| //===-- SparcV9CodeEmitter.cpp - --------===// |
| // |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetData.h" |
| #include "Support/Statistic.h" |
| #include "Support/hash_set" |
| #include "SparcInternals.h" |
| #include "SparcV9CodeEmitter.h" |
| |
| bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM, |
| MachineCodeEmitter &MCE) { |
| MachineCodeEmitter *M = &MCE; |
| DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE)); |
| PM.add(new SparcV9CodeEmitter(*this, *M)); |
| PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed |
| return false; |
| } |
| |
| namespace { |
| class JITResolver { |
| SparcV9CodeEmitter &SparcV9; |
| MachineCodeEmitter &MCE; |
| |
| // LazyCodeGenMap - Keep track of call sites for functions that are to be |
| // lazily resolved. |
| std::map<uint64_t, Function*> LazyCodeGenMap; |
| |
| // LazyResolverMap - Keep track of the lazy resolver created for a |
| // particular function so that we can reuse them if necessary. |
| std::map<Function*, uint64_t> LazyResolverMap; |
| public: |
| JITResolver(SparcV9CodeEmitter &V9, |
| MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {} |
| uint64_t getLazyResolver(Function *F); |
| uint64_t addFunctionReference(uint64_t Address, Function *F); |
| |
| // Utility functions for accessing data from static callback |
| uint64_t getCurrentPCValue() { |
| return MCE.getCurrentPCValue(); |
| } |
| unsigned getBinaryCodeForInstr(MachineInstr &MI) { |
| return SparcV9.getBinaryCodeForInstr(MI); |
| } |
| |
| inline uint64_t insertFarJumpAtAddr(int64_t Value, uint64_t Addr); |
| |
| private: |
| uint64_t emitStubForFunction(Function *F); |
| static void CompilationCallback(); |
| uint64_t resolveFunctionReference(uint64_t RetAddr); |
| |
| }; |
| |
| JITResolver *TheJITResolver; |
| } |
| |
| /// addFunctionReference - This method is called when we need to emit the |
| /// address of a function that has not yet been emitted, so we don't know the |
| /// address. Instead, we emit a call to the CompilationCallback method, and |
| /// keep track of where we are. |
| /// |
| uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) { |
| LazyCodeGenMap[Address] = F; |
| return (intptr_t)&JITResolver::CompilationCallback; |
| } |
| |
| uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) { |
| std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); |
| assert(I != LazyCodeGenMap.end() && "Not in map!"); |
| Function *F = I->second; |
| LazyCodeGenMap.erase(I); |
| return MCE.forceCompilationOf(F); |
| } |
| |
| uint64_t JITResolver::getLazyResolver(Function *F) { |
| std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F); |
| if (I != LazyResolverMap.end() && I->first == F) return I->second; |
| |
| //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; |
| |
| uint64_t Stub = emitStubForFunction(F); |
| LazyResolverMap.insert(I, std::make_pair(F, Stub)); |
| return Stub; |
| } |
| |
| uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) { |
| |
| static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2, |
| i7 = SparcIntRegClass::i7, |
| o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0; |
| |
| // |
| // Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2 |
| // |
| |
| // stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp |
| MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX); |
| delete STX; |
| Addr += 4; |
| |
| // stx %i2, [%sp + 2127] ;; save %i2 to the stack |
| STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX); |
| delete STX; |
| Addr += 4; |
| |
| // |
| // Get address to branch into %i2, using %i1 as a temporary |
| // |
| |
| // sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1 |
| MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH); |
| delete SH; |
| Addr += 4; |
| |
| // or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1 |
| MachineInstr *OR = BuildMI(V9::ORi, 3) |
| .addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); |
| delete OR; |
| Addr += 4; |
| |
| // sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word |
| MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SL); |
| delete SL; |
| Addr += 4; |
| |
| // sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg |
| SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH); |
| delete SH; |
| Addr += 4; |
| |
| // or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2 |
| OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); |
| delete OR; |
| Addr += 4; |
| |
| // or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2 |
| OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR); |
| delete OR; |
| Addr += 4; |
| |
| // ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72 |
| MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX); |
| delete LDX; |
| Addr += 4; |
| |
| // jmpl %i2, %g0, %g0 ;; indirect branch on %i2 |
| MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*J); |
| delete J; |
| Addr += 4; |
| |
| // ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80 |
| LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2); |
| *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX); |
| delete LDX; |
| Addr += 4; |
| |
| return Addr; |
| } |
| |
| void JITResolver::CompilationCallback() { |
| uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0); |
| int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom); |
| DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n"); |
| |
| // Rewrite the call target... so that we don't fault every time we execute |
| // the call. |
| #if 0 |
| int64_t RealCallTarget = (int64_t) |
| ((NewVal - TheJITResolver->getCurrentPCValue()) >> 4); |
| if (RealCallTarget >= (1<<22) || RealCallTarget <= -(1<<22)) { |
| std::cerr << "Address out of bounds for 22bit BA: " << RealCallTarget<<"\n"; |
| abort(); |
| } |
| #endif |
| |
| //uint64_t CurrPC = TheJITResolver->getCurrentPCValue(); |
| // we will insert 9 instructions before we do the actual jump |
| //int64_t NewTarget = (NewVal - 9*4 - InstAddr) >> 2; |
| |
| static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2, |
| i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6, |
| o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0; |
| |
| // Subtract 4 to overwrite the 'save' that's there now |
| uint64_t InstAddr = CameFrom-4; |
| |
| InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr); |
| |
| // CODE SHOULD NEVER GO PAST THIS LOAD!! The real function should return to |
| // the original caller, not here!! |
| |
| // FIXME: add call 0 to make sure?!? |
| |
| // =============== THE REAL STUB ENDS HERE ========================= |
| |
| // What follows below is one-time restore code, because this callback may be |
| // changing registers in unpredictible ways. However, since it is executed |
| // only once per function (after the function is resolved, the callback is no |
| // longer in the path), this has to be done only once. |
| // |
| // Thus, it is after the regular stub code. The call back returns to THIS |
| // point, but every other call to the target function will execute the code |
| // above. Hence, this code is one-time use. |
| |
| uint64_t OneTimeRestore = InstAddr; |
| |
| // restore %g0, 0, %g0 |
| //MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0) |
| // .addMReg(g0, MOTy::Def); |
| //*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*R); |
| //delete R; |
| |
| // FIXME: BuildMI() above crashes. Encode the instruction directly. |
| // restore %g0, 0, %g0 |
| *((unsigned*)(intptr_t)InstAddr) = 0x81e82000U; |
| InstAddr += 4; |
| |
| InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr); |
| |
| // FIXME: if the target function is close enough to fit into the 19bit disp of |
| // BA, we should use this version, as its much cheaper to generate. |
| /* |
| MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(RealCallTarget); |
| *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*MI); |
| delete MI; |
| InstAddr += 4; |
| |
| // Add another NOP |
| MachineInstr *Nop = BuildMI(V9::NOP, 0); |
| *((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*Nop); |
| delete Nop; |
| InstAddr += 4; |
| |
| MachineInstr *BA = BuildMI(V9::BA, 1).addSImm(RealCallTarget-2); |
| *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*BA); |
| delete BA; |
| */ |
| |
| // Change the return address to reexecute the call instruction... |
| // The return address is really %o7, but will disappear after this function |
| // returns, and the register windows are rotated away. |
| #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) |
| __asm__ __volatile__ ("or %%g0, %0, %%i7" : : "r" (OneTimeRestore-8)); |
| #endif |
| } |
| |
| /// emitStubForFunction - This method is used by the JIT when it needs to emit |
| /// the address of a function for a function whose code has not yet been |
| /// generated. In order to do this, it generates a stub which jumps to the lazy |
| /// function compiler, which will eventually get fixed to call the function |
| /// directly. |
| /// |
| uint64_t JITResolver::emitStubForFunction(Function *F) { |
| MCE.startFunctionStub(*F, 6); |
| |
| DEBUG(std::cerr << "Emitting stub at addr: 0x" |
| << std::hex << MCE.getCurrentPCValue() << "\n"); |
| |
| unsigned o6 = SparcIntRegClass::o6; |
| // save %sp, -192, %sp |
| MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); |
| SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV)); |
| delete SV; |
| |
| int64_t CurrPC = MCE.getCurrentPCValue(); |
| int64_t Addr = (int64_t)addFunctionReference(CurrPC, F); |
| |
| int64_t CallTarget = (Addr-CurrPC) >> 2; |
| if (CallTarget >= (1 << 30) || CallTarget <= -(1 << 30)) { |
| std::cerr << "Call target beyond 30 bit limit of CALL: " |
| << CallTarget << "\n"; |
| abort(); |
| } |
| // call CallTarget ;; invoke the callback |
| MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget); |
| SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call)); |
| delete Call; |
| |
| // nop ;; call delay slot |
| MachineInstr *Nop = BuildMI(V9::NOP, 0); |
| SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop)); |
| delete Nop; |
| |
| SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub |
| return (intptr_t)MCE.finishFunctionStub(*F); |
| } |
| |
| |
| SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm, |
| MachineCodeEmitter &M): TM(tm), MCE(M) |
| { |
| TheJITResolver = new JITResolver(*this, M); |
| } |
| |
| SparcV9CodeEmitter::~SparcV9CodeEmitter() { |
| delete TheJITResolver; |
| } |
| |
| void SparcV9CodeEmitter::emitWord(unsigned Val) { |
| // Output the constant in big endian byte order... |
| unsigned byteVal; |
| for (int i = 3; i >= 0; --i) { |
| byteVal = Val >> 8*i; |
| MCE.emitByte(byteVal & 255); |
| } |
| } |
| |
| bool SparcV9CodeEmitter::isFPInstr(MachineInstr &MI) { |
| for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (MO.isPhysicalRegister()) { |
| unsigned fakeReg = MO.getReg(), realReg, regClass, regType; |
| regType = TM.getRegInfo().getRegType(fakeReg); |
| // At least map fakeReg into its class |
| fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass); |
| if (regClass == UltraSparcRegInfo::FPSingleRegType || |
| regClass == UltraSparcRegInfo::FPDoubleRegType) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| unsigned |
| SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, unsigned regClass, |
| MachineInstr &MI) { |
| switch (regClass) { |
| case UltraSparcRegInfo::IntRegType: { |
| // Sparc manual, p31 |
| static const unsigned IntRegMap[] = { |
| // "o0", "o1", "o2", "o3", "o4", "o5", "o7", |
| 8, 9, 10, 11, 12, 13, 15, |
| // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| // "i0", "i1", "i2", "i3", "i4", "i5", |
| 24, 25, 26, 27, 28, 29, |
| // "i6", "i7", |
| 30, 31, |
| // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| // "o6" |
| 14 |
| }; |
| |
| return IntRegMap[fakeReg]; |
| break; |
| } |
| case UltraSparcRegInfo::FPSingleRegType: { |
| return fakeReg; |
| } |
| case UltraSparcRegInfo::FPDoubleRegType: { |
| return fakeReg; |
| } |
| case UltraSparcRegInfo::FloatCCRegType: { |
| /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */ |
| return fakeReg; |
| |
| } |
| case UltraSparcRegInfo::IntCCRegType: { |
| static const unsigned FPInstrIntCCReg[] = { 6 /* xcc */, 4 /* icc */ }; |
| static const unsigned IntInstrIntCCReg[] = { 2 /* xcc */, 0 /* icc */ }; |
| |
| if (isFPInstr(MI)) { |
| assert(fakeReg < sizeof(FPInstrIntCCReg)/sizeof(FPInstrIntCCReg[0]) |
| && "Int CC register out of bounds for FPInstr IntCCReg map"); |
| return FPInstrIntCCReg[fakeReg]; |
| } else { |
| assert(fakeReg < sizeof(IntInstrIntCCReg)/sizeof(IntInstrIntCCReg[0]) |
| && "Int CC register out of bounds for IntInstr IntCCReg map"); |
| return IntInstrIntCCReg[fakeReg]; |
| } |
| } |
| default: |
| assert(0 && "Invalid unified register number in getRegType"); |
| return fakeReg; |
| } |
| } |
| |
| int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, |
| MachineOperand &MO) { |
| int64_t rv = 0; // Return value; defaults to 0 for unhandled cases |
| // or things that get fixed up later by the JIT. |
| |
| if (MO.isVirtualRegister()) { |
| std::cerr << "ERROR: virtual register found in machine code.\n"; |
| abort(); |
| } else if (MO.isPCRelativeDisp()) { |
| DEBUG(std::cerr << "PCRelativeDisp: "); |
| Value *V = MO.getVRegValue(); |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { |
| DEBUG(std::cerr << "Saving reference to BB (VReg)\n"); |
| unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); |
| BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); |
| } else if (const Constant *C = dyn_cast<Constant>(V)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); |
| DEBUG(std::cerr << "const: 0x" << std::hex << rv << "\n"); |
| } else { |
| std::cerr << "ERROR: constant not in map:" << MO << "\n"; |
| abort(); |
| } |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // same as MO.isGlobalAddress() |
| DEBUG(std::cerr << "GlobalValue: "); |
| // external function calls, etc.? |
| if (Function *F = dyn_cast<Function>(GV)) { |
| DEBUG(std::cerr << "Function: "); |
| if (F->isExternal()) { |
| // Sparc backend broken: this MO should be `ExternalSymbol' |
| rv = (int64_t)MCE.getGlobalValueAddress(F->getName()); |
| } else { |
| rv = (int64_t)MCE.getGlobalValueAddress(F); |
| } |
| if (rv == 0) { |
| DEBUG(std::cerr << "not yet generated\n"); |
| // Function has not yet been code generated! |
| TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F); |
| // Delayed resolution... |
| rv = TheJITResolver->getLazyResolver(F); |
| } else { |
| DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n"); |
| } |
| } else { |
| rv = (int64_t)MCE.getGlobalValueAddress(GV); |
| if (rv == 0) { |
| if (Constant *C = ConstantPointerRef::get(GV)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| rv = MCE.getConstantPoolEntryAddress(ConstantMap[C]); |
| } else { |
| std::cerr << "Constant: 0x" << std::hex << &*C << std::dec |
| << ", " << *V << " not found in ConstantMap!\n"; |
| abort(); |
| } |
| } |
| } |
| DEBUG(std::cerr << "Global addr: " << rv << "\n"); |
| } |
| // The real target of the call is Addr = PC + (rv * 4) |
| // So undo that: give the instruction (Addr - PC) / 4 |
| if (MI.getOpcode() == V9::CALL) { |
| int64_t CurrPC = MCE.getCurrentPCValue(); |
| DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n" |
| << "curr PC: 0x" << CurrPC << "\n"); |
| rv = (rv - CurrPC) >> 2; |
| if (rv >= (1<<29) || rv <= -(1<<29)) { |
| std::cerr << "addr out of bounds for the 30-bit call: " << rv << "\n"; |
| abort(); |
| } |
| DEBUG(std::cerr << "returning addr: 0x" << rv << "\n"); |
| } |
| } else { |
| std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; |
| abort(); |
| } |
| } else if (MO.isPhysicalRegister() || |
| MO.getType() == MachineOperand::MO_CCRegister) |
| { |
| // This is necessary because the Sparc doesn't actually lay out registers |
| // in the real fashion -- it skips those that it chooses not to allocate, |
| // i.e. those that are the SP, etc. |
| unsigned fakeReg = MO.getReg(), realReg, regClass, regType; |
| regType = TM.getRegInfo().getRegType(fakeReg); |
| // At least map fakeReg into its class |
| fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass); |
| // Find the real register number for use in an instruction |
| /////realReg = getRealRegNum(fakeReg, regClass, MI); |
| realReg = getRealRegNum(fakeReg, regType, MI); |
| DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] = " |
| << realReg << "\n"); |
| rv = realReg; |
| } else if (MO.isImmediate()) { |
| rv = MO.getImmedValue(); |
| DEBUG(std::cerr << "immed: " << rv << "\n"); |
| } else if (MO.isGlobalAddress()) { |
| DEBUG(std::cerr << "GlobalAddress: not PC-relative\n"); |
| rv = (int64_t) |
| (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()), |
| MI, MO.isPCRelative()); |
| } else if (MO.isMachineBasicBlock()) { |
| // Duplicate code of the above case for VirtualRegister, BasicBlock... |
| // It should really hit this case, but Sparc backend uses VRegs instead |
| DEBUG(std::cerr << "Saving reference to MBB\n"); |
| BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); |
| unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); |
| BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); |
| } else if (MO.isExternalSymbol()) { |
| // Sparc backend doesn't generate this (yet...) |
| std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; |
| abort(); |
| } else if (MO.isFrameIndex()) { |
| // Sparc backend doesn't generate this (yet...) |
| int FrameIndex = MO.getFrameIndex(); |
| std::cerr << "ERROR: Frame index unhandled.\n"; |
| abort(); |
| } else if (MO.isConstantPoolIndex()) { |
| // Sparc backend doesn't generate this (yet...) |
| std::cerr << "ERROR: Constant Pool index unhandled.\n"; |
| abort(); |
| } else { |
| std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; |
| abort(); |
| } |
| |
| // Finally, deal with the various bitfield-extracting functions that |
| // are used in SPARC assembly. (Some of these make no sense in combination |
| // with some of the above; we'll trust that the instruction selector |
| // will not produce nonsense, and not check for valid combinations here.) |
| if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc |
| return rv & 0x03ff; |
| } else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc |
| return (rv >> 10) & 0x03fffff; |
| } else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc |
| return (rv >> 32) & 0x03ff; |
| } else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc |
| return rv >> 42; |
| } else { // (unadorned) val |
| return rv; |
| } |
| } |
| |
| unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { |
| Val >>= bit; |
| return (Val & 1); |
| } |
| |
| bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { |
| MCE.startFunction(MF); |
| DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName() |
| << ", address: " << "0x" << std::hex |
| << (long)MCE.getCurrentPCValue() << "\n"); |
| |
| // The Sparc backend does not use MachineConstantPool; |
| // instead, it has its own constant pool implementation. |
| // We create a new MachineConstantPool here to be compatible with the emitter. |
| MachineConstantPool MCP; |
| const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues(); |
| for (hash_set<const Constant*>::const_iterator I = pool.begin(), |
| E = pool.end(); I != E; ++I) |
| { |
| Constant *C = (Constant*)*I; |
| unsigned idx = MCP.getConstantPoolIndex(C); |
| DEBUG(std::cerr << "Mapping constant 0x" << (intptr_t)C << " to " |
| << idx << "\n"); |
| ConstantMap[C] = idx; |
| } |
| MCE.emitConstantPool(&MCP); |
| |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| emitBasicBlock(*I); |
| MCE.finishFunction(MF); |
| |
| DEBUG(std::cerr << "Finishing function " << MF.getFunction()->getName() |
| << "\n"); |
| ConstantMap.clear(); |
| for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { |
| long Location = BBLocations[BBRefs[i].first]; |
| unsigned *Ref = BBRefs[i].second.first; |
| MachineInstr *MI = BBRefs[i].second.second; |
| DEBUG(std::cerr << "Fixup @" << std::hex << Ref << " to " << Location |
| << " in instr: " << std::dec << *MI << "\n"); |
| } |
| |
| // Resolve branches to BasicBlocks for the entire function |
| for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { |
| long Location = BBLocations[BBRefs[i].first]; |
| unsigned *Ref = BBRefs[i].second.first; |
| MachineInstr *MI = BBRefs[i].second.second; |
| DEBUG(std::cerr << "attempting to resolve BB: " << i << "\n"); |
| for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { |
| MachineOperand &op = MI->getOperand(ii); |
| if (op.isPCRelativeDisp()) { |
| // the instruction's branch target is made such that it branches to |
| // PC + (br target * 4), so undo that arithmetic here: |
| // Location is the target of the branch |
| // Ref is the location of the instruction, and hence the PC |
| unsigned branchTarget = (Location - (long)Ref) >> 2; |
| // Save the flags. |
| bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; |
| if (op.opLoBits32()) { loBits32=true; } |
| if (op.opHiBits32()) { hiBits32=true; } |
| if (op.opLoBits64()) { loBits64=true; } |
| if (op.opHiBits64()) { hiBits64=true; } |
| MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, |
| branchTarget); |
| if (loBits32) { MI->setOperandLo32(ii); } |
| else if (hiBits32) { MI->setOperandHi32(ii); } |
| else if (loBits64) { MI->setOperandLo64(ii); } |
| else if (hiBits64) { MI->setOperandHi64(ii); } |
| DEBUG(std::cerr << "Rewrote BB ref: "); |
| unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); |
| *Ref = fixedInstr; |
| break; |
| } |
| } |
| } |
| BBRefs.clear(); |
| BBLocations.clear(); |
| |
| return false; |
| } |
| |
| void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { |
| currBB = MBB.getBasicBlock(); |
| BBLocations[currBB] = MCE.getCurrentPCValue(); |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) |
| emitWord(getBinaryCodeForInstr(**I)); |
| } |
| |
| void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, |
| bool isPCRelative) |
| { |
| if (isPCRelative) { // must be a call, this is a major hack! |
| // Try looking up the function to see if it is already compiled! |
| if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) { |
| intptr_t CurByte = MCE.getCurrentPCValue(); |
| // The real target of the call is Addr = PC + (target * 4) |
| // CurByte is the PC, Addr we just received |
| return (void*) (((long)Addr - (long)CurByte) >> 2); |
| } else { |
| if (Function *F = dyn_cast<Function>(V)) { |
| // Function has not yet been code generated! |
| TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), |
| cast<Function>(V)); |
| // Delayed resolution... |
| return |
| (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V)); |
| |
| } else if (Constant *C = ConstantPointerRef::get(V)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| return (void*) |
| (intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); |
| } else { |
| std::cerr << "Constant: 0x" << std::hex << &*C << std::dec |
| << ", " << *V << " not found in ConstantMap!\n"; |
| abort(); |
| } |
| } else { |
| std::cerr << "Unhandled global: " << *V << "\n"; |
| abort(); |
| } |
| } |
| } else { |
| return (void*)(intptr_t)MCE.getGlobalValueAddress(V); |
| } |
| } |
| |
| |
| #include "SparcV9CodeEmitter.inc" |
| |