| //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a simple register coalescing pass that attempts to |
| // aggressively coalesce every register copy that it can. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regcoalescing" |
| #include "SimpleRegisterCoalescing.h" |
| #include "VirtRegMap.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/Value.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegisterCoalescer.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| STATISTIC(numJoins , "Number of interval joins performed"); |
| STATISTIC(numSubJoins , "Number of subclass joins performed"); |
| STATISTIC(numCommutes , "Number of instruction commuting performed"); |
| STATISTIC(numExtends , "Number of copies extended"); |
| STATISTIC(NumReMats , "Number of instructions re-materialized"); |
| STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); |
| STATISTIC(numAborts , "Number of times interval joining aborted"); |
| |
| char SimpleRegisterCoalescing::ID = 0; |
| static cl::opt<bool> |
| EnableJoining("join-liveintervals", |
| cl::desc("Coalesce copies (default=true)"), |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| NewHeuristic("new-coalescer-heuristic", |
| cl::desc("Use new coalescer heuristic"), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| CrossClassJoin("join-subclass-copies", |
| cl::desc("Coalesce copies to sub- register class"), |
| cl::init(false), cl::Hidden); |
| |
| static RegisterPass<SimpleRegisterCoalescing> |
| X("simple-register-coalescing", "Simple Register Coalescing"); |
| |
| // Declare that we implement the RegisterCoalescer interface |
| static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X); |
| |
| const PassInfo *const llvm::SimpleRegisterCoalescingID = &X; |
| |
| void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addPreservedID(MachineDominatorsID); |
| AU.addPreservedID(PHIEliminationID); |
| AU.addPreservedID(TwoAddressInstructionPassID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA |
| /// being the source and IntB being the dest, thus this defines a value number |
| /// in IntB. If the source value number (in IntA) is defined by a copy from B, |
| /// see if we can merge these two pieces of B into a single value number, |
| /// eliminating a copy. For example: |
| /// |
| /// A3 = B0 |
| /// ... |
| /// B1 = A3 <- this copy |
| /// |
| /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 |
| /// value number to be replaced with B0 (which simplifies the B liveinterval). |
| /// |
| /// This returns true if an interval was modified. |
| /// |
| bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, |
| LiveInterval &IntB, |
| MachineInstr *CopyMI) { |
| unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); |
| |
| // BValNo is a value number in B that is defined by a copy from A. 'B3' in |
| // the example above. |
| LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); |
| if (BLR == IntB.end()) // Should never happen! |
| return false; |
| VNInfo *BValNo = BLR->valno; |
| |
| // Get the location that B is defined at. Two options: either this value has |
| // an unknown definition point or it is defined at CopyIdx. If unknown, we |
| // can't process it. |
| if (!BValNo->copy) return false; |
| assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); |
| |
| // AValNo is the value number in A that defines the copy, A3 in the example. |
| LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1); |
| if (ALR == IntA.end()) // Should never happen! |
| return false; |
| VNInfo *AValNo = ALR->valno; |
| |
| // If AValNo is defined as a copy from IntB, we can potentially process this. |
| // Get the instruction that defines this value number. |
| unsigned SrcReg = li_->getVNInfoSourceReg(AValNo); |
| if (!SrcReg) return false; // Not defined by a copy. |
| |
| // If the value number is not defined by a copy instruction, ignore it. |
| |
| // If the source register comes from an interval other than IntB, we can't |
| // handle this. |
| if (SrcReg != IntB.reg) return false; |
| |
| // Get the LiveRange in IntB that this value number starts with. |
| LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1); |
| if (ValLR == IntB.end()) // Should never happen! |
| return false; |
| |
| // Make sure that the end of the live range is inside the same block as |
| // CopyMI. |
| MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1); |
| if (!ValLREndInst || |
| ValLREndInst->getParent() != CopyMI->getParent()) return false; |
| |
| // Okay, we now know that ValLR ends in the same block that the CopyMI |
| // live-range starts. If there are no intervening live ranges between them in |
| // IntB, we can merge them. |
| if (ValLR+1 != BLR) return false; |
| |
| // If a live interval is a physical register, conservatively check if any |
| // of its sub-registers is overlapping the live interval of the virtual |
| // register. If so, do not coalesce. |
| if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) && |
| *tri_->getSubRegisters(IntB.reg)) { |
| for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) |
| if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); |
| return false; |
| } |
| } |
| |
| DOUT << "\nExtending: "; IntB.print(DOUT, tri_); |
| |
| unsigned FillerStart = ValLR->end, FillerEnd = BLR->start; |
| // We are about to delete CopyMI, so need to remove it as the 'instruction |
| // that defines this value #'. Update the the valnum with the new defining |
| // instruction #. |
| BValNo->def = FillerStart; |
| BValNo->copy = NULL; |
| |
| // Okay, we can merge them. We need to insert a new liverange: |
| // [ValLR.end, BLR.begin) of either value number, then we merge the |
| // two value numbers. |
| IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); |
| |
| // If the IntB live range is assigned to a physical register, and if that |
| // physreg has aliases, |
| if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) { |
| // Update the liveintervals of sub-registers. |
| for (const unsigned *AS = tri_->getSubRegisters(IntB.reg); *AS; ++AS) { |
| LiveInterval &AliasLI = li_->getInterval(*AS); |
| AliasLI.addRange(LiveRange(FillerStart, FillerEnd, |
| AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator()))); |
| } |
| } |
| |
| // Okay, merge "B1" into the same value number as "B0". |
| if (BValNo != ValLR->valno) { |
| IntB.addKills(ValLR->valno, BValNo->kills); |
| IntB.MergeValueNumberInto(BValNo, ValLR->valno); |
| } |
| DOUT << " result = "; IntB.print(DOUT, tri_); |
| DOUT << "\n"; |
| |
| // If the source instruction was killing the source register before the |
| // merge, unset the isKill marker given the live range has been extended. |
| int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); |
| if (UIdx != -1) { |
| ValLREndInst->getOperand(UIdx).setIsKill(false); |
| IntB.removeKill(ValLR->valno, FillerStart); |
| } |
| |
| ++numExtends; |
| return true; |
| } |
| |
| /// HasOtherReachingDefs - Return true if there are definitions of IntB |
| /// other than BValNo val# that can reach uses of AValno val# of IntA. |
| bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA, |
| LiveInterval &IntB, |
| VNInfo *AValNo, |
| VNInfo *BValNo) { |
| for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); |
| AI != AE; ++AI) { |
| if (AI->valno != AValNo) continue; |
| LiveInterval::Ranges::iterator BI = |
| std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start); |
| if (BI != IntB.ranges.begin()) |
| --BI; |
| for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) { |
| if (BI->valno == BValNo) |
| continue; |
| if (BI->start <= AI->start && BI->end > AI->start) |
| return true; |
| if (BI->start > AI->start && BI->start < AI->end) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA |
| /// being the source and IntB being the dest, thus this defines a value number |
| /// in IntB. If the source value number (in IntA) is defined by a commutable |
| /// instruction and its other operand is coalesced to the copy dest register, |
| /// see if we can transform the copy into a noop by commuting the definition. For |
| /// example, |
| /// |
| /// A3 = op A2 B0<kill> |
| /// ... |
| /// B1 = A3 <- this copy |
| /// ... |
| /// = op A3 <- more uses |
| /// |
| /// ==> |
| /// |
| /// B2 = op B0 A2<kill> |
| /// ... |
| /// B1 = B2 <- now an identify copy |
| /// ... |
| /// = op B2 <- more uses |
| /// |
| /// This returns true if an interval was modified. |
| /// |
| bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA, |
| LiveInterval &IntB, |
| MachineInstr *CopyMI) { |
| unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); |
| |
| // FIXME: For now, only eliminate the copy by commuting its def when the |
| // source register is a virtual register. We want to guard against cases |
| // where the copy is a back edge copy and commuting the def lengthen the |
| // live interval of the source register to the entire loop. |
| if (TargetRegisterInfo::isPhysicalRegister(IntA.reg)) |
| return false; |
| |
| // BValNo is a value number in B that is defined by a copy from A. 'B3' in |
| // the example above. |
| LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); |
| if (BLR == IntB.end()) // Should never happen! |
| return false; |
| VNInfo *BValNo = BLR->valno; |
| |
| // Get the location that B is defined at. Two options: either this value has |
| // an unknown definition point or it is defined at CopyIdx. If unknown, we |
| // can't process it. |
| if (!BValNo->copy) return false; |
| assert(BValNo->def == CopyIdx && "Copy doesn't define the value?"); |
| |
| // AValNo is the value number in A that defines the copy, A3 in the example. |
| LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1); |
| if (ALR == IntA.end()) // Should never happen! |
| return false; |
| VNInfo *AValNo = ALR->valno; |
| // If other defs can reach uses of this def, then it's not safe to perform |
| // the optimization. |
| if (AValNo->def == ~0U || AValNo->def == ~1U || AValNo->hasPHIKill) |
| return false; |
| MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def); |
| const TargetInstrDesc &TID = DefMI->getDesc(); |
| unsigned NewDstIdx; |
| if (!TID.isCommutable() || |
| !tii_->CommuteChangesDestination(DefMI, NewDstIdx)) |
| return false; |
| |
| MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); |
| unsigned NewReg = NewDstMO.getReg(); |
| if (NewReg != IntB.reg || !NewDstMO.isKill()) |
| return false; |
| |
| // Make sure there are no other definitions of IntB that would reach the |
| // uses which the new definition can reach. |
| if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) |
| return false; |
| |
| // If some of the uses of IntA.reg is already coalesced away, return false. |
| // It's not possible to determine whether it's safe to perform the coalescing. |
| for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg), |
| UE = mri_->use_end(); UI != UE; ++UI) { |
| MachineInstr *UseMI = &*UI; |
| unsigned UseIdx = li_->getInstructionIndex(UseMI); |
| LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); |
| if (ULR == IntA.end()) |
| continue; |
| if (ULR->valno == AValNo && JoinedCopies.count(UseMI)) |
| return false; |
| } |
| |
| // At this point we have decided that it is legal to do this |
| // transformation. Start by commuting the instruction. |
| MachineBasicBlock *MBB = DefMI->getParent(); |
| MachineInstr *NewMI = tii_->commuteInstruction(DefMI); |
| if (!NewMI) |
| return false; |
| if (NewMI != DefMI) { |
| li_->ReplaceMachineInstrInMaps(DefMI, NewMI); |
| MBB->insert(DefMI, NewMI); |
| MBB->erase(DefMI); |
| } |
| unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false); |
| NewMI->getOperand(OpIdx).setIsKill(); |
| |
| bool BHasPHIKill = BValNo->hasPHIKill; |
| SmallVector<VNInfo*, 4> BDeadValNos; |
| SmallVector<unsigned, 4> BKills; |
| std::map<unsigned, unsigned> BExtend; |
| |
| // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. |
| // A = or A, B |
| // ... |
| // B = A |
| // ... |
| // C = A<kill> |
| // ... |
| // = B |
| // |
| // then do not add kills of A to the newly created B interval. |
| bool Extended = BLR->end > ALR->end && ALR->end != ALR->start; |
| if (Extended) |
| BExtend[ALR->end] = BLR->end; |
| |
| // Update uses of IntA of the specific Val# with IntB. |
| for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg), |
| UE = mri_->use_end(); UI != UE;) { |
| MachineOperand &UseMO = UI.getOperand(); |
| MachineInstr *UseMI = &*UI; |
| ++UI; |
| if (JoinedCopies.count(UseMI)) |
| continue; |
| unsigned UseIdx = li_->getInstructionIndex(UseMI); |
| LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx); |
| if (ULR == IntA.end() || ULR->valno != AValNo) |
| continue; |
| UseMO.setReg(NewReg); |
| if (UseMI == CopyMI) |
| continue; |
| if (UseMO.isKill()) { |
| if (Extended) |
| UseMO.setIsKill(false); |
| else |
| BKills.push_back(li_->getUseIndex(UseIdx)+1); |
| } |
| unsigned SrcReg, DstReg; |
| if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg)) |
| continue; |
| if (DstReg == IntB.reg) { |
| // This copy will become a noop. If it's defining a new val#, |
| // remove that val# as well. However this live range is being |
| // extended to the end of the existing live range defined by the copy. |
| unsigned DefIdx = li_->getDefIndex(UseIdx); |
| const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx); |
| BHasPHIKill |= DLR->valno->hasPHIKill; |
| assert(DLR->valno->def == DefIdx); |
| BDeadValNos.push_back(DLR->valno); |
| BExtend[DLR->start] = DLR->end; |
| JoinedCopies.insert(UseMI); |
| // If this is a kill but it's going to be removed, the last use |
| // of the same val# is the new kill. |
| if (UseMO.isKill()) |
| BKills.pop_back(); |
| } |
| } |
| |
| // We need to insert a new liverange: [ALR.start, LastUse). It may be we can |
| // simply extend BLR if CopyMI doesn't end the range. |
| DOUT << "\nExtending: "; IntB.print(DOUT, tri_); |
| |
| // Remove val#'s defined by copies that will be coalesced away. |
| for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) |
| IntB.removeValNo(BDeadValNos[i]); |
| |
| // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition |
| // is updated. Kills are also updated. |
| VNInfo *ValNo = BValNo; |
| ValNo->def = AValNo->def; |
| ValNo->copy = NULL; |
| for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) { |
| unsigned Kill = ValNo->kills[j]; |
| if (Kill != BLR->end) |
| BKills.push_back(Kill); |
| } |
| ValNo->kills.clear(); |
| for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end(); |
| AI != AE; ++AI) { |
| if (AI->valno != AValNo) continue; |
| unsigned End = AI->end; |
| std::map<unsigned, unsigned>::iterator EI = BExtend.find(End); |
| if (EI != BExtend.end()) |
| End = EI->second; |
| IntB.addRange(LiveRange(AI->start, End, ValNo)); |
| } |
| IntB.addKills(ValNo, BKills); |
| ValNo->hasPHIKill = BHasPHIKill; |
| |
| DOUT << " result = "; IntB.print(DOUT, tri_); |
| DOUT << "\n"; |
| |
| DOUT << "\nShortening: "; IntA.print(DOUT, tri_); |
| IntA.removeValNo(AValNo); |
| DOUT << " result = "; IntA.print(DOUT, tri_); |
| DOUT << "\n"; |
| |
| ++numCommutes; |
| return true; |
| } |
| |
| /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial |
| /// computation, replace the copy by rematerialize the definition. |
| bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt, |
| unsigned DstReg, |
| MachineInstr *CopyMI) { |
| unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI)); |
| LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx); |
| if (SrcLR == SrcInt.end()) // Should never happen! |
| return false; |
| VNInfo *ValNo = SrcLR->valno; |
| // If other defs can reach uses of this def, then it's not safe to perform |
| // the optimization. |
| if (ValNo->def == ~0U || ValNo->def == ~1U || ValNo->hasPHIKill) |
| return false; |
| MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def); |
| const TargetInstrDesc &TID = DefMI->getDesc(); |
| if (!TID.isAsCheapAsAMove()) |
| return false; |
| bool SawStore = false; |
| if (!DefMI->isSafeToMove(tii_, SawStore)) |
| return false; |
| |
| unsigned DefIdx = li_->getDefIndex(CopyIdx); |
| const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx); |
| DLR->valno->copy = NULL; |
| |
| MachineBasicBlock::iterator MII = CopyMI; |
| MachineBasicBlock *MBB = CopyMI->getParent(); |
| tii_->reMaterialize(*MBB, MII, DstReg, DefMI); |
| MachineInstr *NewMI = prior(MII); |
| // CopyMI may have implicit instructions, transfer them over to the newly |
| // rematerialized instruction. And update implicit def interval valnos. |
| for (unsigned i = CopyMI->getDesc().getNumOperands(), |
| e = CopyMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = CopyMI->getOperand(i); |
| if (MO.isRegister() && MO.isImplicit()) |
| NewMI->addOperand(MO); |
| if (MO.isDef() && li_->hasInterval(MO.getReg())) { |
| unsigned Reg = MO.getReg(); |
| DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx); |
| if (DLR && DLR->valno->copy == CopyMI) |
| DLR->valno->copy = NULL; |
| } |
| } |
| |
| li_->ReplaceMachineInstrInMaps(CopyMI, NewMI); |
| CopyMI->eraseFromParent(); |
| ReMatCopies.insert(CopyMI); |
| ReMatDefs.insert(DefMI); |
| ++NumReMats; |
| return true; |
| } |
| |
| /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy. |
| /// |
| bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI, |
| unsigned DstReg) const { |
| MachineBasicBlock *MBB = CopyMI->getParent(); |
| const MachineLoop *L = loopInfo->getLoopFor(MBB); |
| if (!L) |
| return false; |
| if (MBB != L->getLoopLatch()) |
| return false; |
| |
| LiveInterval &LI = li_->getInterval(DstReg); |
| unsigned DefIdx = li_->getInstructionIndex(CopyMI); |
| LiveInterval::const_iterator DstLR = |
| LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx)); |
| if (DstLR == LI.end()) |
| return false; |
| unsigned KillIdx = li_->getMBBEndIdx(MBB) + 1; |
| if (DstLR->valno->kills.size() == 1 && |
| DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill) |
| return true; |
| return false; |
| } |
| |
| /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and |
| /// update the subregister number if it is not zero. If DstReg is a |
| /// physical register and the existing subregister number of the def / use |
| /// being updated is not zero, make sure to set it to the correct physical |
| /// subregister. |
| void |
| SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg, |
| unsigned SubIdx) { |
| bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); |
| if (DstIsPhys && SubIdx) { |
| // Figure out the real physical register we are updating with. |
| DstReg = tri_->getSubReg(DstReg, SubIdx); |
| SubIdx = 0; |
| } |
| |
| for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg), |
| E = mri_->reg_end(); I != E; ) { |
| MachineOperand &O = I.getOperand(); |
| MachineInstr *UseMI = &*I; |
| ++I; |
| unsigned OldSubIdx = O.getSubReg(); |
| if (DstIsPhys) { |
| unsigned UseDstReg = DstReg; |
| if (OldSubIdx) |
| UseDstReg = tri_->getSubReg(DstReg, OldSubIdx); |
| |
| unsigned CopySrcReg, CopyDstReg; |
| if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg) && |
| CopySrcReg != CopyDstReg && |
| CopySrcReg == SrcReg && CopyDstReg != UseDstReg) { |
| // If the use is a copy and it won't be coalesced away, and its source |
| // is defined by a trivial computation, try to rematerialize it instead. |
| if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,UseMI)) |
| continue; |
| } |
| |
| O.setReg(UseDstReg); |
| O.setSubReg(0); |
| continue; |
| } |
| |
| // Sub-register indexes goes from small to large. e.g. |
| // RAX: 1 -> AL, 2 -> AX, 3 -> EAX |
| // EAX: 1 -> AL, 2 -> AX |
| // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose |
| // sub-register 2 is also AX. |
| if (SubIdx && OldSubIdx && SubIdx != OldSubIdx) |
| assert(OldSubIdx < SubIdx && "Conflicting sub-register index!"); |
| else if (SubIdx) |
| O.setSubReg(SubIdx); |
| // Remove would-be duplicated kill marker. |
| if (O.isKill() && UseMI->killsRegister(DstReg)) |
| O.setIsKill(false); |
| O.setReg(DstReg); |
| |
| // After updating the operand, check if the machine instruction has |
| // become a copy. If so, update its val# information. |
| const TargetInstrDesc &TID = UseMI->getDesc(); |
| unsigned CopySrcReg, CopyDstReg; |
| if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 && |
| tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg) && |
| CopySrcReg != CopyDstReg && |
| (TargetRegisterInfo::isVirtualRegister(CopyDstReg) || |
| allocatableRegs_[CopyDstReg])) { |
| LiveInterval &LI = li_->getInterval(CopyDstReg); |
| unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI)); |
| const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx); |
| if (DLR->valno->def == DefIdx) |
| DLR->valno->copy = UseMI; |
| } |
| } |
| } |
| |
| /// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining" |
| /// registers due to insert_subreg coalescing. e.g. |
| /// r1024 = op |
| /// r1025 = implicit_def |
| /// r1025 = insert_subreg r1025, r1024 |
| /// = op r1025 |
| /// => |
| /// r1025 = op |
| /// r1025 = implicit_def |
| /// r1025 = insert_subreg r1025, r1025 |
| /// = op r1025 |
| void |
| SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg, LiveInterval &LI) { |
| for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg), |
| E = mri_->reg_end(); I != E; ) { |
| MachineOperand &O = I.getOperand(); |
| MachineInstr *DefMI = &*I; |
| ++I; |
| if (!O.isDef()) |
| continue; |
| if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) |
| continue; |
| if (!LI.liveBeforeAndAt(li_->getInstructionIndex(DefMI))) |
| continue; |
| li_->RemoveMachineInstrFromMaps(DefMI); |
| DefMI->eraseFromParent(); |
| } |
| } |
| |
| /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate |
| /// due to live range lengthening as the result of coalescing. |
| void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg, |
| LiveInterval &LI) { |
| for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg), |
| UE = mri_->use_end(); UI != UE; ++UI) { |
| MachineOperand &UseMO = UI.getOperand(); |
| if (UseMO.isKill()) { |
| MachineInstr *UseMI = UseMO.getParent(); |
| unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI)); |
| if (JoinedCopies.count(UseMI)) |
| continue; |
| const LiveRange *UI = LI.getLiveRangeContaining(UseIdx); |
| if (!UI || !LI.isKill(UI->valno, UseIdx+1)) |
| UseMO.setIsKill(false); |
| } |
| } |
| } |
| |
| /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range |
| /// from a physical register live interval as well as from the live intervals |
| /// of its sub-registers. |
| static void removeRange(LiveInterval &li, unsigned Start, unsigned End, |
| LiveIntervals *li_, const TargetRegisterInfo *tri_) { |
| li.removeRange(Start, End, true); |
| if (TargetRegisterInfo::isPhysicalRegister(li.reg)) { |
| for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { |
| if (!li_->hasInterval(*SR)) |
| continue; |
| LiveInterval &sli = li_->getInterval(*SR); |
| unsigned RemoveEnd = Start; |
| while (RemoveEnd != End) { |
| LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start); |
| if (LR == sli.end()) |
| break; |
| RemoveEnd = (LR->end < End) ? LR->end : End; |
| sli.removeRange(Start, RemoveEnd, true); |
| Start = RemoveEnd; |
| } |
| } |
| } |
| } |
| |
| /// removeIntervalIfEmpty - Check if the live interval of a physical register |
| /// is empty, if so remove it and also remove the empty intervals of its |
| /// sub-registers. Return true if live interval is removed. |
| static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_, |
| const TargetRegisterInfo *tri_) { |
| if (li.empty()) { |
| if (TargetRegisterInfo::isPhysicalRegister(li.reg)) |
| for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) { |
| if (!li_->hasInterval(*SR)) |
| continue; |
| LiveInterval &sli = li_->getInterval(*SR); |
| if (sli.empty()) |
| li_->removeInterval(*SR); |
| } |
| li_->removeInterval(li.reg); |
| return true; |
| } |
| return false; |
| } |
| |
| /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy. |
| /// Return true if live interval is removed. |
| bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li, |
| MachineInstr *CopyMI) { |
| unsigned CopyIdx = li_->getInstructionIndex(CopyMI); |
| LiveInterval::iterator MLR = |
| li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx)); |
| if (MLR == li.end()) |
| return false; // Already removed by ShortenDeadCopySrcLiveRange. |
| unsigned RemoveStart = MLR->start; |
| unsigned RemoveEnd = MLR->end; |
| // Remove the liverange that's defined by this. |
| if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) { |
| removeRange(li, RemoveStart, RemoveEnd, li_, tri_); |
| return removeIntervalIfEmpty(li, li_, tri_); |
| } |
| return false; |
| } |
| |
| /// PropagateDeadness - Propagate the dead marker to the instruction which |
| /// defines the val#. |
| static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI, |
| unsigned &LRStart, LiveIntervals *li_, |
| const TargetRegisterInfo* tri_) { |
| MachineInstr *DefMI = |
| li_->getInstructionFromIndex(li_->getDefIndex(LRStart)); |
| if (DefMI && DefMI != CopyMI) { |
| int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_); |
| if (DeadIdx != -1) { |
| DefMI->getOperand(DeadIdx).setIsDead(); |
| // A dead def should have a single cycle interval. |
| ++LRStart; |
| } |
| } |
| } |
| |
| /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply |
| /// fallthoughs to SuccMBB. |
| static bool isSameOrFallThroughBB(MachineBasicBlock *MBB, |
| MachineBasicBlock *SuccMBB, |
| const TargetInstrInfo *tii_) { |
| if (MBB == SuccMBB) |
| return true; |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB && |
| MBB->isSuccessor(SuccMBB); |
| } |
| |
| /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially |
| /// extended by a dead copy. Mark the last use (if any) of the val# as kill as |
| /// ends the live range there. If there isn't another use, then this live range |
| /// is dead. Return true if live interval is removed. |
| bool |
| SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li, |
| MachineInstr *CopyMI) { |
| unsigned CopyIdx = li_->getInstructionIndex(CopyMI); |
| if (CopyIdx == 0) { |
| // FIXME: special case: function live in. It can be a general case if the |
| // first instruction index starts at > 0 value. |
| assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); |
| // Live-in to the function but dead. Remove it from entry live-in set. |
| if (mf_->begin()->isLiveIn(li.reg)) |
| mf_->begin()->removeLiveIn(li.reg); |
| const LiveRange *LR = li.getLiveRangeContaining(CopyIdx); |
| removeRange(li, LR->start, LR->end, li_, tri_); |
| return removeIntervalIfEmpty(li, li_, tri_); |
| } |
| |
| LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1); |
| if (LR == li.end()) |
| // Livein but defined by a phi. |
| return false; |
| |
| unsigned RemoveStart = LR->start; |
| unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1; |
| if (LR->end > RemoveEnd) |
| // More uses past this copy? Nothing to do. |
| return false; |
| |
| MachineBasicBlock *CopyMBB = CopyMI->getParent(); |
| unsigned MBBStart = li_->getMBBStartIdx(CopyMBB); |
| unsigned LastUseIdx; |
| MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg, |
| LastUseIdx); |
| if (LastUse) { |
| MachineInstr *LastUseMI = LastUse->getParent(); |
| if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) { |
| // r1024 = op |
| // ... |
| // BB1: |
| // = r1024 |
| // |
| // BB2: |
| // r1025<dead> = r1024<kill> |
| if (MBBStart < LR->end) |
| removeRange(li, MBBStart, LR->end, li_, tri_); |
| return false; |
| } |
| |
| // There are uses before the copy, just shorten the live range to the end |
| // of last use. |
| LastUse->setIsKill(); |
| removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_); |
| unsigned SrcReg, DstReg; |
| if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg) && |
| DstReg == li.reg) { |
| // Last use is itself an identity code. |
| int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_); |
| LastUseMI->getOperand(DeadIdx).setIsDead(); |
| } |
| return false; |
| } |
| |
| // Is it livein? |
| if (LR->start <= MBBStart && LR->end > MBBStart) { |
| if (LR->start == 0) { |
| assert(TargetRegisterInfo::isPhysicalRegister(li.reg)); |
| // Live-in to the function but dead. Remove it from entry live-in set. |
| mf_->begin()->removeLiveIn(li.reg); |
| } |
| // FIXME: Shorten intervals in BBs that reaches this BB. |
| } |
| |
| if (LR->valno->def == RemoveStart) |
| // If the def MI defines the val#, propagate the dead marker. |
| PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_); |
| |
| removeRange(li, RemoveStart, LR->end, li_, tri_); |
| return removeIntervalIfEmpty(li, li_, tri_); |
| } |
| |
| /// CanCoalesceWithImpDef - Returns true if the specified copy instruction |
| /// from an implicit def to another register can be coalesced away. |
| bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI, |
| LiveInterval &li, |
| LiveInterval &ImpLi) const{ |
| if (!CopyMI->killsRegister(ImpLi.reg)) |
| return false; |
| unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); |
| LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx); |
| if (LR == li.end()) |
| return false; |
| if (LR->valno->hasPHIKill) |
| return false; |
| if (LR->valno->def != CopyIdx) |
| return false; |
| // Make sure all of val# uses are copies. |
| for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(li.reg), |
| UE = mri_->use_end(); UI != UE;) { |
| MachineInstr *UseMI = &*UI; |
| ++UI; |
| if (JoinedCopies.count(UseMI)) |
| continue; |
| unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI)); |
| LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx); |
| if (ULR == li.end() || ULR->valno != LR->valno) |
| continue; |
| // If the use is not a use, then it's not safe to coalesce the move. |
| unsigned SrcReg, DstReg; |
| if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg)) { |
| if (UseMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG && |
| UseMI->getOperand(1).getReg() == li.reg) |
| continue; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /// RemoveCopiesFromValNo - The specified value# is defined by an implicit |
| /// def and it is being removed. Turn all copies from this value# into |
| /// identity copies so they will be removed. |
| void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval &li, |
| VNInfo *VNI) { |
| SmallVector<MachineInstr*, 4> ImpDefs; |
| MachineOperand *LastUse = NULL; |
| unsigned LastUseIdx = li_->getUseIndex(VNI->def); |
| for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg), |
| RE = mri_->reg_end(); RI != RE;) { |
| MachineOperand *MO = &RI.getOperand(); |
| MachineInstr *MI = &*RI; |
| ++RI; |
| if (MO->isDef()) { |
| if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { |
| ImpDefs.push_back(MI); |
| } |
| continue; |
| } |
| if (JoinedCopies.count(MI)) |
| continue; |
| unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(MI)); |
| LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx); |
| if (ULR == li.end() || ULR->valno != VNI) |
| continue; |
| // If the use is a copy, turn it into an identity copy. |
| unsigned SrcReg, DstReg; |
| if (tii_->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == li.reg) { |
| // Each use MI may have multiple uses of this register. Change them all. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.getReg() == li.reg) |
| MO.setReg(DstReg); |
| } |
| JoinedCopies.insert(MI); |
| } else if (UseIdx > LastUseIdx) { |
| LastUseIdx = UseIdx; |
| LastUse = MO; |
| } |
| } |
| if (LastUse) |
| LastUse->setIsKill(); |
| else { |
| // Remove dead implicit_def's. |
| while (!ImpDefs.empty()) { |
| MachineInstr *ImpDef = ImpDefs.back(); |
| ImpDefs.pop_back(); |
| li_->RemoveMachineInstrFromMaps(ImpDef); |
| ImpDef->eraseFromParent(); |
| } |
| } |
| } |
| |
| /// getMatchingSuperReg - Return a super-register of the specified register |
| /// Reg so its sub-register of index SubIdx is Reg. |
| static unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo* TRI) { |
| for (const unsigned *SRs = TRI->getSuperRegisters(Reg); |
| unsigned SR = *SRs; ++SRs) |
| if (Reg == TRI->getSubReg(SR, SubIdx) && RC->contains(SR)) |
| return SR; |
| return 0; |
| } |
| |
| /// isProfitableToCoalesceToSubRC - Given that register class of DstReg is |
| /// a subset of the register class of SrcReg, return true if it's profitable |
| /// to coalesce the two registers. |
| bool |
| SimpleRegisterCoalescing::isProfitableToCoalesceToSubRC(unsigned SrcReg, |
| unsigned DstReg, |
| MachineBasicBlock *MBB){ |
| if (!CrossClassJoin) |
| return false; |
| |
| // First let's make sure all uses are in the same MBB. |
| for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(SrcReg), |
| RE = mri_->reg_end(); RI != RE; ++RI) { |
| MachineInstr &MI = *RI; |
| if (MI.getParent() != MBB) |
| return false; |
| } |
| for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(DstReg), |
| RE = mri_->reg_end(); RI != RE; ++RI) { |
| MachineInstr &MI = *RI; |
| if (MI.getParent() != MBB) |
| return false; |
| } |
| |
| // Then make sure the intervals are *short*. |
| LiveInterval &SrcInt = li_->getInterval(SrcReg); |
| LiveInterval &DstInt = li_->getInterval(DstReg); |
| unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt); |
| unsigned DstSize = li_->getApproximateInstructionCount(DstInt); |
| const TargetRegisterClass *RC = mri_->getRegClass(DstReg); |
| unsigned Threshold = allocatableRCRegs_[RC].count() * 2; |
| return (SrcSize + DstSize) <= Threshold; |
| } |
| |
| /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual |
| /// register with a physical register, check if any of the virtual register |
| /// operand is a sub-register use or def. If so, make sure it won't result |
| /// in an illegal extract_subreg or insert_subreg instruction. e.g. |
| /// vr1024 = extract_subreg vr1025, 1 |
| /// ... |
| /// vr1024 = mov8rr AH |
| /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since |
| /// AH does not have a super-reg whose sub-register 1 is AH. |
| bool |
| SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI, |
| unsigned VirtReg, |
| unsigned PhysReg) { |
| for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg), |
| E = mri_->reg_end(); I != E; ++I) { |
| MachineOperand &O = I.getOperand(); |
| MachineInstr *MI = &*I; |
| if (MI == CopyMI || JoinedCopies.count(MI)) |
| continue; |
| unsigned SubIdx = O.getSubReg(); |
| if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx)) |
| return true; |
| if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) { |
| SubIdx = MI->getOperand(2).getImm(); |
| if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx)) |
| return true; |
| if (O.isDef()) { |
| unsigned SrcReg = MI->getOperand(1).getReg(); |
| const TargetRegisterClass *RC = |
| TargetRegisterInfo::isPhysicalRegister(SrcReg) |
| ? tri_->getPhysicalRegisterRegClass(SrcReg) |
| : mri_->getRegClass(SrcReg); |
| if (!getMatchingSuperReg(PhysReg, SubIdx, RC, tri_)) |
| return true; |
| } |
| } |
| if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG) { |
| SubIdx = MI->getOperand(3).getImm(); |
| if (VirtReg == MI->getOperand(0).getReg()) { |
| if (!tri_->getSubReg(PhysReg, SubIdx)) |
| return true; |
| } else { |
| unsigned DstReg = MI->getOperand(0).getReg(); |
| const TargetRegisterClass *RC = |
| TargetRegisterInfo::isPhysicalRegister(DstReg) |
| ? tri_->getPhysicalRegisterRegClass(DstReg) |
| : mri_->getRegClass(DstReg); |
| if (!getMatchingSuperReg(PhysReg, SubIdx, RC, tri_)) |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| |
| /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, |
| /// which are the src/dst of the copy instruction CopyMI. This returns true |
| /// if the copy was successfully coalesced away. If it is not currently |
| /// possible to coalesce this interval, but it may be possible if other |
| /// things get coalesced, then it returns true by reference in 'Again'. |
| bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) { |
| MachineInstr *CopyMI = TheCopy.MI; |
| |
| Again = false; |
| if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI)) |
| return false; // Already done. |
| |
| DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI; |
| |
| unsigned SrcReg; |
| unsigned DstReg; |
| bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG; |
| bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG; |
| unsigned SubIdx = 0; |
| if (isExtSubReg) { |
| DstReg = CopyMI->getOperand(0).getReg(); |
| SrcReg = CopyMI->getOperand(1).getReg(); |
| } else if (isInsSubReg) { |
| if (CopyMI->getOperand(2).getSubReg()) { |
| DOUT << "\tSource of insert_subreg is already coalesced " |
| << "to another register.\n"; |
| return false; // Not coalescable. |
| } |
| DstReg = CopyMI->getOperand(0).getReg(); |
| SrcReg = CopyMI->getOperand(2).getReg(); |
| } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg)) { |
| assert(0 && "Unrecognized copy instruction!"); |
| return false; |
| } |
| |
| // If they are already joined we continue. |
| if (SrcReg == DstReg) { |
| DOUT << "\tCopy already coalesced.\n"; |
| return false; // Not coalescable. |
| } |
| |
| bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); |
| bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); |
| |
| // If they are both physical registers, we cannot join them. |
| if (SrcIsPhys && DstIsPhys) { |
| DOUT << "\tCan not coalesce physregs.\n"; |
| return false; // Not coalescable. |
| } |
| |
| // We only join virtual registers with allocatable physical registers. |
| if (SrcIsPhys && !allocatableRegs_[SrcReg]) { |
| DOUT << "\tSrc reg is unallocatable physreg.\n"; |
| return false; // Not coalescable. |
| } |
| if (DstIsPhys && !allocatableRegs_[DstReg]) { |
| DOUT << "\tDst reg is unallocatable physreg.\n"; |
| return false; // Not coalescable. |
| } |
| |
| // Should be non-null only when coalescing to a sub-register class. |
| const TargetRegisterClass *SubRC = NULL; |
| MachineBasicBlock *CopyMBB = CopyMI->getParent(); |
| unsigned RealDstReg = 0; |
| unsigned RealSrcReg = 0; |
| if (isExtSubReg || isInsSubReg) { |
| SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm(); |
| if (SrcIsPhys && isExtSubReg) { |
| // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be |
| // coalesced with AX. |
| unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg(); |
| if (DstSubIdx) { |
| // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been |
| // coalesced to a larger register so the subreg indices cancel out. |
| if (DstSubIdx != SubIdx) { |
| DOUT << "\t Sub-register indices mismatch.\n"; |
| return false; // Not coalescable. |
| } |
| } else |
| SrcReg = tri_->getSubReg(SrcReg, SubIdx); |
| SubIdx = 0; |
| } else if (DstIsPhys && isInsSubReg) { |
| // EAX = INSERT_SUBREG EAX, r1024, 0 |
| unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg(); |
| if (SrcSubIdx) { |
| // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been |
| // coalesced to a larger register so the subreg indices cancel out. |
| if (SrcSubIdx != SubIdx) { |
| DOUT << "\t Sub-register indices mismatch.\n"; |
| return false; // Not coalescable. |
| } |
| } else |
| DstReg = tri_->getSubReg(DstReg, SubIdx); |
| SubIdx = 0; |
| } else if ((DstIsPhys && isExtSubReg) || (SrcIsPhys && isInsSubReg)) { |
| // If this is a extract_subreg where dst is a physical register, e.g. |
| // cl = EXTRACT_SUBREG reg1024, 1 |
| // then create and update the actual physical register allocated to RHS. |
| // Ditto for |
| // reg1024 = INSERT_SUBREG r1024, cl, 1 |
| if (CopyMI->getOperand(1).getSubReg()) { |
| DOUT << "\tSrc of extract_ / insert_subreg already coalesced with reg" |
| << " of a super-class.\n"; |
| return false; // Not coalescable. |
| } |
| const TargetRegisterClass *RC = |
| mri_->getRegClass(isExtSubReg ? SrcReg : DstReg); |
| if (isExtSubReg) { |
| RealDstReg = getMatchingSuperReg(DstReg, SubIdx, RC, tri_); |
| assert(RealDstReg && "Invalid extract_subreg instruction!"); |
| } else { |
| RealSrcReg = getMatchingSuperReg(SrcReg, SubIdx, RC, tri_); |
| assert(RealSrcReg && "Invalid extract_subreg instruction!"); |
| } |
| |
| // For this type of EXTRACT_SUBREG, conservatively |
| // check if the live interval of the source register interfere with the |
| // actual super physical register we are trying to coalesce with. |
| unsigned PhysReg = isExtSubReg ? RealDstReg : RealSrcReg; |
| LiveInterval &RHS = li_->getInterval(isExtSubReg ? SrcReg : DstReg); |
| if (li_->hasInterval(PhysReg) && |
| RHS.overlaps(li_->getInterval(PhysReg))) { |
| DOUT << "Interfere with register "; |
| DEBUG(li_->getInterval(PhysReg).print(DOUT, tri_)); |
| return false; // Not coalescable |
| } |
| for (const unsigned* SR = tri_->getSubRegisters(PhysReg); *SR; ++SR) |
| if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); |
| return false; // Not coalescable |
| } |
| SubIdx = 0; |
| } else { |
| unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg() |
| : CopyMI->getOperand(2).getSubReg(); |
| if (OldSubIdx) { |
| if (OldSubIdx == SubIdx && |
| !differingRegisterClasses(SrcReg, DstReg, SubRC)) |
| // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been |
| // coalesced to a larger register so the subreg indices cancel out. |
| // Also check if the other larger register is of the same register |
| // class as the would be resulting register. |
| SubIdx = 0; |
| else { |
| DOUT << "\t Sub-register indices mismatch.\n"; |
| return false; // Not coalescable. |
| } |
| } |
| if (SubIdx) { |
| unsigned LargeReg = isExtSubReg ? SrcReg : DstReg; |
| unsigned SmallReg = isExtSubReg ? DstReg : SrcReg; |
| unsigned LargeRegSize = |
| li_->getApproximateInstructionCount(li_->getInterval(LargeReg)); |
| unsigned SmallRegSize = |
| li_->getApproximateInstructionCount(li_->getInterval(SmallReg)); |
| const TargetRegisterClass *RC = mri_->getRegClass(SmallReg); |
| unsigned Threshold = allocatableRCRegs_[RC].count(); |
| // Be conservative. If both sides are virtual registers, do not coalesce |
| // if this will cause a high use density interval to target a smaller |
| // set of registers. |
| if (SmallRegSize > Threshold || LargeRegSize > Threshold) { |
| if ((float)std::distance(mri_->use_begin(SmallReg), |
| mri_->use_end()) / SmallRegSize < |
| (float)std::distance(mri_->use_begin(LargeReg), |
| mri_->use_end()) / LargeRegSize) { |
| Again = true; // May be possible to coalesce later. |
| return false; |
| } |
| } |
| } |
| } |
| } else if (differingRegisterClasses(SrcReg, DstReg, SubRC)) { |
| // FIXME: What if the resul of a EXTRACT_SUBREG is then coalesced |
| // with another? If it's the resulting destination register, then |
| // the subidx must be propagated to uses (but only those defined |
| // by the EXTRACT_SUBREG). If it's being coalesced into another |
| // register, it should be safe because register is assumed to have |
| // the register class of the super-register. |
| |
| if (!SubRC || !isProfitableToCoalesceToSubRC(SrcReg, DstReg, CopyMBB)) { |
| // If they are not of the same register class, we cannot join them. |
| DOUT << "\tSrc/Dest are different register classes.\n"; |
| // Allow the coalescer to try again in case either side gets coalesced to |
| // a physical register that's compatible with the other side. e.g. |
| // r1024 = MOV32to32_ r1025 |
| // but later r1024 is assigned EAX then r1025 may be coalesced with EAX. |
| Again = true; // May be possible to coalesce later. |
| return false; |
| } |
| } |
| |
| // Will it create illegal extract_subreg / insert_subreg? |
| if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg)) |
| return false; |
| if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg)) |
| return false; |
| |
| LiveInterval &SrcInt = li_->getInterval(SrcReg); |
| LiveInterval &DstInt = li_->getInterval(DstReg); |
| assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg && |
| "Register mapping is horribly broken!"); |
| |
| DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_); |
| DOUT << " and "; DstInt.print(DOUT, tri_); |
| DOUT << ": "; |
| |
| // Check if it is necessary to propagate "isDead" property. |
| if (!isExtSubReg && !isInsSubReg) { |
| MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false); |
| bool isDead = mopd->isDead(); |
| |
| // We need to be careful about coalescing a source physical register with a |
| // virtual register. Once the coalescing is done, it cannot be broken and |
| // these are not spillable! If the destination interval uses are far away, |
| // think twice about coalescing them! |
| if (!isDead && (SrcIsPhys || DstIsPhys)) { |
| LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt; |
| unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg; |
| unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg; |
| const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg); |
| unsigned Threshold = allocatableRCRegs_[RC].count() * 2; |
| if (TheCopy.isBackEdge) |
| Threshold *= 2; // Favors back edge copies. |
| |
| // If the virtual register live interval is long but it has low use desity, |
| // do not join them, instead mark the physical register as its allocation |
| // preference. |
| unsigned Length = li_->getApproximateInstructionCount(JoinVInt); |
| if (Length > Threshold && |
| (((float)std::distance(mri_->use_begin(JoinVReg), |
| mri_->use_end()) / Length) < (1.0 / Threshold))) { |
| JoinVInt.preference = JoinPReg; |
| ++numAborts; |
| DOUT << "\tMay tie down a physical register, abort!\n"; |
| Again = true; // May be possible to coalesce later. |
| return false; |
| } |
| } |
| } |
| |
| // Okay, attempt to join these two intervals. On failure, this returns false. |
| // Otherwise, if one of the intervals being joined is a physreg, this method |
| // always canonicalizes DstInt to be it. The output "SrcInt" will not have |
| // been modified, so we can use this information below to update aliases. |
| bool Swapped = false; |
| // If SrcInt is implicitly defined, it's safe to coalesce. |
| bool isEmpty = SrcInt.empty(); |
| if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) { |
| // Only coalesce an empty interval (defined by implicit_def) with |
| // another interval which has a valno defined by the CopyMI and the CopyMI |
| // is a kill of the implicit def. |
| DOUT << "Not profitable!\n"; |
| return false; |
| } |
| |
| if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) { |
| // Coalescing failed. |
| |
| // If definition of source is defined by trivial computation, try |
| // rematerializing it. |
| if (!isExtSubReg && !isInsSubReg && |
| ReMaterializeTrivialDef(SrcInt, DstInt.reg, CopyMI)) |
| return true; |
| |
| // If we can eliminate the copy without merging the live ranges, do so now. |
| if (!isExtSubReg && !isInsSubReg && |
| (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) || |
| RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) { |
| JoinedCopies.insert(CopyMI); |
| return true; |
| } |
| |
| // Otherwise, we are unable to join the intervals. |
| DOUT << "Interference!\n"; |
| Again = true; // May be possible to coalesce later. |
| return false; |
| } |
| |
| LiveInterval *ResSrcInt = &SrcInt; |
| LiveInterval *ResDstInt = &DstInt; |
| if (Swapped) { |
| std::swap(SrcReg, DstReg); |
| std::swap(ResSrcInt, ResDstInt); |
| } |
| assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && |
| "LiveInterval::join didn't work right!"); |
| |
| // If we're about to merge live ranges into a physical register live range, |
| // we have to update any aliased register's live ranges to indicate that they |
| // have clobbered values for this range. |
| if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { |
| // If this is a extract_subreg where dst is a physical register, e.g. |
| // cl = EXTRACT_SUBREG reg1024, 1 |
| // then create and update the actual physical register allocated to RHS. |
| if (RealDstReg || RealSrcReg) { |
| LiveInterval &RealInt = |
| li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg); |
| SmallSet<const VNInfo*, 4> CopiedValNos; |
| for (LiveInterval::Ranges::const_iterator I = ResSrcInt->ranges.begin(), |
| E = ResSrcInt->ranges.end(); I != E; ++I) { |
| const LiveRange *DstLR = ResDstInt->getLiveRangeContaining(I->start); |
| assert(DstLR && "Invalid joined interval!"); |
| const VNInfo *DstValNo = DstLR->valno; |
| if (CopiedValNos.insert(DstValNo)) { |
| VNInfo *ValNo = RealInt.getNextValue(DstValNo->def, DstValNo->copy, |
| li_->getVNInfoAllocator()); |
| ValNo->hasPHIKill = DstValNo->hasPHIKill; |
| RealInt.addKills(ValNo, DstValNo->kills); |
| RealInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo); |
| } |
| } |
| |
| DstReg = RealDstReg ? RealDstReg : RealSrcReg; |
| } |
| |
| // Update the liveintervals of sub-registers. |
| for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS) |
| li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt, |
| li_->getVNInfoAllocator()); |
| } |
| |
| // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the |
| // larger super-register. |
| if ((isExtSubReg || isInsSubReg) && !SrcIsPhys && !DstIsPhys) { |
| if ((isExtSubReg && !Swapped) || (isInsSubReg && Swapped)) { |
| ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator()); |
| std::swap(SrcReg, DstReg); |
| std::swap(ResSrcInt, ResDstInt); |
| } |
| } |
| |
| // Coalescing to a virtual register that is of a sub-register class of the |
| // other. Make sure the resulting register is set to the right register class. |
| if (SubRC) { |
| mri_->setRegClass(DstReg, SubRC); |
| ++numSubJoins; |
| } |
| |
| if (NewHeuristic) { |
| // Add all copies that define val# in the source interval into the queue. |
| for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(), |
| e = ResSrcInt->vni_end(); i != e; ++i) { |
| const VNInfo *vni = *i; |
| if (!vni->def || vni->def == ~1U || vni->def == ~0U) |
| continue; |
| MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); |
| unsigned NewSrcReg, NewDstReg; |
| if (CopyMI && |
| JoinedCopies.count(CopyMI) == 0 && |
| tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg)) { |
| unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB); |
| JoinQueue->push(CopyRec(CopyMI, LoopDepth, |
| isBackEdgeCopy(CopyMI, DstReg))); |
| } |
| } |
| } |
| |
| // Remember to delete the copy instruction. |
| JoinedCopies.insert(CopyMI); |
| |
| // Some live range has been lengthened due to colaescing, eliminate the |
| // unnecessary kills. |
| RemoveUnnecessaryKills(SrcReg, *ResDstInt); |
| if (TargetRegisterInfo::isVirtualRegister(DstReg)) |
| RemoveUnnecessaryKills(DstReg, *ResDstInt); |
| |
| if (isInsSubReg) |
| // Avoid: |
| // r1024 = op |
| // r1024 = implicit_def |
| // ... |
| // = r1024 |
| RemoveDeadImpDef(DstReg, *ResDstInt); |
| UpdateRegDefsUses(SrcReg, DstReg, SubIdx); |
| |
| // SrcReg is guarateed to be the register whose live interval that is |
| // being merged. |
| li_->removeInterval(SrcReg); |
| |
| if (isEmpty) { |
| // Now the copy is being coalesced away, the val# previously defined |
| // by the copy is being defined by an IMPLICIT_DEF which defines a zero |
| // length interval. Remove the val#. |
| unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); |
| const LiveRange *LR = ResDstInt->getLiveRangeContaining(CopyIdx); |
| VNInfo *ImpVal = LR->valno; |
| assert(ImpVal->def == CopyIdx); |
| unsigned NextDef = LR->end; |
| RemoveCopiesFromValNo(*ResDstInt, ImpVal); |
| ResDstInt->removeValNo(ImpVal); |
| LR = ResDstInt->FindLiveRangeContaining(NextDef); |
| if (LR != ResDstInt->end() && LR->valno->def == NextDef) { |
| // Special case: vr1024 = implicit_def |
| // vr1024 = insert_subreg vr1024, vr1025, c |
| // The insert_subreg becomes a "copy" that defines a val# which can itself |
| // be coalesced away. |
| MachineInstr *DefMI = li_->getInstructionFromIndex(NextDef); |
| if (DefMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG) |
| LR->valno->copy = DefMI; |
| } |
| } |
| |
| // If resulting interval has a preference that no longer fits because of subreg |
| // coalescing, just clear the preference. |
| if (ResDstInt->preference && (isExtSubReg || isInsSubReg) && |
| TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) { |
| const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg); |
| if (!RC->contains(ResDstInt->preference)) |
| ResDstInt->preference = 0; |
| } |
| |
| DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_); |
| DOUT << "\n"; |
| |
| ++numJoins; |
| return true; |
| } |
| |
| /// ComputeUltimateVN - Assuming we are going to join two live intervals, |
| /// compute what the resultant value numbers for each value in the input two |
| /// ranges will be. This is complicated by copies between the two which can |
| /// and will commonly cause multiple value numbers to be merged into one. |
| /// |
| /// VN is the value number that we're trying to resolve. InstDefiningValue |
| /// keeps track of the new InstDefiningValue assignment for the result |
| /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of |
| /// whether a value in this or other is a copy from the opposite set. |
| /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have |
| /// already been assigned. |
| /// |
| /// ThisFromOther[x] - If x is defined as a copy from the other interval, this |
| /// contains the value number the copy is from. |
| /// |
| static unsigned ComputeUltimateVN(VNInfo *VNI, |
| SmallVector<VNInfo*, 16> &NewVNInfo, |
| DenseMap<VNInfo*, VNInfo*> &ThisFromOther, |
| DenseMap<VNInfo*, VNInfo*> &OtherFromThis, |
| SmallVector<int, 16> &ThisValNoAssignments, |
| SmallVector<int, 16> &OtherValNoAssignments) { |
| unsigned VN = VNI->id; |
| |
| // If the VN has already been computed, just return it. |
| if (ThisValNoAssignments[VN] >= 0) |
| return ThisValNoAssignments[VN]; |
| // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?"); |
| |
| // If this val is not a copy from the other val, then it must be a new value |
| // number in the destination. |
| DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI); |
| if (I == ThisFromOther.end()) { |
| NewVNInfo.push_back(VNI); |
| return ThisValNoAssignments[VN] = NewVNInfo.size()-1; |
| } |
| VNInfo *OtherValNo = I->second; |
| |
| // Otherwise, this *is* a copy from the RHS. If the other side has already |
| // been computed, return it. |
| if (OtherValNoAssignments[OtherValNo->id] >= 0) |
| return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id]; |
| |
| // Mark this value number as currently being computed, then ask what the |
| // ultimate value # of the other value is. |
| ThisValNoAssignments[VN] = -2; |
| unsigned UltimateVN = |
| ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther, |
| OtherValNoAssignments, ThisValNoAssignments); |
| return ThisValNoAssignments[VN] = UltimateVN; |
| } |
| |
| static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) { |
| return std::find(V.begin(), V.end(), Val) != V.end(); |
| } |
| |
| /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of |
| /// the specified live interval is defined by a copy from the specified |
| /// register. |
| bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li, |
| LiveRange *LR, |
| unsigned Reg) { |
| unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno); |
| if (SrcReg == Reg) |
| return true; |
| if (LR->valno->def == ~0U && |
| TargetRegisterInfo::isPhysicalRegister(li.reg) && |
| *tri_->getSuperRegisters(li.reg)) { |
| // It's a sub-register live interval, we may not have precise information. |
| // Re-compute it. |
| MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start); |
| unsigned SrcReg, DstReg; |
| if (DefMI && tii_->isMoveInstr(*DefMI, SrcReg, DstReg) && |
| DstReg == li.reg && SrcReg == Reg) { |
| // Cache computed info. |
| LR->valno->def = LR->start; |
| LR->valno->copy = DefMI; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// SimpleJoin - Attempt to joint the specified interval into this one. The |
| /// caller of this method must guarantee that the RHS only contains a single |
| /// value number and that the RHS is not defined by a copy from this |
| /// interval. This returns false if the intervals are not joinable, or it |
| /// joins them and returns true. |
| bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){ |
| assert(RHS.containsOneValue()); |
| |
| // Some number (potentially more than one) value numbers in the current |
| // interval may be defined as copies from the RHS. Scan the overlapping |
| // portions of the LHS and RHS, keeping track of this and looking for |
| // overlapping live ranges that are NOT defined as copies. If these exist, we |
| // cannot coalesce. |
| |
| LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); |
| LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); |
| |
| if (LHSIt->start < RHSIt->start) { |
| LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); |
| if (LHSIt != LHS.begin()) --LHSIt; |
| } else if (RHSIt->start < LHSIt->start) { |
| RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); |
| if (RHSIt != RHS.begin()) --RHSIt; |
| } |
| |
| SmallVector<VNInfo*, 8> EliminatedLHSVals; |
| |
| while (1) { |
| // Determine if these live intervals overlap. |
| bool Overlaps = false; |
| if (LHSIt->start <= RHSIt->start) |
| Overlaps = LHSIt->end > RHSIt->start; |
| else |
| Overlaps = RHSIt->end > LHSIt->start; |
| |
| // If the live intervals overlap, there are two interesting cases: if the |
| // LHS interval is defined by a copy from the RHS, it's ok and we record |
| // that the LHS value # is the same as the RHS. If it's not, then we cannot |
| // coalesce these live ranges and we bail out. |
| if (Overlaps) { |
| // If we haven't already recorded that this value # is safe, check it. |
| if (!InVector(LHSIt->valno, EliminatedLHSVals)) { |
| // Copy from the RHS? |
| if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) |
| return false; // Nope, bail out. |
| |
| if (LHSIt->contains(RHSIt->valno->def)) |
| // Here is an interesting situation: |
| // BB1: |
| // vr1025 = copy vr1024 |
| // .. |
| // BB2: |
| // vr1024 = op |
| // = vr1025 |
| // Even though vr1025 is copied from vr1024, it's not safe to |
| // coalesced them since live range of vr1025 intersects the |
| // def of vr1024. This happens because vr1025 is assigned the |
| // value of the previous iteration of vr1024. |
| return false; |
| EliminatedLHSVals.push_back(LHSIt->valno); |
| } |
| |
| // We know this entire LHS live range is okay, so skip it now. |
| if (++LHSIt == LHSEnd) break; |
| continue; |
| } |
| |
| if (LHSIt->end < RHSIt->end) { |
| if (++LHSIt == LHSEnd) break; |
| } else { |
| // One interesting case to check here. It's possible that we have |
| // something like "X3 = Y" which defines a new value number in the LHS, |
| // and is the last use of this liverange of the RHS. In this case, we |
| // want to notice this copy (so that it gets coalesced away) even though |
| // the live ranges don't actually overlap. |
| if (LHSIt->start == RHSIt->end) { |
| if (InVector(LHSIt->valno, EliminatedLHSVals)) { |
| // We already know that this value number is going to be merged in |
| // if coalescing succeeds. Just skip the liverange. |
| if (++LHSIt == LHSEnd) break; |
| } else { |
| // Otherwise, if this is a copy from the RHS, mark it as being merged |
| // in. |
| if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) { |
| if (LHSIt->contains(RHSIt->valno->def)) |
| // Here is an interesting situation: |
| // BB1: |
| // vr1025 = copy vr1024 |
| // .. |
| // BB2: |
| // vr1024 = op |
| // = vr1025 |
| // Even though vr1025 is copied from vr1024, it's not safe to |
| // coalesced them since live range of vr1025 intersects the |
| // def of vr1024. This happens because vr1025 is assigned the |
| // value of the previous iteration of vr1024. |
| return false; |
| EliminatedLHSVals.push_back(LHSIt->valno); |
| |
| // We know this entire LHS live range is okay, so skip it now. |
| if (++LHSIt == LHSEnd) break; |
| } |
| } |
| } |
| |
| if (++RHSIt == RHSEnd) break; |
| } |
| } |
| |
| // If we got here, we know that the coalescing will be successful and that |
| // the value numbers in EliminatedLHSVals will all be merged together. Since |
| // the most common case is that EliminatedLHSVals has a single number, we |
| // optimize for it: if there is more than one value, we merge them all into |
| // the lowest numbered one, then handle the interval as if we were merging |
| // with one value number. |
| VNInfo *LHSValNo; |
| if (EliminatedLHSVals.size() > 1) { |
| // Loop through all the equal value numbers merging them into the smallest |
| // one. |
| VNInfo *Smallest = EliminatedLHSVals[0]; |
| for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { |
| if (EliminatedLHSVals[i]->id < Smallest->id) { |
| // Merge the current notion of the smallest into the smaller one. |
| LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); |
| Smallest = EliminatedLHSVals[i]; |
| } else { |
| // Merge into the smallest. |
| LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); |
| } |
| } |
| LHSValNo = Smallest; |
| } else if (EliminatedLHSVals.empty()) { |
| if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) && |
| *tri_->getSuperRegisters(LHS.reg)) |
| // Imprecise sub-register information. Can't handle it. |
| return false; |
| assert(0 && "No copies from the RHS?"); |
| } else { |
| LHSValNo = EliminatedLHSVals[0]; |
| } |
| |
| // Okay, now that there is a single LHS value number that we're merging the |
| // RHS into, update the value number info for the LHS to indicate that the |
| // value number is defined where the RHS value number was. |
| const VNInfo *VNI = RHS.getValNumInfo(0); |
| LHSValNo->def = VNI->def; |
| LHSValNo->copy = VNI->copy; |
| |
| // Okay, the final step is to loop over the RHS live intervals, adding them to |
| // the LHS. |
| LHSValNo->hasPHIKill |= VNI->hasPHIKill; |
| LHS.addKills(LHSValNo, VNI->kills); |
| LHS.MergeRangesInAsValue(RHS, LHSValNo); |
| LHS.weight += RHS.weight; |
| if (RHS.preference && !LHS.preference) |
| LHS.preference = RHS.preference; |
| |
| return true; |
| } |
| |
| /// JoinIntervals - Attempt to join these two intervals. On failure, this |
| /// returns false. Otherwise, if one of the intervals being joined is a |
| /// physreg, this method always canonicalizes LHS to be it. The output |
| /// "RHS" will not have been modified, so we can use this information |
| /// below to update aliases. |
| bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, |
| LiveInterval &RHS, bool &Swapped) { |
| // Compute the final value assignment, assuming that the live ranges can be |
| // coalesced. |
| SmallVector<int, 16> LHSValNoAssignments; |
| SmallVector<int, 16> RHSValNoAssignments; |
| DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS; |
| DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS; |
| SmallVector<VNInfo*, 16> NewVNInfo; |
| |
| // If a live interval is a physical register, conservatively check if any |
| // of its sub-registers is overlapping the live interval of the virtual |
| // register. If so, do not coalesce. |
| if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) && |
| *tri_->getSubRegisters(LHS.reg)) { |
| for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR) |
| if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); |
| return false; |
| } |
| } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) && |
| *tri_->getSubRegisters(RHS.reg)) { |
| for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR) |
| if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(li_->getInterval(*SR).print(DOUT, tri_)); |
| return false; |
| } |
| } |
| |
| // Compute ultimate value numbers for the LHS and RHS values. |
| if (RHS.containsOneValue()) { |
| // Copies from a liveinterval with a single value are simple to handle and |
| // very common, handle the special case here. This is important, because |
| // often RHS is small and LHS is large (e.g. a physreg). |
| |
| // Find out if the RHS is defined as a copy from some value in the LHS. |
| int RHSVal0DefinedFromLHS = -1; |
| int RHSValID = -1; |
| VNInfo *RHSValNoInfo = NULL; |
| VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0); |
| unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0); |
| if ((RHSSrcReg == 0 || RHSSrcReg != LHS.reg)) { |
| // If RHS is not defined as a copy from the LHS, we can use simpler and |
| // faster checks to see if the live ranges are coalescable. This joiner |
| // can't swap the LHS/RHS intervals though. |
| if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) { |
| return SimpleJoin(LHS, RHS); |
| } else { |
| RHSValNoInfo = RHSValNoInfo0; |
| } |
| } else { |
| // It was defined as a copy from the LHS, find out what value # it is. |
| RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno; |
| RHSValID = RHSValNoInfo->id; |
| RHSVal0DefinedFromLHS = RHSValID; |
| } |
| |
| LHSValNoAssignments.resize(LHS.getNumValNums(), -1); |
| RHSValNoAssignments.resize(RHS.getNumValNums(), -1); |
| NewVNInfo.resize(LHS.getNumValNums(), NULL); |
| |
| // Okay, *all* of the values in LHS that are defined as a copy from RHS |
| // should now get updated. |
| for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) { |
| if (LHSSrcReg != RHS.reg) { |
| // If this is not a copy from the RHS, its value number will be |
| // unmodified by the coalescing. |
| NewVNInfo[VN] = VNI; |
| LHSValNoAssignments[VN] = VN; |
| } else if (RHSValID == -1) { |
| // Otherwise, it is a copy from the RHS, and we don't already have a |
| // value# for it. Keep the current value number, but remember it. |
| LHSValNoAssignments[VN] = RHSValID = VN; |
| NewVNInfo[VN] = RHSValNoInfo; |
| LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; |
| } else { |
| // Otherwise, use the specified value #. |
| LHSValNoAssignments[VN] = RHSValID; |
| if (VN == (unsigned)RHSValID) { // Else this val# is dead. |
| NewVNInfo[VN] = RHSValNoInfo; |
| LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; |
| } |
| } |
| } else { |
| NewVNInfo[VN] = VNI; |
| LHSValNoAssignments[VN] = VN; |
| } |
| } |
| |
| assert(RHSValID != -1 && "Didn't find value #?"); |
| RHSValNoAssignments[0] = RHSValID; |
| if (RHSVal0DefinedFromLHS != -1) { |
| // This path doesn't go through ComputeUltimateVN so just set |
| // it to anything. |
| RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1; |
| } |
| } else { |
| // Loop over the value numbers of the LHS, seeing if any are defined from |
| // the RHS. |
| for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy? |
| continue; |
| |
| // DstReg is known to be a register in the LHS interval. If the src is |
| // from the RHS interval, we can use its value #. |
| if (li_->getVNInfoSourceReg(VNI) != RHS.reg) |
| continue; |
| |
| // Figure out the value # from the RHS. |
| LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno; |
| } |
| |
| // Loop over the value numbers of the RHS, seeing if any are defined from |
| // the LHS. |
| for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy? |
| continue; |
| |
| // DstReg is known to be a register in the RHS interval. If the src is |
| // from the LHS interval, we can use its value #. |
| if (li_->getVNInfoSourceReg(VNI) != LHS.reg) |
| continue; |
| |
| // Figure out the value # from the LHS. |
| RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno; |
| } |
| |
| LHSValNoAssignments.resize(LHS.getNumValNums(), -1); |
| RHSValNoAssignments.resize(RHS.getNumValNums(), -1); |
| NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); |
| |
| for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) |
| continue; |
| ComputeUltimateVN(VNI, NewVNInfo, |
| LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, |
| LHSValNoAssignments, RHSValNoAssignments); |
| } |
| for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) |
| continue; |
| // If this value number isn't a copy from the LHS, it's a new number. |
| if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) { |
| NewVNInfo.push_back(VNI); |
| RHSValNoAssignments[VN] = NewVNInfo.size()-1; |
| continue; |
| } |
| |
| ComputeUltimateVN(VNI, NewVNInfo, |
| RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, |
| RHSValNoAssignments, LHSValNoAssignments); |
| } |
| } |
| |
| // Armed with the mappings of LHS/RHS values to ultimate values, walk the |
| // interval lists to see if these intervals are coalescable. |
| LiveInterval::const_iterator I = LHS.begin(); |
| LiveInterval::const_iterator IE = LHS.end(); |
| LiveInterval::const_iterator J = RHS.begin(); |
| LiveInterval::const_iterator JE = RHS.end(); |
| |
| // Skip ahead until the first place of potential sharing. |
| if (I->start < J->start) { |
| I = std::upper_bound(I, IE, J->start); |
| if (I != LHS.begin()) --I; |
| } else if (J->start < I->start) { |
| J = std::upper_bound(J, JE, I->start); |
| if (J != RHS.begin()) --J; |
| } |
| |
| while (1) { |
| // Determine if these two live ranges overlap. |
| bool Overlaps; |
| if (I->start < J->start) { |
| Overlaps = I->end > J->start; |
| } else { |
| Overlaps = J->end > I->start; |
| } |
| |
| // If so, check value # info to determine if they are really different. |
| if (Overlaps) { |
| // If the live range overlap will map to the same value number in the |
| // result liverange, we can still coalesce them. If not, we can't. |
| if (LHSValNoAssignments[I->valno->id] != |
| RHSValNoAssignments[J->valno->id]) |
| return false; |
| } |
| |
| if (I->end < J->end) { |
| ++I; |
| if (I == IE) break; |
| } else { |
| ++J; |
| if (J == JE) break; |
| } |
| } |
| |
| // Update kill info. Some live ranges are extended due to copy coalescing. |
| for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(), |
| E = LHSValsDefinedFromRHS.end(); I != E; ++I) { |
| VNInfo *VNI = I->first; |
| unsigned LHSValID = LHSValNoAssignments[VNI->id]; |
| LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def); |
| NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill; |
| RHS.addKills(NewVNInfo[LHSValID], VNI->kills); |
| } |
| |
| // Update kill info. Some live ranges are extended due to copy coalescing. |
| for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(), |
| E = RHSValsDefinedFromLHS.end(); I != E; ++I) { |
| VNInfo *VNI = I->first; |
| unsigned RHSValID = RHSValNoAssignments[VNI->id]; |
| LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def); |
| NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill; |
| LHS.addKills(NewVNInfo[RHSValID], VNI->kills); |
| } |
| |
| // If we get here, we know that we can coalesce the live ranges. Ask the |
| // intervals to coalesce themselves now. |
| if ((RHS.ranges.size() > LHS.ranges.size() && |
| TargetRegisterInfo::isVirtualRegister(LHS.reg)) || |
| TargetRegisterInfo::isPhysicalRegister(RHS.reg)) { |
| RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo); |
| Swapped = true; |
| } else { |
| LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo); |
| Swapped = false; |
| } |
| return true; |
| } |
| |
| namespace { |
| // DepthMBBCompare - Comparison predicate that sort first based on the loop |
| // depth of the basic block (the unsigned), and then on the MBB number. |
| struct DepthMBBCompare { |
| typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair; |
| bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { |
| if (LHS.first > RHS.first) return true; // Deeper loops first |
| return LHS.first == RHS.first && |
| LHS.second->getNumber() < RHS.second->getNumber(); |
| } |
| }; |
| } |
| |
| /// getRepIntervalSize - Returns the size of the interval that represents the |
| /// specified register. |
| template<class SF> |
| unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) { |
| return Rc->getRepIntervalSize(Reg); |
| } |
| |
| /// CopyRecSort::operator - Join priority queue sorting function. |
| /// |
| bool CopyRecSort::operator()(CopyRec left, CopyRec right) const { |
| // Inner loops first. |
| if (left.LoopDepth > right.LoopDepth) |
| return false; |
| else if (left.LoopDepth == right.LoopDepth) |
| if (left.isBackEdge && !right.isBackEdge) |
| return false; |
| return true; |
| } |
| |
| void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB, |
| std::vector<CopyRec> &TryAgain) { |
| DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; |
| |
| std::vector<CopyRec> VirtCopies; |
| std::vector<CopyRec> PhysCopies; |
| std::vector<CopyRec> ImpDefCopies; |
| unsigned LoopDepth = loopInfo->getLoopDepth(MBB); |
| for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); |
| MII != E;) { |
| MachineInstr *Inst = MII++; |
| |
| // If this isn't a copy nor a extract_subreg, we can't join intervals. |
| unsigned SrcReg, DstReg; |
| if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) { |
| DstReg = Inst->getOperand(0).getReg(); |
| SrcReg = Inst->getOperand(1).getReg(); |
| } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG) { |
| DstReg = Inst->getOperand(0).getReg(); |
| SrcReg = Inst->getOperand(2).getReg(); |
| } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) |
| continue; |
| |
| bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); |
| bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); |
| if (NewHeuristic) { |
| JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg))); |
| } else { |
| if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty()) |
| ImpDefCopies.push_back(CopyRec(Inst, 0, false)); |
| else if (SrcIsPhys || DstIsPhys) |
| PhysCopies.push_back(CopyRec(Inst, 0, false)); |
| else |
| VirtCopies.push_back(CopyRec(Inst, 0, false)); |
| } |
| } |
| |
| if (NewHeuristic) |
| return; |
| |
| // Try coalescing implicit copies first, followed by copies to / from |
| // physical registers, then finally copies from virtual registers to |
| // virtual registers. |
| for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) { |
| CopyRec &TheCopy = ImpDefCopies[i]; |
| bool Again = false; |
| if (!JoinCopy(TheCopy, Again)) |
| if (Again) |
| TryAgain.push_back(TheCopy); |
| } |
| for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) { |
| CopyRec &TheCopy = PhysCopies[i]; |
| bool Again = false; |
| if (!JoinCopy(TheCopy, Again)) |
| if (Again) |
| TryAgain.push_back(TheCopy); |
| } |
| for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) { |
| CopyRec &TheCopy = VirtCopies[i]; |
| bool Again = false; |
| if (!JoinCopy(TheCopy, Again)) |
| if (Again) |
| TryAgain.push_back(TheCopy); |
| } |
| } |
| |
| void SimpleRegisterCoalescing::joinIntervals() { |
| DOUT << "********** JOINING INTERVALS ***********\n"; |
| |
| if (NewHeuristic) |
| JoinQueue = new JoinPriorityQueue<CopyRecSort>(this); |
| |
| std::vector<CopyRec> TryAgainList; |
| if (loopInfo->empty()) { |
| // If there are no loops in the function, join intervals in function order. |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); |
| I != E; ++I) |
| CopyCoalesceInMBB(I, TryAgainList); |
| } else { |
| // Otherwise, join intervals in inner loops before other intervals. |
| // Unfortunately we can't just iterate over loop hierarchy here because |
| // there may be more MBB's than BB's. Collect MBB's for sorting. |
| |
| // Join intervals in the function prolog first. We want to join physical |
| // registers with virtual registers before the intervals got too long. |
| std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs; |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){ |
| MachineBasicBlock *MBB = I; |
| MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I)); |
| } |
| |
| // Sort by loop depth. |
| std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); |
| |
| // Finally, join intervals in loop nest order. |
| for (unsigned i = 0, e = MBBs.size(); i != e; ++i) |
| CopyCoalesceInMBB(MBBs[i].second, TryAgainList); |
| } |
| |
| // Joining intervals can allow other intervals to be joined. Iteratively join |
| // until we make no progress. |
| if (NewHeuristic) { |
| SmallVector<CopyRec, 16> TryAgain; |
| bool ProgressMade = true; |
| while (ProgressMade) { |
| ProgressMade = false; |
| while (!JoinQueue->empty()) { |
| CopyRec R = JoinQueue->pop(); |
| bool Again = false; |
| bool Success = JoinCopy(R, Again); |
| if (Success) |
| ProgressMade = true; |
| else if (Again) |
| TryAgain.push_back(R); |
| } |
| |
| if (ProgressMade) { |
| while (!TryAgain.empty()) { |
| JoinQueue->push(TryAgain.back()); |
| TryAgain.pop_back(); |
| } |
| } |
| } |
| } else { |
| bool ProgressMade = true; |
| while (ProgressMade) { |
| ProgressMade = false; |
| |
| for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { |
| CopyRec &TheCopy = TryAgainList[i]; |
| if (TheCopy.MI) { |
| bool Again = false; |
| bool Success = JoinCopy(TheCopy, Again); |
| if (Success || !Again) { |
| TheCopy.MI = 0; // Mark this one as done. |
| ProgressMade = true; |
| } |
| } |
| } |
| } |
| } |
| |
| if (NewHeuristic) |
| delete JoinQueue; |
| } |
| |
| /// Return true if the two specified registers belong to different register |
| /// classes. The registers may be either phys or virt regs. In the |
| /// case where both registers are virtual registers, it would also returns |
| /// true by reference the RegB register class in SubRC if it is a subset of |
| /// RegA's register class. |
| bool |
| SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, unsigned RegB, |
| const TargetRegisterClass *&SubRC) const { |
| |
| // Get the register classes for the first reg. |
| if (TargetRegisterInfo::isPhysicalRegister(RegA)) { |
| assert(TargetRegisterInfo::isVirtualRegister(RegB) && |
| "Shouldn't consider two physregs!"); |
| return !mri_->getRegClass(RegB)->contains(RegA); |
| } |
| |
| // Compare against the regclass for the second reg. |
| const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA); |
| if (TargetRegisterInfo::isVirtualRegister(RegB)) { |
| const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB); |
| if (RegClassA == RegClassB) |
| return false; |
| SubRC = (RegClassA->hasSubClass(RegClassB)) ? RegClassB : NULL; |
| return true; |
| } |
| return !RegClassA->contains(RegB); |
| } |
| |
| /// lastRegisterUse - Returns the last use of the specific register between |
| /// cycles Start and End or NULL if there are no uses. |
| MachineOperand * |
| SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, |
| unsigned Reg, unsigned &UseIdx) const{ |
| UseIdx = 0; |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| MachineOperand *LastUse = NULL; |
| for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg), |
| E = mri_->use_end(); I != E; ++I) { |
| MachineOperand &Use = I.getOperand(); |
| MachineInstr *UseMI = Use.getParent(); |
| unsigned SrcReg, DstReg; |
| if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg) && SrcReg == DstReg) |
| // Ignore identity copies. |
| continue; |
| unsigned Idx = li_->getInstructionIndex(UseMI); |
| if (Idx >= Start && Idx < End && Idx >= UseIdx) { |
| LastUse = &Use; |
| UseIdx = Idx; |
| } |
| } |
| return LastUse; |
| } |
| |
| int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; |
| int s = Start; |
| while (e >= s) { |
| // Skip deleted instructions |
| MachineInstr *MI = li_->getInstructionFromIndex(e); |
| while ((e - InstrSlots::NUM) >= s && !MI) { |
| e -= InstrSlots::NUM; |
| MI = li_->getInstructionFromIndex(e); |
| } |
| if (e < s || MI == NULL) |
| return NULL; |
| |
| // Ignore identity copies. |
| unsigned SrcReg, DstReg; |
| if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)) |
| for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { |
| MachineOperand &Use = MI->getOperand(i); |
| if (Use.isRegister() && Use.isUse() && Use.getReg() && |
| tri_->regsOverlap(Use.getReg(), Reg)) { |
| UseIdx = e; |
| return &Use; |
| } |
| } |
| |
| e -= InstrSlots::NUM; |
| } |
| |
| return NULL; |
| } |
| |
| |
| void SimpleRegisterCoalescing::printRegName(unsigned reg) const { |
| if (TargetRegisterInfo::isPhysicalRegister(reg)) |
| cerr << tri_->getName(reg); |
| else |
| cerr << "%reg" << reg; |
| } |
| |
| void SimpleRegisterCoalescing::releaseMemory() { |
| JoinedCopies.clear(); |
| ReMatCopies.clear(); |
| ReMatDefs.clear(); |
| } |
| |
| static bool isZeroLengthInterval(LiveInterval *li) { |
| for (LiveInterval::Ranges::const_iterator |
| i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) |
| if (i->end - i->start > LiveIntervals::InstrSlots::NUM) |
| return false; |
| return true; |
| } |
| |
| /// TurnCopyIntoImpDef - If source of the specified copy is an implicit def, |
| /// turn the copy into an implicit def. |
| bool |
| SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator &I, |
| MachineBasicBlock *MBB, |
| unsigned DstReg, unsigned SrcReg) { |
| MachineInstr *CopyMI = &*I; |
| unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); |
| if (!li_->hasInterval(SrcReg)) |
| return false; |
| LiveInterval &SrcInt = li_->getInterval(SrcReg); |
| if (!SrcInt.empty()) |
| return false; |
| if (!li_->hasInterval(DstReg)) |
| return false; |
| LiveInterval &DstInt = li_->getInterval(DstReg); |
| const LiveRange *DstLR = DstInt.getLiveRangeContaining(CopyIdx); |
| DstInt.removeValNo(DstLR->valno); |
| CopyMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF)); |
| for (int i = CopyMI->getNumOperands() - 1, e = 0; i > e; --i) |
| CopyMI->RemoveOperand(i); |
| bool NoUse = mri_->use_empty(SrcReg); |
| if (NoUse) { |
| for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg), |
| E = mri_->reg_end(); I != E; ) { |
| assert(I.getOperand().isDef()); |
| MachineInstr *DefMI = &*I; |
| ++I; |
| // The implicit_def source has no other uses, delete it. |
| assert(DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF); |
| li_->RemoveMachineInstrFromMaps(DefMI); |
| DefMI->eraseFromParent(); |
| } |
| } |
| ++I; |
| return true; |
| } |
| |
| |
| bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) { |
| mf_ = &fn; |
| mri_ = &fn.getRegInfo(); |
| tm_ = &fn.getTarget(); |
| tri_ = tm_->getRegisterInfo(); |
| tii_ = tm_->getInstrInfo(); |
| li_ = &getAnalysis<LiveIntervals>(); |
| loopInfo = &getAnalysis<MachineLoopInfo>(); |
| |
| DOUT << "********** SIMPLE REGISTER COALESCING **********\n" |
| << "********** Function: " |
| << ((Value*)mf_->getFunction())->getName() << '\n'; |
| |
| allocatableRegs_ = tri_->getAllocatableSet(fn); |
| for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(), |
| E = tri_->regclass_end(); I != E; ++I) |
| allocatableRCRegs_.insert(std::make_pair(*I, |
| tri_->getAllocatableSet(fn, *I))); |
| |
| // Join (coalesce) intervals if requested. |
| if (EnableJoining) { |
| joinIntervals(); |
| DOUT << "********** INTERVALS POST JOINING **********\n"; |
| for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){ |
| I->second->print(DOUT, tri_); |
| DOUT << "\n"; |
| } |
| } |
| |
| // Perform a final pass over the instructions and compute spill weights |
| // and remove identity moves. |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| MachineBasicBlock* mbb = mbbi; |
| unsigned loopDepth = loopInfo->getLoopDepth(mbb); |
| |
| for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); |
| mii != mie; ) { |
| MachineInstr *MI = mii; |
| unsigned SrcReg, DstReg; |
| if (JoinedCopies.count(MI)) { |
| // Delete all coalesced copies. |
| if (!tii_->isMoveInstr(*MI, SrcReg, DstReg)) { |
| assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG || |
| MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG) && |
| "Unrecognized copy instruction"); |
| DstReg = MI->getOperand(0).getReg(); |
| } |
| if (MI->registerDefIsDead(DstReg)) { |
| LiveInterval &li = li_->getInterval(DstReg); |
| if (!ShortenDeadCopySrcLiveRange(li, MI)) |
| ShortenDeadCopyLiveRange(li, MI); |
| } |
| li_->RemoveMachineInstrFromMaps(MI); |
| mii = mbbi->erase(mii); |
| ++numPeep; |
| continue; |
| } |
| |
| // Now check if this is a remat'ed def instruction which is now dead. |
| if (ReMatDefs.count(MI)) { |
| bool isDead = true; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isRegister() || MO.isDead()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg) || |
| !mri_->use_empty(Reg)) { |
| isDead = false; |
| break; |
| } |
| } |
| if (isDead) { |
| li_->RemoveMachineInstrFromMaps(mii); |
| mii = mbbi->erase(mii); |
| continue; |
| } |
| } |
| |
| // If the move will be an identity move delete it |
| bool isMove = tii_->isMoveInstr(*MI, SrcReg, DstReg); |
| if (isMove && SrcReg == DstReg) { |
| if (li_->hasInterval(SrcReg)) { |
| LiveInterval &RegInt = li_->getInterval(SrcReg); |
| // If def of this move instruction is dead, remove its live range |
| // from the dstination register's live interval. |
| if (MI->registerDefIsDead(DstReg)) { |
| if (!ShortenDeadCopySrcLiveRange(RegInt, MI)) |
| ShortenDeadCopyLiveRange(RegInt, MI); |
| } |
| } |
| li_->RemoveMachineInstrFromMaps(MI); |
| mii = mbbi->erase(mii); |
| ++numPeep; |
| } else if (!isMove || !TurnCopyIntoImpDef(mii, mbb, DstReg, SrcReg)) { |
| SmallSet<unsigned, 4> UniqueUses; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &mop = MI->getOperand(i); |
| if (mop.isRegister() && mop.getReg() && |
| TargetRegisterInfo::isVirtualRegister(mop.getReg())) { |
| unsigned reg = mop.getReg(); |
| // Multiple uses of reg by the same instruction. It should not |
| // contribute to spill weight again. |
| if (UniqueUses.count(reg) != 0) |
| continue; |
| LiveInterval &RegInt = li_->getInterval(reg); |
| RegInt.weight += |
| li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth); |
| UniqueUses.insert(reg); |
| } |
| } |
| ++mii; |
| } |
| } |
| } |
| |
| for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) { |
| LiveInterval &LI = *I->second; |
| if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { |
| // If the live interval length is essentially zero, i.e. in every live |
| // range the use follows def immediately, it doesn't make sense to spill |
| // it and hope it will be easier to allocate for this li. |
| if (isZeroLengthInterval(&LI)) |
| LI.weight = HUGE_VALF; |
| else { |
| bool isLoad = false; |
| SmallVector<LiveInterval*, 4> SpillIs; |
| if (li_->isReMaterializable(LI, SpillIs, isLoad)) { |
| // If all of the definitions of the interval are re-materializable, |
| // it is a preferred candidate for spilling. If non of the defs are |
| // loads, then it's potentially very cheap to re-materialize. |
| // FIXME: this gets much more complicated once we support non-trivial |
| // re-materialization. |
| if (isLoad) |
| LI.weight *= 0.9F; |
| else |
| LI.weight *= 0.5F; |
| } |
| } |
| |
| // Slightly prefer live interval that has been assigned a preferred reg. |
| if (LI.preference) |
| LI.weight *= 1.01F; |
| |
| // Divide the weight of the interval by its size. This encourages |
| // spilling of intervals that are large and have few uses, and |
| // discourages spilling of small intervals with many uses. |
| LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM; |
| } |
| } |
| |
| DEBUG(dump()); |
| return true; |
| } |
| |
| /// print - Implement the dump method. |
| void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const { |
| li_->print(O, m); |
| } |
| |
| RegisterCoalescer* llvm::createSimpleRegisterCoalescer() { |
| return new SimpleRegisterCoalescing(); |
| } |
| |
| // Make sure that anything that uses RegisterCoalescer pulls in this file... |
| DEFINING_FILE_FOR(SimpleRegisterCoalescing) |