blob: b9f7f3b8e155feef4f44680b8ac020ec7adc9ccb [file] [log] [blame]
//===- genexec.cpp - Functions for generating executable files ------------===//
//
// This file contains functions for generating executable files once linking
// has finished. This includes generating a shell script to run the JIT or
// a native executable derived from the bytecode.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Linker.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Bytecode/WriteBytecodePass.h"
#include "Support/SystemUtils.h"
#include "util.h"
#include <fstream>
#include <string>
#include <vector>
//
// Function: GenerateBytecode ()
//
// Description:
// This function generates a bytecode file from the specified module.
//
// Inputs:
// M - The module for which bytecode should be generated.
// Strip - Flags whether symbols should be stripped from the output.
// Internalize - Flags whether all symbols should be marked internal.
// Out - Pointer to file stream to which to write the output.
//
// Outputs:
// None.
//
// Return value:
// 0 - No error.
// 1 - Error.
//
int
GenerateBytecode (Module * M,
bool Strip,
bool Internalize,
std::ofstream * Out)
{
// In addition to just linking the input from GCC, we also want to spiff it up
// a little bit. Do this now.
PassManager Passes;
// Add an appropriate TargetData instance for this module...
Passes.add(new TargetData("gccld", M));
// Linking modules together can lead to duplicated global constants, only keep
// one copy of each constant...
//
Passes.add(createConstantMergePass());
// If the -s command line option was specified, strip the symbols out of the
// resulting program to make it smaller. -s is a GCC option that we are
// supporting.
//
if (Strip)
Passes.add(createSymbolStrippingPass());
// Often if the programmer does not specify proper prototypes for the
// functions they are calling, they end up calling a vararg version of the
// function that does not get a body filled in (the real function has typed
// arguments). This pass merges the two functions.
//
Passes.add(createFunctionResolvingPass());
if (Internalize) {
// Now that composite has been compiled, scan through the module, looking
// for a main function. If main is defined, mark all other functions
// internal.
//
Passes.add(createInternalizePass());
}
// Remove unused arguments from functions...
//
Passes.add(createDeadArgEliminationPass());
// The FuncResolve pass may leave cruft around if functions were prototyped
// differently than they were defined. Remove this cruft.
//
Passes.add(createInstructionCombiningPass());
// Delete basic blocks, which optimization passes may have killed...
//
Passes.add(createCFGSimplificationPass());
// Now that we have optimized the program, discard unreachable functions...
//
Passes.add(createGlobalDCEPass());
// Add the pass that writes bytecode to the output file...
Passes.add(new WriteBytecodePass(Out));
// Run our queue of passes all at once now, efficiently.
Passes.run(*M);
return 0;
}
//
// Function: generate_assembly ()
//
// Description:
// This function generates a native assembly language source file from the
// specified bytecode file.
//
// Inputs:
// InputFilename - The name of the output bytecode file.
// OutputFilename - The name of the file to generate.
// llc - The pathname to use for LLC.
// envp - The environment to use when running LLC.
//
// Outputs:
// None.
//
// Return value:
// 0 - Success
// 1 - Failure
//
int
generate_assembly (std::string OutputFilename,
std::string InputFilename,
std::string llc,
char ** const envp)
{
//
// Run LLC to convert the bytecode file into assembly code.
//
const char * cmd[8];
cmd[0] = llc.c_str();
cmd[1] = "-f";
cmd[2] = "-o";
cmd[3] = OutputFilename.c_str();
cmd[4] = InputFilename.c_str();
cmd[5] = NULL;
if ((ExecWait (cmd, envp)) == -1)
{
return 1;
}
return 0;
}
//
// Function: generate_native ()
//
// Description:
// This function generates a native assembly language source file from the
// specified assembly source file.
//
// Inputs:
// InputFilename - The name of the output bytecode file.
// OutputFilename - The name of the file to generate.
// Libraries - The list of libraries with which to link.
// gcc - The pathname to use for GGC.
// envp - A copy of the process's current environment.
//
// Outputs:
// None.
//
// Return value:
// 0 - Success
// 1 - Failure
//
int
generate_native (std::string OutputFilename,
std::string InputFilename,
std::vector<std::string> Libraries,
std::string gcc,
char ** const envp)
{
//
// Remove these environment variables from the environment of the
// programs that we will execute. It appears that GCC sets these
// environment variables so that the programs it uses can configure
// themselves identically.
//
// However, when we invoke GCC below, we want it to use its normal
// configuration. Hence, we must sanitize it's environment.
//
char ** clean_env = copy_env (envp);
if (clean_env == NULL)
{
return 1;
}
remove_env ("LIBRARY_PATH", clean_env);
remove_env ("COLLECT_GCC_OPTIONS", clean_env);
remove_env ("GCC_EXEC_PREFIX", clean_env);
remove_env ("COMPILER_PATH", clean_env);
remove_env ("COLLECT_GCC", clean_env);
const char * cmd[8 + Libraries.size()];
//
// Run GCC to assemble and link the program into native code.
//
// Note:
// We can't just assemble and link the file with the system assembler
// and linker because we don't know where to put the _start symbol.
// GCC mysteriously knows how to do it.
//
unsigned int index=0;
cmd[index++] = gcc.c_str();
cmd[index++] = "-o";
cmd[index++] = OutputFilename.c_str();
cmd[index++] = InputFilename.c_str();
for (; (index - 4) < Libraries.size(); index++)
{
Libraries[index - 4] = "-l" + Libraries[index - 4];
cmd[index] = Libraries[index-4].c_str();
}
cmd[index++] = NULL;
if ((ExecWait (cmd, clean_env)) == -1)
{
return 1;
}
return 0;
}