| //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interface for lazy computation of value constraint |
| // information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "lazy-value-info" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| using namespace llvm; |
| |
| char LazyValueInfo::ID = 0; |
| INITIALIZE_PASS(LazyValueInfo, "lazy-value-info", |
| "Lazy Value Information Analysis", false, true); |
| |
| namespace llvm { |
| FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LVILatticeVal |
| //===----------------------------------------------------------------------===// |
| |
| /// LVILatticeVal - This is the information tracked by LazyValueInfo for each |
| /// value. |
| /// |
| /// FIXME: This is basically just for bringup, this can be made a lot more rich |
| /// in the future. |
| /// |
| namespace { |
| class LVILatticeVal { |
| enum LatticeValueTy { |
| /// undefined - This LLVM Value has no known value yet. |
| undefined, |
| |
| /// constant - This LLVM Value has a specific constant value. |
| constant, |
| /// notconstant - This LLVM value is known to not have the specified value. |
| notconstant, |
| |
| /// constantrange |
| constantrange, |
| |
| /// overdefined - This instruction is not known to be constant, and we know |
| /// it has a value. |
| overdefined |
| }; |
| |
| /// Val: This stores the current lattice value along with the Constant* for |
| /// the constant if this is a 'constant' or 'notconstant' value. |
| LatticeValueTy Tag; |
| Constant *Val; |
| ConstantRange Range; |
| |
| public: |
| LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {} |
| |
| static LVILatticeVal get(Constant *C) { |
| LVILatticeVal Res; |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) |
| Res.markConstantRange(ConstantRange(CI->getValue(), CI->getValue()+1)); |
| else if (!isa<UndefValue>(C)) |
| Res.markConstant(C); |
| return Res; |
| } |
| static LVILatticeVal getNot(Constant *C) { |
| LVILatticeVal Res; |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) |
| Res.markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); |
| else |
| Res.markNotConstant(C); |
| return Res; |
| } |
| static LVILatticeVal getRange(ConstantRange CR) { |
| LVILatticeVal Res; |
| Res.markConstantRange(CR); |
| return Res; |
| } |
| |
| bool isUndefined() const { return Tag == undefined; } |
| bool isConstant() const { return Tag == constant; } |
| bool isNotConstant() const { return Tag == notconstant; } |
| bool isConstantRange() const { return Tag == constantrange; } |
| bool isOverdefined() const { return Tag == overdefined; } |
| |
| Constant *getConstant() const { |
| assert(isConstant() && "Cannot get the constant of a non-constant!"); |
| return Val; |
| } |
| |
| Constant *getNotConstant() const { |
| assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); |
| return Val; |
| } |
| |
| ConstantRange getConstantRange() const { |
| assert(isConstantRange() && |
| "Cannot get the constant-range of a non-constant-range!"); |
| return Range; |
| } |
| |
| /// markOverdefined - Return true if this is a change in status. |
| bool markOverdefined() { |
| if (isOverdefined()) |
| return false; |
| Tag = overdefined; |
| return true; |
| } |
| |
| /// markConstant - Return true if this is a change in status. |
| bool markConstant(Constant *V) { |
| if (isConstant()) { |
| assert(getConstant() == V && "Marking constant with different value"); |
| return false; |
| } |
| |
| assert(isUndefined()); |
| Tag = constant; |
| assert(V && "Marking constant with NULL"); |
| Val = V; |
| return true; |
| } |
| |
| /// markNotConstant - Return true if this is a change in status. |
| bool markNotConstant(Constant *V) { |
| if (isNotConstant()) { |
| assert(getNotConstant() == V && "Marking !constant with different value"); |
| return false; |
| } |
| |
| if (isConstant()) |
| assert(getConstant() != V && "Marking not constant with different value"); |
| else |
| assert(isUndefined()); |
| |
| Tag = notconstant; |
| assert(V && "Marking constant with NULL"); |
| Val = V; |
| return true; |
| } |
| |
| /// markConstantRange - Return true if this is a change in status. |
| bool markConstantRange(const ConstantRange NewR) { |
| if (isConstantRange()) { |
| if (NewR.isEmptySet()) |
| return markOverdefined(); |
| |
| bool changed = Range == NewR; |
| Range = NewR; |
| return changed; |
| } |
| |
| assert(isUndefined()); |
| if (NewR.isEmptySet()) |
| return markOverdefined(); |
| else if (NewR.isFullSet()) { |
| Tag = undefined; |
| return true; |
| } |
| |
| Tag = constantrange; |
| Range = NewR; |
| return true; |
| } |
| |
| /// mergeIn - Merge the specified lattice value into this one, updating this |
| /// one and returning true if anything changed. |
| bool mergeIn(const LVILatticeVal &RHS) { |
| if (RHS.isUndefined() || isOverdefined()) return false; |
| if (RHS.isOverdefined()) return markOverdefined(); |
| |
| if (RHS.isNotConstant()) { |
| if (isNotConstant()) { |
| if (getNotConstant() != RHS.getNotConstant() || |
| isa<ConstantExpr>(getNotConstant()) || |
| isa<ConstantExpr>(RHS.getNotConstant())) |
| return markOverdefined(); |
| return false; |
| } |
| if (isConstant()) { |
| if (getConstant() == RHS.getNotConstant() || |
| isa<ConstantExpr>(RHS.getNotConstant()) || |
| isa<ConstantExpr>(getConstant())) |
| return markOverdefined(); |
| return markNotConstant(RHS.getNotConstant()); |
| } |
| |
| assert(isUndefined() && "Unexpected lattice"); |
| return markNotConstant(RHS.getNotConstant()); |
| } |
| |
| if (RHS.isConstantRange()) { |
| if (isConstantRange()) { |
| ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); |
| if (NewR.isFullSet()) |
| return markOverdefined(); |
| else |
| return markConstantRange(NewR); |
| } |
| |
| assert(isUndefined() && "Unexpected lattice"); |
| return markConstantRange(RHS.getConstantRange()); |
| } |
| |
| // RHS must be a constant, we must be undef, constant, or notconstant. |
| assert(!isConstantRange() && |
| "Constant and ConstantRange cannot be merged."); |
| |
| if (isUndefined()) |
| return markConstant(RHS.getConstant()); |
| |
| if (isConstant()) { |
| if (getConstant() != RHS.getConstant()) |
| return markOverdefined(); |
| return false; |
| } |
| |
| // If we are known "!=4" and RHS is "==5", stay at "!=4". |
| if (getNotConstant() == RHS.getConstant() || |
| isa<ConstantExpr>(getNotConstant()) || |
| isa<ConstantExpr>(RHS.getConstant())) |
| return markOverdefined(); |
| return false; |
| } |
| |
| }; |
| |
| } // end anonymous namespace. |
| |
| namespace llvm { |
| raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { |
| if (Val.isUndefined()) |
| return OS << "undefined"; |
| if (Val.isOverdefined()) |
| return OS << "overdefined"; |
| |
| if (Val.isNotConstant()) |
| return OS << "notconstant<" << *Val.getNotConstant() << '>'; |
| else if (Val.isConstantRange()) |
| return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " |
| << Val.getConstantRange().getUpper() << '>'; |
| return OS << "constant<" << *Val.getConstant() << '>'; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfoCache Decl |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which |
| /// maintains information about queries across the clients' queries. |
| class LazyValueInfoCache { |
| public: |
| /// BlockCacheEntryTy - This is a computed lattice value at the end of the |
| /// specified basic block for a Value* that depends on context. |
| typedef std::pair<AssertingVH<BasicBlock>, LVILatticeVal> BlockCacheEntryTy; |
| |
| /// ValueCacheEntryTy - This is all of the cached block information for |
| /// exactly one Value*. The entries are sorted by the BasicBlock* of the |
| /// entries, allowing us to do a lookup with a binary search. |
| typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy; |
| |
| private: |
| /// LVIValueHandle - A callback value handle update the cache when |
| /// values are erased. |
| struct LVIValueHandle : public CallbackVH { |
| LazyValueInfoCache *Parent; |
| |
| LVIValueHandle(Value *V, LazyValueInfoCache *P) |
| : CallbackVH(V), Parent(P) { } |
| |
| void deleted(); |
| void allUsesReplacedWith(Value* V) { |
| deleted(); |
| } |
| |
| LVIValueHandle &operator=(Value *V) { |
| return *this = LVIValueHandle(V, Parent); |
| } |
| }; |
| |
| /// ValueCache - This is all of the cached information for all values, |
| /// mapped from Value* to key information. |
| std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache; |
| |
| /// OverDefinedCache - This tracks, on a per-block basis, the set of |
| /// values that are over-defined at the end of that block. This is required |
| /// for cache updating. |
| std::set<std::pair<AssertingVH<BasicBlock>, Value*> > OverDefinedCache; |
| |
| public: |
| |
| /// getValueInBlock - This is the query interface to determine the lattice |
| /// value for the specified Value* at the end of the specified block. |
| LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); |
| |
| /// getValueOnEdge - This is the query interface to determine the lattice |
| /// value for the specified Value* that is true on the specified edge. |
| LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); |
| |
| /// threadEdge - This is the update interface to inform the cache that an |
| /// edge from PredBB to OldSucc has been threaded to be from PredBB to |
| /// NewSucc. |
| void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); |
| |
| /// eraseBlock - This is part of the update interface to inform the cache |
| /// that a block has been deleted. |
| void eraseBlock(BasicBlock *BB); |
| |
| /// clear - Empty the cache. |
| void clear() { |
| ValueCache.clear(); |
| OverDefinedCache.clear(); |
| } |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // LVIQuery Impl |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// LVIQuery - This is a transient object that exists while a query is |
| /// being performed. |
| /// |
| /// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids |
| /// reallocation of the densemap on every query. |
| class LVIQuery { |
| typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy; |
| typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy; |
| |
| /// This is the current value being queried for. |
| Value *Val; |
| |
| /// This is a pointer to the owning cache, for recursive queries. |
| LazyValueInfoCache &Parent; |
| |
| /// This is all of the cached information about this value. |
| ValueCacheEntryTy &Cache; |
| |
| /// This tracks, for each block, what values are overdefined. |
| std::set<std::pair<AssertingVH<BasicBlock>, Value*> > &OverDefinedCache; |
| |
| /// NewBlocks - This is a mapping of the new BasicBlocks which have been |
| /// added to cache but that are not in sorted order. |
| DenseSet<BasicBlock*> NewBlockInfo; |
| public: |
| |
| LVIQuery(Value *V, LazyValueInfoCache &P, |
| ValueCacheEntryTy &VC, |
| std::set<std::pair<AssertingVH<BasicBlock>, Value*> > &ODC) |
| : Val(V), Parent(P), Cache(VC), OverDefinedCache(ODC) { |
| } |
| |
| ~LVIQuery() { |
| // When the query is done, insert the newly discovered facts into the |
| // cache in sorted order. |
| if (NewBlockInfo.empty()) return; |
| |
| for (DenseSet<BasicBlock*>::iterator I = NewBlockInfo.begin(), |
| E = NewBlockInfo.end(); I != E; ++I) { |
| if (Cache[*I].isOverdefined()) |
| OverDefinedCache.insert(std::make_pair(*I, Val)); |
| } |
| } |
| |
| LVILatticeVal getBlockValue(BasicBlock *BB); |
| LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB); |
| |
| private: |
| LVILatticeVal getCachedEntryForBlock(BasicBlock *BB); |
| }; |
| } // end anonymous namespace |
| |
| void LazyValueInfoCache::LVIValueHandle::deleted() { |
| for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator |
| I = Parent->OverDefinedCache.begin(), |
| E = Parent->OverDefinedCache.end(); |
| I != E; ) { |
| std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator tmp = I; |
| ++I; |
| if (tmp->second == getValPtr()) |
| Parent->OverDefinedCache.erase(tmp); |
| } |
| |
| // This erasure deallocates *this, so it MUST happen after we're done |
| // using any and all members of *this. |
| Parent->ValueCache.erase(*this); |
| } |
| |
| void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { |
| for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator |
| I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ) { |
| std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator tmp = I; |
| ++I; |
| if (tmp->first == BB) |
| OverDefinedCache.erase(tmp); |
| } |
| |
| for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator |
| I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) |
| I->second.erase(BB); |
| } |
| |
| /// getCachedEntryForBlock - See if we already have a value for this block. If |
| /// so, return it, otherwise create a new entry in the Cache map to use. |
| LVILatticeVal LVIQuery::getCachedEntryForBlock(BasicBlock *BB) { |
| NewBlockInfo.insert(BB); |
| return Cache[BB]; |
| } |
| |
| LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) { |
| // See if we already have a value for this block. |
| LVILatticeVal BBLV = getCachedEntryForBlock(BB); |
| |
| // If we've already computed this block's value, return it. |
| if (!BBLV.isUndefined()) { |
| DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); |
| return BBLV; |
| } |
| |
| // Otherwise, this is the first time we're seeing this block. Reset the |
| // lattice value to overdefined, so that cycles will terminate and be |
| // conservatively correct. |
| BBLV.markOverdefined(); |
| Cache[BB] = BBLV; |
| |
| // If V is live into BB, see if our predecessors know anything about it. |
| Instruction *BBI = dyn_cast<Instruction>(Val); |
| if (BBI == 0 || BBI->getParent() != BB) { |
| LVILatticeVal Result; // Start Undefined. |
| unsigned NumPreds = 0; |
| |
| // Loop over all of our predecessors, merging what we know from them into |
| // result. |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| Result.mergeIn(getEdgeValue(*PI, BB)); |
| |
| // If we hit overdefined, exit early. The BlockVals entry is already set |
| // to overdefined. |
| if (Result.isOverdefined()) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because of pred.\n"); |
| return Result; |
| } |
| ++NumPreds; |
| } |
| |
| // If this is the entry block, we must be asking about an argument. The |
| // value is overdefined. |
| if (NumPreds == 0 && BB == &BB->getParent()->front()) { |
| assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); |
| Result.markOverdefined(); |
| return Result; |
| } |
| |
| // Return the merged value, which is more precise than 'overdefined'. |
| assert(!Result.isOverdefined()); |
| return Cache[BB] = Result; |
| } |
| |
| // If this value is defined by an instruction in this block, we have to |
| // process it here somehow or return overdefined. |
| if (PHINode *PN = dyn_cast<PHINode>(BBI)) { |
| LVILatticeVal Result; // Start Undefined. |
| |
| // Loop over all of our predecessors, merging what we know from them into |
| // result. |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| Value* PhiVal = PN->getIncomingValueForBlock(*PI); |
| Result.mergeIn(Parent.getValueOnEdge(PhiVal, *PI, BB)); |
| |
| // If we hit overdefined, exit early. The BlockVals entry is already set |
| // to overdefined. |
| if (Result.isOverdefined()) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because of pred.\n"); |
| return Result; |
| } |
| } |
| |
| // Return the merged value, which is more precise than 'overdefined'. |
| assert(!Result.isOverdefined()); |
| return Cache[BB] = Result; |
| } |
| |
| assert(Cache[BB].isOverdefined() && "Recursive query changed our cache?"); |
| |
| // We can only analyze the definitions of certain classes of instructions |
| // (integral binops and casts at the moment), so bail if this isn't one. |
| LVILatticeVal Result; |
| if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) || |
| !BBI->getType()->isIntegerTy()) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because inst def found.\n"); |
| Result.markOverdefined(); |
| return Result; |
| } |
| |
| // FIXME: We're currently limited to binops with a constant RHS. This should |
| // be improved. |
| BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI); |
| if (BO && !isa<ConstantInt>(BO->getOperand(1))) { |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because inst def found.\n"); |
| |
| Result.markOverdefined(); |
| return Result; |
| } |
| |
| // Figure out the range of the LHS. If that fails, bail. |
| LVILatticeVal LHSVal = Parent.getValueInBlock(BBI->getOperand(0), BB); |
| if (!LHSVal.isConstantRange()) { |
| Result.markOverdefined(); |
| return Result; |
| } |
| |
| ConstantInt *RHS = 0; |
| ConstantRange LHSRange = LHSVal.getConstantRange(); |
| ConstantRange RHSRange(1); |
| const IntegerType *ResultTy = cast<IntegerType>(BBI->getType()); |
| if (isa<BinaryOperator>(BBI)) { |
| RHS = cast<ConstantInt>(BBI->getOperand(1)); |
| RHSRange = ConstantRange(RHS->getValue(), RHS->getValue()+1); |
| } |
| |
| // NOTE: We're currently limited by the set of operations that ConstantRange |
| // can evaluate symbolically. Enhancing that set will allows us to analyze |
| // more definitions. |
| switch (BBI->getOpcode()) { |
| case Instruction::Add: |
| Result.markConstantRange(LHSRange.add(RHSRange)); |
| break; |
| case Instruction::Sub: |
| Result.markConstantRange(LHSRange.sub(RHSRange)); |
| break; |
| case Instruction::Mul: |
| Result.markConstantRange(LHSRange.multiply(RHSRange)); |
| break; |
| case Instruction::UDiv: |
| Result.markConstantRange(LHSRange.udiv(RHSRange)); |
| break; |
| case Instruction::Shl: |
| Result.markConstantRange(LHSRange.shl(RHSRange)); |
| break; |
| case Instruction::LShr: |
| Result.markConstantRange(LHSRange.lshr(RHSRange)); |
| break; |
| case Instruction::Trunc: |
| Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); |
| break; |
| case Instruction::SExt: |
| Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); |
| break; |
| case Instruction::ZExt: |
| Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); |
| break; |
| case Instruction::BitCast: |
| Result.markConstantRange(LHSRange); |
| break; |
| |
| // Unhandled instructions are overdefined. |
| default: |
| DEBUG(dbgs() << " compute BB '" << BB->getName() |
| << "' - overdefined because inst def found.\n"); |
| Result.markOverdefined(); |
| break; |
| } |
| |
| return Cache[BB] = Result; |
| } |
| |
| |
| /// getEdgeValue - This method attempts to infer more complex |
| LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) { |
| // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we |
| // know that v != 0. |
| if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { |
| // If this is a conditional branch and only one successor goes to BBTo, then |
| // we maybe able to infer something from the condition. |
| if (BI->isConditional() && |
| BI->getSuccessor(0) != BI->getSuccessor(1)) { |
| bool isTrueDest = BI->getSuccessor(0) == BBTo; |
| assert(BI->getSuccessor(!isTrueDest) == BBTo && |
| "BBTo isn't a successor of BBFrom"); |
| |
| // If V is the condition of the branch itself, then we know exactly what |
| // it is. |
| if (BI->getCondition() == Val) |
| return LVILatticeVal::get(ConstantInt::get( |
| Type::getInt1Ty(Val->getContext()), isTrueDest)); |
| |
| // If the condition of the branch is an equality comparison, we may be |
| // able to infer the value. |
| ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()); |
| if (ICI && ICI->getOperand(0) == Val && |
| isa<Constant>(ICI->getOperand(1))) { |
| if (ICI->isEquality()) { |
| // We know that V has the RHS constant if this is a true SETEQ or |
| // false SETNE. |
| if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) |
| return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); |
| return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1))); |
| } |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) { |
| // Calculate the range of values that would satisfy the comparison. |
| ConstantRange CmpRange(CI->getValue(), CI->getValue()+1); |
| ConstantRange TrueValues = |
| ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange); |
| |
| // If we're interested in the false dest, invert the condition. |
| if (!isTrueDest) TrueValues = TrueValues.inverse(); |
| |
| // Figure out the possible values of the query BEFORE this branch. |
| LVILatticeVal InBlock = getBlockValue(BBFrom); |
| if (!InBlock.isConstantRange()) return InBlock; |
| |
| // Find all potential values that satisfy both the input and output |
| // conditions. |
| ConstantRange PossibleValues = |
| TrueValues.intersectWith(InBlock.getConstantRange()); |
| |
| return LVILatticeVal::getRange(PossibleValues); |
| } |
| } |
| } |
| } |
| |
| // If the edge was formed by a switch on the value, then we may know exactly |
| // what it is. |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { |
| // If BBTo is the default destination of the switch, we don't know anything. |
| // Given a more powerful range analysis we could know stuff. |
| if (SI->getCondition() == Val && SI->getDefaultDest() != BBTo) { |
| // We only know something if there is exactly one value that goes from |
| // BBFrom to BBTo. |
| unsigned NumEdges = 0; |
| ConstantInt *EdgeVal = 0; |
| for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { |
| if (SI->getSuccessor(i) != BBTo) continue; |
| if (NumEdges++) break; |
| EdgeVal = SI->getCaseValue(i); |
| } |
| assert(EdgeVal && "Missing successor?"); |
| if (NumEdges == 1) |
| return LVILatticeVal::get(EdgeVal); |
| } |
| } |
| |
| // Otherwise see if the value is known in the block. |
| return getBlockValue(BBFrom); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfoCache Impl |
| //===----------------------------------------------------------------------===// |
| |
| LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { |
| // If already a constant, there is nothing to compute. |
| if (Constant *VC = dyn_cast<Constant>(V)) |
| return LVILatticeVal::get(VC); |
| |
| DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" |
| << BB->getName() << "'\n"); |
| |
| LVILatticeVal Result = LVIQuery(V, *this, |
| ValueCache[LVIValueHandle(V, this)], |
| OverDefinedCache).getBlockValue(BB); |
| |
| DEBUG(dbgs() << " Result = " << Result << "\n"); |
| return Result; |
| } |
| |
| LVILatticeVal LazyValueInfoCache:: |
| getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { |
| // If already a constant, there is nothing to compute. |
| if (Constant *VC = dyn_cast<Constant>(V)) |
| return LVILatticeVal::get(VC); |
| |
| DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" |
| << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); |
| |
| LVILatticeVal Result = |
| LVIQuery(V, *this, ValueCache[LVIValueHandle(V, this)], |
| OverDefinedCache).getEdgeValue(FromBB, ToBB); |
| |
| DEBUG(dbgs() << " Result = " << Result << "\n"); |
| |
| return Result; |
| } |
| |
| void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
| BasicBlock *NewSucc) { |
| // When an edge in the graph has been threaded, values that we could not |
| // determine a value for before (i.e. were marked overdefined) may be possible |
| // to solve now. We do NOT try to proactively update these values. Instead, |
| // we clear their entries from the cache, and allow lazy updating to recompute |
| // them when needed. |
| |
| // The updating process is fairly simple: we need to dropped cached info |
| // for all values that were marked overdefined in OldSucc, and for those same |
| // values in any successor of OldSucc (except NewSucc) in which they were |
| // also marked overdefined. |
| std::vector<BasicBlock*> worklist; |
| worklist.push_back(OldSucc); |
| |
| DenseSet<Value*> ClearSet; |
| for (std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator |
| I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ++I) { |
| if (I->first == OldSucc) |
| ClearSet.insert(I->second); |
| } |
| |
| // Use a worklist to perform a depth-first search of OldSucc's successors. |
| // NOTE: We do not need a visited list since any blocks we have already |
| // visited will have had their overdefined markers cleared already, and we |
| // thus won't loop to their successors. |
| while (!worklist.empty()) { |
| BasicBlock *ToUpdate = worklist.back(); |
| worklist.pop_back(); |
| |
| // Skip blocks only accessible through NewSucc. |
| if (ToUpdate == NewSucc) continue; |
| |
| bool changed = false; |
| for (DenseSet<Value*>::iterator I = ClearSet.begin(),E = ClearSet.end(); |
| I != E; ++I) { |
| // If a value was marked overdefined in OldSucc, and is here too... |
| std::set<std::pair<AssertingVH<BasicBlock>, Value*> >::iterator OI = |
| OverDefinedCache.find(std::make_pair(ToUpdate, *I)); |
| if (OI == OverDefinedCache.end()) continue; |
| |
| // Remove it from the caches. |
| ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; |
| ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); |
| |
| assert(CI != Entry.end() && "Couldn't find entry to update?"); |
| Entry.erase(CI); |
| OverDefinedCache.erase(OI); |
| |
| // If we removed anything, then we potentially need to update |
| // blocks successors too. |
| changed = true; |
| } |
| |
| if (!changed) continue; |
| |
| worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfo Impl |
| //===----------------------------------------------------------------------===// |
| |
| /// getCache - This lazily constructs the LazyValueInfoCache. |
| static LazyValueInfoCache &getCache(void *&PImpl) { |
| if (!PImpl) |
| PImpl = new LazyValueInfoCache(); |
| return *static_cast<LazyValueInfoCache*>(PImpl); |
| } |
| |
| bool LazyValueInfo::runOnFunction(Function &F) { |
| if (PImpl) |
| getCache(PImpl).clear(); |
| |
| TD = getAnalysisIfAvailable<TargetData>(); |
| // Fully lazy. |
| return false; |
| } |
| |
| void LazyValueInfo::releaseMemory() { |
| // If the cache was allocated, free it. |
| if (PImpl) { |
| delete &getCache(PImpl); |
| PImpl = 0; |
| } |
| } |
| |
| Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { |
| LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); |
| |
| if (Result.isConstant()) |
| return Result.getConstant(); |
| return 0; |
| } |
| |
| /// getConstantOnEdge - Determine whether the specified value is known to be a |
| /// constant on the specified edge. Return null if not. |
| Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, |
| BasicBlock *ToBB) { |
| LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); |
| |
| if (Result.isConstant()) |
| return Result.getConstant(); |
| else if (Result.isConstantRange()) { |
| ConstantRange CR = Result.getConstantRange(); |
| if (const APInt *SingleVal = CR.getSingleElement()) |
| return ConstantInt::get(V->getContext(), *SingleVal); |
| } |
| return 0; |
| } |
| |
| /// getPredicateOnEdge - Determine whether the specified value comparison |
| /// with a constant is known to be true or false on the specified CFG edge. |
| /// Pred is a CmpInst predicate. |
| LazyValueInfo::Tristate |
| LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, |
| BasicBlock *FromBB, BasicBlock *ToBB) { |
| LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); |
| |
| // If we know the value is a constant, evaluate the conditional. |
| Constant *Res = 0; |
| if (Result.isConstant()) { |
| Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD); |
| if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res)) |
| return ResCI->isZero() ? False : True; |
| return Unknown; |
| } |
| |
| if (Result.isConstantRange()) { |
| ConstantInt *CI = cast<ConstantInt>(C); |
| ConstantRange CR = Result.getConstantRange(); |
| if (Pred == ICmpInst::ICMP_EQ) { |
| if (!CR.contains(CI->getValue())) |
| return False; |
| |
| if (CR.isSingleElement() && CR.contains(CI->getValue())) |
| return True; |
| } else if (Pred == ICmpInst::ICMP_NE) { |
| if (!CR.contains(CI->getValue())) |
| return True; |
| |
| if (CR.isSingleElement() && CR.contains(CI->getValue())) |
| return False; |
| } |
| |
| // Handle more complex predicates. |
| ConstantRange RHS(CI->getValue(), CI->getValue()+1); |
| ConstantRange TrueValues = ConstantRange::makeICmpRegion(Pred, RHS); |
| if (CR.intersectWith(TrueValues).isEmptySet()) |
| return False; |
| else if (TrueValues.contains(CR)) |
| return True; |
| |
| return Unknown; |
| } |
| |
| if (Result.isNotConstant()) { |
| // If this is an equality comparison, we can try to fold it knowing that |
| // "V != C1". |
| if (Pred == ICmpInst::ICMP_EQ) { |
| // !C1 == C -> false iff C1 == C. |
| Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
| Result.getNotConstant(), C, TD); |
| if (Res->isNullValue()) |
| return False; |
| } else if (Pred == ICmpInst::ICMP_NE) { |
| // !C1 != C -> true iff C1 == C. |
| Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
| Result.getNotConstant(), C, TD); |
| if (Res->isNullValue()) |
| return True; |
| } |
| return Unknown; |
| } |
| |
| return Unknown; |
| } |
| |
| void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
| BasicBlock* NewSucc) { |
| if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); |
| } |
| |
| void LazyValueInfo::eraseBlock(BasicBlock *BB) { |
| if (PImpl) getCache(PImpl).eraseBlock(BB); |
| } |