC::LFD; |
| } else if (RC == PPC::F4RCRegisterClass) { |
| Opc = PPC::LFS; |
| } else if (RC == PPC::VRRCRegisterClass) { |
| Opc = PPC::LVX; |
| } else { |
| assert(0 && "Unknown regclass!"); |
| abort(); |
| } |
| MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg); |
| for (unsigned i = 0, e = Addr.size(); i != e; ++i) { |
| MachineOperand &MO = Addr[i]; |
| if (MO.isReg()) |
| MIB.addReg(MO.getReg()); |
| else if (MO.isImm()) |
| MIB.addImm(MO.getImm()); |
| else |
| MIB.addFrameIndex(MO.getIndex()); |
| } |
| NewMIs.push_back(MIB); |
| return; |
| } |
| |
| /// foldMemoryOperand - PowerPC (like most RISC's) can only fold spills into |
| /// copy instructions, turning them into load/store instructions. |
| MachineInstr *PPCInstrInfo::foldMemoryOperand(MachineFunction &MF, |
| MachineInstr *MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| int FrameIndex) const { |
| if (Ops.size() != 1) return NULL; |
| |
| // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because |
| // it takes more than one instruction to store it. |
| unsigned Opc = MI->getOpcode(); |
| unsigned OpNum = Ops[0]; |
| |
| MachineInstr *NewMI = NULL; |
| if ((Opc == PPC::OR && |
| MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) { |
| if (OpNum == 0) { // move -> store |
| unsigned InReg = MI->getOperand(1).getReg(); |
| bool isKill = MI->getOperand(1).isKill(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::STW)) |
| .addReg(InReg, false, false, isKill), |
| FrameIndex); |
| } else { // move -> load |
| unsigned OutReg = MI->getOperand(0).getReg(); |
| bool isDead = MI->getOperand(0).isDead(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::LWZ)) |
| .addReg(OutReg, true, false, false, isDead), |
| FrameIndex); |
| } |
| } else if ((Opc == PPC::OR8 && |
| MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) { |
| if (OpNum == 0) { // move -> store |
| unsigned InReg = MI->getOperand(1).getReg(); |
| bool isKill = MI->getOperand(1).isKill(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::STD)) |
| .addReg(InReg, false, false, isKill), |
| FrameIndex); |
| } else { // move -> load |
| unsigned OutReg = MI->getOperand(0).getReg(); |
| bool isDead = MI->getOperand(0).isDead(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::LD)) |
| .addReg(OutReg, true, false, false, isDead), |
| FrameIndex); |
| } |
| } else if (Opc == PPC::FMRD) { |
| if (OpNum == 0) { // move -> store |
| unsigned InReg = MI->getOperand(1).getReg(); |
| bool isKill = MI->getOperand(1).isKill(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::STFD)) |
| .addReg(InReg, false, false, isKill), |
| FrameIndex); |
| } else { // move -> load |
| unsigned OutReg = MI->getOperand(0).getReg(); |
| bool isDead = MI->getOperand(0).isDead(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::LFD)) |
| .addReg(OutReg, true, false, false, isDead), |
| FrameIndex); |
| } |
| } else if (Opc == PPC::FMRS) { |
| if (OpNum == 0) { // move -> store |
| unsigned InReg = MI->getOperand(1).getReg(); |
| bool isKill = MI->getOperand(1).isKill(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::STFS)) |
| .addReg(InReg, false, false, isKill), |
| FrameIndex); |
| } else { // move -> load |
| unsigned OutReg = MI->getOperand(0).getReg(); |
| bool isDead = MI->getOperand(0).isDead(); |
| NewMI = addFrameReference(BuildMI(MF, get(PPC::LFS)) |
| .addReg(OutReg, true, false, false, isDead), |
| FrameIndex); |
| } |
| } |
| |
| return NewMI; |
| } |
| |
| bool PPCInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, |
| const SmallVectorImpl<unsigned> &Ops) const { |
| if (Ops.size() != 1) return false; |
| |
| // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because |
| // it takes more than one instruction to store it. |
| unsigned Opc = MI->getOpcode(); |
| |
| if ((Opc == PPC::OR && |
| MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) |
| return true; |
| else if ((Opc == PPC::OR8 && |
| MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) |
| return true; |
| else if (Opc == PPC::FMRD || Opc == PPC::FMRS) |
| return true; |
| |
| return false; |
| } |
| |
| |
| bool PPCInstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { |
| if (MBB.empty()) return false; |
| |
| switch (MBB.back().getOpcode()) { |
| case PPC::BLR: // Return. |
| case PPC::B: // Uncond branch. |
| case PPC::BCTR: // Indirect branch. |
| return true; |
| default: return false; |
| } |
| } |
| |
| bool PPCInstrInfo:: |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); |
| // Leave the CR# the same, but invert the condition. |
| Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); |
| return false; |
| } |
| |
| /// GetInstSize - Return the number of bytes of code the specified |
| /// instruction may be. This returns the maximum number of bytes. |
| /// |
| unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { |
| switch (MI->getOpcode()) { |
| case PPC::INLINEASM: { // Inline Asm: Variable size. |
| const MachineFunction *MF = MI->getParent()->getParent(); |
| const char *AsmStr = MI->getOperand(0).getSymbolName(); |
| return MF->getTarget().getTargetAsmInfo()->getInlineAsmLength(AsmStr); |
| } |
| case PPC::DBG_LABEL: |
| case PPC::EH_LABEL: |
| case PPC::GC_LABEL: |
| return 0; |
| default: |
| return 4; // PowerPC instructions are all 4 bytes |
| } |
| } |