| //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "virtregrewriter" |
| #include "VirtRegRewriter.h" |
| #include "VirtRegMap.h" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| STATISTIC(NumDSE , "Number of dead stores elided"); |
| STATISTIC(NumDSS , "Number of dead spill slots removed"); |
| STATISTIC(NumCommutes, "Number of instructions commuted"); |
| STATISTIC(NumDRM , "Number of re-materializable defs elided"); |
| STATISTIC(NumStores , "Number of stores added"); |
| STATISTIC(NumPSpills , "Number of physical register spills"); |
| STATISTIC(NumOmitted , "Number of reloads omitted"); |
| STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); |
| STATISTIC(NumCopified, "Number of available reloads turned into copies"); |
| STATISTIC(NumReMats , "Number of re-materialization"); |
| STATISTIC(NumLoads , "Number of loads added"); |
| STATISTIC(NumReused , "Number of values reused"); |
| STATISTIC(NumDCE , "Number of copies elided"); |
| STATISTIC(NumSUnfold , "Number of stores unfolded"); |
| STATISTIC(NumModRefUnfold, "Number of modref unfolded"); |
| |
| namespace { |
| enum RewriterName { local, trivial }; |
| } |
| |
| static cl::opt<RewriterName> |
| RewriterOpt("rewriter", |
| cl::desc("Rewriter to use (default=local)"), |
| cl::Prefix, |
| cl::values(clEnumVal(local, "local rewriter"), |
| clEnumVal(trivial, "trivial rewriter"), |
| clEnumValEnd), |
| cl::init(local)); |
| |
| static cl::opt<bool> |
| ScheduleSpills("schedule-spills", |
| cl::desc("Schedule spill code"), |
| cl::init(false)); |
| |
| VirtRegRewriter::~VirtRegRewriter() {} |
| |
| /// substitutePhysReg - Replace virtual register in MachineOperand with a |
| /// physical register. Do the right thing with the sub-register index. |
| /// Note that operands may be added, so the MO reference is no longer valid. |
| static void substitutePhysReg(MachineOperand &MO, unsigned Reg, |
| const TargetRegisterInfo &TRI) { |
| if (MO.getSubReg()) { |
| MO.substPhysReg(Reg, TRI); |
| |
| // Any kill flags apply to the full virtual register, so they also apply to |
| // the full physical register. |
| // We assume that partial defs have already been decorated with a super-reg |
| // <imp-def> operand by LiveIntervals. |
| MachineInstr &MI = *MO.getParent(); |
| if (MO.isUse() && !MO.isUndef() && |
| (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0)))) |
| MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true); |
| } else { |
| MO.setReg(Reg); |
| } |
| } |
| |
| namespace { |
| |
| /// This class is intended for use with the new spilling framework only. It |
| /// rewrites vreg def/uses to use the assigned preg, but does not insert any |
| /// spill code. |
| struct TrivialRewriter : public VirtRegRewriter { |
| |
| bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, |
| LiveIntervals* LIs) { |
| DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n"); |
| DEBUG(dbgs() << "********** Function: " |
| << MF.getFunction()->getName() << '\n'); |
| DEBUG(dbgs() << "**** Machine Instrs" |
| << "(NOTE! Does not include spills and reloads!) ****\n"); |
| DEBUG(MF.dump()); |
| |
| MachineRegisterInfo *mri = &MF.getRegInfo(); |
| const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo(); |
| |
| bool changed = false; |
| |
| for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end(); |
| liItr != liEnd; ++liItr) { |
| |
| const LiveInterval *li = liItr->second; |
| unsigned reg = li->reg; |
| |
| if (TargetRegisterInfo::isPhysicalRegister(reg)) { |
| if (!li->empty()) |
| mri->setPhysRegUsed(reg); |
| } |
| else { |
| if (!VRM.hasPhys(reg)) |
| continue; |
| unsigned pReg = VRM.getPhys(reg); |
| mri->setPhysRegUsed(pReg); |
| // Copy the register use-list before traversing it. |
| SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist; |
| for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg), |
| E = mri->reg_end(); I != E; ++I) |
| reglist.push_back(std::make_pair(&*I, I.getOperandNo())); |
| for (unsigned N=0; N != reglist.size(); ++N) |
| substitutePhysReg(reglist[N].first->getOperand(reglist[N].second), |
| pReg, *tri); |
| changed |= !reglist.empty(); |
| } |
| } |
| |
| DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); |
| DEBUG(MF.dump()); |
| |
| return changed; |
| } |
| |
| }; |
| |
| } |
| |
| // ************************************************************************ // |
| |
| namespace { |
| |
| /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB |
| /// from top down, keep track of which spill slots or remat are available in |
| /// each register. |
| /// |
| /// Note that not all physregs are created equal here. In particular, some |
| /// physregs are reloads that we are allowed to clobber or ignore at any time. |
| /// Other physregs are values that the register allocated program is using |
| /// that we cannot CHANGE, but we can read if we like. We keep track of this |
| /// on a per-stack-slot / remat id basis as the low bit in the value of the |
| /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks |
| /// this bit and addAvailable sets it if. |
| class AvailableSpills { |
| const TargetRegisterInfo *TRI; |
| const TargetInstrInfo *TII; |
| |
| // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled |
| // or remat'ed virtual register values that are still available, due to |
| // being loaded or stored to, but not invalidated yet. |
| std::map<int, unsigned> SpillSlotsOrReMatsAvailable; |
| |
| // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, |
| // indicating which stack slot values are currently held by a physreg. This |
| // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a |
| // physreg is modified. |
| std::multimap<unsigned, int> PhysRegsAvailable; |
| |
| void disallowClobberPhysRegOnly(unsigned PhysReg); |
| |
| void ClobberPhysRegOnly(unsigned PhysReg); |
| public: |
| AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) |
| : TRI(tri), TII(tii) { |
| } |
| |
| /// clear - Reset the state. |
| void clear() { |
| SpillSlotsOrReMatsAvailable.clear(); |
| PhysRegsAvailable.clear(); |
| } |
| |
| const TargetRegisterInfo *getRegInfo() const { return TRI; } |
| |
| /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is |
| /// available in a physical register, return that PhysReg, otherwise |
| /// return 0. |
| unsigned getSpillSlotOrReMatPhysReg(int Slot) const { |
| std::map<int, unsigned>::const_iterator I = |
| SpillSlotsOrReMatsAvailable.find(Slot); |
| if (I != SpillSlotsOrReMatsAvailable.end()) { |
| return I->second >> 1; // Remove the CanClobber bit. |
| } |
| return 0; |
| } |
| |
| /// addAvailable - Mark that the specified stack slot / remat is available |
| /// in the specified physreg. If CanClobber is true, the physreg can be |
| /// modified at any time without changing the semantics of the program. |
| void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { |
| // If this stack slot is thought to be available in some other physreg, |
| // remove its record. |
| ModifyStackSlotOrReMat(SlotOrReMat); |
| |
| PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); |
| SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | |
| (unsigned)CanClobber; |
| |
| if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) |
| DEBUG(dbgs() << "Remembering RM#" |
| << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1); |
| else |
| DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat); |
| DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) |
| << (CanClobber ? " canclobber" : "") << "\n"); |
| } |
| |
| /// canClobberPhysRegForSS - Return true if the spiller is allowed to change |
| /// the value of the specified stackslot register if it desires. The |
| /// specified stack slot must be available in a physreg for this query to |
| /// make sense. |
| bool canClobberPhysRegForSS(int SlotOrReMat) const { |
| assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && |
| "Value not available!"); |
| return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; |
| } |
| |
| /// canClobberPhysReg - Return true if the spiller is allowed to clobber the |
| /// physical register where values for some stack slot(s) might be |
| /// available. |
| bool canClobberPhysReg(unsigned PhysReg) const { |
| std::multimap<unsigned, int>::const_iterator I = |
| PhysRegsAvailable.lower_bound(PhysReg); |
| while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| int SlotOrReMat = I->second; |
| I++; |
| if (!canClobberPhysRegForSS(SlotOrReMat)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// disallowClobberPhysReg - Unset the CanClobber bit of the specified |
| /// stackslot register. The register is still available but is no longer |
| /// allowed to be modifed. |
| void disallowClobberPhysReg(unsigned PhysReg); |
| |
| /// ClobberPhysReg - This is called when the specified physreg changes |
| /// value. We use this to invalidate any info about stuff that lives in |
| /// it and any of its aliases. |
| void ClobberPhysReg(unsigned PhysReg); |
| |
| /// ModifyStackSlotOrReMat - This method is called when the value in a stack |
| /// slot changes. This removes information about which register the |
| /// previous value for this slot lives in (as the previous value is dead |
| /// now). |
| void ModifyStackSlotOrReMat(int SlotOrReMat); |
| |
| /// ClobberSharingStackSlots - When a register mapped to a stack slot changes, |
| /// other stack slots sharing the same register are no longer valid. |
| void ClobberSharingStackSlots(int StackSlot); |
| |
| /// AddAvailableRegsToLiveIn - Availability information is being kept coming |
| /// into the specified MBB. Add available physical registers as potential |
| /// live-in's. If they are reused in the MBB, they will be added to the |
| /// live-in set to make register scavenger and post-allocation scheduler. |
| void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps); |
| }; |
| |
| } |
| |
| // ************************************************************************ // |
| |
| // Given a location where a reload of a spilled register or a remat of |
| // a constant is to be inserted, attempt to find a safe location to |
| // insert the load at an earlier point in the basic-block, to hide |
| // latency of the load and to avoid address-generation interlock |
| // issues. |
| static MachineBasicBlock::iterator |
| ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc, |
| MachineBasicBlock::iterator const Begin, |
| unsigned PhysReg, |
| const TargetRegisterInfo *TRI, |
| bool DoReMat, |
| int SSorRMId, |
| const TargetInstrInfo *TII, |
| const MachineFunction &MF) |
| { |
| if (!ScheduleSpills) |
| return InsertLoc; |
| |
| // Spill backscheduling is of primary interest to addresses, so |
| // don't do anything if the register isn't in the register class |
| // used for pointers. |
| |
| const TargetLowering *TL = MF.getTarget().getTargetLowering(); |
| |
| if (!TL->isTypeLegal(TL->getPointerTy())) |
| // Believe it or not, this is true on 16-bit targets like PIC16. |
| return InsertLoc; |
| |
| const TargetRegisterClass *ptrRegClass = |
| TL->getRegClassFor(TL->getPointerTy()); |
| if (!ptrRegClass->contains(PhysReg)) |
| return InsertLoc; |
| |
| // Scan upwards through the preceding instructions. If an instruction doesn't |
| // reference the stack slot or the register we're loading, we can |
| // backschedule the reload up past it. |
| MachineBasicBlock::iterator NewInsertLoc = InsertLoc; |
| while (NewInsertLoc != Begin) { |
| MachineBasicBlock::iterator Prev = prior(NewInsertLoc); |
| for (unsigned i = 0; i < Prev->getNumOperands(); ++i) { |
| MachineOperand &Op = Prev->getOperand(i); |
| if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId) |
| goto stop; |
| } |
| if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 || |
| Prev->findRegisterDefOperand(PhysReg)) |
| goto stop; |
| for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias) |
| if (Prev->findRegisterUseOperandIdx(*Alias) != -1 || |
| Prev->findRegisterDefOperand(*Alias)) |
| goto stop; |
| NewInsertLoc = Prev; |
| } |
| stop:; |
| |
| // If we made it to the beginning of the block, turn around and move back |
| // down just past any existing reloads. They're likely to be reloads/remats |
| // for instructions earlier than what our current reload/remat is for, so |
| // they should be scheduled earlier. |
| if (NewInsertLoc == Begin) { |
| int FrameIdx; |
| while (InsertLoc != NewInsertLoc && |
| (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) || |
| TII->isTriviallyReMaterializable(NewInsertLoc))) |
| ++NewInsertLoc; |
| } |
| |
| return NewInsertLoc; |
| } |
| |
| namespace { |
| |
| // ReusedOp - For each reused operand, we keep track of a bit of information, |
| // in case we need to rollback upon processing a new operand. See comments |
| // below. |
| struct ReusedOp { |
| // The MachineInstr operand that reused an available value. |
| unsigned Operand; |
| |
| // StackSlotOrReMat - The spill slot or remat id of the value being reused. |
| unsigned StackSlotOrReMat; |
| |
| // PhysRegReused - The physical register the value was available in. |
| unsigned PhysRegReused; |
| |
| // AssignedPhysReg - The physreg that was assigned for use by the reload. |
| unsigned AssignedPhysReg; |
| |
| // VirtReg - The virtual register itself. |
| unsigned VirtReg; |
| |
| ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, |
| unsigned vreg) |
| : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), |
| AssignedPhysReg(apr), VirtReg(vreg) {} |
| }; |
| |
| /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that |
| /// is reused instead of reloaded. |
| class ReuseInfo { |
| MachineInstr &MI; |
| std::vector<ReusedOp> Reuses; |
| BitVector PhysRegsClobbered; |
| public: |
| ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { |
| PhysRegsClobbered.resize(tri->getNumRegs()); |
| } |
| |
| bool hasReuses() const { |
| return !Reuses.empty(); |
| } |
| |
| /// addReuse - If we choose to reuse a virtual register that is already |
| /// available instead of reloading it, remember that we did so. |
| void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, |
| unsigned PhysRegReused, unsigned AssignedPhysReg, |
| unsigned VirtReg) { |
| // If the reload is to the assigned register anyway, no undo will be |
| // required. |
| if (PhysRegReused == AssignedPhysReg) return; |
| |
| // Otherwise, remember this. |
| Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, |
| AssignedPhysReg, VirtReg)); |
| } |
| |
| void markClobbered(unsigned PhysReg) { |
| PhysRegsClobbered.set(PhysReg); |
| } |
| |
| bool isClobbered(unsigned PhysReg) const { |
| return PhysRegsClobbered.test(PhysReg); |
| } |
| |
| /// GetRegForReload - We are about to emit a reload into PhysReg. If there |
| /// is some other operand that is using the specified register, either pick |
| /// a new register to use, or evict the previous reload and use this reg. |
| unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg, |
| MachineFunction &MF, MachineInstr *MI, |
| AvailableSpills &Spills, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| SmallSet<unsigned, 8> &Rejected, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps, |
| VirtRegMap &VRM); |
| |
| /// GetRegForReload - Helper for the above GetRegForReload(). Add a |
| /// 'Rejected' set to remember which registers have been considered and |
| /// rejected for the reload. This avoids infinite looping in case like |
| /// this: |
| /// t1 := op t2, t3 |
| /// t2 <- assigned r0 for use by the reload but ended up reuse r1 |
| /// t3 <- assigned r1 for use by the reload but ended up reuse r0 |
| /// t1 <- desires r1 |
| /// sees r1 is taken by t2, tries t2's reload register r0 |
| /// sees r0 is taken by t3, tries t3's reload register r1 |
| /// sees r1 is taken by t2, tries t2's reload register r0 ... |
| unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI, |
| AvailableSpills &Spills, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps, |
| VirtRegMap &VRM) { |
| SmallSet<unsigned, 8> Rejected; |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); |
| return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores, |
| Rejected, RegKills, KillOps, VRM); |
| } |
| }; |
| |
| } |
| |
| // ****************** // |
| // Utility Functions // |
| // ****************** // |
| |
| /// findSinglePredSuccessor - Return via reference a vector of machine basic |
| /// blocks each of which is a successor of the specified BB and has no other |
| /// predecessor. |
| static void findSinglePredSuccessor(MachineBasicBlock *MBB, |
| SmallVectorImpl<MachineBasicBlock *> &Succs){ |
| for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) { |
| MachineBasicBlock *SuccMBB = *SI; |
| if (SuccMBB->pred_size() == 1) |
| Succs.push_back(SuccMBB); |
| } |
| } |
| |
| /// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed |
| /// but not re-defined and it's being reused. Remove the kill flag for the |
| /// register and unset the kill's marker and last kill operand. |
| static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n"); |
| |
| MachineOperand *KillOp = KillOps[Reg]; |
| KillOp->setIsKill(false); |
| // KillOps[Reg] might be a def of a super-register. |
| unsigned KReg = KillOp->getReg(); |
| if (!RegKills[KReg]) |
| return; |
| |
| assert(KillOps[KReg]->getParent() == KillOp->getParent() && |
| "invalid superreg kill flags"); |
| KillOps[KReg] = NULL; |
| RegKills.reset(KReg); |
| |
| // If it's a def of a super-register. Its other sub-regsters are no |
| // longer killed as well. |
| for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { |
| DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n"); |
| |
| assert(KillOps[*SR]->getParent() == KillOp->getParent() && |
| "invalid subreg kill flags"); |
| KillOps[*SR] = NULL; |
| RegKills.reset(*SR); |
| } |
| } |
| |
| /// ResurrectKill - Invalidate kill info associated with a previous MI. An |
| /// optimization may have decided that it's safe to reuse a previously killed |
| /// register. If we fail to erase the invalid kill flags, then the register |
| /// scavenger may later clobber the register used by this MI. Note that this |
| /// must be done even if this MI is being deleted! Consider: |
| /// |
| /// USE $r1 (vreg1) <kill> |
| /// ... |
| /// $r1(vreg3) = COPY $r1 (vreg2) |
| /// |
| /// RegAlloc has smartly assigned all three vregs to the same physreg. Initially |
| /// vreg1's only use is a kill. The rewriter doesn't know it should be live |
| /// until it rewrites vreg2. At that points it sees that the copy is dead and |
| /// deletes it. However, deleting the copy implicitly forwards liveness of $r1 |
| /// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at |
| /// vreg1 before deleting the copy. |
| static void ResurrectKill(MachineInstr &MI, unsigned Reg, |
| const TargetRegisterInfo* TRI, BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { |
| ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); |
| return; |
| } |
| // No previous kill for this reg. Check for subreg kills as well. |
| // d4 = |
| // store d4, fi#0 |
| // ... |
| // = s8<kill> |
| // ... |
| // = d4 <avoiding reload> |
| for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| unsigned SReg = *SR; |
| if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) |
| ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps); |
| } |
| } |
| |
| /// InvalidateKills - MI is going to be deleted. If any of its operands are |
| /// marked kill, then invalidate the information. |
| static void InvalidateKills(MachineInstr &MI, |
| const TargetRegisterInfo* TRI, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps, |
| SmallVector<unsigned, 2> *KillRegs = NULL) { |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| continue; |
| if (KillRegs) |
| KillRegs->push_back(Reg); |
| assert(Reg < KillOps.size()); |
| if (KillOps[Reg] == &MO) { |
| // This operand was the kill, now no longer. |
| KillOps[Reg] = NULL; |
| RegKills.reset(Reg); |
| for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| if (RegKills[*SR]) { |
| assert(KillOps[*SR] == &MO && "bad subreg kill flags"); |
| KillOps[*SR] = NULL; |
| RegKills.reset(*SR); |
| } |
| } |
| } |
| else { |
| // This operand may have reused a previously killed reg. Keep it live in |
| // case it continues to be used after erasing this instruction. |
| ResurrectKill(MI, Reg, TRI, RegKills, KillOps); |
| } |
| } |
| } |
| |
| /// InvalidateRegDef - If the def operand of the specified def MI is now dead |
| /// (since its spill instruction is removed), mark it isDead. Also checks if |
| /// the def MI has other definition operands that are not dead. Returns it by |
| /// reference. |
| static bool InvalidateRegDef(MachineBasicBlock::iterator I, |
| MachineInstr &NewDef, unsigned Reg, |
| bool &HasLiveDef, |
| const TargetRegisterInfo *TRI) { |
| // Due to remat, it's possible this reg isn't being reused. That is, |
| // the def of this reg (by prev MI) is now dead. |
| MachineInstr *DefMI = I; |
| MachineOperand *DefOp = NULL; |
| for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = DefMI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef()) |
| continue; |
| if (MO.getReg() == Reg) |
| DefOp = &MO; |
| else if (!MO.isDead()) |
| HasLiveDef = true; |
| } |
| if (!DefOp) |
| return false; |
| |
| bool FoundUse = false, Done = false; |
| MachineBasicBlock::iterator E = &NewDef; |
| ++I; ++E; |
| for (; !Done && I != E; ++I) { |
| MachineInstr *NMI = I; |
| for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { |
| MachineOperand &MO = NMI->getOperand(j); |
| if (!MO.isReg() || MO.getReg() == 0 || |
| (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg()))) |
| continue; |
| if (MO.isUse()) |
| FoundUse = true; |
| Done = true; // Stop after scanning all the operands of this MI. |
| } |
| } |
| if (!FoundUse) { |
| // Def is dead! |
| DefOp->setIsDead(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// UpdateKills - Track and update kill info. If a MI reads a register that is |
| /// marked kill, then it must be due to register reuse. Transfer the kill info |
| /// over. |
| static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| // These do not affect kill info at all. |
| if (MI.isDebugValue()) |
| return; |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isUse() || MO.isUndef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| |
| // This operand may have reused a previously killed reg. Keep it live. |
| ResurrectKill(MI, Reg, TRI, RegKills, KillOps); |
| |
| if (MO.isKill()) { |
| RegKills.set(Reg); |
| KillOps[Reg] = &MO; |
| for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| RegKills.set(*SR); |
| KillOps[*SR] = &MO; |
| } |
| } |
| } |
| |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.getReg() || !MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| RegKills.reset(Reg); |
| KillOps[Reg] = NULL; |
| // It also defines (or partially define) aliases. |
| for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { |
| RegKills.reset(*SR); |
| KillOps[*SR] = NULL; |
| } |
| for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) { |
| RegKills.reset(*SR); |
| KillOps[*SR] = NULL; |
| } |
| } |
| } |
| |
| /// ReMaterialize - Re-materialize definition for Reg targeting DestReg. |
| /// |
| static void ReMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &MII, |
| unsigned DestReg, unsigned Reg, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI, |
| VirtRegMap &VRM) { |
| MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg); |
| #ifndef NDEBUG |
| const TargetInstrDesc &TID = ReMatDefMI->getDesc(); |
| assert(TID.getNumDefs() == 1 && |
| "Don't know how to remat instructions that define > 1 values!"); |
| #endif |
| TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI); |
| MachineInstr *NewMI = prior(MII); |
| for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = NewMI->getOperand(i); |
| if (!MO.isReg() || MO.getReg() == 0) |
| continue; |
| unsigned VirtReg = MO.getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) |
| continue; |
| assert(MO.isUse()); |
| unsigned Phys = VRM.getPhys(VirtReg); |
| assert(Phys && "Virtual register is not assigned a register?"); |
| substitutePhysReg(MO, Phys, *TRI); |
| } |
| ++NumReMats; |
| } |
| |
| /// findSuperReg - Find the SubReg's super-register of given register class |
| /// where its SubIdx sub-register is SubReg. |
| static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, |
| unsigned SubIdx, const TargetRegisterInfo *TRI) { |
| for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| I != E; ++I) { |
| unsigned Reg = *I; |
| if (TRI->getSubReg(Reg, SubIdx) == SubReg) |
| return Reg; |
| } |
| return 0; |
| } |
| |
| // ******************************** // |
| // Available Spills Implementation // |
| // ******************************** // |
| |
| /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified |
| /// stackslot register. The register is still available but is no longer |
| /// allowed to be modifed. |
| void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { |
| std::multimap<unsigned, int>::iterator I = |
| PhysRegsAvailable.lower_bound(PhysReg); |
| while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| int SlotOrReMat = I->second; |
| I++; |
| assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && |
| "Bidirectional map mismatch!"); |
| SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; |
| DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) |
| << " copied, it is available for use but can no longer be modified\n"); |
| } |
| } |
| |
| /// disallowClobberPhysReg - Unset the CanClobber bit of the specified |
| /// stackslot register and its aliases. The register and its aliases may |
| /// still available but is no longer allowed to be modifed. |
| void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { |
| for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) |
| disallowClobberPhysRegOnly(*AS); |
| disallowClobberPhysRegOnly(PhysReg); |
| } |
| |
| /// ClobberPhysRegOnly - This is called when the specified physreg changes |
| /// value. We use this to invalidate any info about stuff we thing lives in it. |
| void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { |
| std::multimap<unsigned, int>::iterator I = |
| PhysRegsAvailable.lower_bound(PhysReg); |
| while (I != PhysRegsAvailable.end() && I->first == PhysReg) { |
| int SlotOrReMat = I->second; |
| PhysRegsAvailable.erase(I++); |
| assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && |
| "Bidirectional map mismatch!"); |
| SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); |
| DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) |
| << " clobbered, invalidating "); |
| if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) |
| DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n"); |
| else |
| DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n"); |
| } |
| } |
| |
| /// ClobberPhysReg - This is called when the specified physreg changes |
| /// value. We use this to invalidate any info about stuff we thing lives in |
| /// it and any of its aliases. |
| void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { |
| for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) |
| ClobberPhysRegOnly(*AS); |
| ClobberPhysRegOnly(PhysReg); |
| } |
| |
| /// AddAvailableRegsToLiveIn - Availability information is being kept coming |
| /// into the specified MBB. Add available physical registers as potential |
| /// live-in's. If they are reused in the MBB, they will be added to the |
| /// live-in set to make register scavenger and post-allocation scheduler. |
| void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| std::set<unsigned> NotAvailable; |
| for (std::multimap<unsigned, int>::iterator |
| I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); |
| I != E; ++I) { |
| unsigned Reg = I->first; |
| const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg); |
| // FIXME: A temporary workaround. We can't reuse available value if it's |
| // not safe to move the def of the virtual register's class. e.g. |
| // X86::RFP* register classes. Do not add it as a live-in. |
| if (!TII->isSafeToMoveRegClassDefs(RC)) |
| // This is no longer available. |
| NotAvailable.insert(Reg); |
| else { |
| MBB.addLiveIn(Reg); |
| if (RegKills[Reg]) |
| ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); |
| } |
| |
| // Skip over the same register. |
| std::multimap<unsigned, int>::iterator NI = llvm::next(I); |
| while (NI != E && NI->first == Reg) { |
| ++I; |
| ++NI; |
| } |
| } |
| |
| for (std::set<unsigned>::iterator I = NotAvailable.begin(), |
| E = NotAvailable.end(); I != E; ++I) { |
| ClobberPhysReg(*I); |
| for (const unsigned *SubRegs = TRI->getSubRegisters(*I); |
| *SubRegs; ++SubRegs) |
| ClobberPhysReg(*SubRegs); |
| } |
| } |
| |
| /// ModifyStackSlotOrReMat - This method is called when the value in a stack |
| /// slot changes. This removes information about which register the previous |
| /// value for this slot lives in (as the previous value is dead now). |
| void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { |
| std::map<int, unsigned>::iterator It = |
| SpillSlotsOrReMatsAvailable.find(SlotOrReMat); |
| if (It == SpillSlotsOrReMatsAvailable.end()) return; |
| unsigned Reg = It->second >> 1; |
| SpillSlotsOrReMatsAvailable.erase(It); |
| |
| // This register may hold the value of multiple stack slots, only remove this |
| // stack slot from the set of values the register contains. |
| std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); |
| for (; ; ++I) { |
| assert(I != PhysRegsAvailable.end() && I->first == Reg && |
| "Map inverse broken!"); |
| if (I->second == SlotOrReMat) break; |
| } |
| PhysRegsAvailable.erase(I); |
| } |
| |
| void AvailableSpills::ClobberSharingStackSlots(int StackSlot) { |
| std::map<int, unsigned>::iterator It = |
| SpillSlotsOrReMatsAvailable.find(StackSlot); |
| if (It == SpillSlotsOrReMatsAvailable.end()) return; |
| unsigned Reg = It->second >> 1; |
| |
| // Erase entries in PhysRegsAvailable for other stack slots. |
| std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); |
| while (I != PhysRegsAvailable.end() && I->first == Reg) { |
| std::multimap<unsigned, int>::iterator NextI = llvm::next(I); |
| if (I->second != StackSlot) { |
| DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in " |
| << PrintReg(Reg, TRI) << '\n'); |
| SpillSlotsOrReMatsAvailable.erase(I->second); |
| PhysRegsAvailable.erase(I); |
| } |
| I = NextI; |
| } |
| } |
| |
| // ************************** // |
| // Reuse Info Implementation // |
| // ************************** // |
| |
| /// GetRegForReload - We are about to emit a reload into PhysReg. If there |
| /// is some other operand that is using the specified register, either pick |
| /// a new register to use, or evict the previous reload and use this reg. |
| unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC, |
| unsigned PhysReg, |
| MachineFunction &MF, |
| MachineInstr *MI, AvailableSpills &Spills, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| SmallSet<unsigned, 8> &Rejected, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps, |
| VirtRegMap &VRM) { |
| const TargetInstrInfo* TII = MF.getTarget().getInstrInfo(); |
| const TargetRegisterInfo *TRI = Spills.getRegInfo(); |
| |
| if (Reuses.empty()) return PhysReg; // This is most often empty. |
| |
| for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { |
| ReusedOp &Op = Reuses[ro]; |
| // If we find some other reuse that was supposed to use this register |
| // exactly for its reload, we can change this reload to use ITS reload |
| // register. That is, unless its reload register has already been |
| // considered and subsequently rejected because it has also been reused |
| // by another operand. |
| if (Op.PhysRegReused == PhysReg && |
| Rejected.count(Op.AssignedPhysReg) == 0 && |
| RC->contains(Op.AssignedPhysReg)) { |
| // Yup, use the reload register that we didn't use before. |
| unsigned NewReg = Op.AssignedPhysReg; |
| Rejected.insert(PhysReg); |
| return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, |
| Rejected, RegKills, KillOps, VRM); |
| } else { |
| // Otherwise, we might also have a problem if a previously reused |
| // value aliases the new register. If so, codegen the previous reload |
| // and use this one. |
| unsigned PRRU = Op.PhysRegReused; |
| if (TRI->regsOverlap(PRRU, PhysReg)) { |
| // Okay, we found out that an alias of a reused register |
| // was used. This isn't good because it means we have |
| // to undo a previous reuse. |
| MachineBasicBlock *MBB = MI->getParent(); |
| const TargetRegisterClass *AliasRC = |
| MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); |
| |
| // Copy Op out of the vector and remove it, we're going to insert an |
| // explicit load for it. |
| ReusedOp NewOp = Op; |
| Reuses.erase(Reuses.begin()+ro); |
| |
| // MI may be using only a sub-register of PhysRegUsed. |
| unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg(); |
| unsigned SubIdx = 0; |
| assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) && |
| "A reuse cannot be a virtual register"); |
| if (PRRU != RealPhysRegUsed) { |
| // What was the sub-register index? |
| SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed); |
| assert(SubIdx && |
| "Operand physreg is not a sub-register of PhysRegUsed"); |
| } |
| |
| // Ok, we're going to try to reload the assigned physreg into the |
| // slot that we were supposed to in the first place. However, that |
| // register could hold a reuse. Check to see if it conflicts or |
| // would prefer us to use a different register. |
| unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg, |
| MF, MI, Spills, MaybeDeadStores, |
| Rejected, RegKills, KillOps, VRM); |
| |
| bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT; |
| int SSorRMId = DoReMat |
| ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat; |
| |
| // Back-schedule reloads and remats. |
| MachineBasicBlock::iterator InsertLoc = |
| ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, |
| DoReMat, SSorRMId, TII, MF); |
| |
| if (DoReMat) { |
| ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII, |
| TRI, VRM); |
| } else { |
| TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg, |
| NewOp.StackSlotOrReMat, AliasRC, TRI); |
| MachineInstr *LoadMI = prior(InsertLoc); |
| VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); |
| // Any stores to this stack slot are not dead anymore. |
| MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; |
| ++NumLoads; |
| } |
| Spills.ClobberPhysReg(NewPhysReg); |
| Spills.ClobberPhysReg(NewOp.PhysRegReused); |
| |
| unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg; |
| MI->getOperand(NewOp.Operand).setReg(RReg); |
| MI->getOperand(NewOp.Operand).setSubReg(0); |
| |
| Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); |
| UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); |
| DEBUG(dbgs() << '\t' << *prior(InsertLoc)); |
| |
| DEBUG(dbgs() << "Reuse undone!\n"); |
| --NumReused; |
| |
| // Finally, PhysReg is now available, go ahead and use it. |
| return PhysReg; |
| } |
| } |
| } |
| return PhysReg; |
| } |
| |
| // ************************************************************************ // |
| |
| /// FoldsStackSlotModRef - Return true if the specified MI folds the specified |
| /// stack slot mod/ref. It also checks if it's possible to unfold the |
| /// instruction by having it define a specified physical register instead. |
| static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI, |
| VirtRegMap &VRM) { |
| if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) |
| return false; |
| |
| bool Found = false; |
| VirtRegMap::MI2VirtMapTy::const_iterator I, End; |
| for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { |
| unsigned VirtReg = I->second.first; |
| VirtRegMap::ModRef MR = I->second.second; |
| if (MR & VirtRegMap::isModRef) |
| if (VRM.getStackSlot(VirtReg) == SS) { |
| Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; |
| break; |
| } |
| } |
| if (!Found) |
| return false; |
| |
| // Does the instruction uses a register that overlaps the scratch register? |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || MO.getReg() == 0) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| if (!VRM.hasPhys(Reg)) |
| continue; |
| Reg = VRM.getPhys(Reg); |
| } |
| if (TRI->regsOverlap(PhysReg, Reg)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// FindFreeRegister - Find a free register of a given register class by looking |
| /// at (at most) the last two machine instructions. |
| static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, |
| MachineBasicBlock &MBB, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| BitVector &AllocatableRegs) { |
| BitVector Defs(TRI->getNumRegs()); |
| BitVector Uses(TRI->getNumRegs()); |
| SmallVector<unsigned, 4> LocalUses; |
| SmallVector<unsigned, 4> Kills; |
| |
| // Take a look at 2 instructions at most. |
| unsigned Count = 0; |
| while (Count < 2) { |
| if (MII == MBB.begin()) |
| break; |
| MachineInstr *PrevMI = prior(MII); |
| MII = PrevMI; |
| |
| if (PrevMI->isDebugValue()) |
| continue; // Skip over dbg_value instructions. |
| ++Count; |
| |
| for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = PrevMI->getOperand(i); |
| if (!MO.isReg() || MO.getReg() == 0) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (MO.isDef()) { |
| Defs.set(Reg); |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| Defs.set(*AS); |
| } else { |
| LocalUses.push_back(Reg); |
| if (MO.isKill() && AllocatableRegs[Reg]) |
| Kills.push_back(Reg); |
| } |
| } |
| |
| for (unsigned i = 0, e = Kills.size(); i != e; ++i) { |
| unsigned Kill = Kills[i]; |
| if (!Defs[Kill] && !Uses[Kill] && |
| RC->contains(Kill)) |
| return Kill; |
| } |
| for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { |
| unsigned Reg = LocalUses[i]; |
| Uses.set(Reg); |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| Uses.set(*AS); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static |
| void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg, |
| const TargetRegisterInfo &TRI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.getReg() == VirtReg) |
| substitutePhysReg(MO, PhysReg, TRI); |
| } |
| } |
| |
| namespace { |
| |
| struct RefSorter { |
| bool operator()(const std::pair<MachineInstr*, int> &A, |
| const std::pair<MachineInstr*, int> &B) { |
| return A.second < B.second; |
| } |
| }; |
| |
| // ***************************** // |
| // Local Spiller Implementation // |
| // ***************************** // |
| |
| class LocalRewriter : public VirtRegRewriter { |
| MachineRegisterInfo *MRI; |
| const TargetRegisterInfo *TRI; |
| const TargetInstrInfo *TII; |
| VirtRegMap *VRM; |
| LiveIntervals *LIs; |
| BitVector AllocatableRegs; |
| DenseMap<MachineInstr*, unsigned> DistanceMap; |
| DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues; |
| |
| MachineBasicBlock *MBB; // Basic block currently being processed. |
| |
| public: |
| |
| bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, |
| LiveIntervals* LIs); |
| |
| private: |
| void EraseInstr(MachineInstr *MI) { |
| VRM->RemoveMachineInstrFromMaps(MI); |
| LIs->RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| } |
| |
| bool OptimizeByUnfold2(unsigned VirtReg, int SS, |
| MachineBasicBlock::iterator &MII, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps); |
| |
| bool OptimizeByUnfold(MachineBasicBlock::iterator &MII, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps); |
| |
| bool CommuteToFoldReload(MachineBasicBlock::iterator &MII, |
| unsigned VirtReg, unsigned SrcReg, int SS, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps, |
| const TargetRegisterInfo *TRI); |
| |
| void SpillRegToStackSlot(MachineBasicBlock::iterator &MII, |
| int Idx, unsigned PhysReg, int StackSlot, |
| const TargetRegisterClass *RC, |
| bool isAvailable, MachineInstr *&LastStore, |
| AvailableSpills &Spills, |
| SmallSet<MachineInstr*, 4> &ReMatDefs, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps); |
| |
| void TransferDeadness(unsigned Reg, BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps); |
| |
| bool InsertEmergencySpills(MachineInstr *MI); |
| |
| bool InsertRestores(MachineInstr *MI, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps); |
| |
| bool InsertSpills(MachineInstr *MI); |
| |
| void ProcessUses(MachineInstr &MI, AvailableSpills &Spills, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| BitVector &RegKills, |
| ReuseInfo &ReusedOperands, |
| std::vector<MachineOperand*> &KillOps); |
| |
| void RewriteMBB(LiveIntervals *LIs, |
| AvailableSpills &Spills, BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps); |
| }; |
| } |
| |
| bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm, |
| LiveIntervals* lis) { |
| MRI = &MF.getRegInfo(); |
| TRI = MF.getTarget().getRegisterInfo(); |
| TII = MF.getTarget().getInstrInfo(); |
| VRM = &vrm; |
| LIs = lis; |
| AllocatableRegs = TRI->getAllocatableSet(MF); |
| DEBUG(dbgs() << "\n**** Local spiller rewriting function '" |
| << MF.getFunction()->getName() << "':\n"); |
| DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and" |
| " reloads!) ****\n"); |
| DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); |
| |
| // Spills - Keep track of which spilled values are available in physregs |
| // so that we can choose to reuse the physregs instead of emitting |
| // reloads. This is usually refreshed per basic block. |
| AvailableSpills Spills(TRI, TII); |
| |
| // Keep track of kill information. |
| BitVector RegKills(TRI->getNumRegs()); |
| std::vector<MachineOperand*> KillOps; |
| KillOps.resize(TRI->getNumRegs(), NULL); |
| |
| // SingleEntrySuccs - Successor blocks which have a single predecessor. |
| SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; |
| SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; |
| |
| // Traverse the basic blocks depth first. |
| MachineBasicBlock *Entry = MF.begin(); |
| SmallPtrSet<MachineBasicBlock*,16> Visited; |
| for (df_ext_iterator<MachineBasicBlock*, |
| SmallPtrSet<MachineBasicBlock*,16> > |
| DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); |
| DFI != E; ++DFI) { |
| MBB = *DFI; |
| if (!EarlyVisited.count(MBB)) |
| RewriteMBB(LIs, Spills, RegKills, KillOps); |
| |
| // If this MBB is the only predecessor of a successor. Keep the |
| // availability information and visit it next. |
| do { |
| // Keep visiting single predecessor successor as long as possible. |
| SinglePredSuccs.clear(); |
| findSinglePredSuccessor(MBB, SinglePredSuccs); |
| if (SinglePredSuccs.empty()) |
| MBB = 0; |
| else { |
| // FIXME: More than one successors, each of which has MBB has |
| // the only predecessor. |
| MBB = SinglePredSuccs[0]; |
| if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { |
| Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); |
| RewriteMBB(LIs, Spills, RegKills, KillOps); |
| } |
| } |
| } while (MBB); |
| |
| // Clear the availability info. |
| Spills.clear(); |
| } |
| |
| DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); |
| DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); |
| |
| // Mark unused spill slots. |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| int SS = VRM->getLowSpillSlot(); |
| if (SS != VirtRegMap::NO_STACK_SLOT) { |
| for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) { |
| SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS]; |
| if (!VRM->isSpillSlotUsed(SS)) { |
| MFI->RemoveStackObject(SS); |
| for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) { |
| MachineInstr *DVMI = DbgValues[j]; |
| DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n'); |
| EraseInstr(DVMI); |
| } |
| ++NumDSS; |
| } |
| DbgValues.clear(); |
| } |
| } |
| Slot2DbgValues.clear(); |
| |
| return true; |
| } |
| |
| /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if |
| /// a scratch register is available. |
| /// xorq %r12<kill>, %r13 |
| /// addq %rax, -184(%rbp) |
| /// addq %r13, -184(%rbp) |
| /// ==> |
| /// xorq %r12<kill>, %r13 |
| /// movq -184(%rbp), %r12 |
| /// addq %rax, %r12 |
| /// addq %r13, %r12 |
| /// movq %r12, -184(%rbp) |
| bool LocalRewriter:: |
| OptimizeByUnfold2(unsigned VirtReg, int SS, |
| MachineBasicBlock::iterator &MII, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| |
| MachineBasicBlock::iterator NextMII = llvm::next(MII); |
| // Skip over dbg_value instructions. |
| while (NextMII != MBB->end() && NextMII->isDebugValue()) |
| NextMII = llvm::next(NextMII); |
| if (NextMII == MBB->end()) |
| return false; |
| |
| if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) |
| return false; |
| |
| // Now let's see if the last couple of instructions happens to have freed up |
| // a register. |
| const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs); |
| if (!PhysReg) |
| return false; |
| |
| MachineFunction &MF = *MBB->getParent(); |
| TRI = MF.getTarget().getRegisterInfo(); |
| MachineInstr &MI = *MII; |
| if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM)) |
| return false; |
| |
| // If the next instruction also folds the same SS modref and can be unfoled, |
| // then it's worthwhile to issue a load from SS into the free register and |
| // then unfold these instructions. |
| if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)) |
| return false; |
| |
| // Back-schedule reloads and remats. |
| ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF); |
| |
| // Load from SS to the spare physical register. |
| TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI); |
| // This invalidates Phys. |
| Spills.ClobberPhysReg(PhysReg); |
| // Remember it's available. |
| Spills.addAvailable(SS, PhysReg); |
| MaybeDeadStores[SS] = NULL; |
| |
| // Unfold current MI. |
| SmallVector<MachineInstr*, 4> NewMIs; |
| if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) |
| llvm_unreachable("Unable unfold the load / store folding instruction!"); |
| assert(NewMIs.size() == 1); |
| AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); |
| VRM->transferRestorePts(&MI, NewMIs[0]); |
| MII = MBB->insert(MII, NewMIs[0]); |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| ++NumModRefUnfold; |
| |
| // Unfold next instructions that fold the same SS. |
| do { |
| MachineInstr &NextMI = *NextMII; |
| NextMII = llvm::next(NextMII); |
| NewMIs.clear(); |
| if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) |
| llvm_unreachable("Unable unfold the load / store folding instruction!"); |
| assert(NewMIs.size() == 1); |
| AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); |
| VRM->transferRestorePts(&NextMI, NewMIs[0]); |
| MBB->insert(NextMII, NewMIs[0]); |
| InvalidateKills(NextMI, TRI, RegKills, KillOps); |
| EraseInstr(&NextMI); |
| ++NumModRefUnfold; |
| // Skip over dbg_value instructions. |
| while (NextMII != MBB->end() && NextMII->isDebugValue()) |
| NextMII = llvm::next(NextMII); |
| if (NextMII == MBB->end()) |
| break; |
| } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)); |
| |
| // Store the value back into SS. |
| TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI); |
| MachineInstr *StoreMI = prior(NextMII); |
| VRM->addSpillSlotUse(SS, StoreMI); |
| VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| |
| return true; |
| } |
| |
| /// OptimizeByUnfold - Turn a store folding instruction into a load folding |
| /// instruction. e.g. |
| /// xorl %edi, %eax |
| /// movl %eax, -32(%ebp) |
| /// movl -36(%ebp), %eax |
| /// orl %eax, -32(%ebp) |
| /// ==> |
| /// xorl %edi, %eax |
| /// orl -36(%ebp), %eax |
| /// mov %eax, -32(%ebp) |
| /// This enables unfolding optimization for a subsequent instruction which will |
| /// also eliminate the newly introduced store instruction. |
| bool LocalRewriter:: |
| OptimizeByUnfold(MachineBasicBlock::iterator &MII, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| MachineFunction &MF = *MBB->getParent(); |
| MachineInstr &MI = *MII; |
| unsigned UnfoldedOpc = 0; |
| unsigned UnfoldPR = 0; |
| unsigned UnfoldVR = 0; |
| int FoldedSS = VirtRegMap::NO_STACK_SLOT; |
| VirtRegMap::MI2VirtMapTy::const_iterator I, End; |
| for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) { |
| // Only transform a MI that folds a single register. |
| if (UnfoldedOpc) |
| return false; |
| UnfoldVR = I->second.first; |
| VirtRegMap::ModRef MR = I->second.second; |
| // MI2VirtMap be can updated which invalidate the iterator. |
| // Increment the iterator first. |
| ++I; |
| if (VRM->isAssignedReg(UnfoldVR)) |
| continue; |
| // If this reference is not a use, any previous store is now dead. |
| // Otherwise, the store to this stack slot is not dead anymore. |
| FoldedSS = VRM->getStackSlot(UnfoldVR); |
| MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; |
| if (DeadStore && (MR & VirtRegMap::isModRef)) { |
| unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); |
| if (!PhysReg || !DeadStore->readsRegister(PhysReg)) |
| continue; |
| UnfoldPR = PhysReg; |
| UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), |
| false, true); |
| } |
| } |
| |
| if (!UnfoldedOpc) { |
| if (!UnfoldVR) |
| return false; |
| |
| // Look for other unfolding opportunities. |
| return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills, |
| RegKills, KillOps); |
| } |
| |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) |
| continue; |
| unsigned VirtReg = MO.getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) |
| continue; |
| if (VRM->isAssignedReg(VirtReg)) { |
| unsigned PhysReg = VRM->getPhys(VirtReg); |
| if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) |
| return false; |
| } else if (VRM->isReMaterialized(VirtReg)) |
| continue; |
| int SS = VRM->getStackSlot(VirtReg); |
| unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| if (PhysReg) { |
| if (TRI->regsOverlap(PhysReg, UnfoldPR)) |
| return false; |
| continue; |
| } |
| if (VRM->hasPhys(VirtReg)) { |
| PhysReg = VRM->getPhys(VirtReg); |
| if (!TRI->regsOverlap(PhysReg, UnfoldPR)) |
| continue; |
| } |
| |
| // Ok, we'll need to reload the value into a register which makes |
| // it impossible to perform the store unfolding optimization later. |
| // Let's see if it is possible to fold the load if the store is |
| // unfolded. This allows us to perform the store unfolding |
| // optimization. |
| SmallVector<MachineInstr*, 4> NewMIs; |
| if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { |
| assert(NewMIs.size() == 1); |
| MachineInstr *NewMI = NewMIs.back(); |
| MBB->insert(MII, NewMI); |
| NewMIs.clear(); |
| int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); |
| assert(Idx != -1); |
| SmallVector<unsigned, 1> Ops; |
| Ops.push_back(Idx); |
| MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS); |
| NewMI->eraseFromParent(); |
| if (FoldedMI) { |
| VRM->addSpillSlotUse(SS, FoldedMI); |
| if (!VRM->hasPhys(UnfoldVR)) |
| VRM->assignVirt2Phys(UnfoldVR, UnfoldPR); |
| VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); |
| MII = FoldedMI; |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and |
| /// where SrcReg is r1 and it is tied to r0. Return true if after |
| /// commuting this instruction it will be r0 = op r2, r1. |
| static bool CommuteChangesDestination(MachineInstr *DefMI, |
| const TargetInstrDesc &TID, |
| unsigned SrcReg, |
| const TargetInstrInfo *TII, |
| unsigned &DstIdx) { |
| if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3) |
| return false; |
| if (!DefMI->getOperand(1).isReg() || |
| DefMI->getOperand(1).getReg() != SrcReg) |
| return false; |
| unsigned DefIdx; |
| if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0) |
| return false; |
| unsigned SrcIdx1, SrcIdx2; |
| if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2)) |
| return false; |
| if (SrcIdx1 == 1 && SrcIdx2 == 2) { |
| DstIdx = 2; |
| return true; |
| } |
| return false; |
| } |
| |
| /// CommuteToFoldReload - |
| /// Look for |
| /// r1 = load fi#1 |
| /// r1 = op r1, r2<kill> |
| /// store r1, fi#1 |
| /// |
| /// If op is commutable and r2 is killed, then we can xform these to |
| /// r2 = op r2, fi#1 |
| /// store r2, fi#1 |
| bool LocalRewriter:: |
| CommuteToFoldReload(MachineBasicBlock::iterator &MII, |
| unsigned VirtReg, unsigned SrcReg, int SS, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps, |
| const TargetRegisterInfo *TRI) { |
| if (MII == MBB->begin() || !MII->killsRegister(SrcReg)) |
| return false; |
| |
| MachineInstr &MI = *MII; |
| MachineBasicBlock::iterator DefMII = prior(MII); |
| MachineInstr *DefMI = DefMII; |
| const TargetInstrDesc &TID = DefMI->getDesc(); |
| unsigned NewDstIdx; |
| if (DefMII != MBB->begin() && |
| TID.isCommutable() && |
| CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) { |
| MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); |
| unsigned NewReg = NewDstMO.getReg(); |
| if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) |
| return false; |
| MachineInstr *ReloadMI = prior(DefMII); |
| int FrameIdx; |
| unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); |
| if (DestReg != SrcReg || FrameIdx != SS) |
| return false; |
| int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); |
| if (UseIdx == -1) |
| return false; |
| unsigned DefIdx; |
| if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) |
| return false; |
| assert(DefMI->getOperand(DefIdx).isReg() && |
| DefMI->getOperand(DefIdx).getReg() == SrcReg); |
| |
| // Now commute def instruction. |
| MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); |
| if (!CommutedMI) |
| return false; |
| MBB->insert(MII, CommutedMI); |
| SmallVector<unsigned, 1> Ops; |
| Ops.push_back(NewDstIdx); |
| MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS); |
| // Not needed since foldMemoryOperand returns new MI. |
| CommutedMI->eraseFromParent(); |
| if (!FoldedMI) |
| return false; |
| |
| VRM->addSpillSlotUse(SS, FoldedMI); |
| VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); |
| // Insert new def MI and spill MI. |
| const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI); |
| MII = prior(MII); |
| MachineInstr *StoreMI = MII; |
| VRM->addSpillSlotUse(SS, StoreMI); |
| VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| MII = FoldedMI; // Update MII to backtrack. |
| |
| // Delete all 3 old instructions. |
| InvalidateKills(*ReloadMI, TRI, RegKills, KillOps); |
| EraseInstr(ReloadMI); |
| InvalidateKills(*DefMI, TRI, RegKills, KillOps); |
| EraseInstr(DefMI); |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| |
| // If NewReg was previously holding value of some SS, it's now clobbered. |
| // This has to be done now because it's a physical register. When this |
| // instruction is re-visited, it's ignored. |
| Spills.ClobberPhysReg(NewReg); |
| |
| ++NumCommutes; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if |
| /// the last store to the same slot is now dead. If so, remove the last store. |
| void LocalRewriter:: |
| SpillRegToStackSlot(MachineBasicBlock::iterator &MII, |
| int Idx, unsigned PhysReg, int StackSlot, |
| const TargetRegisterClass *RC, |
| bool isAvailable, MachineInstr *&LastStore, |
| AvailableSpills &Spills, |
| SmallSet<MachineInstr*, 4> &ReMatDefs, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| |
| MachineBasicBlock::iterator oldNextMII = llvm::next(MII); |
| TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC, |
| TRI); |
| MachineInstr *StoreMI = prior(oldNextMII); |
| VRM->addSpillSlotUse(StackSlot, StoreMI); |
| DEBUG(dbgs() << "Store:\t" << *StoreMI); |
| |
| // If there is a dead store to this stack slot, nuke it now. |
| if (LastStore) { |
| DEBUG(dbgs() << "Removed dead store:\t" << *LastStore); |
| ++NumDSE; |
| SmallVector<unsigned, 2> KillRegs; |
| InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs); |
| MachineBasicBlock::iterator PrevMII = LastStore; |
| bool CheckDef = PrevMII != MBB->begin(); |
| if (CheckDef) |
| --PrevMII; |
| EraseInstr(LastStore); |
| if (CheckDef) { |
| // Look at defs of killed registers on the store. Mark the defs |
| // as dead since the store has been deleted and they aren't |
| // being reused. |
| for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { |
| bool HasOtherDef = false; |
| if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) { |
| MachineInstr *DeadDef = PrevMII; |
| if (ReMatDefs.count(DeadDef) && !HasOtherDef) { |
| // FIXME: This assumes a remat def does not have side effects. |
| EraseInstr(DeadDef); |
| ++NumDRM; |
| } |
| } |
| } |
| } |
| } |
| |
| // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume |
| // the last of multiple instructions is the actual store. |
| LastStore = prior(oldNextMII); |
| |
| // If the stack slot value was previously available in some other |
| // register, change it now. Otherwise, make the register available, |
| // in PhysReg. |
| Spills.ModifyStackSlotOrReMat(StackSlot); |
| Spills.ClobberPhysReg(PhysReg); |
| Spills.addAvailable(StackSlot, PhysReg, isAvailable); |
| ++NumStores; |
| } |
| |
| /// isSafeToDelete - Return true if this instruction doesn't produce any side |
| /// effect and all of its defs are dead. |
| static bool isSafeToDelete(MachineInstr &MI) { |
| const TargetInstrDesc &TID = MI.getDesc(); |
| if (TID.mayLoad() || TID.mayStore() || TID.isTerminator() || |
| TID.isCall() || TID.isBarrier() || TID.isReturn() || |
| MI.isLabel() || MI.isDebugValue() || |
| MI.hasUnmodeledSideEffects()) |
| return false; |
| |
| // Technically speaking inline asm without side effects and no defs can still |
| // be deleted. But there is so much bad inline asm code out there, we should |
| // let them be. |
| if (MI.isInlineAsm()) |
| return false; |
| |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| if (MO.isDef() && !MO.isDead()) |
| return false; |
| if (MO.isUse() && MO.isKill()) |
| // FIXME: We can't remove kill markers or else the scavenger will assert. |
| // An alternative is to add a ADD pseudo instruction to replace kill |
| // markers. |
| return false; |
| } |
| return true; |
| } |
| |
| /// TransferDeadness - A identity copy definition is dead and it's being |
| /// removed. Find the last def or use and mark it as dead / kill. |
| void LocalRewriter:: |
| TransferDeadness(unsigned Reg, BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| SmallPtrSet<MachineInstr*, 4> Seens; |
| SmallVector<std::pair<MachineInstr*, int>,8> Refs; |
| for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), |
| RE = MRI->reg_end(); RI != RE; ++RI) { |
| MachineInstr *UDMI = &*RI; |
| if (UDMI->isDebugValue() || UDMI->getParent() != MBB) |
| continue; |
| DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); |
| if (DI == DistanceMap.end()) |
| continue; |
| if (Seens.insert(UDMI)) |
| Refs.push_back(std::make_pair(UDMI, DI->second)); |
| } |
| |
| if (Refs.empty()) |
| return; |
| std::sort(Refs.begin(), Refs.end(), RefSorter()); |
| |
| while (!Refs.empty()) { |
| MachineInstr *LastUDMI = Refs.back().first; |
| Refs.pop_back(); |
| |
| MachineOperand *LastUD = NULL; |
| for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = LastUDMI->getOperand(i); |
| if (!MO.isReg() || MO.getReg() != Reg) |
| continue; |
| if (!LastUD || (LastUD->isUse() && MO.isDef())) |
| LastUD = &MO; |
| if (LastUDMI->isRegTiedToDefOperand(i)) |
| break; |
| } |
| if (LastUD->isDef()) { |
| // If the instruction has no side effect, delete it and propagate |
| // backward further. Otherwise, mark is dead and we are done. |
| if (!isSafeToDelete(*LastUDMI)) { |
| LastUD->setIsDead(); |
| break; |
| } |
| EraseInstr(LastUDMI); |
| } else { |
| LastUD->setIsKill(); |
| RegKills.set(Reg); |
| KillOps[Reg] = LastUD; |
| break; |
| } |
| } |
| } |
| |
| /// InsertEmergencySpills - Insert emergency spills before MI if requested by |
| /// VRM. Return true if spills were inserted. |
| bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) { |
| if (!VRM->hasEmergencySpills(MI)) |
| return false; |
| MachineBasicBlock::iterator MII = MI; |
| SmallSet<int, 4> UsedSS; |
| std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI); |
| for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { |
| unsigned PhysReg = EmSpills[i]; |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg); |
| assert(RC && "Unable to determine register class!"); |
| int SS = VRM->getEmergencySpillSlot(RC); |
| if (UsedSS.count(SS)) |
| llvm_unreachable("Need to spill more than one physical registers!"); |
| UsedSS.insert(SS); |
| TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI); |
| MachineInstr *StoreMI = prior(MII); |
| VRM->addSpillSlotUse(SS, StoreMI); |
| |
| // Back-schedule reloads and remats. |
| MachineBasicBlock::iterator InsertLoc = |
| ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS, |
| TII, *MBB->getParent()); |
| |
| TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI); |
| |
| MachineInstr *LoadMI = prior(InsertLoc); |
| VRM->addSpillSlotUse(SS, LoadMI); |
| ++NumPSpills; |
| DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); |
| } |
| return true; |
| } |
| |
| /// InsertRestores - Restore registers before MI is requested by VRM. Return |
| /// true is any instructions were inserted. |
| bool LocalRewriter::InsertRestores(MachineInstr *MI, |
| AvailableSpills &Spills, |
| BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| if (!VRM->isRestorePt(MI)) |
| return false; |
| MachineBasicBlock::iterator MII = MI; |
| std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI); |
| for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { |
| unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order. |
| if (!VRM->getPreSplitReg(VirtReg)) |
| continue; // Split interval spilled again. |
| unsigned Phys = VRM->getPhys(VirtReg); |
| MRI->setPhysRegUsed(Phys); |
| |
| // Check if the value being restored if available. If so, it must be |
| // from a predecessor BB that fallthrough into this BB. We do not |
| // expect: |
| // BB1: |
| // r1 = load fi#1 |
| // ... |
| // = r1<kill> |
| // ... # r1 not clobbered |
| // ... |
| // = load fi#1 |
| bool DoReMat = VRM->isReMaterialized(VirtReg); |
| int SSorRMId = DoReMat |
| ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); |
| unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); |
| if (InReg == Phys) { |
| // If the value is already available in the expected register, save |
| // a reload / remat. |
| if (SSorRMId) |
| DEBUG(dbgs() << "Reusing RM#" |
| << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); |
| else |
| DEBUG(dbgs() << "Reusing SS#" << SSorRMId); |
| DEBUG(dbgs() << " from physreg " |
| << TRI->getName(InReg) << " for " << PrintReg(VirtReg) |
| <<" instead of reloading into physreg " |
| << TRI->getName(Phys) << '\n'); |
| |
| // Reusing a physreg may resurrect it. But we expect ProcessUses to update |
| // the kill flags for the current instruction after processing it. |
| |
| ++NumOmitted; |
| continue; |
| } else if (InReg && InReg != Phys) { |
| if (SSorRMId) |
| DEBUG(dbgs() << "Reusing RM#" |
| << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); |
| else |
| DEBUG(dbgs() << "Reusing SS#" << SSorRMId); |
| DEBUG(dbgs() << " from physreg " |
| << TRI->getName(InReg) << " for " << PrintReg(VirtReg) |
| <<" by copying it into physreg " |
| << TRI->getName(Phys) << '\n'); |
| |
| // If the reloaded / remat value is available in another register, |
| // copy it to the desired register. |
| |
| // Back-schedule reloads and remats. |
| MachineBasicBlock::iterator InsertLoc = |
| ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, |
| *MBB->getParent()); |
| MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(), |
| TII->get(TargetOpcode::COPY), Phys) |
| .addReg(InReg, RegState::Kill); |
| |
| // This invalidates Phys. |
| Spills.ClobberPhysReg(Phys); |
| // Remember it's available. |
| Spills.addAvailable(SSorRMId, Phys); |
| |
| CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); |
| UpdateKills(*CopyMI, TRI, RegKills, KillOps); |
| |
| DEBUG(dbgs() << '\t' << *CopyMI); |
| ++NumCopified; |
| continue; |
| } |
| |
| // Back-schedule reloads and remats. |
| MachineBasicBlock::iterator InsertLoc = |
| ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, |
| *MBB->getParent()); |
| |
| if (VRM->isReMaterialized(VirtReg)) { |
| ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM); |
| } else { |
| const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI); |
| MachineInstr *LoadMI = prior(InsertLoc); |
| VRM->addSpillSlotUse(SSorRMId, LoadMI); |
| ++NumLoads; |
| DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); |
| } |
| |
| // This invalidates Phys. |
| Spills.ClobberPhysReg(Phys); |
| // Remember it's available. |
| Spills.addAvailable(SSorRMId, Phys); |
| |
| UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); |
| DEBUG(dbgs() << '\t' << *prior(MII)); |
| } |
| return true; |
| } |
| |
| /// InsertSpills - Insert spills after MI if requested by VRM. Return |
| /// true if spills were inserted. |
| bool LocalRewriter::InsertSpills(MachineInstr *MI) { |
| if (!VRM->isSpillPt(MI)) |
| return false; |
| MachineBasicBlock::iterator MII = MI; |
| std::vector<std::pair<unsigned,bool> > &SpillRegs = |
| VRM->getSpillPtSpills(MI); |
| for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { |
| unsigned VirtReg = SpillRegs[i].first; |
| bool isKill = SpillRegs[i].second; |
| if (!VRM->getPreSplitReg(VirtReg)) |
| continue; // Split interval spilled again. |
| const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); |
| unsigned Phys = VRM->getPhys(VirtReg); |
| int StackSlot = VRM->getStackSlot(VirtReg); |
| MachineBasicBlock::iterator oldNextMII = llvm::next(MII); |
| TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot, |
| RC, TRI); |
| MachineInstr *StoreMI = prior(oldNextMII); |
| VRM->addSpillSlotUse(StackSlot, StoreMI); |
| DEBUG(dbgs() << "Store:\t" << *StoreMI); |
| VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); |
| } |
| return true; |
| } |
| |
| |
| /// ProcessUses - Process all of MI's spilled operands and all available |
| /// operands. |
| void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills, |
| std::vector<MachineInstr*> &MaybeDeadStores, |
| BitVector &RegKills, |
| ReuseInfo &ReusedOperands, |
| std::vector<MachineOperand*> &KillOps) { |
| // Clear kill info. |
| SmallSet<unsigned, 2> KilledMIRegs; |
| SmallVector<unsigned, 4> VirtUseOps; |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || MO.getReg() == 0) |
| continue; // Ignore non-register operands. |
| |
| unsigned VirtReg = MO.getReg(); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { |
| // Ignore physregs for spilling, but remember that it is used by this |
| // function. |
| MRI->setPhysRegUsed(VirtReg); |
| continue; |
| } |
| |
| // We want to process implicit virtual register uses first. |
| if (MO.isImplicit()) |
| // If the virtual register is implicitly defined, emit a implicit_def |
| // before so scavenger knows it's "defined". |
| // FIXME: This is a horrible hack done the by register allocator to |
| // remat a definition with virtual register operand. |
| VirtUseOps.insert(VirtUseOps.begin(), i); |
| else |
| VirtUseOps.push_back(i); |
| |
| // A partial def causes problems because the same operand both reads and |
| // writes the register. This rewriter is designed to rewrite uses and defs |
| // separately, so a partial def would already have been rewritten to a |
| // physreg by the time we get to processing defs. |
| // Add an implicit use operand to model the partial def. |
| if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) && |
| MI.findRegisterUseOperandIdx(VirtReg) == -1) { |
| VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands()); |
| MI.addOperand(MachineOperand::CreateReg(VirtReg, |
| false, // isDef |
| true)); // isImplicit |
| DEBUG(dbgs() << "Partial redef: " << MI); |
| } |
| } |
| |
| // Process all of the spilled uses and all non spilled reg references. |
| SmallVector<int, 2> PotentialDeadStoreSlots; |
| KilledMIRegs.clear(); |
| for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { |
| unsigned i = VirtUseOps[j]; |
| unsigned VirtReg = MI.getOperand(i).getReg(); |
| assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| "Not a virtual register?"); |
| |
| unsigned SubIdx = MI.getOperand(i).getSubReg(); |
| if (VRM->isAssignedReg(VirtReg)) { |
| // This virtual register was assigned a physreg! |
| unsigned Phys = VRM->getPhys(VirtReg); |
| MRI->setPhysRegUsed(Phys); |
| if (MI.getOperand(i).isDef()) |
| ReusedOperands.markClobbered(Phys); |
| substitutePhysReg(MI.getOperand(i), Phys, *TRI); |
| if (VRM->isImplicitlyDefined(VirtReg)) |
| // FIXME: Is this needed? |
| BuildMI(*MBB, &MI, MI.getDebugLoc(), |
| TII->get(TargetOpcode::IMPLICIT_DEF), Phys); |
| continue; |
| } |
| |
| // This virtual register is now known to be a spilled value. |
| if (!MI.getOperand(i).isUse()) |
| continue; // Handle defs in the loop below (handle use&def here though) |
| |
| bool AvoidReload = MI.getOperand(i).isUndef(); |
| // Check if it is defined by an implicit def. It should not be spilled. |
| // Note, this is for correctness reason. e.g. |
| // 8 %reg1024<def> = IMPLICIT_DEF |
| // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 |
| // The live range [12, 14) are not part of the r1024 live interval since |
| // it's defined by an implicit def. It will not conflicts with live |
| // interval of r1025. Now suppose both registers are spilled, you can |
| // easily see a situation where both registers are reloaded before |
| // the INSERT_SUBREG and both target registers that would overlap. |
| bool DoReMat = VRM->isReMaterialized(VirtReg); |
| int SSorRMId = DoReMat |
| ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); |
| int ReuseSlot = SSorRMId; |
| |
| // Check to see if this stack slot is available. |
| unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); |
| |
| // If this is a sub-register use, make sure the reuse register is in the |
| // right register class. For example, for x86 not all of the 32-bit |
| // registers have accessible sub-registers. |
| // Similarly so for EXTRACT_SUBREG. Consider this: |
| // EDI = op |
| // MOV32_mr fi#1, EDI |
| // ... |
| // = EXTRACT_SUBREG fi#1 |
| // fi#1 is available in EDI, but it cannot be reused because it's not in |
| // the right register file. |
| if (PhysReg && !AvoidReload && SubIdx) { |
| const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| if (!RC->contains(PhysReg)) |
| PhysReg = 0; |
| } |
| |
| if (PhysReg && !AvoidReload) { |
| // This spilled operand might be part of a two-address operand. If this |
| // is the case, then changing it will necessarily require changing the |
| // def part of the instruction as well. However, in some cases, we |
| // aren't allowed to modify the reused register. If none of these cases |
| // apply, reuse it. |
| bool CanReuse = true; |
| bool isTied = MI.isRegTiedToDefOperand(i); |
| if (isTied) { |
| // Okay, we have a two address operand. We can reuse this physreg as |
| // long as we are allowed to clobber the value and there isn't an |
| // earlier def that has already clobbered the physreg. |
| CanReuse = !ReusedOperands.isClobbered(PhysReg) && |
| Spills.canClobberPhysReg(PhysReg); |
| } |
| // If this is an asm, and a PhysReg alias is used elsewhere as an |
| // earlyclobber operand, we can't also use it as an input. |
| if (MI.isInlineAsm()) { |
| for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) { |
| MachineOperand &MOk = MI.getOperand(k); |
| if (MOk.isReg() && MOk.isEarlyClobber() && |
| TRI->regsOverlap(MOk.getReg(), PhysReg)) { |
| CanReuse = false; |
| DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg) |
| << " for " << PrintReg(VirtReg) << ": " << MOk |
| << '\n'); |
| break; |
| } |
| } |
| } |
| |
| if (CanReuse) { |
| // If this stack slot value is already available, reuse it! |
| if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) |
| DEBUG(dbgs() << "Reusing RM#" |
| << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); |
| else |
| DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); |
| DEBUG(dbgs() << " from physreg " |
| << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg) |
| << " instead of reloading into " |
| << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n'); |
| unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| MI.getOperand(i).setReg(RReg); |
| MI.getOperand(i).setSubReg(0); |
| |
| // Reusing a physreg may resurrect it. But we expect ProcessUses to |
| // update the kill flags for the current instr after processing it. |
| |
| // The only technical detail we have is that we don't know that |
| // PhysReg won't be clobbered by a reloaded stack slot that occurs |
| // later in the instruction. In particular, consider 'op V1, V2'. |
| // If V1 is available in physreg R0, we would choose to reuse it |
| // here, instead of reloading it into the register the allocator |
| // indicated (say R1). However, V2 might have to be reloaded |
| // later, and it might indicate that it needs to live in R0. When |
| // this occurs, we need to have information available that |
| // indicates it is safe to use R1 for the reload instead of R0. |
| // |
| // To further complicate matters, we might conflict with an alias, |
| // or R0 and R1 might not be compatible with each other. In this |
| // case, we actually insert a reload for V1 in R1, ensuring that |
| // we can get at R0 or its alias. |
| ReusedOperands.addReuse(i, ReuseSlot, PhysReg, |
| VRM->getPhys(VirtReg), VirtReg); |
| if (isTied) |
| // Only mark it clobbered if this is a use&def operand. |
| ReusedOperands.markClobbered(PhysReg); |
| ++NumReused; |
| |
| if (MI.getOperand(i).isKill() && |
| ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { |
| |
| // The store of this spilled value is potentially dead, but we |
| // won't know for certain until we've confirmed that the re-use |
| // above is valid, which means waiting until the other operands |
| // are processed. For now we just track the spill slot, we'll |
| // remove it after the other operands are processed if valid. |
| |
| PotentialDeadStoreSlots.push_back(ReuseSlot); |
| } |
| |
| // Mark is isKill if it's there no other uses of the same virtual |
| // register and it's not a two-address operand. IsKill will be |
| // unset if reg is reused. |
| if (!isTied && KilledMIRegs.count(VirtReg) == 0) { |
| MI.getOperand(i).setIsKill(); |
| KilledMIRegs.insert(VirtReg); |
| } |
| continue; |
| } // CanReuse |
| |
| // Otherwise we have a situation where we have a two-address instruction |
| // whose mod/ref operand needs to be reloaded. This reload is already |
| // available in some register "PhysReg", but if we used PhysReg as the |
| // operand to our 2-addr instruction, the instruction would modify |
| // PhysReg. This isn't cool if something later uses PhysReg and expects |
| // to get its initial value. |
| // |
| // To avoid this problem, and to avoid doing a load right after a store, |
| // we emit a copy from PhysReg into the designated register for this |
| // operand. |
| // |
| // This case also applies to an earlyclobber'd PhysReg. |
| unsigned DesignatedReg = VRM->getPhys(VirtReg); |
| assert(DesignatedReg && "Must map virtreg to physreg!"); |
| |
| // Note that, if we reused a register for a previous operand, the |
| // register we want to reload into might not actually be |
| // available. If this occurs, use the register indicated by the |
| // reuser. |
| if (ReusedOperands.hasReuses()) |
| DesignatedReg = ReusedOperands. |
| GetRegForReload(VirtReg, DesignatedReg, &MI, Spills, |
| MaybeDeadStores, RegKills, KillOps, *VRM); |
| |
| // If the mapped designated register is actually the physreg we have |
| // incoming, we don't need to inserted a dead copy. |
| if (DesignatedReg == PhysReg) { |
| // If this stack slot value is already available, reuse it! |
| if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) |
| DEBUG(dbgs() << "Reusing RM#" |
| << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); |
| else |
| DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); |
| DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg) |
| << " for " << PrintReg(VirtReg) |
| << " instead of reloading into same physreg.\n"); |
| unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| MI.getOperand(i).setReg(RReg); |
| MI.getOperand(i).setSubReg(0); |
| ReusedOperands.markClobbered(RReg); |
| ++NumReused; |
| continue; |
| } |
| |
| MRI->setPhysRegUsed(DesignatedReg); |
| ReusedOperands.markClobbered(DesignatedReg); |
| |
| // Back-schedule reloads and remats. |
| MachineBasicBlock::iterator InsertLoc = |
| ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat, |
| SSorRMId, TII, *MBB->getParent()); |
| MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(), |
| TII->get(TargetOpcode::COPY), |
| DesignatedReg).addReg(PhysReg); |
| CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); |
| UpdateKills(*CopyMI, TRI, RegKills, KillOps); |
| |
| // This invalidates DesignatedReg. |
| Spills.ClobberPhysReg(DesignatedReg); |
| |
| Spills.addAvailable(ReuseSlot, DesignatedReg); |
| unsigned RReg = |
| SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; |
| MI.getOperand(i).setReg(RReg); |
| MI.getOperand(i).setSubReg(0); |
| DEBUG(dbgs() << '\t' << *prior(InsertLoc)); |
| ++NumReused; |
| continue; |
| } // if (PhysReg) |
| |
| // Otherwise, reload it and remember that we have it. |
| PhysReg = VRM->getPhys(VirtReg); |
| assert(PhysReg && "Must map virtreg to physreg!"); |
| |
| // Note that, if we reused a register for a previous operand, the |
| // register we want to reload into might not actually be |
| // available. If this occurs, use the register indicated by the |
| // reuser. |
| if (ReusedOperands.hasReuses()) |
| PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, |
| Spills, MaybeDeadStores, RegKills, KillOps, *VRM); |
| |
| MRI->setPhysRegUsed(PhysReg); |
| ReusedOperands.markClobbered(PhysReg); |
| if (AvoidReload) |
| ++NumAvoided; |
| else { |
| // Back-schedule reloads and remats. |
| MachineBasicBlock::iterator InsertLoc = |
| ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat, |
| SSorRMId, TII, *MBB->getParent()); |
| |
| if (DoReMat) { |
| ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM); |
| } else { |
| const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); |
| TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI); |
| MachineInstr *LoadMI = prior(InsertLoc); |
| VRM->addSpillSlotUse(SSorRMId, LoadMI); |
| ++NumLoads; |
| DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); |
| } |
| // This invalidates PhysReg. |
| Spills.ClobberPhysReg(PhysReg); |
| |
| // Any stores to this stack slot are not dead anymore. |
| if (!DoReMat) |
| MaybeDeadStores[SSorRMId] = NULL; |
| Spills.addAvailable(SSorRMId, PhysReg); |
| // Assumes this is the last use. IsKill will be unset if reg is reused |
| // unless it's a two-address operand. |
| if (!MI.isRegTiedToDefOperand(i) && |
| KilledMIRegs.count(VirtReg) == 0) { |
| MI.getOperand(i).setIsKill(); |
| KilledMIRegs.insert(VirtReg); |
| } |
| |
| UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); |
| DEBUG(dbgs() << '\t' << *prior(InsertLoc)); |
| } |
| unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| MI.getOperand(i).setReg(RReg); |
| MI.getOperand(i).setSubReg(0); |
| } |
| |
| // Ok - now we can remove stores that have been confirmed dead. |
| for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { |
| // This was the last use and the spilled value is still available |
| // for reuse. That means the spill was unnecessary! |
| int PDSSlot = PotentialDeadStoreSlots[j]; |
| MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; |
| if (DeadStore) { |
| DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); |
| InvalidateKills(*DeadStore, TRI, RegKills, KillOps); |
| EraseInstr(DeadStore); |
| MaybeDeadStores[PDSSlot] = NULL; |
| ++NumDSE; |
| } |
| } |
| } |
| |
| /// rewriteMBB - Keep track of which spills are available even after the |
| /// register allocator is done with them. If possible, avoid reloading vregs. |
| void |
| LocalRewriter::RewriteMBB(LiveIntervals *LIs, |
| AvailableSpills &Spills, BitVector &RegKills, |
| std::vector<MachineOperand*> &KillOps) { |
| |
| DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '" |
| << MBB->getName() << "':\n"); |
| |
| MachineFunction &MF = *MBB->getParent(); |
| |
| // MaybeDeadStores - When we need to write a value back into a stack slot, |
| // keep track of the inserted store. If the stack slot value is never read |
| // (because the value was used from some available register, for example), and |
| // subsequently stored to, the original store is dead. This map keeps track |
| // of inserted stores that are not used. If we see a subsequent store to the |
| // same stack slot, the original store is deleted. |
| std::vector<MachineInstr*> MaybeDeadStores; |
| MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); |
| |
| // ReMatDefs - These are rematerializable def MIs which are not deleted. |
| SmallSet<MachineInstr*, 4> ReMatDefs; |
| |
| // Keep track of the registers we have already spilled in case there are |
| // multiple defs of the same register in MI. |
| SmallSet<unsigned, 8> SpilledMIRegs; |
| |
| RegKills.reset(); |
| KillOps.clear(); |
| KillOps.resize(TRI->getNumRegs(), NULL); |
| |
| DistanceMap.clear(); |
| for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); |
| MII != E; ) { |
| MachineBasicBlock::iterator NextMII = llvm::next(MII); |
| |
| if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps)) |
| NextMII = llvm::next(MII); |
| |
| if (InsertEmergencySpills(MII)) |
| NextMII = llvm::next(MII); |
| |
| InsertRestores(MII, Spills, RegKills, KillOps); |
| |
| if (InsertSpills(MII)) |
| NextMII = llvm::next(MII); |
| |
| bool Erased = false; |
| bool BackTracked = false; |
| MachineInstr &MI = *MII; |
| |
| // Remember DbgValue's which reference stack slots. |
| if (MI.isDebugValue() && MI.getOperand(0).isFI()) |
| Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI); |
| |
| /// ReusedOperands - Keep track of operand reuse in case we need to undo |
| /// reuse. |
| ReuseInfo ReusedOperands(MI, TRI); |
| |
| ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps); |
| |
| DEBUG(dbgs() << '\t' << MI); |
| |
| |
| // If we have folded references to memory operands, make sure we clear all |
| // physical registers that may contain the value of the spilled virtual |
| // register |
| |
| // Copy the folded virts to a small vector, we may change MI2VirtMap. |
| SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts; |
| // C++0x FTW! |
| for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator, |
| VirtRegMap::MI2VirtMapTy::const_iterator> FVRange = |
| VRM->getFoldedVirts(&MI); |
| FVRange.first != FVRange.second; ++FVRange.first) |
| FoldedVirts.push_back(FVRange.first->second); |
| |
| SmallSet<int, 2> FoldedSS; |
| for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) { |
| unsigned VirtReg = FoldedVirts[FVI].first; |
| VirtRegMap::ModRef MR = FoldedVirts[FVI].second; |
| DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << " MR: " << MR); |
| |
| int SS = VRM->getStackSlot(VirtReg); |
| if (SS == VirtRegMap::NO_STACK_SLOT) |
| continue; |
| FoldedSS.insert(SS); |
| DEBUG(dbgs() << " - StackSlot: " << SS << "\n"); |
| |
| // If this folded instruction is just a use, check to see if it's a |
| // straight load from the virt reg slot. |
| if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { |
| int FrameIdx; |
| unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); |
| if (DestReg && FrameIdx == SS) { |
| // If this spill slot is available, turn it into a copy (or nothing) |
| // instead of leaving it as a load! |
| if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { |
| DEBUG(dbgs() << "Promoted Load To Copy: " << MI); |
| if (DestReg != InReg) { |
| MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); |
| MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(), |
| TII->get(TargetOpcode::COPY)) |
| .addReg(DestReg, RegState::Define, DefMO->getSubReg()) |
| .addReg(InReg, RegState::Kill); |
| // Revisit the copy so we make sure to notice the effects of the |
| // operation on the destreg (either needing to RA it if it's |
| // virtual or needing to clobber any values if it's physical). |
| NextMII = CopyMI; |
| NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse); |
| BackTracked = true; |
| } else { |
| DEBUG(dbgs() << "Removing now-noop copy: " << MI); |
| // InvalidateKills resurrects any prior kill of the copy's source |
| // allowing the source reg to be reused in place of the copy. |
| Spills.disallowClobberPhysReg(InReg); |
| } |
| |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| Erased = true; |
| goto ProcessNextInst; |
| } |
| } else { |
| unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| if (PhysReg && |
| TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){ |
| MBB->insert(MII, NewMIs[0]); |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| Erased = true; |
| --NextMII; // backtrack to the unfolded instruction. |
| BackTracked = true; |
| goto ProcessNextInst; |
| } |
| } |
| } |
| |
| // If this reference is not a use, any previous store is now dead. |
| // Otherwise, the store to this stack slot is not dead anymore. |
| MachineInstr* DeadStore = MaybeDeadStores[SS]; |
| if (DeadStore) { |
| bool isDead = !(MR & VirtRegMap::isRef); |
| MachineInstr *NewStore = NULL; |
| if (MR & VirtRegMap::isModRef) { |
| unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| // We can reuse this physreg as long as we are allowed to clobber |
| // the value and there isn't an earlier def that has already clobbered |
| // the physreg. |
| if (PhysReg && |
| !ReusedOperands.isClobbered(PhysReg) && |
| Spills.canClobberPhysReg(PhysReg) && |
| !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! |
| MachineOperand *KillOpnd = |
| DeadStore->findRegisterUseOperand(PhysReg, true); |
| // Note, if the store is storing a sub-register, it's possible the |
| // super-register is needed below. |
| if (KillOpnd && !KillOpnd->getSubReg() && |
| TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ |
| MBB->insert(MII, NewMIs[0]); |
| NewStore = NewMIs[1]; |
| MBB->insert(MII, NewStore); |
| VRM->addSpillSlotUse(SS, NewStore); |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| Erased = true; |
| --NextMII; |
| --NextMII; // backtrack to the unfolded instruction. |
| BackTracked = true; |
| isDead = true; |
| ++NumSUnfold; |
| } |
| } |
| } |
| |
| if (isDead) { // Previous store is dead. |
| // If we get here, the store is dead, nuke it now. |
| DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); |
| InvalidateKills(*DeadStore, TRI, RegKills, KillOps); |
| EraseInstr(DeadStore); |
| if (!NewStore) |
| ++NumDSE; |
| } |
| |
| MaybeDeadStores[SS] = NULL; |
| if (NewStore) { |
| // Treat this store as a spill merged into a copy. That makes the |
| // stack slot value available. |
| VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod); |
| goto ProcessNextInst; |
| } |
| } |
| |
| // If the spill slot value is available, and this is a new definition of |
| // the value, the value is not available anymore. |
| if (MR & VirtRegMap::isMod) { |
| // Notice that the value in this stack slot has been modified. |
| Spills.ModifyStackSlotOrReMat(SS); |
| |
| // If this is *just* a mod of the value, check to see if this is just a |
| // store to the spill slot (i.e. the spill got merged into the copy). If |
| // so, realize that the vreg is available now, and add the store to the |
| // MaybeDeadStore info. |
| int StackSlot; |
| if (!(MR & VirtRegMap::isRef)) { |
| if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { |
| assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && |
| "Src hasn't been allocated yet?"); |
| |
| if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot, |
| Spills, RegKills, KillOps, TRI)) { |
| NextMII = llvm::next(MII); |
| BackTracked = true; |
| goto ProcessNextInst; |
| } |
| |
| // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark |
| // this as a potentially dead store in case there is a subsequent |
| // store into the stack slot without a read from it. |
| MaybeDeadStores[StackSlot] = &MI; |
| |
| // If the stack slot value was previously available in some other |
| // register, change it now. Otherwise, make the register |
| // available in PhysReg. |
| Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); |
| } |
| } |
| } |
| } |
| |
| // Process all of the spilled defs. |
| SpilledMIRegs.clear(); |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!(MO.isReg() && MO.getReg() && MO.isDef())) |
| continue; |
| |
| unsigned VirtReg = MO.getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { |
| // Check to see if this is a noop copy. If so, eliminate the |
| // instruction before considering the dest reg to be changed. |
| // Also check if it's copying from an "undef", if so, we can't |
| // eliminate this or else the undef marker is lost and it will |
| // confuses the scavenger. This is extremely rare. |
| if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() && |
| MI.getNumOperands() == 2) { |
| ++NumDCE; |
| DEBUG(dbgs() << "Removing now-noop copy: " << MI); |
| SmallVector<unsigned, 2> KillRegs; |
| InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs); |
| if (MO.isDead() && !KillRegs.empty()) { |
| // Source register or an implicit super/sub-register use is killed. |
| assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg())); |
| // Last def is now dead. |
| TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps); |
| } |
| EraseInstr(&MI); |
| Erased = true; |
| Spills.disallowClobberPhysReg(VirtReg); |
| goto ProcessNextInst; |
| } |
| |
| // If it's not a no-op copy, it clobbers the value in the destreg. |
| Spills.ClobberPhysReg(VirtReg); |
| ReusedOperands.markClobbered(VirtReg); |
| |
| // Check to see if this instruction is a load from a stack slot into |
| // a register. If so, this provides the stack slot value in the reg. |
| int FrameIdx; |
| if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { |
| assert(DestReg == VirtReg && "Unknown load situation!"); |
| |
| // If it is a folded reference, then it's not safe to clobber. |
| bool Folded = FoldedSS.count(FrameIdx); |
| // Otherwise, if it wasn't available, remember that it is now! |
| Spills.addAvailable(FrameIdx, DestReg, !Folded); |
| goto ProcessNextInst; |
| } |
| |
| continue; |
| } |
| |
| unsigned SubIdx = MO.getSubReg(); |
| bool DoReMat = VRM->isReMaterialized(VirtReg); |
| if (DoReMat) |
| ReMatDefs.insert(&MI); |
| |
| // The only vregs left are stack slot definitions. |
| int StackSlot = VRM->getStackSlot(VirtReg); |
| const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); |
| |
| // If this def is part of a two-address operand, make sure to execute |
| // the store from the correct physical register. |
| unsigned PhysReg; |
| unsigned TiedOp; |
| if (MI.isRegTiedToUseOperand(i, &TiedOp)) { |
| PhysReg = MI.getOperand(TiedOp).getReg(); |
| if (SubIdx) { |
| unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); |
| assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && |
| "Can't find corresponding super-register!"); |
| PhysReg = SuperReg; |
| } |
| } else { |
| PhysReg = VRM->getPhys(VirtReg); |
| if (ReusedOperands.isClobbered(PhysReg)) { |
| // Another def has taken the assigned physreg. It must have been a |
| // use&def which got it due to reuse. Undo the reuse! |
| PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, |
| Spills, MaybeDeadStores, RegKills, KillOps, *VRM); |
| } |
| } |
| |
| // If StackSlot is available in a register that also holds other stack |
| // slots, clobber those stack slots now. |
| Spills.ClobberSharingStackSlots(StackSlot); |
| |
| assert(PhysReg && "VR not assigned a physical register?"); |
| MRI->setPhysRegUsed(PhysReg); |
| unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; |
| ReusedOperands.markClobbered(RReg); |
| MI.getOperand(i).setReg(RReg); |
| MI.getOperand(i).setSubReg(0); |
| |
| if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) { |
| MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; |
| SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true, |
| LastStore, Spills, ReMatDefs, RegKills, KillOps); |
| NextMII = llvm::next(MII); |
| |
| // Check to see if this is a noop copy. If so, eliminate the |
| // instruction before considering the dest reg to be changed. |
| if (MI.isIdentityCopy()) { |
| ++NumDCE; |
| DEBUG(dbgs() << "Removing now-noop copy: " << MI); |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| Erased = true; |
| UpdateKills(*LastStore, TRI, RegKills, KillOps); |
| goto ProcessNextInst; |
| } |
| } |
| } |
| ProcessNextInst: |
| // Delete dead instructions without side effects. |
| if (!Erased && !BackTracked && isSafeToDelete(MI)) { |
| InvalidateKills(MI, TRI, RegKills, KillOps); |
| EraseInstr(&MI); |
| Erased = true; |
| } |
| if (!Erased) |
| DistanceMap.insert(std::make_pair(&MI, DistanceMap.size())); |
| if (!Erased && !BackTracked) { |
| for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) |
| UpdateKills(*II, TRI, RegKills, KillOps); |
| } |
| MII = NextMII; |
| } |
| |
| } |
| |
| llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { |
| switch (RewriterOpt) { |
| default: llvm_unreachable("Unreachable!"); |
| case local: |
| return new LocalRewriter(); |
| case trivial: |
| return new TrivialRewriter(); |
| } |
| } |