| //===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is the (beginning) of an implementation of a loop dependence analysis |
| // framework, which is used to detect dependences in memory accesses in loops. |
| // |
| // Please note that this is work in progress and the interface is subject to |
| // change. |
| // |
| // TODO: adapt as implementation progresses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "lda" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopDependenceAnalysis.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace llvm; |
| |
| LoopPass *llvm::createLoopDependenceAnalysisPass() { |
| return new LoopDependenceAnalysis(); |
| } |
| |
| static RegisterPass<LoopDependenceAnalysis> |
| R("lda", "Loop Dependence Analysis", false, true); |
| char LoopDependenceAnalysis::ID = 0; |
| |
| //===----------------------------------------------------------------------===// |
| // Utility Functions |
| //===----------------------------------------------------------------------===// |
| |
| static inline bool IsMemRefInstr(const Value *V) { |
| const Instruction *I = dyn_cast<const Instruction>(V); |
| return I && (I->mayReadFromMemory() || I->mayWriteToMemory()); |
| } |
| |
| static void GetMemRefInstrs(const Loop *L, |
| SmallVectorImpl<Instruction*> &Memrefs) { |
| for (Loop::block_iterator b = L->block_begin(), be = L->block_end(); |
| b != be; ++b) |
| for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end(); |
| i != ie; ++i) |
| if (IsMemRefInstr(i)) |
| Memrefs.push_back(i); |
| } |
| |
| static bool IsLoadOrStoreInst(Value *I) { |
| return isa<LoadInst>(I) || isa<StoreInst>(I); |
| } |
| |
| static Value *GetPointerOperand(Value *I) { |
| if (LoadInst *i = dyn_cast<LoadInst>(I)) |
| return i->getPointerOperand(); |
| if (StoreInst *i = dyn_cast<StoreInst>(I)) |
| return i->getPointerOperand(); |
| llvm_unreachable("Value is no load or store instruction!"); |
| // Never reached. |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Dependence Testing |
| //===----------------------------------------------------------------------===// |
| |
| bool LoopDependenceAnalysis::isDependencePair(const Value *A, |
| const Value *B) const { |
| return IsMemRefInstr(A) && |
| IsMemRefInstr(B) && |
| (cast<const Instruction>(A)->mayWriteToMemory() || |
| cast<const Instruction>(B)->mayWriteToMemory()); |
| } |
| |
| bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *X, |
| Value *Y, |
| DependencePair *&P) { |
| void *insertPos = 0; |
| FoldingSetNodeID id; |
| id.AddPointer(X); |
| id.AddPointer(Y); |
| |
| P = Pairs.FindNodeOrInsertPos(id, insertPos); |
| if (P) return true; |
| |
| P = PairAllocator.Allocate<DependencePair>(); |
| new (P) DependencePair(id, X, Y); |
| Pairs.InsertNode(P, insertPos); |
| return false; |
| } |
| |
| void LoopDependenceAnalysis::analysePair(DependencePair *P) const { |
| DOUT << "Analysing:\n" << *P->A << "\n" << *P->B << "\n"; |
| |
| // Our default answer: we don't know anything, i.e. we failed to analyse this |
| // pair to get a more specific answer (dependent, independent). |
| P->Result = Unknown; |
| |
| // We only analyse loads and stores but no possible memory accesses by e.g. |
| // free, call, or invoke instructions. |
| if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) { |
| DOUT << "--> [?] no load/store\n"; |
| return; |
| } |
| |
| Value *aptr = GetPointerOperand(P->A); |
| Value *bptr = GetPointerOperand(P->B); |
| const Value *aobj = aptr->getUnderlyingObject(); |
| const Value *bobj = bptr->getUnderlyingObject(); |
| AliasAnalysis::AliasResult alias = AA->alias( |
| aobj, AA->getTargetData().getTypeStoreSize(aobj->getType()), |
| bobj, AA->getTargetData().getTypeStoreSize(bobj->getType())); |
| |
| // We can not analyse objects if we do not know about their aliasing. |
| if (alias == AliasAnalysis::MayAlias) { |
| DOUT << "---> [?] may alias\n"; |
| return; |
| } |
| |
| // If the objects noalias, they are distinct, accesses are independent. |
| if (alias == AliasAnalysis::NoAlias) { |
| DOUT << "---> [I] no alias\n"; |
| P->Result = Independent; |
| return; |
| } |
| |
| // TODO: the underlying objects MustAlias, test for dependence |
| |
| DOUT << "---> [?] cannot analyse\n"; |
| return; |
| } |
| |
| bool LoopDependenceAnalysis::depends(Value *A, Value *B) { |
| assert(isDependencePair(A, B) && "Values form no dependence pair!"); |
| |
| DependencePair *p; |
| if (!findOrInsertDependencePair(A, B, p)) { |
| // The pair is not cached, so analyse it. |
| analysePair(p); |
| } |
| return p->Result != Independent; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoopDependenceAnalysis Implementation |
| //===----------------------------------------------------------------------===// |
| |
| bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) { |
| this->L = L; |
| AA = &getAnalysis<AliasAnalysis>(); |
| SE = &getAnalysis<ScalarEvolution>(); |
| return false; |
| } |
| |
| void LoopDependenceAnalysis::releaseMemory() { |
| Pairs.clear(); |
| PairAllocator.Reset(); |
| } |
| |
| void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredTransitive<AliasAnalysis>(); |
| AU.addRequiredTransitive<ScalarEvolution>(); |
| } |
| |
| static void PrintLoopInfo(raw_ostream &OS, |
| LoopDependenceAnalysis *LDA, const Loop *L) { |
| if (!L->empty()) return; // ignore non-innermost loops |
| |
| SmallVector<Instruction*, 8> memrefs; |
| GetMemRefInstrs(L, memrefs); |
| |
| OS << "Loop at depth " << L->getLoopDepth() << ", header block: "; |
| WriteAsOperand(OS, L->getHeader(), false); |
| OS << "\n"; |
| |
| OS << " Load/store instructions: " << memrefs.size() << "\n"; |
| for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), |
| end = memrefs.end(); x != end; ++x) |
| OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n"; |
| |
| OS << " Pairwise dependence results:\n"; |
| for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), |
| end = memrefs.end(); x != end; ++x) |
| for (SmallVector<Instruction*, 8>::const_iterator y = x + 1; |
| y != end; ++y) |
| if (LDA->isDependencePair(*x, *y)) |
| OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin()) |
| << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent") |
| << "\n"; |
| } |
| |
| void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const { |
| // TODO: doc why const_cast is safe |
| PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L); |
| } |
| |
| void LoopDependenceAnalysis::print(std::ostream &OS, const Module *M) const { |
| raw_os_ostream os(OS); |
| print(os, M); |
| } |