| /*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Reid Spencer and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the flex scanner for LLVM 1.9 assembly languages files. |
| // |
| //===----------------------------------------------------------------------===*/ |
| |
| %option prefix="Upgrade" |
| %option yylineno |
| %option nostdinit |
| %option never-interactive |
| %option batch |
| %option noyywrap |
| %option nodefault |
| %option 8bit |
| %option outfile="UpgradeLexer.cpp" |
| %option ecs |
| %option noreject |
| %option noyymore |
| |
| %{ |
| #include "UpgradeInternals.h" |
| #include "llvm/Module.h" |
| #include <list> |
| #include "UpgradeParser.h" |
| #include <cctype> |
| #include <cstdlib> |
| |
| #define YY_INPUT(buf,result,max_size) \ |
| { \ |
| if (LexInput->good() && !LexInput->eof()) { \ |
| LexInput->read(buf,max_size); \ |
| result = LexInput->gcount(); \ |
| } else {\ |
| result = YY_NULL; \ |
| } \ |
| } |
| |
| #define YY_NEVER_INTERACTIVE 1 |
| |
| // Construct a token value for a non-obsolete token |
| #define RET_TOK(type, Enum, sym) \ |
| Upgradelval.type = Enum; \ |
| return sym |
| |
| #define RET_TY(sym,NewTY,sign) \ |
| Upgradelval.PrimType.T = NewTY; \ |
| switch (sign) { \ |
| case 0: Upgradelval.PrimType.S.makeSignless(); break; \ |
| case 1: Upgradelval.PrimType.S.makeUnsigned(); break; \ |
| case 2: Upgradelval.PrimType.S.makeSigned(); break; \ |
| default: assert(0 && "Invalid sign kind"); break; \ |
| }\ |
| return sym |
| |
| namespace llvm { |
| |
| // TODO: All of the static identifiers are figured out by the lexer, |
| // these should be hashed to reduce the lexer size |
| |
| // UnEscapeLexed - Run through the specified buffer and change \xx codes to the |
| // appropriate character. If AllowNull is set to false, a \00 value will cause |
| // an exception to be thrown. |
| // |
| // If AllowNull is set to true, the return value of the function points to the |
| // last character of the string in memory. |
| // |
| char *UnEscapeLexed(char *Buffer, bool AllowNull) { |
| char *BOut = Buffer; |
| for (char *BIn = Buffer; *BIn; ) { |
| if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) { |
| char Tmp = BIn[3]; BIn[3] = 0; // Terminate string |
| *BOut = (char)strtol(BIn+1, 0, 16); // Convert to number |
| if (!AllowNull && !*BOut) |
| error("String literal cannot accept \\00 escape!"); |
| |
| BIn[3] = Tmp; // Restore character |
| BIn += 3; // Skip over handled chars |
| ++BOut; |
| } else { |
| *BOut++ = *BIn++; |
| } |
| } |
| |
| return BOut; |
| } |
| |
| // atoull - Convert an ascii string of decimal digits into the unsigned long |
| // long representation... this does not have to do input error checking, |
| // because we know that the input will be matched by a suitable regex... |
| // |
| static uint64_t atoull(const char *Buffer) { |
| uint64_t Result = 0; |
| for (; *Buffer; Buffer++) { |
| uint64_t OldRes = Result; |
| Result *= 10; |
| Result += *Buffer-'0'; |
| if (Result < OldRes) // Uh, oh, overflow detected!!! |
| error("constant bigger than 64 bits detected!"); |
| } |
| return Result; |
| } |
| |
| static uint64_t HexIntToVal(const char *Buffer) { |
| uint64_t Result = 0; |
| for (; *Buffer; ++Buffer) { |
| uint64_t OldRes = Result; |
| Result *= 16; |
| char C = *Buffer; |
| if (C >= '0' && C <= '9') |
| Result += C-'0'; |
| else if (C >= 'A' && C <= 'F') |
| Result += C-'A'+10; |
| else if (C >= 'a' && C <= 'f') |
| Result += C-'a'+10; |
| |
| if (Result < OldRes) // Uh, oh, overflow detected!!! |
| error("constant bigger than 64 bits detected!"); |
| } |
| return Result; |
| } |
| |
| |
| // HexToFP - Convert the ascii string in hexidecimal format to the floating |
| // point representation of it. |
| // |
| static double HexToFP(const char *Buffer) { |
| // Behave nicely in the face of C TBAA rules... see: |
| // http://www.nullstone.com/htmls/category/aliastyp.htm |
| union { |
| uint64_t UI; |
| double FP; |
| } UIntToFP; |
| UIntToFP.UI = HexIntToVal(Buffer); |
| |
| assert(sizeof(double) == sizeof(uint64_t) && |
| "Data sizes incompatible on this target!"); |
| return UIntToFP.FP; // Cast Hex constant to double |
| } |
| |
| |
| } // End llvm namespace |
| |
| using namespace llvm; |
| |
| %} |
| |
| |
| |
| /* Comments start with a ; and go till end of line */ |
| Comment ;.* |
| |
| /* Variable(Value) identifiers start with a % sign */ |
| VarID [%@][-a-zA-Z$._][-a-zA-Z$._0-9]* |
| |
| /* Label identifiers end with a colon */ |
| Label [-a-zA-Z$._0-9]+: |
| QuoteLabel \"[^\"]+\": |
| |
| /* Quoted names can contain any character except " and \ */ |
| StringConstant @?\"[^\"]*\" |
| |
| |
| /* [PN]Integer: match positive and negative literal integer values that |
| * are preceeded by a '%' character. These represent unnamed variable slots. |
| */ |
| EPInteger %[0-9]+ |
| ENInteger %-[0-9]+ |
| |
| |
| /* E[PN]Integer: match positive and negative literal integer values */ |
| PInteger [0-9]+ |
| NInteger -[0-9]+ |
| |
| /* FPConstant - A Floating point constant. |
| */ |
| FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)? |
| |
| /* HexFPConstant - Floating point constant represented in IEEE format as a |
| * hexadecimal number for when exponential notation is not precise enough. |
| */ |
| HexFPConstant 0x[0-9A-Fa-f]+ |
| |
| /* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing |
| * it to deal with 64 bit numbers. |
| */ |
| HexIntConstant [us]0x[0-9A-Fa-f]+ |
| %% |
| |
| {Comment} { /* Ignore comments for now */ } |
| |
| begin { return BEGINTOK; } |
| end { return ENDTOK; } |
| true { return TRUETOK; } |
| false { return FALSETOK; } |
| declare { return DECLARE; } |
| global { return GLOBAL; } |
| constant { return CONSTANT; } |
| internal { return INTERNAL; } |
| linkonce { return LINKONCE; } |
| weak { return WEAK; } |
| appending { return APPENDING; } |
| dllimport { return DLLIMPORT; } |
| dllexport { return DLLEXPORT; } |
| extern_weak { return EXTERN_WEAK; } |
| uninitialized { return EXTERNAL; } /* Deprecated, turn into external */ |
| external { return EXTERNAL; } |
| implementation { return IMPLEMENTATION; } |
| zeroinitializer { return ZEROINITIALIZER; } |
| \.\.\. { return DOTDOTDOT; } |
| undef { return UNDEF; } |
| null { return NULL_TOK; } |
| to { return TO; } |
| except { return EXCEPT; } |
| not { return NOT; } /* Deprecated, turned into XOR */ |
| tail { return TAIL; } |
| target { return TARGET; } |
| triple { return TRIPLE; } |
| deplibs { return DEPLIBS; } |
| endian { return ENDIAN; } |
| pointersize { return POINTERSIZE; } |
| datalayout { return DATALAYOUT; } |
| little { return LITTLE; } |
| big { return BIG; } |
| volatile { return VOLATILE; } |
| align { return ALIGN; } |
| section { return SECTION; } |
| module { return MODULE; } |
| asm { return ASM_TOK; } |
| sideeffect { return SIDEEFFECT; } |
| |
| cc { return CC_TOK; } |
| ccc { return CCC_TOK; } |
| csretcc { return CSRETCC_TOK; } |
| fastcc { return FASTCC_TOK; } |
| coldcc { return COLDCC_TOK; } |
| x86_stdcallcc { return X86_STDCALLCC_TOK; } |
| x86_fastcallcc { return X86_FASTCALLCC_TOK; } |
| |
| sbyte { RET_TY(SBYTE, Type::Int8Ty, 2); } |
| ubyte { RET_TY(UBYTE, Type::Int8Ty, 1); } |
| i8 { RET_TY(UBYTE, Type::Int8Ty, 1); } |
| short { RET_TY(SHORT, Type::Int16Ty, 2); } |
| ushort { RET_TY(USHORT, Type::Int16Ty, 1); } |
| i16 { RET_TY(USHORT, Type::Int16Ty, 1); } |
| int { RET_TY(INT, Type::Int32Ty, 2); } |
| uint { RET_TY(UINT, Type::Int32Ty, 1); } |
| i32 { RET_TY(UINT, Type::Int32Ty, 1); } |
| long { RET_TY(LONG, Type::Int64Ty, 2); } |
| ulong { RET_TY(ULONG, Type::Int64Ty, 1); } |
| i64 { RET_TY(ULONG, Type::Int64Ty, 1); } |
| void { RET_TY(VOID, Type::VoidTy, 0); } |
| bool { RET_TY(BOOL, Type::Int1Ty, 1); } |
| i1 { RET_TY(BOOL, Type::Int1Ty, 1); } |
| float { RET_TY(FLOAT, Type::FloatTy, 0); } |
| double { RET_TY(DOUBLE, Type::DoubleTy,0); } |
| label { RET_TY(LABEL, Type::LabelTy, 0); } |
| type { return TYPE; } |
| opaque { return OPAQUE; } |
| |
| add { RET_TOK(BinaryOpVal, AddOp, ADD); } |
| sub { RET_TOK(BinaryOpVal, SubOp, SUB); } |
| mul { RET_TOK(BinaryOpVal, MulOp, MUL); } |
| div { RET_TOK(BinaryOpVal, DivOp, DIV); } |
| udiv { RET_TOK(BinaryOpVal, UDivOp, UDIV); } |
| sdiv { RET_TOK(BinaryOpVal, SDivOp, SDIV); } |
| fdiv { RET_TOK(BinaryOpVal, FDivOp, FDIV); } |
| rem { RET_TOK(BinaryOpVal, RemOp, REM); } |
| urem { RET_TOK(BinaryOpVal, URemOp, UREM); } |
| srem { RET_TOK(BinaryOpVal, SRemOp, SREM); } |
| frem { RET_TOK(BinaryOpVal, FRemOp, FREM); } |
| and { RET_TOK(BinaryOpVal, AndOp, AND); } |
| or { RET_TOK(BinaryOpVal, OrOp , OR ); } |
| xor { RET_TOK(BinaryOpVal, XorOp, XOR); } |
| setne { RET_TOK(BinaryOpVal, SetNE, SETNE); } |
| seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); } |
| setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); } |
| setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); } |
| setle { RET_TOK(BinaryOpVal, SetLE, SETLE); } |
| setge { RET_TOK(BinaryOpVal, SetGE, SETGE); } |
| shl { RET_TOK(BinaryOpVal, ShlOp, SHL); } |
| shr { RET_TOK(BinaryOpVal, ShrOp, SHR); } |
| lshr { RET_TOK(BinaryOpVal, LShrOp, LSHR); } |
| ashr { RET_TOK(BinaryOpVal, AShrOp, ASHR); } |
| |
| icmp { RET_TOK(OtherOpVal, ICmpOp, ICMP); } |
| fcmp { RET_TOK(OtherOpVal, FCmpOp, FCMP); } |
| |
| eq { return EQ; } |
| ne { return NE; } |
| slt { return SLT; } |
| sgt { return SGT; } |
| sle { return SLE; } |
| sge { return SGE; } |
| ult { return ULT; } |
| ugt { return UGT; } |
| ule { return ULE; } |
| uge { return UGE; } |
| oeq { return OEQ; } |
| one { return ONE; } |
| olt { return OLT; } |
| ogt { return OGT; } |
| ole { return OLE; } |
| oge { return OGE; } |
| ord { return ORD; } |
| uno { return UNO; } |
| ueq { return UEQ; } |
| une { return UNE; } |
| |
| phi { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); } |
| call { RET_TOK(OtherOpVal, CallOp, CALL); } |
| cast { RET_TOK(CastOpVal, CastOp, CAST); } |
| trunc { RET_TOK(CastOpVal, TruncOp, TRUNC); } |
| zext { RET_TOK(CastOpVal, ZExtOp , ZEXT); } |
| sext { RET_TOK(CastOpVal, SExtOp, SEXT); } |
| fptrunc { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); } |
| fpext { RET_TOK(CastOpVal, FPExtOp, FPEXT); } |
| fptoui { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); } |
| fptosi { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); } |
| uitofp { RET_TOK(CastOpVal, UIToFPOp, UITOFP); } |
| sitofp { RET_TOK(CastOpVal, SIToFPOp, SITOFP); } |
| ptrtoint { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); } |
| inttoptr { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); } |
| bitcast { RET_TOK(CastOpVal, BitCastOp, BITCAST); } |
| select { RET_TOK(OtherOpVal, SelectOp, SELECT); } |
| vanext { return VANEXT_old; } |
| vaarg { return VAARG_old; } |
| va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); } |
| ret { RET_TOK(TermOpVal, RetOp, RET); } |
| br { RET_TOK(TermOpVal, BrOp, BR); } |
| switch { RET_TOK(TermOpVal, SwitchOp, SWITCH); } |
| invoke { RET_TOK(TermOpVal, InvokeOp, INVOKE); } |
| unwind { return UNWIND; } |
| unreachable { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); } |
| |
| malloc { RET_TOK(MemOpVal, MallocOp, MALLOC); } |
| alloca { RET_TOK(MemOpVal, AllocaOp, ALLOCA); } |
| free { RET_TOK(MemOpVal, FreeOp, FREE); } |
| load { RET_TOK(MemOpVal, LoadOp, LOAD); } |
| store { RET_TOK(MemOpVal, StoreOp, STORE); } |
| getelementptr { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); } |
| |
| extractelement { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); } |
| insertelement { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); } |
| shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); } |
| |
| |
| {VarID} { |
| UnEscapeLexed(yytext+1); |
| Upgradelval.StrVal = strdup(yytext+1); // Skip % |
| return VAR_ID; |
| } |
| {Label} { |
| yytext[strlen(yytext)-1] = 0; // nuke colon |
| UnEscapeLexed(yytext); |
| Upgradelval.StrVal = strdup(yytext); |
| return LABELSTR; |
| } |
| {QuoteLabel} { |
| yytext[strlen(yytext)-2] = 0; // nuke colon, end quote |
| UnEscapeLexed(yytext+1); |
| Upgradelval.StrVal = strdup(yytext+1); |
| return LABELSTR; |
| } |
| |
| {StringConstant} { // Note that we cannot unescape a string constant here! The |
| // string constant might contain a \00 which would not be |
| // understood by the string stuff. It is valid to make a |
| // [sbyte] c"Hello World\00" constant, for example. |
| // |
| yytext[strlen(yytext)-1] = 0; // nuke end quote |
| Upgradelval.StrVal = strdup(yytext+1); // Nuke start quote |
| return STRINGCONSTANT; |
| } |
| |
| |
| {PInteger} { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; } |
| {NInteger} { |
| uint64_t Val = atoull(yytext+1); |
| // +1: we have bigger negative range |
| if (Val > (uint64_t)INT64_MAX+1) |
| error("Constant too large for signed 64 bits!"); |
| Upgradelval.SInt64Val = -Val; |
| return ESINT64VAL; |
| } |
| {HexIntConstant} { |
| Upgradelval.UInt64Val = HexIntToVal(yytext+3); |
| return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL; |
| } |
| |
| {EPInteger} { |
| uint64_t Val = atoull(yytext+1); |
| if ((unsigned)Val != Val) |
| error("Invalid value number (too large)!"); |
| Upgradelval.UIntVal = unsigned(Val); |
| return UINTVAL; |
| } |
| {ENInteger} { |
| uint64_t Val = atoull(yytext+2); |
| // +1: we have bigger negative range |
| if (Val > (uint64_t)INT32_MAX+1) |
| error("Constant too large for signed 32 bits!"); |
| Upgradelval.SIntVal = (int)-Val; |
| return SINTVAL; |
| } |
| |
| {FPConstant} { Upgradelval.FPVal = atof(yytext); return FPVAL; } |
| {HexFPConstant} { Upgradelval.FPVal = HexToFP(yytext); return FPVAL; } |
| |
| <<EOF>> { |
| /* Make sure to free the internal buffers for flex when we are |
| * done reading our input! |
| */ |
| yy_delete_buffer(YY_CURRENT_BUFFER); |
| return EOF; |
| } |
| |
| [ \r\t\n] { /* Ignore whitespace */ } |
| . { return yytext[0]; } |
| |
| %% |