| //===-- RegAllocBasic.cpp - basic register allocator ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the RABasic function pass, which provides a minimal |
| // implementation of the basic register allocator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "LiveIntervalUnion.h" |
| #include "RegAllocBase.h" |
| #include "RenderMachineFunction.h" |
| #include "Spiller.h" |
| #include "VirtRegMap.h" |
| #include "VirtRegRewriter.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Function.h" |
| #include "llvm/PassAnalysisSupport.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/RegisterCoalescer.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #ifndef NDEBUG |
| #include "llvm/ADT/SparseBitVector.h" |
| #endif |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include <vector> |
| #include <queue> |
| |
| using namespace llvm; |
| |
| static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", |
| createBasicRegisterAllocator); |
| |
| // Temporary verification option until we can put verification inside |
| // MachineVerifier. |
| static cl::opt<bool> |
| VerifyRegAlloc("verify-regalloc", |
| cl::desc("Verify live intervals before renaming")); |
| |
| class PhysicalRegisterDescription : public AbstractRegisterDescription { |
| const TargetRegisterInfo *tri_; |
| public: |
| PhysicalRegisterDescription(const TargetRegisterInfo *tri): tri_(tri) {} |
| virtual const char *getName(unsigned reg) const { return tri_->getName(reg); } |
| }; |
| |
| namespace { |
| |
| /// RABasic provides a minimal implementation of the basic register allocation |
| /// algorithm. It prioritizes live virtual registers by spill weight and spills |
| /// whenever a register is unavailable. This is not practical in production but |
| /// provides a useful baseline both for measuring other allocators and comparing |
| /// the speed of the basic algorithm against other styles of allocators. |
| class RABasic : public MachineFunctionPass, public RegAllocBase |
| { |
| // context |
| MachineFunction *mf_; |
| const TargetMachine *tm_; |
| MachineRegisterInfo *mri_; |
| BitVector reservedRegs_; |
| |
| // analyses |
| LiveStacks *ls_; |
| RenderMachineFunction *rmf_; |
| |
| // state |
| std::auto_ptr<Spiller> spiller_; |
| |
| public: |
| RABasic(); |
| |
| /// Return the pass name. |
| virtual const char* getPassName() const { |
| return "Basic Register Allocator"; |
| } |
| |
| /// RABasic analysis usage. |
| virtual void getAnalysisUsage(AnalysisUsage &au) const; |
| |
| virtual void releaseMemory(); |
| |
| virtual Spiller &spiller() { return *spiller_; } |
| |
| virtual unsigned selectOrSplit(LiveInterval &lvr, |
| SmallVectorImpl<LiveInterval*> &splitLVRs); |
| |
| /// Perform register allocation. |
| virtual bool runOnMachineFunction(MachineFunction &mf); |
| |
| static char ID; |
| }; |
| |
| char RABasic::ID = 0; |
| |
| } // end anonymous namespace |
| |
| // We should not need to publish the initializer as long as no other passes |
| // require RABasic. |
| #if 0 // disable INITIALIZE_PASS |
| INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc", |
| "Basic Register Allocator", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination) |
| INITIALIZE_AG_DEPENDENCY(RegisterCoalescer) |
| INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights) |
| INITIALIZE_PASS_DEPENDENCY(LiveStacks) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(VirtRegMap) |
| #ifndef NDEBUG |
| INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction) |
| #endif |
| INITIALIZE_PASS_END(RABasic, "basic-regalloc", |
| "Basic Register Allocator", false, false) |
| #endif // disable INITIALIZE_PASS |
| |
| RABasic::RABasic(): MachineFunctionPass(ID) { |
| initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); |
| initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); |
| initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); |
| initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); |
| initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); |
| initializeLiveStacksPass(*PassRegistry::getPassRegistry()); |
| initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); |
| initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); |
| initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); |
| initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void RABasic::getAnalysisUsage(AnalysisUsage &au) const { |
| au.setPreservesCFG(); |
| au.addRequired<AliasAnalysis>(); |
| au.addPreserved<AliasAnalysis>(); |
| au.addRequired<LiveIntervals>(); |
| au.addPreserved<SlotIndexes>(); |
| if (StrongPHIElim) |
| au.addRequiredID(StrongPHIEliminationID); |
| au.addRequiredTransitive<RegisterCoalescer>(); |
| au.addRequired<CalculateSpillWeights>(); |
| au.addRequired<LiveStacks>(); |
| au.addPreserved<LiveStacks>(); |
| au.addRequiredID(MachineDominatorsID); |
| au.addPreservedID(MachineDominatorsID); |
| au.addRequired<MachineLoopInfo>(); |
| au.addPreserved<MachineLoopInfo>(); |
| au.addRequired<VirtRegMap>(); |
| au.addPreserved<VirtRegMap>(); |
| DEBUG(au.addRequired<RenderMachineFunction>()); |
| MachineFunctionPass::getAnalysisUsage(au); |
| } |
| |
| void RABasic::releaseMemory() { |
| spiller_.reset(0); |
| RegAllocBase::releaseMemory(); |
| } |
| |
| #ifndef NDEBUG |
| // Verify each LiveIntervalUnion. |
| void RegAllocBase::verify() { |
| LvrBitSet visitedVRegs; |
| OwningArrayPtr<LvrBitSet> unionVRegs(new LvrBitSet[physReg2liu_.numRegs()]); |
| // Verify disjoint unions. |
| for (unsigned preg = 0; preg < physReg2liu_.numRegs(); ++preg) { |
| DEBUG(PhysicalRegisterDescription prd(tri_); physReg2liu_[preg].dump(&prd)); |
| LvrBitSet &vregs = unionVRegs[preg]; |
| physReg2liu_[preg].verify(vregs); |
| // Union + intersection test could be done efficiently in one pass, but |
| // don't add a method to SparseBitVector unless we really need it. |
| assert(!visitedVRegs.intersects(vregs) && "vreg in multiple unions"); |
| visitedVRegs |= vregs; |
| } |
| // Verify vreg coverage. |
| for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end(); |
| liItr != liEnd; ++liItr) { |
| unsigned reg = liItr->first; |
| if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; |
| if (!vrm_->hasPhys(reg)) continue; // spilled? |
| unsigned preg = vrm_->getPhys(reg); |
| if (!unionVRegs[preg].test(reg)) { |
| dbgs() << "LiveVirtReg " << reg << " not in union " << |
| tri_->getName(preg) << "\n"; |
| llvm_unreachable("unallocated live vreg"); |
| } |
| } |
| // FIXME: I'm not sure how to verify spilled intervals. |
| } |
| #endif //!NDEBUG |
| |
| //===----------------------------------------------------------------------===// |
| // RegAllocBase Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Instantiate a LiveIntervalUnion for each physical register. |
| void RegAllocBase::LIUArray::init(unsigned nRegs) { |
| array_.reset(new LiveIntervalUnion[nRegs]); |
| nRegs_ = nRegs; |
| for (unsigned pr = 0; pr < nRegs; ++pr) { |
| array_[pr].init(pr); |
| } |
| } |
| |
| void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm, |
| LiveIntervals &lis) { |
| tri_ = &tri; |
| vrm_ = &vrm; |
| lis_ = &lis; |
| physReg2liu_.init(tri_->getNumRegs()); |
| // Cache an interferece query for each physical reg |
| queries_.reset(new LiveIntervalUnion::Query[physReg2liu_.numRegs()]); |
| } |
| |
| void RegAllocBase::LIUArray::clear() { |
| nRegs_ = 0; |
| array_.reset(0); |
| } |
| |
| void RegAllocBase::releaseMemory() { |
| physReg2liu_.clear(); |
| } |
| |
| namespace llvm { |
| /// This class defines a queue of live virtual registers prioritized by spill |
| /// weight. The heaviest vreg is popped first. |
| /// |
| /// Currently, this is trivial wrapper that gives us an opaque type in the |
| /// header, but we may later give it a virtual interface for register allocators |
| /// to override the priority queue comparator. |
| class LiveVirtRegQueue { |
| typedef std::priority_queue |
| <LiveInterval*, std::vector<LiveInterval*>, LessSpillWeightPriority> PQ; |
| PQ pq_; |
| |
| public: |
| // Is the queue empty? |
| bool empty() { return pq_.empty(); } |
| |
| // Get the highest priority lvr (top + pop) |
| LiveInterval *get() { |
| LiveInterval *lvr = pq_.top(); |
| pq_.pop(); |
| return lvr; |
| } |
| // Add this lvr to the queue |
| void push(LiveInterval *lvr) { |
| pq_.push(lvr); |
| } |
| }; |
| } // end namespace llvm |
| |
| // Visit all the live virtual registers. If they are already assigned to a |
| // physical register, unify them with the corresponding LiveIntervalUnion, |
| // otherwise push them on the priority queue for later assignment. |
| void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &lvrQ) { |
| for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end(); |
| liItr != liEnd; ++liItr) { |
| unsigned reg = liItr->first; |
| LiveInterval &li = *liItr->second; |
| if (TargetRegisterInfo::isPhysicalRegister(reg)) { |
| physReg2liu_[reg].unify(li); |
| } |
| else { |
| lvrQ.push(&li); |
| } |
| } |
| } |
| |
| // Top-level driver to manage the queue of unassigned LiveVirtRegs and call the |
| // selectOrSplit implementation. |
| void RegAllocBase::allocatePhysRegs() { |
| LiveVirtRegQueue lvrQ; |
| seedLiveVirtRegs(lvrQ); |
| while (!lvrQ.empty()) { |
| LiveInterval *lvr = lvrQ.get(); |
| typedef SmallVector<LiveInterval*, 4> LVRVec; |
| LVRVec splitLVRs; |
| unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs); |
| if (availablePhysReg) { |
| DEBUG(dbgs() << "allocating: " << tri_->getName(availablePhysReg) << |
| " " << *lvr << '\n'); |
| assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions"); |
| vrm_->assignVirt2Phys(lvr->reg, availablePhysReg); |
| physReg2liu_[availablePhysReg].unify(*lvr); |
| } |
| for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end(); |
| lvrI != lvrEnd; ++lvrI) { |
| if ((*lvrI)->empty()) continue; |
| DEBUG(dbgs() << "queuing new interval: " << **lvrI << "\n"); |
| assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) && |
| "expect split value in virtual register"); |
| lvrQ.push(*lvrI); |
| } |
| } |
| } |
| |
| // Check if this live virtual reg interferes with a physical register. If not, |
| // then check for interference on each register that aliases with the physical |
| // register. Return the interfering register. |
| unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &lvr, |
| unsigned preg) { |
| if (query(lvr, preg).checkInterference()) |
| return preg; |
| for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) { |
| if (query(lvr, *asI).checkInterference()) |
| return *asI; |
| } |
| return 0; |
| } |
| |
| // Sort live virtual registers by their register number. |
| struct LessLiveVirtualReg |
| : public std::binary_function<LiveInterval, LiveInterval, bool> { |
| bool operator()(const LiveInterval *left, const LiveInterval *right) const { |
| return left->reg < right->reg; |
| } |
| }; |
| |
| // Spill all interferences currently assigned to this physical register. |
| void RegAllocBase::spillReg(LiveInterval& lvr, unsigned reg, |
| SmallVectorImpl<LiveInterval*> &splitLVRs) { |
| LiveIntervalUnion::Query &Q = query(lvr, reg); |
| const SmallVectorImpl<LiveInterval*> &pendingSpills = Q.interferingVRegs(); |
| |
| for (SmallVectorImpl<LiveInterval*>::const_iterator I = pendingSpills.begin(), |
| E = pendingSpills.end(); I != E; ++I) { |
| LiveInterval &spilledLVR = **I; |
| DEBUG(dbgs() << "extracting from " << |
| tri_->getName(reg) << " " << spilledLVR << '\n'); |
| |
| // Deallocate the interfering vreg by removing it from the union. |
| // A LiveInterval instance may not be in a union during modification! |
| physReg2liu_[reg].extract(spilledLVR); |
| |
| // Clear the vreg assignment. |
| vrm_->clearVirt(spilledLVR.reg); |
| |
| // Spill the extracted interval. |
| spiller().spill(&spilledLVR, splitLVRs, pendingSpills); |
| } |
| // After extracting segments, the query's results are invalid. But keep the |
| // contents valid until we're done accessing pendingSpills. |
| Q.clear(); |
| } |
| |
| // Spill or split all live virtual registers currently unified under preg that |
| // interfere with lvr. The newly spilled or split live intervals are returned by |
| // appending them to splitLVRs. |
| bool |
| RegAllocBase::spillInterferences(LiveInterval &lvr, unsigned preg, |
| SmallVectorImpl<LiveInterval*> &splitLVRs) { |
| // Record each interference and determine if all are spillable before mutating |
| // either the union or live intervals. |
| |
| // Collect interferences assigned to the requested physical register. |
| LiveIntervalUnion::Query &QPreg = query(lvr, preg); |
| unsigned numInterferences = QPreg.collectInterferingVRegs(); |
| if (QPreg.seenUnspillableVReg()) { |
| return false; |
| } |
| // Collect interferences assigned to any alias of the physical register. |
| for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) { |
| LiveIntervalUnion::Query &QAlias = query(lvr, *asI); |
| numInterferences += QAlias.collectInterferingVRegs(); |
| if (QAlias.seenUnspillableVReg()) { |
| return false; |
| } |
| } |
| DEBUG(dbgs() << "spilling " << tri_->getName(preg) << |
| " interferences with " << lvr << "\n"); |
| assert(numInterferences > 0 && "expect interference"); |
| |
| // Spill each interfering vreg allocated to preg or an alias. |
| spillReg(lvr, preg, splitLVRs); |
| for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) |
| spillReg(lvr, *asI, splitLVRs); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RABasic Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Driver for the register assignment and splitting heuristics. |
| // Manages iteration over the LiveIntervalUnions. |
| // |
| // Minimal implementation of register assignment and splitting--spills whenever |
| // we run out of registers. |
| // |
| // selectOrSplit can only be called once per live virtual register. We then do a |
| // single interference test for each register the correct class until we find an |
| // available register. So, the number of interference tests in the worst case is |
| // |vregs| * |machineregs|. And since the number of interference tests is |
| // minimal, there is no value in caching them. |
| unsigned RABasic::selectOrSplit(LiveInterval &lvr, |
| SmallVectorImpl<LiveInterval*> &splitLVRs) { |
| // Populate a list of physical register spill candidates. |
| SmallVector<unsigned, 8> pregSpillCands; |
| |
| // Check for an available register in this class. |
| const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg); |
| for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_), |
| trcEnd = trc->allocation_order_end(*mf_); |
| trcI != trcEnd; ++trcI) { |
| unsigned preg = *trcI; |
| if (reservedRegs_.test(preg)) continue; |
| |
| // Check interference and intialize queries for this lvr as a side effect. |
| unsigned interfReg = checkPhysRegInterference(lvr, preg); |
| if (interfReg == 0) { |
| // Found an available register. |
| return preg; |
| } |
| LiveInterval *interferingVirtReg = |
| queries_[interfReg].firstInterference().liuSegPos()->liveVirtReg; |
| |
| // The current lvr must either spillable, or one of its interferences must |
| // have less spill weight. |
| if (interferingVirtReg->weight < lvr.weight ) { |
| pregSpillCands.push_back(preg); |
| } |
| } |
| // Try to spill another interfering reg with less spill weight. |
| // |
| // FIXME: RAGreedy will sort this list by spill weight. |
| for (SmallVectorImpl<unsigned>::iterator pregI = pregSpillCands.begin(), |
| pregE = pregSpillCands.end(); pregI != pregE; ++pregI) { |
| |
| if (!spillInterferences(lvr, *pregI, splitLVRs)) continue; |
| |
| unsigned interfReg = checkPhysRegInterference(lvr, *pregI); |
| if (interfReg != 0) { |
| const LiveSegment &seg = |
| *queries_[interfReg].firstInterference().liuSegPos(); |
| dbgs() << "spilling cannot free " << tri_->getName(*pregI) << |
| " for " << lvr.reg << " with interference " << *seg.liveVirtReg << "\n"; |
| llvm_unreachable("Interference after spill."); |
| } |
| // Tell the caller to allocate to this newly freed physical register. |
| return *pregI; |
| } |
| // No other spill candidates were found, so spill the current lvr. |
| DEBUG(dbgs() << "spilling: " << lvr << '\n'); |
| SmallVector<LiveInterval*, 1> pendingSpills; |
| spiller().spill(&lvr, splitLVRs, pendingSpills); |
| |
| // The live virtual register requesting allocation was spilled, so tell |
| // the caller not to allocate anything during this round. |
| return 0; |
| } |
| |
| namespace llvm { |
| Spiller *createInlineSpiller(MachineFunctionPass &pass, |
| MachineFunction &mf, |
| VirtRegMap &vrm); |
| } |
| |
| bool RABasic::runOnMachineFunction(MachineFunction &mf) { |
| DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" |
| << "********** Function: " |
| << ((Value*)mf.getFunction())->getName() << '\n'); |
| |
| mf_ = &mf; |
| tm_ = &mf.getTarget(); |
| mri_ = &mf.getRegInfo(); |
| |
| DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>()); |
| |
| const TargetRegisterInfo *TRI = tm_->getRegisterInfo(); |
| RegAllocBase::init(*TRI, getAnalysis<VirtRegMap>(), |
| getAnalysis<LiveIntervals>()); |
| |
| reservedRegs_ = TRI->getReservedRegs(*mf_); |
| |
| // We may want to force InlineSpiller for this register allocator. For |
| // now we're also experimenting with the standard spiller. |
| // |
| //spiller_.reset(createInlineSpiller(*this, *mf_, *vrm_)); |
| spiller_.reset(createSpiller(*this, *mf_, *vrm_)); |
| |
| allocatePhysRegs(); |
| |
| // Diagnostic output before rewriting |
| DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n"); |
| |
| // optional HTML output |
| DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_)); |
| |
| // FIXME: Verification currently must run before VirtRegRewriter. We should |
| // make the rewriter a separate pass and override verifyAnalysis instead. When |
| // that happens, verification naturally falls under VerifyMachineCode. |
| #ifndef NDEBUG |
| if (VerifyRegAlloc) { |
| // Verify accuracy of LiveIntervals. The standard machine code verifier |
| // ensures that each LiveIntervals covers all uses of the virtual reg. |
| |
| // FIXME: MachineVerifier is currently broken when using the standard |
| // spiller. Enable it for InlineSpiller only. |
| // mf_->verify(this); |
| |
| // Verify that LiveIntervals are partitioned into unions and disjoint within |
| // the unions. |
| verify(); |
| } |
| #endif // !NDEBUG |
| |
| // Run rewriter |
| std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter()); |
| rewriter->runOnMachineFunction(*mf_, *vrm_, lis_); |
| |
| // The pass output is in VirtRegMap. Release all the transient data. |
| releaseMemory(); |
| |
| return true; |
| } |
| |
| FunctionPass* llvm::createBasicRegisterAllocator() |
| { |
| return new RABasic(); |
| } |