| //===-- Execution.cpp - Implement code to simulate the program ------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file contains the actual instruction interpreter. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "interpreter" | 
 | #include "Interpreter.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/ParameterAttributes.h" | 
 | #include "llvm/CodeGen/IntrinsicLowering.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <cstring> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); | 
 | static Interpreter *TheEE = 0; | 
 |  | 
 | static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, | 
 |           cl::desc("make the interpreter print every volatile load and store")); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                     Various Helper Functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) { | 
 |   // Determine if the value is signed or not | 
 |   bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0; | 
 |   // If its signed, extend the sign bits | 
 |   if (isSigned) | 
 |     Val |= ~ITy->getBitMask(); | 
 |   return Val; | 
 | } | 
 |  | 
 | static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { | 
 |   SF.Values[V] = Val; | 
 | } | 
 |  | 
 | void Interpreter::initializeExecutionEngine() { | 
 |   TheEE = this; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                    Binary Instruction Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ | 
 |    case Type::TY##TyID: \ | 
 |      Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ | 
 |      break | 
 |  | 
 | #define IMPLEMENT_INTEGER_BINOP1(OP, TY) \ | 
 |    case Type::IntegerTyID: { \ | 
 |      Dest.IntVal = Src1.IntVal OP Src2.IntVal; \ | 
 |      break; \ | 
 |    } | 
 |  | 
 |  | 
 | static void executeAddInst(GenericValue &Dest, GenericValue Src1,  | 
 |                            GenericValue Src2, const Type *Ty) { | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_BINOP1(+, Ty); | 
 |     IMPLEMENT_BINARY_OPERATOR(+, Float); | 
 |     IMPLEMENT_BINARY_OPERATOR(+, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | static void executeSubInst(GenericValue &Dest, GenericValue Src1,  | 
 |                            GenericValue Src2, const Type *Ty) { | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_BINOP1(-, Ty); | 
 |     IMPLEMENT_BINARY_OPERATOR(-, Float); | 
 |     IMPLEMENT_BINARY_OPERATOR(-, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | static void executeMulInst(GenericValue &Dest, GenericValue Src1,  | 
 |                            GenericValue Src2, const Type *Ty) { | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_BINOP1(*, Ty); | 
 |     IMPLEMENT_BINARY_OPERATOR(*, Float); | 
 |     IMPLEMENT_BINARY_OPERATOR(*, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | static void executeFDivInst(GenericValue &Dest, GenericValue Src1,  | 
 |                             GenericValue Src2, const Type *Ty) { | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_BINARY_OPERATOR(/, Float); | 
 |     IMPLEMENT_BINARY_OPERATOR(/, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | static void executeFRemInst(GenericValue &Dest, GenericValue Src1,  | 
 |                             GenericValue Src2, const Type *Ty) { | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::FloatTyID: | 
 |     Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); | 
 |     break; | 
 |   case Type::DoubleTyID: | 
 |     Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); | 
 |     break; | 
 |   default: | 
 |     cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ | 
 |    case Type::IntegerTyID:  \ | 
 |       Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ | 
 |       break; | 
 |  | 
 | // Handle pointers specially because they must be compared with only as much | 
 | // width as the host has.  We _do not_ want to be comparing 64 bit values when | 
 | // running on a 32-bit target, otherwise the upper 32 bits might mess up | 
 | // comparisons if they contain garbage. | 
 | #define IMPLEMENT_POINTER_ICMP(OP) \ | 
 |    case Type::PointerTyID: \ | 
 |       Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ | 
 |                             (void*)(intptr_t)Src2.PointerVal); \ | 
 |       break; | 
 |  | 
 | static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(eq,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(==); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(ne,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(!=); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(ult,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(<); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(slt,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(<); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(ugt,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(>); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(sgt,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(>); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(ule,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(<=); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(sle,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(<=); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(uge,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(>=); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, | 
 |                                     const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_INTEGER_ICMP(sge,Ty); | 
 |     IMPLEMENT_POINTER_ICMP(>=); | 
 |   default: | 
 |     cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | void Interpreter::visitICmpInst(ICmpInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   const Type *Ty    = I.getOperand(0)->getType(); | 
 |   GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
 |   GenericValue R;   // Result | 
 |    | 
 |   switch (I.getPredicate()) { | 
 |   case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break; | 
 |   case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break; | 
 |   case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; | 
 |   case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; | 
 |   case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; | 
 |   case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; | 
 |   case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; | 
 |   case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; | 
 |   case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; | 
 |   case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; | 
 |   default: | 
 |     cerr << "Don't know how to handle this ICmp predicate!\n-->" << I; | 
 |     abort(); | 
 |   } | 
 |   | 
 |   SetValue(&I, R, SF); | 
 | } | 
 |  | 
 | #define IMPLEMENT_FCMP(OP, TY) \ | 
 |    case Type::TY##TyID: \ | 
 |      Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ | 
 |      break | 
 |  | 
 | static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_FCMP(==, Float); | 
 |     IMPLEMENT_FCMP(==, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_FCMP(!=, Float); | 
 |     IMPLEMENT_FCMP(!=, Double); | 
 |  | 
 |   default: | 
 |     cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_FCMP(<=, Float); | 
 |     IMPLEMENT_FCMP(<=, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_FCMP(>=, Float); | 
 |     IMPLEMENT_FCMP(>=, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_FCMP(<, Float); | 
 |     IMPLEMENT_FCMP(<, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, | 
 |                                      const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   switch (Ty->getTypeID()) { | 
 |     IMPLEMENT_FCMP(>, Float); | 
 |     IMPLEMENT_FCMP(>, Double); | 
 |   default: | 
 |     cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | #define IMPLEMENT_UNORDERED(TY, X,Y)                                     \ | 
 |   if (TY == Type::FloatTy) {                                             \ | 
 |     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \ | 
 |       Dest.IntVal = APInt(1,true);                                       \ | 
 |       return Dest;                                                       \ | 
 |     }                                                                    \ | 
 |   } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ | 
 |     Dest.IntVal = APInt(1,true);                                         \ | 
 |     return Dest;                                                         \ | 
 |   } | 
 |  | 
 |  | 
 | static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
 |   return executeFCMP_OEQ(Src1, Src2, Ty); | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
 |   return executeFCMP_ONE(Src1, Src2, Ty); | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
 |   return executeFCMP_OLE(Src1, Src2, Ty); | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
 |   return executeFCMP_OGE(Src1, Src2, Ty); | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, | 
 |                                    const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
 |   return executeFCMP_OLT(Src1, Src2, Ty); | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, | 
 |                                      const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   IMPLEMENT_UNORDERED(Ty, Src1, Src2) | 
 |   return executeFCMP_OGT(Src1, Src2, Ty); | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, | 
 |                                      const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   if (Ty == Type::FloatTy) | 
 |     Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&  | 
 |                            Src2.FloatVal == Src2.FloatVal)); | 
 |   else | 
 |     Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&  | 
 |                            Src2.DoubleVal == Src2.DoubleVal)); | 
 |   return Dest; | 
 | } | 
 |  | 
 | static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, | 
 |                                      const Type *Ty) { | 
 |   GenericValue Dest; | 
 |   if (Ty == Type::FloatTy) | 
 |     Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||  | 
 |                            Src2.FloatVal != Src2.FloatVal)); | 
 |   else | 
 |     Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||  | 
 |                            Src2.DoubleVal != Src2.DoubleVal)); | 
 |   return Dest; | 
 | } | 
 |  | 
 | void Interpreter::visitFCmpInst(FCmpInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   const Type *Ty    = I.getOperand(0)->getType(); | 
 |   GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
 |   GenericValue R;   // Result | 
 |    | 
 |   switch (I.getPredicate()) { | 
 |   case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; | 
 |   case FCmpInst::FCMP_TRUE:  R.IntVal = APInt(1,true); break; | 
 |   case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break; | 
 |   case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break; | 
 |   default: | 
 |     cerr << "Don't know how to handle this FCmp predicate!\n-->" << I; | 
 |     abort(); | 
 |   } | 
 |   | 
 |   SetValue(&I, R, SF); | 
 | } | 
 |  | 
 | static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,  | 
 |                                    GenericValue Src2, const Type *Ty) { | 
 |   GenericValue Result; | 
 |   switch (predicate) { | 
 |   case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty); | 
 |   case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty); | 
 |   case FCmpInst::FCMP_FALSE: {  | 
 |     GenericValue Result; | 
 |     Result.IntVal = APInt(1, false); | 
 |     return Result; | 
 |   } | 
 |   case FCmpInst::FCMP_TRUE: { | 
 |     GenericValue Result; | 
 |     Result.IntVal = APInt(1, true); | 
 |     return Result; | 
 |   } | 
 |   default: | 
 |     cerr << "Unhandled Cmp predicate\n"; | 
 |     abort(); | 
 |   } | 
 | } | 
 |  | 
 | void Interpreter::visitBinaryOperator(BinaryOperator &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   const Type *Ty    = I.getOperand(0)->getType(); | 
 |   GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
 |   GenericValue R;   // Result | 
 |  | 
 |   switch (I.getOpcode()) { | 
 |   case Instruction::Add:   executeAddInst  (R, Src1, Src2, Ty); break; | 
 |   case Instruction::Sub:   executeSubInst  (R, Src1, Src2, Ty); break; | 
 |   case Instruction::Mul:   executeMulInst  (R, Src1, Src2, Ty); break; | 
 |   case Instruction::FDiv:  executeFDivInst (R, Src1, Src2, Ty); break; | 
 |   case Instruction::FRem:  executeFRemInst (R, Src1, Src2, Ty); break; | 
 |   case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; | 
 |   case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; | 
 |   case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; | 
 |   case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; | 
 |   case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break; | 
 |   case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break; | 
 |   case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break; | 
 |   default: | 
 |     cerr << "Don't know how to handle this binary operator!\n-->" << I; | 
 |     abort(); | 
 |   } | 
 |  | 
 |   SetValue(&I, R, SF); | 
 | } | 
 |  | 
 | static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, | 
 |                                       GenericValue Src3) { | 
 |   return Src1.IntVal == 0 ? Src3 : Src2; | 
 | } | 
 |  | 
 | void Interpreter::visitSelectInst(SelectInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
 |   GenericValue Src3 = getOperandValue(I.getOperand(2), SF); | 
 |   GenericValue R = executeSelectInst(Src1, Src2, Src3); | 
 |   SetValue(&I, R, SF); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                     Terminator Instruction Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void Interpreter::exitCalled(GenericValue GV) { | 
 |   // runAtExitHandlers() assumes there are no stack frames, but | 
 |   // if exit() was called, then it had a stack frame. Blow away | 
 |   // the stack before interpreting atexit handlers. | 
 |   ECStack.clear (); | 
 |   runAtExitHandlers (); | 
 |   exit (GV.IntVal.zextOrTrunc(32).getZExtValue()); | 
 | } | 
 |  | 
 | /// Pop the last stack frame off of ECStack and then copy the result | 
 | /// back into the result variable if we are not returning void. The | 
 | /// result variable may be the ExitValue, or the Value of the calling | 
 | /// CallInst if there was a previous stack frame. This method may | 
 | /// invalidate any ECStack iterators you have. This method also takes | 
 | /// care of switching to the normal destination BB, if we are returning | 
 | /// from an invoke. | 
 | /// | 
 | void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, | 
 |                                                   GenericValue Result) { | 
 |   // Pop the current stack frame. | 
 |   ECStack.pop_back(); | 
 |  | 
 |   if (ECStack.empty()) {  // Finished main.  Put result into exit code... | 
 |     if (RetTy && RetTy->isInteger()) {          // Nonvoid return type? | 
 |       ExitValue = Result;   // Capture the exit value of the program | 
 |     } else { | 
 |       memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); | 
 |     } | 
 |   } else { | 
 |     // If we have a previous stack frame, and we have a previous call, | 
 |     // fill in the return value... | 
 |     ExecutionContext &CallingSF = ECStack.back(); | 
 |     if (Instruction *I = CallingSF.Caller.getInstruction()) { | 
 |       if (CallingSF.Caller.getType() != Type::VoidTy)      // Save result... | 
 |         SetValue(I, Result, CallingSF); | 
 |       if (InvokeInst *II = dyn_cast<InvokeInst> (I)) | 
 |         SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); | 
 |       CallingSF.Caller = CallSite();          // We returned from the call... | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Interpreter::visitReturnInst(ReturnInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   const Type *RetTy = Type::VoidTy; | 
 |   GenericValue Result; | 
 |  | 
 |   // Save away the return value... (if we are not 'ret void') | 
 |   if (I.getNumOperands()) { | 
 |     RetTy  = I.getReturnValue()->getType(); | 
 |     Result = getOperandValue(I.getReturnValue(), SF); | 
 |   } | 
 |  | 
 |   popStackAndReturnValueToCaller(RetTy, Result); | 
 | } | 
 |  | 
 | void Interpreter::visitUnwindInst(UnwindInst &I) { | 
 |   // Unwind stack | 
 |   Instruction *Inst; | 
 |   do { | 
 |     ECStack.pop_back (); | 
 |     if (ECStack.empty ()) | 
 |       abort (); | 
 |     Inst = ECStack.back ().Caller.getInstruction (); | 
 |   } while (!(Inst && isa<InvokeInst> (Inst))); | 
 |  | 
 |   // Return from invoke | 
 |   ExecutionContext &InvokingSF = ECStack.back (); | 
 |   InvokingSF.Caller = CallSite (); | 
 |  | 
 |   // Go to exceptional destination BB of invoke instruction | 
 |   SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF); | 
 | } | 
 |  | 
 | void Interpreter::visitUnreachableInst(UnreachableInst &I) { | 
 |   cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; | 
 |   abort(); | 
 | } | 
 |  | 
 | void Interpreter::visitBranchInst(BranchInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   BasicBlock *Dest; | 
 |  | 
 |   Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest... | 
 |   if (!I.isUnconditional()) { | 
 |     Value *Cond = I.getCondition(); | 
 |     if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... | 
 |       Dest = I.getSuccessor(1); | 
 |   } | 
 |   SwitchToNewBasicBlock(Dest, SF); | 
 | } | 
 |  | 
 | void Interpreter::visitSwitchInst(SwitchInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   GenericValue CondVal = getOperandValue(I.getOperand(0), SF); | 
 |   const Type *ElTy = I.getOperand(0)->getType(); | 
 |  | 
 |   // Check to see if any of the cases match... | 
 |   BasicBlock *Dest = 0; | 
 |   for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) | 
 |     if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) | 
 |         .IntVal != 0) { | 
 |       Dest = cast<BasicBlock>(I.getOperand(i+1)); | 
 |       break; | 
 |     } | 
 |  | 
 |   if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default | 
 |   SwitchToNewBasicBlock(Dest, SF); | 
 | } | 
 |  | 
 | // SwitchToNewBasicBlock - This method is used to jump to a new basic block. | 
 | // This function handles the actual updating of block and instruction iterators | 
 | // as well as execution of all of the PHI nodes in the destination block. | 
 | // | 
 | // This method does this because all of the PHI nodes must be executed | 
 | // atomically, reading their inputs before any of the results are updated.  Not | 
 | // doing this can cause problems if the PHI nodes depend on other PHI nodes for | 
 | // their inputs.  If the input PHI node is updated before it is read, incorrect | 
 | // results can happen.  Thus we use a two phase approach. | 
 | // | 
 | void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ | 
 |   BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from... | 
 |   SF.CurBB   = Dest;                  // Update CurBB to branch destination | 
 |   SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr... | 
 |  | 
 |   if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do | 
 |  | 
 |   // Loop over all of the PHI nodes in the current block, reading their inputs. | 
 |   std::vector<GenericValue> ResultValues; | 
 |  | 
 |   for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { | 
 |     // Search for the value corresponding to this previous bb... | 
 |     int i = PN->getBasicBlockIndex(PrevBB); | 
 |     assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); | 
 |     Value *IncomingValue = PN->getIncomingValue(i); | 
 |  | 
 |     // Save the incoming value for this PHI node... | 
 |     ResultValues.push_back(getOperandValue(IncomingValue, SF)); | 
 |   } | 
 |  | 
 |   // Now loop over all of the PHI nodes setting their values... | 
 |   SF.CurInst = SF.CurBB->begin(); | 
 |   for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { | 
 |     PHINode *PN = cast<PHINode>(SF.CurInst); | 
 |     SetValue(PN, ResultValues[i], SF); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                     Memory Instruction Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void Interpreter::visitAllocationInst(AllocationInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |  | 
 |   const Type *Ty = I.getType()->getElementType();  // Type to be allocated | 
 |  | 
 |   // Get the number of elements being allocated by the array... | 
 |   unsigned NumElements =  | 
 |     getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); | 
 |  | 
 |   unsigned TypeSize = (size_t)TD.getABITypeSize(Ty); | 
 |  | 
 |   // Avoid malloc-ing zero bytes, use max()... | 
 |   unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); | 
 |  | 
 |   // Allocate enough memory to hold the type... | 
 |   void *Memory = malloc(MemToAlloc); | 
 |  | 
 |   DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "  | 
 |        << NumElements << " (Total: " << MemToAlloc << ") at " | 
 |        << uintptr_t(Memory) << '\n'; | 
 |  | 
 |   GenericValue Result = PTOGV(Memory); | 
 |   assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); | 
 |   SetValue(&I, Result, SF); | 
 |  | 
 |   if (I.getOpcode() == Instruction::Alloca) | 
 |     ECStack.back().Allocas.add(Memory); | 
 | } | 
 |  | 
 | void Interpreter::visitFreeInst(FreeInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?"); | 
 |   GenericValue Value = getOperandValue(I.getOperand(0), SF); | 
 |   // TODO: Check to make sure memory is allocated | 
 |   free(GVTOP(Value));   // Free memory | 
 | } | 
 |  | 
 | // getElementOffset - The workhorse for getelementptr. | 
 | // | 
 | GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, | 
 |                                               gep_type_iterator E, | 
 |                                               ExecutionContext &SF) { | 
 |   assert(isa<PointerType>(Ptr->getType()) && | 
 |          "Cannot getElementOffset of a nonpointer type!"); | 
 |  | 
 |   uint64_t Total = 0; | 
 |  | 
 |   for (; I != E; ++I) { | 
 |     if (const StructType *STy = dyn_cast<StructType>(*I)) { | 
 |       const StructLayout *SLO = TD.getStructLayout(STy); | 
 |  | 
 |       const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); | 
 |       unsigned Index = unsigned(CPU->getZExtValue()); | 
 |  | 
 |       Total += SLO->getElementOffset(Index); | 
 |     } else { | 
 |       const SequentialType *ST = cast<SequentialType>(*I); | 
 |       // Get the index number for the array... which must be long type... | 
 |       GenericValue IdxGV = getOperandValue(I.getOperand(), SF); | 
 |  | 
 |       int64_t Idx; | 
 |       unsigned BitWidth =  | 
 |         cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); | 
 |       if (BitWidth == 32) | 
 |         Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); | 
 |       else { | 
 |         assert(BitWidth == 64 && "Invalid index type for getelementptr"); | 
 |         Idx = (int64_t)IdxGV.IntVal.getZExtValue(); | 
 |       } | 
 |       Total += TD.getABITypeSize(ST->getElementType())*Idx; | 
 |     } | 
 |   } | 
 |  | 
 |   GenericValue Result; | 
 |   Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; | 
 |   DOUT << "GEP Index " << Total << " bytes.\n"; | 
 |   return Result; | 
 | } | 
 |  | 
 | void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), | 
 |                                    gep_type_begin(I), gep_type_end(I), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitLoadInst(LoadInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); | 
 |   GenericValue *Ptr = (GenericValue*)GVTOP(SRC); | 
 |   GenericValue Result; | 
 |   LoadValueFromMemory(Result, Ptr, I.getType()); | 
 |   SetValue(&I, Result, SF); | 
 |   if (I.isVolatile() && PrintVolatile) | 
 |     cerr << "Volatile load " << I; | 
 | } | 
 |  | 
 | void Interpreter::visitStoreInst(StoreInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   GenericValue Val = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); | 
 |   StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), | 
 |                      I.getOperand(0)->getType()); | 
 |   if (I.isVolatile() && PrintVolatile) | 
 |     cerr << "Volatile store: " << I; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                 Miscellaneous Instruction Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void Interpreter::visitCallSite(CallSite CS) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |  | 
 |   // Check to see if this is an intrinsic function call... | 
 |   Function *F = CS.getCalledFunction(); | 
 |   if (F && F->isDeclaration ()) | 
 |     switch (F->getIntrinsicID()) { | 
 |     case Intrinsic::not_intrinsic: | 
 |       break; | 
 |     case Intrinsic::vastart: { // va_start | 
 |       GenericValue ArgIndex; | 
 |       ArgIndex.UIntPairVal.first = ECStack.size() - 1; | 
 |       ArgIndex.UIntPairVal.second = 0; | 
 |       SetValue(CS.getInstruction(), ArgIndex, SF); | 
 |       return; | 
 |     } | 
 |     case Intrinsic::vaend:    // va_end is a noop for the interpreter | 
 |       return; | 
 |     case Intrinsic::vacopy:   // va_copy: dest = src | 
 |       SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); | 
 |       return; | 
 |     default: | 
 |       // If it is an unknown intrinsic function, use the intrinsic lowering | 
 |       // class to transform it into hopefully tasty LLVM code. | 
 |       // | 
 |       BasicBlock::iterator me(CS.getInstruction()); | 
 |       BasicBlock *Parent = CS.getInstruction()->getParent(); | 
 |       bool atBegin(Parent->begin() == me); | 
 |       if (!atBegin) | 
 |         --me; | 
 |       IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); | 
 |  | 
 |       // Restore the CurInst pointer to the first instruction newly inserted, if | 
 |       // any. | 
 |       if (atBegin) { | 
 |         SF.CurInst = Parent->begin(); | 
 |       } else { | 
 |         SF.CurInst = me; | 
 |         ++SF.CurInst; | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |  | 
 |   SF.Caller = CS; | 
 |   std::vector<GenericValue> ArgVals; | 
 |   const unsigned NumArgs = SF.Caller.arg_size(); | 
 |   ArgVals.reserve(NumArgs); | 
 |   uint16_t pNum = 1; | 
 |   for (CallSite::arg_iterator i = SF.Caller.arg_begin(), | 
 |          e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { | 
 |     Value *V = *i; | 
 |     ArgVals.push_back(getOperandValue(V, SF)); | 
 |     // Promote all integral types whose size is < sizeof(i32) into i32. | 
 |     // We do this by zero or sign extending the value as appropriate | 
 |     // according to the parameter attributes | 
 |     const Type *Ty = V->getType(); | 
 |     if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32)) { | 
 |       if (CS.paramHasAttr(pNum, ParamAttr::ZExt)) | 
 |         ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32); | 
 |       else if (CS.paramHasAttr(pNum, ParamAttr::SExt)) | 
 |         ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32); | 
 |     } | 
 |   } | 
 |  | 
 |   // To handle indirect calls, we must get the pointer value from the argument | 
 |   // and treat it as a function pointer. | 
 |   GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); | 
 |   callFunction((Function*)GVTOP(SRC), ArgVals); | 
 | } | 
 |  | 
 | void Interpreter::visitShl(BinaryOperator &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
 |   GenericValue Dest; | 
 |   Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); | 
 |   SetValue(&I, Dest, SF); | 
 | } | 
 |  | 
 | void Interpreter::visitLShr(BinaryOperator &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
 |   GenericValue Dest; | 
 |   Dest.IntVal =  Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); | 
 |   SetValue(&I, Dest, SF); | 
 | } | 
 |  | 
 | void Interpreter::visitAShr(BinaryOperator &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   GenericValue Src1 = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Src2 = getOperandValue(I.getOperand(1), SF); | 
 |   GenericValue Dest;  | 
 |   Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); | 
 |   SetValue(&I, Dest, SF); | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, | 
 |                                            ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   const IntegerType *DITy = cast<IntegerType>(DstTy); | 
 |   unsigned DBitWidth = DITy->getBitWidth(); | 
 |   Dest.IntVal = Src.IntVal.trunc(DBitWidth); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, | 
 |                                           ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   const IntegerType *DITy = cast<IntegerType>(DstTy); | 
 |   unsigned DBitWidth = DITy->getBitWidth(); | 
 |   Dest.IntVal = Src.IntVal.sext(DBitWidth); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, | 
 |                                           ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   const IntegerType *DITy = cast<IntegerType>(DstTy); | 
 |   unsigned DBitWidth = DITy->getBitWidth(); | 
 |   Dest.IntVal = Src.IntVal.zext(DBitWidth); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, | 
 |                                              ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(SrcVal->getType() == Type::DoubleTy && DstTy == Type::FloatTy && | 
 |          "Invalid FPTrunc instruction"); | 
 |   Dest.FloatVal = (float) Src.DoubleVal; | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, | 
 |                                            ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(SrcVal->getType() == Type::FloatTy && DstTy == Type::DoubleTy && | 
 |          "Invalid FPTrunc instruction"); | 
 |   Dest.DoubleVal = (double) Src.FloatVal; | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, | 
 |                                             ExecutionContext &SF) { | 
 |   const Type *SrcTy = SrcVal->getType(); | 
 |   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction"); | 
 |  | 
 |   if (SrcTy->getTypeID() == Type::FloatTyID) | 
 |     Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); | 
 |   else | 
 |     Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, | 
 |                                             ExecutionContext &SF) { | 
 |   const Type *SrcTy = SrcVal->getType(); | 
 |   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction"); | 
 |  | 
 |   if (SrcTy->getTypeID() == Type::FloatTyID) | 
 |     Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); | 
 |   else | 
 |     Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, | 
 |                                             ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction"); | 
 |  | 
 |   if (DstTy->getTypeID() == Type::FloatTyID) | 
 |     Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); | 
 |   else | 
 |     Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, | 
 |                                             ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction"); | 
 |  | 
 |   if (DstTy->getTypeID() == Type::FloatTyID) | 
 |     Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); | 
 |   else | 
 |     Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); | 
 |   return Dest; | 
 |  | 
 | } | 
 |  | 
 | GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, | 
 |                                               ExecutionContext &SF) { | 
 |   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(isa<PointerType>(SrcVal->getType()) && "Invalid PtrToInt instruction"); | 
 |  | 
 |   Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, | 
 |                                               ExecutionContext &SF) { | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction"); | 
 |  | 
 |   uint32_t PtrSize = TD.getPointerSizeInBits(); | 
 |   if (PtrSize != Src.IntVal.getBitWidth()) | 
 |     Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); | 
 |  | 
 |   Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, | 
 |                                              ExecutionContext &SF) { | 
 |    | 
 |   const Type *SrcTy = SrcVal->getType(); | 
 |   GenericValue Dest, Src = getOperandValue(SrcVal, SF); | 
 |   if (isa<PointerType>(DstTy)) { | 
 |     assert(isa<PointerType>(SrcTy) && "Invalid BitCast"); | 
 |     Dest.PointerVal = Src.PointerVal; | 
 |   } else if (DstTy->isInteger()) { | 
 |     if (SrcTy == Type::FloatTy) { | 
 |       Dest.IntVal.zext(sizeof(Src.FloatVal) * 8); | 
 |       Dest.IntVal.floatToBits(Src.FloatVal); | 
 |     } else if (SrcTy == Type::DoubleTy) { | 
 |       Dest.IntVal.zext(sizeof(Src.DoubleVal) * 8); | 
 |       Dest.IntVal.doubleToBits(Src.DoubleVal); | 
 |     } else if (SrcTy->isInteger()) { | 
 |       Dest.IntVal = Src.IntVal; | 
 |     } else  | 
 |       assert(0 && "Invalid BitCast"); | 
 |   } else if (DstTy == Type::FloatTy) { | 
 |     if (SrcTy->isInteger()) | 
 |       Dest.FloatVal = Src.IntVal.bitsToFloat(); | 
 |     else | 
 |       Dest.FloatVal = Src.FloatVal; | 
 |   } else if (DstTy == Type::DoubleTy) { | 
 |     if (SrcTy->isInteger()) | 
 |       Dest.DoubleVal = Src.IntVal.bitsToDouble(); | 
 |     else | 
 |       Dest.DoubleVal = Src.DoubleVal; | 
 |   } else | 
 |     assert(0 && "Invalid Bitcast"); | 
 |  | 
 |   return Dest; | 
 | } | 
 |  | 
 | void Interpreter::visitTruncInst(TruncInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitSExtInst(SExtInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitZExtInst(ZExtInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitFPTruncInst(FPTruncInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitFPExtInst(FPExtInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitUIToFPInst(UIToFPInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitSIToFPInst(SIToFPInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitFPToUIInst(FPToUIInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitFPToSIInst(FPToSIInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | void Interpreter::visitBitCastInst(BitCastInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |   SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); | 
 | } | 
 |  | 
 | #define IMPLEMENT_VAARG(TY) \ | 
 |    case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break | 
 |  | 
 | void Interpreter::visitVAArgInst(VAArgInst &I) { | 
 |   ExecutionContext &SF = ECStack.back(); | 
 |  | 
 |   // Get the incoming valist parameter.  LLI treats the valist as a | 
 |   // (ec-stack-depth var-arg-index) pair. | 
 |   GenericValue VAList = getOperandValue(I.getOperand(0), SF); | 
 |   GenericValue Dest; | 
 |   GenericValue Src = ECStack[VAList.UIntPairVal.first] | 
 |                       .VarArgs[VAList.UIntPairVal.second]; | 
 |   const Type *Ty = I.getType(); | 
 |   switch (Ty->getTypeID()) { | 
 |     case Type::IntegerTyID: Dest.IntVal = Src.IntVal; | 
 |     IMPLEMENT_VAARG(Pointer); | 
 |     IMPLEMENT_VAARG(Float); | 
 |     IMPLEMENT_VAARG(Double); | 
 |   default: | 
 |     cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; | 
 |     abort(); | 
 |   } | 
 |  | 
 |   // Set the Value of this Instruction. | 
 |   SetValue(&I, Dest, SF); | 
 |  | 
 |   // Move the pointer to the next vararg. | 
 |   ++VAList.UIntPairVal.second; | 
 | } | 
 |  | 
 | GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, | 
 |                                                 ExecutionContext &SF) { | 
 |   switch (CE->getOpcode()) { | 
 |   case Instruction::Trunc:    | 
 |       return executeTruncInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::ZExt: | 
 |       return executeZExtInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::SExt: | 
 |       return executeSExtInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::FPTrunc: | 
 |       return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::FPExt: | 
 |       return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::UIToFP: | 
 |       return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::SIToFP: | 
 |       return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::FPToUI: | 
 |       return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::FPToSI: | 
 |       return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::PtrToInt: | 
 |       return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::IntToPtr: | 
 |       return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::BitCast: | 
 |       return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); | 
 |   case Instruction::GetElementPtr: | 
 |     return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), | 
 |                                gep_type_end(CE), SF); | 
 |   case Instruction::FCmp: | 
 |   case Instruction::ICmp: | 
 |     return executeCmpInst(CE->getPredicate(), | 
 |                           getOperandValue(CE->getOperand(0), SF), | 
 |                           getOperandValue(CE->getOperand(1), SF), | 
 |                           CE->getOperand(0)->getType()); | 
 |   case Instruction::Select: | 
 |     return executeSelectInst(getOperandValue(CE->getOperand(0), SF), | 
 |                              getOperandValue(CE->getOperand(1), SF), | 
 |                              getOperandValue(CE->getOperand(2), SF)); | 
 |   default : | 
 |     break; | 
 |   } | 
 |  | 
 |   // The cases below here require a GenericValue parameter for the result | 
 |   // so we initialize one, compute it and then return it. | 
 |   GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); | 
 |   GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); | 
 |   GenericValue Dest; | 
 |   const Type * Ty = CE->getOperand(0)->getType(); | 
 |   switch (CE->getOpcode()) { | 
 |   case Instruction::Add:  executeAddInst (Dest, Op0, Op1, Ty); break; | 
 |   case Instruction::Sub:  executeSubInst (Dest, Op0, Op1, Ty); break; | 
 |   case Instruction::Mul:  executeMulInst (Dest, Op0, Op1, Ty); break; | 
 |   case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; | 
 |   case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; | 
 |   case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; | 
 |   case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; | 
 |   case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; | 
 |   case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; | 
 |   case Instruction::And:  Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break; | 
 |   case Instruction::Or:   Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break; | 
 |   case Instruction::Xor:  Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break; | 
 |   case Instruction::Shl:   | 
 |     Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); | 
 |     break; | 
 |   case Instruction::LShr:  | 
 |     Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); | 
 |     break; | 
 |   case Instruction::AShr:  | 
 |     Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); | 
 |     break; | 
 |   default: | 
 |     cerr << "Unhandled ConstantExpr: " << *CE << "\n"; | 
 |     abort(); | 
 |     return GenericValue(); | 
 |   } | 
 |   return Dest; | 
 | } | 
 |  | 
 | GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { | 
 |   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
 |     return getConstantExprValue(CE, SF); | 
 |   } else if (Constant *CPV = dyn_cast<Constant>(V)) { | 
 |     return getConstantValue(CPV); | 
 |   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
 |     return PTOGV(getPointerToGlobal(GV)); | 
 |   } else { | 
 |     return SF.Values[V]; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                        Dispatch and Execution Code | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // callFunction - Execute the specified function... | 
 | // | 
 | void Interpreter::callFunction(Function *F, | 
 |                                const std::vector<GenericValue> &ArgVals) { | 
 |   assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || | 
 |           ECStack.back().Caller.arg_size() == ArgVals.size()) && | 
 |          "Incorrect number of arguments passed into function call!"); | 
 |   // Make a new stack frame... and fill it in. | 
 |   ECStack.push_back(ExecutionContext()); | 
 |   ExecutionContext &StackFrame = ECStack.back(); | 
 |   StackFrame.CurFunction = F; | 
 |  | 
 |   // Special handling for external functions. | 
 |   if (F->isDeclaration()) { | 
 |     GenericValue Result = callExternalFunction (F, ArgVals); | 
 |     // Simulate a 'ret' instruction of the appropriate type. | 
 |     popStackAndReturnValueToCaller (F->getReturnType (), Result); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Get pointers to first LLVM BB & Instruction in function. | 
 |   StackFrame.CurBB     = F->begin(); | 
 |   StackFrame.CurInst   = StackFrame.CurBB->begin(); | 
 |  | 
 |   // Run through the function arguments and initialize their values... | 
 |   assert((ArgVals.size() == F->arg_size() || | 
 |          (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& | 
 |          "Invalid number of values passed to function invocation!"); | 
 |  | 
 |   // Handle non-varargs arguments... | 
 |   unsigned i = 0; | 
 |   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();  | 
 |        AI != E; ++AI, ++i) | 
 |     SetValue(AI, ArgVals[i], StackFrame); | 
 |  | 
 |   // Handle varargs arguments... | 
 |   StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); | 
 | } | 
 |  | 
 |  | 
 | void Interpreter::run() { | 
 |   while (!ECStack.empty()) { | 
 |     // Interpret a single instruction & increment the "PC". | 
 |     ExecutionContext &SF = ECStack.back();  // Current stack frame | 
 |     Instruction &I = *SF.CurInst++;         // Increment before execute | 
 |  | 
 |     // Track the number of dynamic instructions executed. | 
 |     ++NumDynamicInsts; | 
 |  | 
 |     DOUT << "About to interpret: " << I; | 
 |     visit(I);   // Dispatch to one of the visit* methods... | 
 | #if 0 | 
 |     // This is not safe, as visiting the instruction could lower it and free I. | 
 | #ifndef NDEBUG | 
 |     if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&  | 
 |         I.getType() != Type::VoidTy) { | 
 |       DOUT << "  --> "; | 
 |       const GenericValue &Val = SF.Values[&I]; | 
 |       switch (I.getType()->getTypeID()) { | 
 |       default: assert(0 && "Invalid GenericValue Type"); | 
 |       case Type::VoidTyID:    DOUT << "void"; break; | 
 |       case Type::FloatTyID:   DOUT << "float " << Val.FloatVal; break; | 
 |       case Type::DoubleTyID:  DOUT << "double " << Val.DoubleVal; break; | 
 |       case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal); | 
 |         break; | 
 |       case Type::IntegerTyID:  | 
 |         DOUT << "i" << Val.IntVal.getBitWidth() << " " | 
 |         << Val.IntVal.toStringUnsigned(10) | 
 |         << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; | 
 |         break; | 
 |       } | 
 |     } | 
 | #endif | 
 | #endif | 
 |   } | 
 | } |