| //===------------------------ CalcSpillWeights.cpp ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "calcspillweights" |
| |
| #include "llvm/Function.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| using namespace llvm; |
| |
| char CalculateSpillWeights::ID = 0; |
| INITIALIZE_PASS(CalculateSpillWeights, "calcspillweights", |
| "Calculate spill weights", false, false) |
| |
| void CalculateSpillWeights::getAnalysisUsage(AnalysisUsage &au) const { |
| au.addRequired<LiveIntervals>(); |
| au.addRequired<MachineLoopInfo>(); |
| au.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(au); |
| } |
| |
| bool CalculateSpillWeights::runOnMachineFunction(MachineFunction &fn) { |
| |
| DEBUG(dbgs() << "********** Compute Spill Weights **********\n" |
| << "********** Function: " |
| << fn.getFunction()->getName() << '\n'); |
| |
| LiveIntervals &lis = getAnalysis<LiveIntervals>(); |
| VirtRegAuxInfo vrai(fn, lis, getAnalysis<MachineLoopInfo>()); |
| for (LiveIntervals::iterator I = lis.begin(), E = lis.end(); I != E; ++I) { |
| LiveInterval &li = *I->second; |
| if (TargetRegisterInfo::isVirtualRegister(li.reg)) |
| vrai.CalculateWeightAndHint(li); |
| } |
| return false; |
| } |
| |
| // Return the preferred allocation register for reg, given a COPY instruction. |
| static unsigned copyHint(const MachineInstr *mi, unsigned reg, |
| const TargetRegisterInfo &tri, |
| const MachineRegisterInfo &mri) { |
| unsigned sub, hreg, hsub; |
| if (mi->getOperand(0).getReg() == reg) { |
| sub = mi->getOperand(0).getSubReg(); |
| hreg = mi->getOperand(1).getReg(); |
| hsub = mi->getOperand(1).getSubReg(); |
| } else { |
| sub = mi->getOperand(1).getSubReg(); |
| hreg = mi->getOperand(0).getReg(); |
| hsub = mi->getOperand(0).getSubReg(); |
| } |
| |
| if (!hreg) |
| return 0; |
| |
| if (TargetRegisterInfo::isVirtualRegister(hreg)) |
| return sub == hsub ? hreg : 0; |
| |
| const TargetRegisterClass *rc = mri.getRegClass(reg); |
| |
| // Only allow physreg hints in rc. |
| if (sub == 0) |
| return rc->contains(hreg) ? hreg : 0; |
| |
| // reg:sub should match the physreg hreg. |
| return tri.getMatchingSuperReg(hreg, sub, rc); |
| } |
| |
| void VirtRegAuxInfo::CalculateWeightAndHint(LiveInterval &li) { |
| MachineRegisterInfo &mri = mf_.getRegInfo(); |
| const TargetRegisterInfo &tri = *mf_.getTarget().getRegisterInfo(); |
| MachineBasicBlock *mbb = 0; |
| MachineLoop *loop = 0; |
| unsigned loopDepth = 0; |
| bool isExiting = false; |
| float totalWeight = 0; |
| SmallPtrSet<MachineInstr*, 8> visited; |
| |
| // Find the best physreg hist and the best virtreg hint. |
| float bestPhys = 0, bestVirt = 0; |
| unsigned hintPhys = 0, hintVirt = 0; |
| |
| // Don't recompute a target specific hint. |
| bool noHint = mri.getRegAllocationHint(li.reg).first != 0; |
| |
| for (MachineRegisterInfo::reg_iterator I = mri.reg_begin(li.reg); |
| MachineInstr *mi = I.skipInstruction();) { |
| if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue()) |
| continue; |
| if (!visited.insert(mi)) |
| continue; |
| |
| // Get loop info for mi. |
| if (mi->getParent() != mbb) { |
| mbb = mi->getParent(); |
| loop = loops_.getLoopFor(mbb); |
| loopDepth = loop ? loop->getLoopDepth() : 0; |
| isExiting = loop ? loop->isLoopExiting(mbb) : false; |
| } |
| |
| // Calculate instr weight. |
| bool reads, writes; |
| tie(reads, writes) = mi->readsWritesVirtualRegister(li.reg); |
| float weight = LiveIntervals::getSpillWeight(writes, reads, loopDepth); |
| |
| // Give extra weight to what looks like a loop induction variable update. |
| if (writes && isExiting && lis_.isLiveOutOfMBB(li, mbb)) |
| weight *= 3; |
| |
| totalWeight += weight; |
| |
| // Get allocation hints from copies. |
| if (noHint || !mi->isCopy()) |
| continue; |
| unsigned hint = copyHint(mi, li.reg, tri, mri); |
| if (!hint) |
| continue; |
| float hweight = hint_[hint] += weight; |
| if (TargetRegisterInfo::isPhysicalRegister(hint)) { |
| if (hweight > bestPhys && lis_.isAllocatable(hint)) |
| bestPhys = hweight, hintPhys = hint; |
| } else { |
| if (hweight > bestVirt) |
| bestVirt = hweight, hintVirt = hint; |
| } |
| } |
| |
| hint_.clear(); |
| |
| // Always prefer the physreg hint. |
| if (unsigned hint = hintPhys ? hintPhys : hintVirt) { |
| mri.setRegAllocationHint(li.reg, 0, hint); |
| // Weakly boost the spill weifght of hinted registers. |
| totalWeight *= 1.01F; |
| } |
| |
| // Mark li as unspillable if all live ranges are tiny. |
| if (li.isZeroLength()) { |
| li.markNotSpillable(); |
| return; |
| } |
| |
| // If all of the definitions of the interval are re-materializable, |
| // it is a preferred candidate for spilling. If none of the defs are |
| // loads, then it's potentially very cheap to re-materialize. |
| // FIXME: this gets much more complicated once we support non-trivial |
| // re-materialization. |
| bool isLoad = false; |
| SmallVector<LiveInterval*, 4> spillIs; |
| if (lis_.isReMaterializable(li, spillIs, isLoad)) { |
| if (isLoad) |
| totalWeight *= 0.9F; |
| else |
| totalWeight *= 0.5F; |
| } |
| |
| li.weight = totalWeight; |
| lis_.normalizeSpillWeight(li); |
| } |
| |
| void VirtRegAuxInfo::CalculateRegClass(unsigned reg) { |
| MachineRegisterInfo &mri = mf_.getRegInfo(); |
| const TargetRegisterInfo *tri = mf_.getTarget().getRegisterInfo(); |
| const TargetRegisterClass *orc = mri.getRegClass(reg); |
| SmallPtrSet<const TargetRegisterClass*,8> rcs; |
| |
| for (MachineRegisterInfo::reg_nodbg_iterator I = mri.reg_nodbg_begin(reg), |
| E = mri.reg_nodbg_end(); I != E; ++I) { |
| // The targets don't have accurate enough regclass descriptions that we can |
| // handle subregs. We need something similar to |
| // TRI::getMatchingSuperRegClass, but returning a super class instead of a |
| // sub class. |
| if (I.getOperand().getSubReg()) { |
| DEBUG(dbgs() << "Cannot handle subregs: " << I.getOperand() << '\n'); |
| return; |
| } |
| if (const TargetRegisterClass *rc = |
| I->getDesc().getRegClass(I.getOperandNo(), tri)) |
| rcs.insert(rc); |
| } |
| |
| // If we found no regclass constraints, just leave reg as is. |
| // In theory, we could inflate to the largest superclass of reg's existing |
| // class, but that might not be legal for the current cpu setting. |
| // This could happen if reg is only used by COPY instructions, so we may need |
| // to improve on this. |
| if (rcs.empty()) { |
| return; |
| } |
| |
| // Compute the intersection of all classes in rcs. |
| // This ought to be independent of iteration order, but if the target register |
| // classes don't form a proper algebra, it is possible to get different |
| // results. The solution is to make sure the intersection of any two register |
| // classes is also a register class or the null set. |
| const TargetRegisterClass *rc = 0; |
| for (SmallPtrSet<const TargetRegisterClass*,8>::iterator I = rcs.begin(), |
| E = rcs.end(); I != E; ++I) { |
| rc = rc ? getCommonSubClass(rc, *I) : *I; |
| assert(rc && "Incompatible regclass constraints found"); |
| } |
| |
| if (rc == orc) |
| return; |
| DEBUG(dbgs() << "Inflating " << orc->getName() << ":%reg" << reg << " to " |
| << rc->getName() <<".\n"); |
| mri.setRegClass(reg, rc); |
| } |