| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the common interface used by the various execution engine |
| // subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/ModuleProvider.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Config/alloca.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/System/DynamicLibrary.h" |
| #include "llvm/System/Host.h" |
| #include "llvm/Target/TargetData.h" |
| #include <cmath> |
| #include <cstring> |
| using namespace llvm; |
| |
| STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); |
| STATISTIC(NumGlobals , "Number of global vars initialized"); |
| |
| ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, |
| std::string *ErrorStr, |
| JITMemoryManager *JMM, |
| CodeGenOpt::Level OptLevel, |
| bool GVsWithCode) = 0; |
| ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, |
| std::string *ErrorStr) = 0; |
| ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; |
| |
| |
| ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { |
| LazyCompilationDisabled = false; |
| GVCompilationDisabled = false; |
| SymbolSearchingDisabled = false; |
| DlsymStubsEnabled = false; |
| Modules.push_back(P); |
| assert(P && "ModuleProvider is null?"); |
| } |
| |
| ExecutionEngine::~ExecutionEngine() { |
| clearAllGlobalMappings(); |
| for (unsigned i = 0, e = Modules.size(); i != e; ++i) |
| delete Modules[i]; |
| } |
| |
| char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { |
| const Type *ElTy = GV->getType()->getElementType(); |
| size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); |
| return new char[GVSize]; |
| } |
| |
| /// removeModuleProvider - Remove a ModuleProvider from the list of modules. |
| /// Relases the Module from the ModuleProvider, materializing it in the |
| /// process, and returns the materialized Module. |
| Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, |
| std::string *ErrInfo) { |
| for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), |
| E = Modules.end(); I != E; ++I) { |
| ModuleProvider *MP = *I; |
| if (MP == P) { |
| Modules.erase(I); |
| clearGlobalMappingsFromModule(MP->getModule()); |
| return MP->releaseModule(ErrInfo); |
| } |
| } |
| return NULL; |
| } |
| |
| /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, |
| /// and deletes the ModuleProvider and owned Module. Avoids materializing |
| /// the underlying module. |
| void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, |
| std::string *ErrInfo) { |
| for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), |
| E = Modules.end(); I != E; ++I) { |
| ModuleProvider *MP = *I; |
| if (MP == P) { |
| Modules.erase(I); |
| clearGlobalMappingsFromModule(MP->getModule()); |
| delete MP; |
| return; |
| } |
| } |
| } |
| |
| /// FindFunctionNamed - Search all of the active modules to find the one that |
| /// defines FnName. This is very slow operation and shouldn't be used for |
| /// general code. |
| Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { |
| for (unsigned i = 0, e = Modules.size(); i != e; ++i) { |
| if (Function *F = Modules[i]->getModule()->getFunction(FnName)) |
| return F; |
| } |
| return 0; |
| } |
| |
| |
| /// addGlobalMapping - Tell the execution engine that the specified global is |
| /// at the specified location. This is used internally as functions are JIT'd |
| /// and as global variables are laid out in memory. It can and should also be |
| /// used by clients of the EE that want to have an LLVM global overlay |
| /// existing data in memory. |
| void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { |
| MutexGuard locked(lock); |
| |
| DEBUG(errs() << "JIT: Map \'" << GV->getName() |
| << "\' to [" << Addr << "]\n";); |
| void *&CurVal = state.getGlobalAddressMap(locked)[GV]; |
| assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); |
| CurVal = Addr; |
| |
| // If we are using the reverse mapping, add it too |
| if (!state.getGlobalAddressReverseMap(locked).empty()) { |
| AssertingVH<const GlobalValue> &V = |
| state.getGlobalAddressReverseMap(locked)[Addr]; |
| assert((V == 0 || GV == 0) && "GlobalMapping already established!"); |
| V = GV; |
| } |
| } |
| |
| /// clearAllGlobalMappings - Clear all global mappings and start over again |
| /// use in dynamic compilation scenarios when you want to move globals |
| void ExecutionEngine::clearAllGlobalMappings() { |
| MutexGuard locked(lock); |
| |
| state.getGlobalAddressMap(locked).clear(); |
| state.getGlobalAddressReverseMap(locked).clear(); |
| } |
| |
| /// clearGlobalMappingsFromModule - Clear all global mappings that came from a |
| /// particular module, because it has been removed from the JIT. |
| void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { |
| MutexGuard locked(lock); |
| |
| for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { |
| state.getGlobalAddressMap(locked).erase(&*FI); |
| state.getGlobalAddressReverseMap(locked).erase(&*FI); |
| } |
| for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); |
| GI != GE; ++GI) { |
| state.getGlobalAddressMap(locked).erase(&*GI); |
| state.getGlobalAddressReverseMap(locked).erase(&*GI); |
| } |
| } |
| |
| /// updateGlobalMapping - Replace an existing mapping for GV with a new |
| /// address. This updates both maps as required. If "Addr" is null, the |
| /// entry for the global is removed from the mappings. |
| void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { |
| MutexGuard locked(lock); |
| |
| std::map<AssertingVH<const GlobalValue>, void *> &Map = |
| state.getGlobalAddressMap(locked); |
| |
| // Deleting from the mapping? |
| if (Addr == 0) { |
| std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV); |
| void *OldVal; |
| if (I == Map.end()) |
| OldVal = 0; |
| else { |
| OldVal = I->second; |
| Map.erase(I); |
| } |
| |
| if (!state.getGlobalAddressReverseMap(locked).empty()) |
| state.getGlobalAddressReverseMap(locked).erase(OldVal); |
| return OldVal; |
| } |
| |
| void *&CurVal = Map[GV]; |
| void *OldVal = CurVal; |
| |
| if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) |
| state.getGlobalAddressReverseMap(locked).erase(CurVal); |
| CurVal = Addr; |
| |
| // If we are using the reverse mapping, add it too |
| if (!state.getGlobalAddressReverseMap(locked).empty()) { |
| AssertingVH<const GlobalValue> &V = |
| state.getGlobalAddressReverseMap(locked)[Addr]; |
| assert((V == 0 || GV == 0) && "GlobalMapping already established!"); |
| V = GV; |
| } |
| return OldVal; |
| } |
| |
| /// getPointerToGlobalIfAvailable - This returns the address of the specified |
| /// global value if it is has already been codegen'd, otherwise it returns null. |
| /// |
| void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { |
| MutexGuard locked(lock); |
| |
| std::map<AssertingVH<const GlobalValue>, void*>::iterator I = |
| state.getGlobalAddressMap(locked).find(GV); |
| return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; |
| } |
| |
| /// getGlobalValueAtAddress - Return the LLVM global value object that starts |
| /// at the specified address. |
| /// |
| const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { |
| MutexGuard locked(lock); |
| |
| // If we haven't computed the reverse mapping yet, do so first. |
| if (state.getGlobalAddressReverseMap(locked).empty()) { |
| for (std::map<AssertingVH<const GlobalValue>, void *>::iterator |
| I = state.getGlobalAddressMap(locked).begin(), |
| E = state.getGlobalAddressMap(locked).end(); I != E; ++I) |
| state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, |
| I->first)); |
| } |
| |
| std::map<void *, AssertingVH<const GlobalValue> >::iterator I = |
| state.getGlobalAddressReverseMap(locked).find(Addr); |
| return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; |
| } |
| |
| // CreateArgv - Turn a vector of strings into a nice argv style array of |
| // pointers to null terminated strings. |
| // |
| static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, |
| const std::vector<std::string> &InputArgv) { |
| unsigned PtrSize = EE->getTargetData()->getPointerSize(); |
| char *Result = new char[(InputArgv.size()+1)*PtrSize]; |
| |
| DOUT << "JIT: ARGV = " << (void*)Result << "\n"; |
| const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C)); |
| |
| for (unsigned i = 0; i != InputArgv.size(); ++i) { |
| unsigned Size = InputArgv[i].size()+1; |
| char *Dest = new char[Size]; |
| DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"; |
| |
| std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); |
| Dest[Size-1] = 0; |
| |
| // Endian safe: Result[i] = (PointerTy)Dest; |
| EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), |
| SBytePtr); |
| } |
| |
| // Null terminate it |
| EE->StoreValueToMemory(PTOGV(0), |
| (GenericValue*)(Result+InputArgv.size()*PtrSize), |
| SBytePtr); |
| return Result; |
| } |
| |
| |
| /// runStaticConstructorsDestructors - This method is used to execute all of |
| /// the static constructors or destructors for a module, depending on the |
| /// value of isDtors. |
| void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { |
| const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; |
| |
| // Execute global ctors/dtors for each module in the program. |
| |
| GlobalVariable *GV = module->getNamedGlobal(Name); |
| |
| // If this global has internal linkage, or if it has a use, then it must be |
| // an old-style (llvmgcc3) static ctor with __main linked in and in use. If |
| // this is the case, don't execute any of the global ctors, __main will do |
| // it. |
| if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; |
| |
| // Should be an array of '{ int, void ()* }' structs. The first value is |
| // the init priority, which we ignore. |
| ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); |
| if (!InitList) return; |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) |
| if (ConstantStruct *CS = |
| dyn_cast<ConstantStruct>(InitList->getOperand(i))) { |
| if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. |
| |
| Constant *FP = CS->getOperand(1); |
| if (FP->isNullValue()) |
| break; // Found a null terminator, exit. |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) |
| if (CE->isCast()) |
| FP = CE->getOperand(0); |
| if (Function *F = dyn_cast<Function>(FP)) { |
| // Execute the ctor/dtor function! |
| runFunction(F, std::vector<GenericValue>()); |
| } |
| } |
| } |
| |
| /// runStaticConstructorsDestructors - This method is used to execute all of |
| /// the static constructors or destructors for a program, depending on the |
| /// value of isDtors. |
| void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { |
| // Execute global ctors/dtors for each module in the program. |
| for (unsigned m = 0, e = Modules.size(); m != e; ++m) |
| runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); |
| } |
| |
| #ifndef NDEBUG |
| /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. |
| static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { |
| unsigned PtrSize = EE->getTargetData()->getPointerSize(); |
| for (unsigned i = 0; i < PtrSize; ++i) |
| if (*(i + (uint8_t*)Loc)) |
| return false; |
| return true; |
| } |
| #endif |
| |
| /// runFunctionAsMain - This is a helper function which wraps runFunction to |
| /// handle the common task of starting up main with the specified argc, argv, |
| /// and envp parameters. |
| int ExecutionEngine::runFunctionAsMain(Function *Fn, |
| const std::vector<std::string> &argv, |
| const char * const * envp) { |
| std::vector<GenericValue> GVArgs; |
| GenericValue GVArgc; |
| GVArgc.IntVal = APInt(32, argv.size()); |
| |
| // Check main() type |
| unsigned NumArgs = Fn->getFunctionType()->getNumParams(); |
| const FunctionType *FTy = Fn->getFunctionType(); |
| const Type* PPInt8Ty = |
| PointerType::getUnqual(PointerType::getUnqual( |
| Type::getInt8Ty(Fn->getContext()))); |
| switch (NumArgs) { |
| case 3: |
| if (FTy->getParamType(2) != PPInt8Ty) { |
| llvm_report_error("Invalid type for third argument of main() supplied"); |
| } |
| // FALLS THROUGH |
| case 2: |
| if (FTy->getParamType(1) != PPInt8Ty) { |
| llvm_report_error("Invalid type for second argument of main() supplied"); |
| } |
| // FALLS THROUGH |
| case 1: |
| if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { |
| llvm_report_error("Invalid type for first argument of main() supplied"); |
| } |
| // FALLS THROUGH |
| case 0: |
| if (!isa<IntegerType>(FTy->getReturnType()) && |
| FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { |
| llvm_report_error("Invalid return type of main() supplied"); |
| } |
| break; |
| default: |
| llvm_report_error("Invalid number of arguments of main() supplied"); |
| } |
| |
| if (NumArgs) { |
| GVArgs.push_back(GVArgc); // Arg #0 = argc. |
| if (NumArgs > 1) { |
| // Arg #1 = argv. |
| GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); |
| assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && |
| "argv[0] was null after CreateArgv"); |
| if (NumArgs > 2) { |
| std::vector<std::string> EnvVars; |
| for (unsigned i = 0; envp[i]; ++i) |
| EnvVars.push_back(envp[i]); |
| // Arg #2 = envp. |
| GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); |
| } |
| } |
| } |
| return runFunction(Fn, GVArgs).IntVal.getZExtValue(); |
| } |
| |
| /// If possible, create a JIT, unless the caller specifically requests an |
| /// Interpreter or there's an error. If even an Interpreter cannot be created, |
| /// NULL is returned. |
| /// |
| ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, |
| bool ForceInterpreter, |
| std::string *ErrorStr, |
| CodeGenOpt::Level OptLevel, |
| bool GVsWithCode) { |
| return EngineBuilder(MP) |
| .setEngineKind(ForceInterpreter |
| ? EngineKind::Interpreter |
| : EngineKind::JIT) |
| .setErrorStr(ErrorStr) |
| .setOptLevel(OptLevel) |
| .setAllocateGVsWithCode(GVsWithCode) |
| .create(); |
| } |
| |
| ExecutionEngine *ExecutionEngine::create(Module *M) { |
| return EngineBuilder(M).create(); |
| } |
| |
| /// EngineBuilder - Overloaded constructor that automatically creates an |
| /// ExistingModuleProvider for an existing module. |
| EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { |
| InitEngine(); |
| } |
| |
| ExecutionEngine *EngineBuilder::create() { |
| // Make sure we can resolve symbols in the program as well. The zero arg |
| // to the function tells DynamicLibrary to load the program, not a library. |
| if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) |
| return 0; |
| |
| // If the user specified a memory manager but didn't specify which engine to |
| // create, we assume they only want the JIT, and we fail if they only want |
| // the interpreter. |
| if (JMM) { |
| if (WhichEngine & EngineKind::JIT) { |
| WhichEngine = EngineKind::JIT; |
| } else { |
| *ErrorStr = "Cannot create an interpreter with a memory manager."; |
| } |
| } |
| |
| ExecutionEngine *EE = 0; |
| |
| // Unless the interpreter was explicitly selected or the JIT is not linked, |
| // try making a JIT. |
| if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) { |
| EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, |
| AllocateGVsWithCode); |
| } |
| |
| // If we can't make a JIT and we didn't request one specifically, try making |
| // an interpreter instead. |
| if (WhichEngine & EngineKind::Interpreter && EE == 0 && |
| ExecutionEngine::InterpCtor) { |
| EE = ExecutionEngine::InterpCtor(MP, ErrorStr); |
| } |
| |
| return EE; |
| } |
| |
| /// getPointerToGlobal - This returns the address of the specified global |
| /// value. This may involve code generation if it's a function. |
| /// |
| void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { |
| if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) |
| return getPointerToFunction(F); |
| |
| MutexGuard locked(lock); |
| void *p = state.getGlobalAddressMap(locked)[GV]; |
| if (p) |
| return p; |
| |
| // Global variable might have been added since interpreter started. |
| if (GlobalVariable *GVar = |
| const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) |
| EmitGlobalVariable(GVar); |
| else |
| llvm_unreachable("Global hasn't had an address allocated yet!"); |
| return state.getGlobalAddressMap(locked)[GV]; |
| } |
| |
| /// This function converts a Constant* into a GenericValue. The interesting |
| /// part is if C is a ConstantExpr. |
| /// @brief Get a GenericValue for a Constant* |
| GenericValue ExecutionEngine::getConstantValue(const Constant *C) { |
| // If its undefined, return the garbage. |
| if (isa<UndefValue>(C)) |
| return GenericValue(); |
| |
| // If the value is a ConstantExpr |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| Constant *Op0 = CE->getOperand(0); |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: { |
| // Compute the index |
| GenericValue Result = getConstantValue(Op0); |
| SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); |
| uint64_t Offset = |
| TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); |
| |
| char* tmp = (char*) Result.PointerVal; |
| Result = PTOGV(tmp + Offset); |
| return Result; |
| } |
| case Instruction::Trunc: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| GV.IntVal = GV.IntVal.trunc(BitWidth); |
| return GV; |
| } |
| case Instruction::ZExt: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| GV.IntVal = GV.IntVal.zext(BitWidth); |
| return GV; |
| } |
| case Instruction::SExt: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| GV.IntVal = GV.IntVal.sext(BitWidth); |
| return GV; |
| } |
| case Instruction::FPTrunc: { |
| // FIXME long double |
| GenericValue GV = getConstantValue(Op0); |
| GV.FloatVal = float(GV.DoubleVal); |
| return GV; |
| } |
| case Instruction::FPExt:{ |
| // FIXME long double |
| GenericValue GV = getConstantValue(Op0); |
| GV.DoubleVal = double(GV.FloatVal); |
| return GV; |
| } |
| case Instruction::UIToFP: { |
| GenericValue GV = getConstantValue(Op0); |
| if (CE->getType() == Type::getFloatTy(CE->getContext())) |
| GV.FloatVal = float(GV.IntVal.roundToDouble()); |
| else if (CE->getType() == Type::getDoubleTy(CE->getContext())) |
| GV.DoubleVal = GV.IntVal.roundToDouble(); |
| else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) { |
| const uint64_t zero[] = {0, 0}; |
| APFloat apf = APFloat(APInt(80, 2, zero)); |
| (void)apf.convertFromAPInt(GV.IntVal, |
| false, |
| APFloat::rmNearestTiesToEven); |
| GV.IntVal = apf.bitcastToAPInt(); |
| } |
| return GV; |
| } |
| case Instruction::SIToFP: { |
| GenericValue GV = getConstantValue(Op0); |
| if (CE->getType() == Type::getFloatTy(CE->getContext())) |
| GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); |
| else if (CE->getType() == Type::getDoubleTy(CE->getContext())) |
| GV.DoubleVal = GV.IntVal.signedRoundToDouble(); |
| else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) { |
| const uint64_t zero[] = { 0, 0}; |
| APFloat apf = APFloat(APInt(80, 2, zero)); |
| (void)apf.convertFromAPInt(GV.IntVal, |
| true, |
| APFloat::rmNearestTiesToEven); |
| GV.IntVal = apf.bitcastToAPInt(); |
| } |
| return GV; |
| } |
| case Instruction::FPToUI: // double->APInt conversion handles sign |
| case Instruction::FPToSI: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); |
| if (Op0->getType() == Type::getFloatTy(Op0->getContext())) |
| GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); |
| else if (Op0->getType() == Type::getDoubleTy(Op0->getContext())) |
| GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); |
| else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) { |
| APFloat apf = APFloat(GV.IntVal); |
| uint64_t v; |
| bool ignored; |
| (void)apf.convertToInteger(&v, BitWidth, |
| CE->getOpcode()==Instruction::FPToSI, |
| APFloat::rmTowardZero, &ignored); |
| GV.IntVal = v; // endian? |
| } |
| return GV; |
| } |
| case Instruction::PtrToInt: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t PtrWidth = TD->getPointerSizeInBits(); |
| GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); |
| return GV; |
| } |
| case Instruction::IntToPtr: { |
| GenericValue GV = getConstantValue(Op0); |
| uint32_t PtrWidth = TD->getPointerSizeInBits(); |
| if (PtrWidth != GV.IntVal.getBitWidth()) |
| GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); |
| assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); |
| GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); |
| return GV; |
| } |
| case Instruction::BitCast: { |
| GenericValue GV = getConstantValue(Op0); |
| const Type* DestTy = CE->getType(); |
| switch (Op0->getType()->getTypeID()) { |
| default: llvm_unreachable("Invalid bitcast operand"); |
| case Type::IntegerTyID: |
| assert(DestTy->isFloatingPoint() && "invalid bitcast"); |
| if (DestTy == Type::getFloatTy(Op0->getContext())) |
| GV.FloatVal = GV.IntVal.bitsToFloat(); |
| else if (DestTy == Type::getDoubleTy(DestTy->getContext())) |
| GV.DoubleVal = GV.IntVal.bitsToDouble(); |
| break; |
| case Type::FloatTyID: |
| assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && |
| "Invalid bitcast"); |
| GV.IntVal.floatToBits(GV.FloatVal); |
| break; |
| case Type::DoubleTyID: |
| assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && |
| "Invalid bitcast"); |
| GV.IntVal.doubleToBits(GV.DoubleVal); |
| break; |
| case Type::PointerTyID: |
| assert(isa<PointerType>(DestTy) && "Invalid bitcast"); |
| break; // getConstantValue(Op0) above already converted it |
| } |
| return GV; |
| } |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| GenericValue LHS = getConstantValue(Op0); |
| GenericValue RHS = getConstantValue(CE->getOperand(1)); |
| GenericValue GV; |
| switch (CE->getOperand(0)->getType()->getTypeID()) { |
| default: llvm_unreachable("Bad add type!"); |
| case Type::IntegerTyID: |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid integer opcode"); |
| case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; |
| case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; |
| case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; |
| case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; |
| case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; |
| case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; |
| case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; |
| case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; |
| case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; |
| case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; |
| } |
| break; |
| case Type::FloatTyID: |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid float opcode"); |
| case Instruction::FAdd: |
| GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; |
| case Instruction::FSub: |
| GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; |
| case Instruction::FMul: |
| GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; |
| case Instruction::FDiv: |
| GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; |
| case Instruction::FRem: |
| GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; |
| } |
| break; |
| case Type::DoubleTyID: |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid double opcode"); |
| case Instruction::FAdd: |
| GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; |
| case Instruction::FSub: |
| GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; |
| case Instruction::FMul: |
| GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; |
| case Instruction::FDiv: |
| GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; |
| case Instruction::FRem: |
| GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; |
| } |
| break; |
| case Type::X86_FP80TyID: |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: { |
| APFloat apfLHS = APFloat(LHS.IntVal); |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); |
| case Instruction::FAdd: |
| apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FSub: |
| apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FMul: |
| apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FDiv: |
| apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| case Instruction::FRem: |
| apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); |
| GV.IntVal = apfLHS.bitcastToAPInt(); |
| break; |
| } |
| } |
| break; |
| } |
| return GV; |
| } |
| default: |
| break; |
| } |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "ConstantExpr not handled: " << *CE; |
| llvm_report_error(Msg.str()); |
| } |
| |
| GenericValue Result; |
| switch (C->getType()->getTypeID()) { |
| case Type::FloatTyID: |
| Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); |
| break; |
| case Type::DoubleTyID: |
| Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); |
| break; |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| case Type::PPC_FP128TyID: |
| Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); |
| break; |
| case Type::IntegerTyID: |
| Result.IntVal = cast<ConstantInt>(C)->getValue(); |
| break; |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(C)) |
| Result.PointerVal = 0; |
| else if (const Function *F = dyn_cast<Function>(C)) |
| Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); |
| else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) |
| Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); |
| else |
| llvm_unreachable("Unknown constant pointer type!"); |
| break; |
| default: |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); |
| llvm_report_error(Msg.str()); |
| } |
| return Result; |
| } |
| |
| /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
| /// with the integer held in IntVal. |
| static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, |
| unsigned StoreBytes) { |
| assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); |
| uint8_t *Src = (uint8_t *)IntVal.getRawData(); |
| |
| if (sys::isLittleEndianHost()) |
| // Little-endian host - the source is ordered from LSB to MSB. Order the |
| // destination from LSB to MSB: Do a straight copy. |
| memcpy(Dst, Src, StoreBytes); |
| else { |
| // Big-endian host - the source is an array of 64 bit words ordered from |
| // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination |
| // from MSB to LSB: Reverse the word order, but not the bytes in a word. |
| while (StoreBytes > sizeof(uint64_t)) { |
| StoreBytes -= sizeof(uint64_t); |
| // May not be aligned so use memcpy. |
| memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); |
| Src += sizeof(uint64_t); |
| } |
| |
| memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); |
| } |
| } |
| |
| /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr |
| /// is the address of the memory at which to store Val, cast to GenericValue *. |
| /// It is not a pointer to a GenericValue containing the address at which to |
| /// store Val. |
| void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, |
| GenericValue *Ptr, const Type *Ty) { |
| const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); |
| |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: |
| StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); |
| break; |
| case Type::FloatTyID: |
| *((float*)Ptr) = Val.FloatVal; |
| break; |
| case Type::DoubleTyID: |
| *((double*)Ptr) = Val.DoubleVal; |
| break; |
| case Type::X86_FP80TyID: |
| memcpy(Ptr, Val.IntVal.getRawData(), 10); |
| break; |
| case Type::PointerTyID: |
| // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. |
| if (StoreBytes != sizeof(PointerTy)) |
| memset(Ptr, 0, StoreBytes); |
| |
| *((PointerTy*)Ptr) = Val.PointerVal; |
| break; |
| default: |
| cerr << "Cannot store value of type " << *Ty << "!\n"; |
| } |
| |
| if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) |
| // Host and target are different endian - reverse the stored bytes. |
| std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); |
| } |
| |
| /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
| /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
| static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { |
| assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); |
| uint8_t *Dst = (uint8_t *)IntVal.getRawData(); |
| |
| if (sys::isLittleEndianHost()) |
| // Little-endian host - the destination must be ordered from LSB to MSB. |
| // The source is ordered from LSB to MSB: Do a straight copy. |
| memcpy(Dst, Src, LoadBytes); |
| else { |
| // Big-endian - the destination is an array of 64 bit words ordered from |
| // LSW to MSW. Each word must be ordered from MSB to LSB. The source is |
| // ordered from MSB to LSB: Reverse the word order, but not the bytes in |
| // a word. |
| while (LoadBytes > sizeof(uint64_t)) { |
| LoadBytes -= sizeof(uint64_t); |
| // May not be aligned so use memcpy. |
| memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); |
| Dst += sizeof(uint64_t); |
| } |
| |
| memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); |
| } |
| } |
| |
| /// FIXME: document |
| /// |
| void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, |
| GenericValue *Ptr, |
| const Type *Ty) { |
| const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); |
| |
| if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) { |
| // Host and target are different endian - reverse copy the stored |
| // bytes into a buffer, and load from that. |
| uint8_t *Src = (uint8_t*)Ptr; |
| uint8_t *Buf = (uint8_t*)alloca(LoadBytes); |
| std::reverse_copy(Src, Src + LoadBytes, Buf); |
| Ptr = (GenericValue*)Buf; |
| } |
| |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: |
| // An APInt with all words initially zero. |
| Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); |
| LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); |
| break; |
| case Type::FloatTyID: |
| Result.FloatVal = *((float*)Ptr); |
| break; |
| case Type::DoubleTyID: |
| Result.DoubleVal = *((double*)Ptr); |
| break; |
| case Type::PointerTyID: |
| Result.PointerVal = *((PointerTy*)Ptr); |
| break; |
| case Type::X86_FP80TyID: { |
| // This is endian dependent, but it will only work on x86 anyway. |
| // FIXME: Will not trap if loading a signaling NaN. |
| uint64_t y[2]; |
| memcpy(y, Ptr, 10); |
| Result.IntVal = APInt(80, 2, y); |
| break; |
| } |
| default: |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Cannot load value of type " << *Ty << "!"; |
| llvm_report_error(Msg.str()); |
| } |
| } |
| |
| // InitializeMemory - Recursive function to apply a Constant value into the |
| // specified memory location... |
| // |
| void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { |
| DOUT << "JIT: Initializing " << Addr << " "; |
| DEBUG(Init->dump()); |
| if (isa<UndefValue>(Init)) { |
| return; |
| } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { |
| unsigned ElementSize = |
| getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); |
| for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); |
| return; |
| } else if (isa<ConstantAggregateZero>(Init)) { |
| memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); |
| return; |
| } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { |
| unsigned ElementSize = |
| getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); |
| for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); |
| return; |
| } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { |
| const StructLayout *SL = |
| getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); |
| for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); |
| return; |
| } else if (Init->getType()->isFirstClassType()) { |
| GenericValue Val = getConstantValue(Init); |
| StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); |
| return; |
| } |
| |
| cerr << "Bad Type: " << *Init->getType() << "\n"; |
| llvm_unreachable("Unknown constant type to initialize memory with!"); |
| } |
| |
| /// EmitGlobals - Emit all of the global variables to memory, storing their |
| /// addresses into GlobalAddress. This must make sure to copy the contents of |
| /// their initializers into the memory. |
| /// |
| void ExecutionEngine::emitGlobals() { |
| |
| // Loop over all of the global variables in the program, allocating the memory |
| // to hold them. If there is more than one module, do a prepass over globals |
| // to figure out how the different modules should link together. |
| // |
| std::map<std::pair<std::string, const Type*>, |
| const GlobalValue*> LinkedGlobalsMap; |
| |
| if (Modules.size() != 1) { |
| for (unsigned m = 0, e = Modules.size(); m != e; ++m) { |
| Module &M = *Modules[m]->getModule(); |
| for (Module::const_global_iterator I = M.global_begin(), |
| E = M.global_end(); I != E; ++I) { |
| const GlobalValue *GV = I; |
| if (GV->hasLocalLinkage() || GV->isDeclaration() || |
| GV->hasAppendingLinkage() || !GV->hasName()) |
| continue;// Ignore external globals and globals with internal linkage. |
| |
| const GlobalValue *&GVEntry = |
| LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; |
| |
| // If this is the first time we've seen this global, it is the canonical |
| // version. |
| if (!GVEntry) { |
| GVEntry = GV; |
| continue; |
| } |
| |
| // If the existing global is strong, never replace it. |
| if (GVEntry->hasExternalLinkage() || |
| GVEntry->hasDLLImportLinkage() || |
| GVEntry->hasDLLExportLinkage()) |
| continue; |
| |
| // Otherwise, we know it's linkonce/weak, replace it if this is a strong |
| // symbol. FIXME is this right for common? |
| if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) |
| GVEntry = GV; |
| } |
| } |
| } |
| |
| std::vector<const GlobalValue*> NonCanonicalGlobals; |
| for (unsigned m = 0, e = Modules.size(); m != e; ++m) { |
| Module &M = *Modules[m]->getModule(); |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| // In the multi-module case, see what this global maps to. |
| if (!LinkedGlobalsMap.empty()) { |
| if (const GlobalValue *GVEntry = |
| LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { |
| // If something else is the canonical global, ignore this one. |
| if (GVEntry != &*I) { |
| NonCanonicalGlobals.push_back(I); |
| continue; |
| } |
| } |
| } |
| |
| if (!I->isDeclaration()) { |
| addGlobalMapping(I, getMemoryForGV(I)); |
| } else { |
| // External variable reference. Try to use the dynamic loader to |
| // get a pointer to it. |
| if (void *SymAddr = |
| sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) |
| addGlobalMapping(I, SymAddr); |
| else { |
| llvm_report_error("Could not resolve external global address: " |
| +I->getName()); |
| } |
| } |
| } |
| |
| // If there are multiple modules, map the non-canonical globals to their |
| // canonical location. |
| if (!NonCanonicalGlobals.empty()) { |
| for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { |
| const GlobalValue *GV = NonCanonicalGlobals[i]; |
| const GlobalValue *CGV = |
| LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; |
| void *Ptr = getPointerToGlobalIfAvailable(CGV); |
| assert(Ptr && "Canonical global wasn't codegen'd!"); |
| addGlobalMapping(GV, Ptr); |
| } |
| } |
| |
| // Now that all of the globals are set up in memory, loop through them all |
| // and initialize their contents. |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| if (!I->isDeclaration()) { |
| if (!LinkedGlobalsMap.empty()) { |
| if (const GlobalValue *GVEntry = |
| LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) |
| if (GVEntry != &*I) // Not the canonical variable. |
| continue; |
| } |
| EmitGlobalVariable(I); |
| } |
| } |
| } |
| } |
| |
| // EmitGlobalVariable - This method emits the specified global variable to the |
| // address specified in GlobalAddresses, or allocates new memory if it's not |
| // already in the map. |
| void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { |
| void *GA = getPointerToGlobalIfAvailable(GV); |
| |
| if (GA == 0) { |
| // If it's not already specified, allocate memory for the global. |
| GA = getMemoryForGV(GV); |
| addGlobalMapping(GV, GA); |
| } |
| |
| // Don't initialize if it's thread local, let the client do it. |
| if (!GV->isThreadLocal()) |
| InitializeMemory(GV->getInitializer(), GA); |
| |
| const Type *ElTy = GV->getType()->getElementType(); |
| size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); |
| NumInitBytes += (unsigned)GVSize; |
| ++NumGlobals; |
| } |