| //===-- LLParser.cpp - Parser Class ---------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the parser class for .ll files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LLParser.h" |
| #include "llvm/AutoUpgrade.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Metadata.h" |
| #include "llvm/Module.h" |
| #include "llvm/Operator.h" |
| #include "llvm/ValueSymbolTable.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace llvm { |
| /// ValID - Represents a reference of a definition of some sort with no type. |
| /// There are several cases where we have to parse the value but where the |
| /// type can depend on later context. This may either be a numeric reference |
| /// or a symbolic (%var) reference. This is just a discriminated union. |
| struct ValID { |
| enum { |
| t_LocalID, t_GlobalID, // ID in UIntVal. |
| t_LocalName, t_GlobalName, // Name in StrVal. |
| t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal. |
| t_Null, t_Undef, t_Zero, // No value. |
| t_EmptyArray, // No value: [] |
| t_Constant, // Value in ConstantVal. |
| t_InlineAsm, // Value in StrVal/StrVal2/UIntVal. |
| t_Metadata // Value in MetadataVal. |
| } Kind; |
| |
| LLParser::LocTy Loc; |
| unsigned UIntVal; |
| std::string StrVal, StrVal2; |
| APSInt APSIntVal; |
| APFloat APFloatVal; |
| Constant *ConstantVal; |
| MetadataBase *MetadataVal; |
| ValID() : APFloatVal(0.0) {} |
| }; |
| } |
| |
| /// Run: module ::= toplevelentity* |
| bool LLParser::Run() { |
| // Prime the lexer. |
| Lex.Lex(); |
| |
| return ParseTopLevelEntities() || |
| ValidateEndOfModule(); |
| } |
| |
| /// ValidateEndOfModule - Do final validity and sanity checks at the end of the |
| /// module. |
| bool LLParser::ValidateEndOfModule() { |
| if (!ForwardRefTypes.empty()) |
| return Error(ForwardRefTypes.begin()->second.second, |
| "use of undefined type named '" + |
| ForwardRefTypes.begin()->first + "'"); |
| if (!ForwardRefTypeIDs.empty()) |
| return Error(ForwardRefTypeIDs.begin()->second.second, |
| "use of undefined type '%" + |
| utostr(ForwardRefTypeIDs.begin()->first) + "'"); |
| |
| if (!ForwardRefVals.empty()) |
| return Error(ForwardRefVals.begin()->second.second, |
| "use of undefined value '@" + ForwardRefVals.begin()->first + |
| "'"); |
| |
| if (!ForwardRefValIDs.empty()) |
| return Error(ForwardRefValIDs.begin()->second.second, |
| "use of undefined value '@" + |
| utostr(ForwardRefValIDs.begin()->first) + "'"); |
| |
| if (!ForwardRefMDNodes.empty()) |
| return Error(ForwardRefMDNodes.begin()->second.second, |
| "use of undefined metadata '!" + |
| utostr(ForwardRefMDNodes.begin()->first) + "'"); |
| |
| |
| // Look for intrinsic functions and CallInst that need to be upgraded |
| for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) |
| UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove |
| |
| // Check debug info intrinsics. |
| CheckDebugInfoIntrinsics(M); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level Entities |
| //===----------------------------------------------------------------------===// |
| |
| bool LLParser::ParseTopLevelEntities() { |
| while (1) { |
| switch (Lex.getKind()) { |
| default: return TokError("expected top-level entity"); |
| case lltok::Eof: return false; |
| //case lltok::kw_define: |
| case lltok::kw_declare: if (ParseDeclare()) return true; break; |
| case lltok::kw_define: if (ParseDefine()) return true; break; |
| case lltok::kw_module: if (ParseModuleAsm()) return true; break; |
| case lltok::kw_target: if (ParseTargetDefinition()) return true; break; |
| case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; |
| case lltok::kw_type: if (ParseUnnamedType()) return true; break; |
| case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; |
| case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 |
| case lltok::LocalVar: if (ParseNamedType()) return true; break; |
| case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; |
| case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; |
| case lltok::Metadata: if (ParseStandaloneMetadata()) return true; break; |
| case lltok::NamedMD: if (ParseNamedMetadata()) return true; break; |
| |
| // The Global variable production with no name can have many different |
| // optional leading prefixes, the production is: |
| // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal |
| // OptionalAddrSpace ('constant'|'global') ... |
| case lltok::kw_private : // OptionalLinkage |
| case lltok::kw_linker_private: // OptionalLinkage |
| case lltok::kw_internal: // OptionalLinkage |
| case lltok::kw_weak: // OptionalLinkage |
| case lltok::kw_weak_odr: // OptionalLinkage |
| case lltok::kw_linkonce: // OptionalLinkage |
| case lltok::kw_linkonce_odr: // OptionalLinkage |
| case lltok::kw_appending: // OptionalLinkage |
| case lltok::kw_dllexport: // OptionalLinkage |
| case lltok::kw_common: // OptionalLinkage |
| case lltok::kw_dllimport: // OptionalLinkage |
| case lltok::kw_extern_weak: // OptionalLinkage |
| case lltok::kw_external: { // OptionalLinkage |
| unsigned Linkage, Visibility; |
| if (ParseOptionalLinkage(Linkage) || |
| ParseOptionalVisibility(Visibility) || |
| ParseGlobal("", SMLoc(), Linkage, true, Visibility)) |
| return true; |
| break; |
| } |
| case lltok::kw_default: // OptionalVisibility |
| case lltok::kw_hidden: // OptionalVisibility |
| case lltok::kw_protected: { // OptionalVisibility |
| unsigned Visibility; |
| if (ParseOptionalVisibility(Visibility) || |
| ParseGlobal("", SMLoc(), 0, false, Visibility)) |
| return true; |
| break; |
| } |
| |
| case lltok::kw_thread_local: // OptionalThreadLocal |
| case lltok::kw_addrspace: // OptionalAddrSpace |
| case lltok::kw_constant: // GlobalType |
| case lltok::kw_global: // GlobalType |
| if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; |
| break; |
| } |
| } |
| } |
| |
| |
| /// toplevelentity |
| /// ::= 'module' 'asm' STRINGCONSTANT |
| bool LLParser::ParseModuleAsm() { |
| assert(Lex.getKind() == lltok::kw_module); |
| Lex.Lex(); |
| |
| std::string AsmStr; |
| if (ParseToken(lltok::kw_asm, "expected 'module asm'") || |
| ParseStringConstant(AsmStr)) return true; |
| |
| const std::string &AsmSoFar = M->getModuleInlineAsm(); |
| if (AsmSoFar.empty()) |
| M->setModuleInlineAsm(AsmStr); |
| else |
| M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr); |
| return false; |
| } |
| |
| /// toplevelentity |
| /// ::= 'target' 'triple' '=' STRINGCONSTANT |
| /// ::= 'target' 'datalayout' '=' STRINGCONSTANT |
| bool LLParser::ParseTargetDefinition() { |
| assert(Lex.getKind() == lltok::kw_target); |
| std::string Str; |
| switch (Lex.Lex()) { |
| default: return TokError("unknown target property"); |
| case lltok::kw_triple: |
| Lex.Lex(); |
| if (ParseToken(lltok::equal, "expected '=' after target triple") || |
| ParseStringConstant(Str)) |
| return true; |
| M->setTargetTriple(Str); |
| return false; |
| case lltok::kw_datalayout: |
| Lex.Lex(); |
| if (ParseToken(lltok::equal, "expected '=' after target datalayout") || |
| ParseStringConstant(Str)) |
| return true; |
| M->setDataLayout(Str); |
| return false; |
| } |
| } |
| |
| /// toplevelentity |
| /// ::= 'deplibs' '=' '[' ']' |
| /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' |
| bool LLParser::ParseDepLibs() { |
| assert(Lex.getKind() == lltok::kw_deplibs); |
| Lex.Lex(); |
| if (ParseToken(lltok::equal, "expected '=' after deplibs") || |
| ParseToken(lltok::lsquare, "expected '=' after deplibs")) |
| return true; |
| |
| if (EatIfPresent(lltok::rsquare)) |
| return false; |
| |
| std::string Str; |
| if (ParseStringConstant(Str)) return true; |
| M->addLibrary(Str); |
| |
| while (EatIfPresent(lltok::comma)) { |
| if (ParseStringConstant(Str)) return true; |
| M->addLibrary(Str); |
| } |
| |
| return ParseToken(lltok::rsquare, "expected ']' at end of list"); |
| } |
| |
| /// ParseUnnamedType: |
| /// ::= 'type' type |
| /// ::= LocalVarID '=' 'type' type |
| bool LLParser::ParseUnnamedType() { |
| unsigned TypeID = NumberedTypes.size(); |
| |
| // Handle the LocalVarID form. |
| if (Lex.getKind() == lltok::LocalVarID) { |
| if (Lex.getUIntVal() != TypeID) |
| return Error(Lex.getLoc(), "type expected to be numbered '%" + |
| utostr(TypeID) + "'"); |
| Lex.Lex(); // eat LocalVarID; |
| |
| if (ParseToken(lltok::equal, "expected '=' after name")) |
| return true; |
| } |
| |
| assert(Lex.getKind() == lltok::kw_type); |
| LocTy TypeLoc = Lex.getLoc(); |
| Lex.Lex(); // eat kw_type |
| |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| if (ParseType(Ty)) return true; |
| |
| // See if this type was previously referenced. |
| std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator |
| FI = ForwardRefTypeIDs.find(TypeID); |
| if (FI != ForwardRefTypeIDs.end()) { |
| if (FI->second.first.get() == Ty) |
| return Error(TypeLoc, "self referential type is invalid"); |
| |
| cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); |
| Ty = FI->second.first.get(); |
| ForwardRefTypeIDs.erase(FI); |
| } |
| |
| NumberedTypes.push_back(Ty); |
| |
| return false; |
| } |
| |
| /// toplevelentity |
| /// ::= LocalVar '=' 'type' type |
| bool LLParser::ParseNamedType() { |
| std::string Name = Lex.getStrVal(); |
| LocTy NameLoc = Lex.getLoc(); |
| Lex.Lex(); // eat LocalVar. |
| |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| |
| if (ParseToken(lltok::equal, "expected '=' after name") || |
| ParseToken(lltok::kw_type, "expected 'type' after name") || |
| ParseType(Ty)) |
| return true; |
| |
| // Set the type name, checking for conflicts as we do so. |
| bool AlreadyExists = M->addTypeName(Name, Ty); |
| if (!AlreadyExists) return false; |
| |
| // See if this type is a forward reference. We need to eagerly resolve |
| // types to allow recursive type redefinitions below. |
| std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator |
| FI = ForwardRefTypes.find(Name); |
| if (FI != ForwardRefTypes.end()) { |
| if (FI->second.first.get() == Ty) |
| return Error(NameLoc, "self referential type is invalid"); |
| |
| cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); |
| Ty = FI->second.first.get(); |
| ForwardRefTypes.erase(FI); |
| } |
| |
| // Inserting a name that is already defined, get the existing name. |
| const Type *Existing = M->getTypeByName(Name); |
| assert(Existing && "Conflict but no matching type?!"); |
| |
| // Otherwise, this is an attempt to redefine a type. That's okay if |
| // the redefinition is identical to the original. |
| // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0 |
| if (Existing == Ty) return false; |
| |
| // Any other kind of (non-equivalent) redefinition is an error. |
| return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" + |
| Ty->getDescription() + "'"); |
| } |
| |
| |
| /// toplevelentity |
| /// ::= 'declare' FunctionHeader |
| bool LLParser::ParseDeclare() { |
| assert(Lex.getKind() == lltok::kw_declare); |
| Lex.Lex(); |
| |
| Function *F; |
| return ParseFunctionHeader(F, false); |
| } |
| |
| /// toplevelentity |
| /// ::= 'define' FunctionHeader '{' ... |
| bool LLParser::ParseDefine() { |
| assert(Lex.getKind() == lltok::kw_define); |
| Lex.Lex(); |
| |
| Function *F; |
| return ParseFunctionHeader(F, true) || |
| ParseFunctionBody(*F); |
| } |
| |
| /// ParseGlobalType |
| /// ::= 'constant' |
| /// ::= 'global' |
| bool LLParser::ParseGlobalType(bool &IsConstant) { |
| if (Lex.getKind() == lltok::kw_constant) |
| IsConstant = true; |
| else if (Lex.getKind() == lltok::kw_global) |
| IsConstant = false; |
| else { |
| IsConstant = false; |
| return TokError("expected 'global' or 'constant'"); |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// ParseUnnamedGlobal: |
| /// OptionalVisibility ALIAS ... |
| /// OptionalLinkage OptionalVisibility ... -> global variable |
| /// GlobalID '=' OptionalVisibility ALIAS ... |
| /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable |
| bool LLParser::ParseUnnamedGlobal() { |
| unsigned VarID = NumberedVals.size(); |
| std::string Name; |
| LocTy NameLoc = Lex.getLoc(); |
| |
| // Handle the GlobalID form. |
| if (Lex.getKind() == lltok::GlobalID) { |
| if (Lex.getUIntVal() != VarID) |
| return Error(Lex.getLoc(), "variable expected to be numbered '%" + |
| utostr(VarID) + "'"); |
| Lex.Lex(); // eat GlobalID; |
| |
| if (ParseToken(lltok::equal, "expected '=' after name")) |
| return true; |
| } |
| |
| bool HasLinkage; |
| unsigned Linkage, Visibility; |
| if (ParseOptionalLinkage(Linkage, HasLinkage) || |
| ParseOptionalVisibility(Visibility)) |
| return true; |
| |
| if (HasLinkage || Lex.getKind() != lltok::kw_alias) |
| return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); |
| return ParseAlias(Name, NameLoc, Visibility); |
| } |
| |
| /// ParseNamedGlobal: |
| /// GlobalVar '=' OptionalVisibility ALIAS ... |
| /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable |
| bool LLParser::ParseNamedGlobal() { |
| assert(Lex.getKind() == lltok::GlobalVar); |
| LocTy NameLoc = Lex.getLoc(); |
| std::string Name = Lex.getStrVal(); |
| Lex.Lex(); |
| |
| bool HasLinkage; |
| unsigned Linkage, Visibility; |
| if (ParseToken(lltok::equal, "expected '=' in global variable") || |
| ParseOptionalLinkage(Linkage, HasLinkage) || |
| ParseOptionalVisibility(Visibility)) |
| return true; |
| |
| if (HasLinkage || Lex.getKind() != lltok::kw_alias) |
| return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); |
| return ParseAlias(Name, NameLoc, Visibility); |
| } |
| |
| // MDString: |
| // ::= '!' STRINGCONSTANT |
| bool LLParser::ParseMDString(MetadataBase *&MDS) { |
| std::string Str; |
| if (ParseStringConstant(Str)) return true; |
| MDS = MDString::get(Context, Str); |
| return false; |
| } |
| |
| // MDNode: |
| // ::= '!' MDNodeNumber |
| bool LLParser::ParseMDNode(MetadataBase *&Node) { |
| // !{ ..., !42, ... } |
| unsigned MID = 0; |
| if (ParseUInt32(MID)) return true; |
| |
| // Check existing MDNode. |
| std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID); |
| if (I != MetadataCache.end()) { |
| Node = I->second; |
| return false; |
| } |
| |
| // Check known forward references. |
| std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator |
| FI = ForwardRefMDNodes.find(MID); |
| if (FI != ForwardRefMDNodes.end()) { |
| Node = FI->second.first; |
| return false; |
| } |
| |
| // Create MDNode forward reference |
| SmallVector<Value *, 1> Elts; |
| std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID); |
| Elts.push_back(MDString::get(Context, FwdRefName)); |
| MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size()); |
| ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); |
| Node = FwdNode; |
| return false; |
| } |
| |
| ///ParseNamedMetadata: |
| /// !foo = !{ !1, !2 } |
| bool LLParser::ParseNamedMetadata() { |
| assert(Lex.getKind() == lltok::NamedMD); |
| Lex.Lex(); |
| std::string Name = Lex.getStrVal(); |
| |
| if (ParseToken(lltok::equal, "expected '=' here")) |
| return true; |
| |
| if (Lex.getKind() != lltok::Metadata) |
| return TokError("Expected '!' here"); |
| Lex.Lex(); |
| |
| if (Lex.getKind() != lltok::lbrace) |
| return TokError("Expected '{' here"); |
| Lex.Lex(); |
| SmallVector<MetadataBase *, 8> Elts; |
| do { |
| if (Lex.getKind() != lltok::Metadata) |
| return TokError("Expected '!' here"); |
| Lex.Lex(); |
| MetadataBase *N = 0; |
| if (ParseMDNode(N)) return true; |
| Elts.push_back(N); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (ParseToken(lltok::rbrace, "expected end of metadata node")) |
| return true; |
| |
| NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M); |
| return false; |
| } |
| |
| /// ParseStandaloneMetadata: |
| /// !42 = !{...} |
| bool LLParser::ParseStandaloneMetadata() { |
| assert(Lex.getKind() == lltok::Metadata); |
| Lex.Lex(); |
| unsigned MetadataID = 0; |
| if (ParseUInt32(MetadataID)) |
| return true; |
| if (MetadataCache.find(MetadataID) != MetadataCache.end()) |
| return TokError("Metadata id is already used"); |
| if (ParseToken(lltok::equal, "expected '=' here")) |
| return true; |
| |
| LocTy TyLoc; |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| if (ParseType(Ty, TyLoc)) |
| return true; |
| |
| if (Lex.getKind() != lltok::Metadata) |
| return TokError("Expected metadata here"); |
| |
| Lex.Lex(); |
| if (Lex.getKind() != lltok::lbrace) |
| return TokError("Expected '{' here"); |
| |
| SmallVector<Value *, 16> Elts; |
| if (ParseMDNodeVector(Elts) |
| || ParseToken(lltok::rbrace, "expected end of metadata node")) |
| return true; |
| |
| MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size()); |
| MetadataCache[MetadataID] = Init; |
| std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator |
| FI = ForwardRefMDNodes.find(MetadataID); |
| if (FI != ForwardRefMDNodes.end()) { |
| MDNode *FwdNode = cast<MDNode>(FI->second.first); |
| FwdNode->replaceAllUsesWith(Init); |
| ForwardRefMDNodes.erase(FI); |
| } |
| |
| return false; |
| } |
| |
| /// ParseAlias: |
| /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee |
| /// Aliasee |
| /// ::= TypeAndValue |
| /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' |
| /// ::= 'getelementptr' 'inbounds'? '(' ... ')' |
| /// |
| /// Everything through visibility has already been parsed. |
| /// |
| bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, |
| unsigned Visibility) { |
| assert(Lex.getKind() == lltok::kw_alias); |
| Lex.Lex(); |
| unsigned Linkage; |
| LocTy LinkageLoc = Lex.getLoc(); |
| if (ParseOptionalLinkage(Linkage)) |
| return true; |
| |
| if (Linkage != GlobalValue::ExternalLinkage && |
| Linkage != GlobalValue::WeakAnyLinkage && |
| Linkage != GlobalValue::WeakODRLinkage && |
| Linkage != GlobalValue::InternalLinkage && |
| Linkage != GlobalValue::PrivateLinkage && |
| Linkage != GlobalValue::LinkerPrivateLinkage) |
| return Error(LinkageLoc, "invalid linkage type for alias"); |
| |
| Constant *Aliasee; |
| LocTy AliaseeLoc = Lex.getLoc(); |
| if (Lex.getKind() != lltok::kw_bitcast && |
| Lex.getKind() != lltok::kw_getelementptr) { |
| if (ParseGlobalTypeAndValue(Aliasee)) return true; |
| } else { |
| // The bitcast dest type is not present, it is implied by the dest type. |
| ValID ID; |
| if (ParseValID(ID)) return true; |
| if (ID.Kind != ValID::t_Constant) |
| return Error(AliaseeLoc, "invalid aliasee"); |
| Aliasee = ID.ConstantVal; |
| } |
| |
| if (!isa<PointerType>(Aliasee->getType())) |
| return Error(AliaseeLoc, "alias must have pointer type"); |
| |
| // Okay, create the alias but do not insert it into the module yet. |
| GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), |
| (GlobalValue::LinkageTypes)Linkage, Name, |
| Aliasee); |
| GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); |
| |
| // See if this value already exists in the symbol table. If so, it is either |
| // a redefinition or a definition of a forward reference. |
| if (GlobalValue *Val = |
| cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) { |
| // See if this was a redefinition. If so, there is no entry in |
| // ForwardRefVals. |
| std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator |
| I = ForwardRefVals.find(Name); |
| if (I == ForwardRefVals.end()) |
| return Error(NameLoc, "redefinition of global named '@" + Name + "'"); |
| |
| // Otherwise, this was a definition of forward ref. Verify that types |
| // agree. |
| if (Val->getType() != GA->getType()) |
| return Error(NameLoc, |
| "forward reference and definition of alias have different types"); |
| |
| // If they agree, just RAUW the old value with the alias and remove the |
| // forward ref info. |
| Val->replaceAllUsesWith(GA); |
| Val->eraseFromParent(); |
| ForwardRefVals.erase(I); |
| } |
| |
| // Insert into the module, we know its name won't collide now. |
| M->getAliasList().push_back(GA); |
| assert(GA->getNameStr() == Name && "Should not be a name conflict!"); |
| |
| return false; |
| } |
| |
| /// ParseGlobal |
| /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal |
| /// OptionalAddrSpace GlobalType Type Const |
| /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal |
| /// OptionalAddrSpace GlobalType Type Const |
| /// |
| /// Everything through visibility has been parsed already. |
| /// |
| bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, |
| unsigned Linkage, bool HasLinkage, |
| unsigned Visibility) { |
| unsigned AddrSpace; |
| bool ThreadLocal, IsConstant; |
| LocTy TyLoc; |
| |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || |
| ParseOptionalAddrSpace(AddrSpace) || |
| ParseGlobalType(IsConstant) || |
| ParseType(Ty, TyLoc)) |
| return true; |
| |
| // If the linkage is specified and is external, then no initializer is |
| // present. |
| Constant *Init = 0; |
| if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && |
| Linkage != GlobalValue::ExternalWeakLinkage && |
| Linkage != GlobalValue::ExternalLinkage)) { |
| if (ParseGlobalValue(Ty, Init)) |
| return true; |
| } |
| |
| if (isa<FunctionType>(Ty) || Ty == Type::getLabelTy(Context)) |
| return Error(TyLoc, "invalid type for global variable"); |
| |
| GlobalVariable *GV = 0; |
| |
| // See if the global was forward referenced, if so, use the global. |
| if (!Name.empty()) { |
| if ((GV = M->getGlobalVariable(Name, true)) && |
| !ForwardRefVals.erase(Name)) |
| return Error(NameLoc, "redefinition of global '@" + Name + "'"); |
| } else { |
| std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator |
| I = ForwardRefValIDs.find(NumberedVals.size()); |
| if (I != ForwardRefValIDs.end()) { |
| GV = cast<GlobalVariable>(I->second.first); |
| ForwardRefValIDs.erase(I); |
| } |
| } |
| |
| if (GV == 0) { |
| GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, |
| Name, 0, false, AddrSpace); |
| } else { |
| if (GV->getType()->getElementType() != Ty) |
| return Error(TyLoc, |
| "forward reference and definition of global have different types"); |
| |
| // Move the forward-reference to the correct spot in the module. |
| M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); |
| } |
| |
| if (Name.empty()) |
| NumberedVals.push_back(GV); |
| |
| // Set the parsed properties on the global. |
| if (Init) |
| GV->setInitializer(Init); |
| GV->setConstant(IsConstant); |
| GV->setLinkage((GlobalValue::LinkageTypes)Linkage); |
| GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); |
| GV->setThreadLocal(ThreadLocal); |
| |
| // Parse attributes on the global. |
| while (Lex.getKind() == lltok::comma) { |
| Lex.Lex(); |
| |
| if (Lex.getKind() == lltok::kw_section) { |
| Lex.Lex(); |
| GV->setSection(Lex.getStrVal()); |
| if (ParseToken(lltok::StringConstant, "expected global section string")) |
| return true; |
| } else if (Lex.getKind() == lltok::kw_align) { |
| unsigned Alignment; |
| if (ParseOptionalAlignment(Alignment)) return true; |
| GV->setAlignment(Alignment); |
| } else { |
| TokError("unknown global variable property!"); |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // GlobalValue Reference/Resolution Routines. |
| //===----------------------------------------------------------------------===// |
| |
| /// GetGlobalVal - Get a value with the specified name or ID, creating a |
| /// forward reference record if needed. This can return null if the value |
| /// exists but does not have the right type. |
| GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty, |
| LocTy Loc) { |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| if (PTy == 0) { |
| Error(Loc, "global variable reference must have pointer type"); |
| return 0; |
| } |
| |
| // Look this name up in the normal function symbol table. |
| GlobalValue *Val = |
| cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (Val == 0) { |
| std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator |
| I = ForwardRefVals.find(Name); |
| if (I != ForwardRefVals.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) { |
| if (Val->getType() == Ty) return Val; |
| Error(Loc, "'@" + Name + "' defined with type '" + |
| Val->getType()->getDescription() + "'"); |
| return 0; |
| } |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| GlobalValue *FwdVal; |
| if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { |
| // Function types can return opaque but functions can't. |
| if (isa<OpaqueType>(FT->getReturnType())) { |
| Error(Loc, "function may not return opaque type"); |
| return 0; |
| } |
| |
| FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); |
| } else { |
| FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, |
| GlobalValue::ExternalWeakLinkage, 0, Name); |
| } |
| |
| ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) { |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| if (PTy == 0) { |
| Error(Loc, "global variable reference must have pointer type"); |
| return 0; |
| } |
| |
| GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (Val == 0) { |
| std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator |
| I = ForwardRefValIDs.find(ID); |
| if (I != ForwardRefValIDs.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) { |
| if (Val->getType() == Ty) return Val; |
| Error(Loc, "'@" + utostr(ID) + "' defined with type '" + |
| Val->getType()->getDescription() + "'"); |
| return 0; |
| } |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| GlobalValue *FwdVal; |
| if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { |
| // Function types can return opaque but functions can't. |
| if (isa<OpaqueType>(FT->getReturnType())) { |
| Error(Loc, "function may not return opaque type"); |
| return 0; |
| } |
| FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); |
| } else { |
| FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, |
| GlobalValue::ExternalWeakLinkage, 0, ""); |
| } |
| |
| ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Routines. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseToken - If the current token has the specified kind, eat it and return |
| /// success. Otherwise, emit the specified error and return failure. |
| bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { |
| if (Lex.getKind() != T) |
| return TokError(ErrMsg); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// ParseStringConstant |
| /// ::= StringConstant |
| bool LLParser::ParseStringConstant(std::string &Result) { |
| if (Lex.getKind() != lltok::StringConstant) |
| return TokError("expected string constant"); |
| Result = Lex.getStrVal(); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// ParseUInt32 |
| /// ::= uint32 |
| bool LLParser::ParseUInt32(unsigned &Val) { |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) |
| return TokError("expected integer"); |
| uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); |
| if (Val64 != unsigned(Val64)) |
| return TokError("expected 32-bit integer (too large)"); |
| Val = Val64; |
| Lex.Lex(); |
| return false; |
| } |
| |
| |
| /// ParseOptionalAddrSpace |
| /// := /*empty*/ |
| /// := 'addrspace' '(' uint32 ')' |
| bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { |
| AddrSpace = 0; |
| if (!EatIfPresent(lltok::kw_addrspace)) |
| return false; |
| return ParseToken(lltok::lparen, "expected '(' in address space") || |
| ParseUInt32(AddrSpace) || |
| ParseToken(lltok::rparen, "expected ')' in address space"); |
| } |
| |
| /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind |
| /// indicates what kind of attribute list this is: 0: function arg, 1: result, |
| /// 2: function attr. |
| /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0 |
| bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) { |
| Attrs = Attribute::None; |
| LocTy AttrLoc = Lex.getLoc(); |
| |
| while (1) { |
| switch (Lex.getKind()) { |
| case lltok::kw_sext: |
| case lltok::kw_zext: |
| // Treat these as signext/zeroext if they occur in the argument list after |
| // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the |
| // value, as in "call i8 @foo(i8 sext (" then it is part of a constant |
| // expr. |
| // FIXME: REMOVE THIS IN LLVM 3.0 |
| if (AttrKind == 3) { |
| if (Lex.getKind() == lltok::kw_sext) |
| Attrs |= Attribute::SExt; |
| else |
| Attrs |= Attribute::ZExt; |
| break; |
| } |
| // FALL THROUGH. |
| default: // End of attributes. |
| if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) |
| return Error(AttrLoc, "invalid use of function-only attribute"); |
| |
| if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly)) |
| return Error(AttrLoc, "invalid use of parameter-only attribute"); |
| |
| return false; |
| case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; |
| case lltok::kw_signext: Attrs |= Attribute::SExt; break; |
| case lltok::kw_inreg: Attrs |= Attribute::InReg; break; |
| case lltok::kw_sret: Attrs |= Attribute::StructRet; break; |
| case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; |
| case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; |
| case lltok::kw_byval: Attrs |= Attribute::ByVal; break; |
| case lltok::kw_nest: Attrs |= Attribute::Nest; break; |
| |
| case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; |
| case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; |
| case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; |
| case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; |
| case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; |
| case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; |
| case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; |
| case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; |
| case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; |
| case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; |
| case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; |
| case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; |
| case lltok::kw_naked: Attrs |= Attribute::Naked; break; |
| |
| case lltok::kw_align: { |
| unsigned Alignment; |
| if (ParseOptionalAlignment(Alignment)) |
| return true; |
| Attrs |= Attribute::constructAlignmentFromInt(Alignment); |
| continue; |
| } |
| } |
| Lex.Lex(); |
| } |
| } |
| |
| /// ParseOptionalLinkage |
| /// ::= /*empty*/ |
| /// ::= 'private' |
| /// ::= 'linker_private' |
| /// ::= 'internal' |
| /// ::= 'weak' |
| /// ::= 'weak_odr' |
| /// ::= 'linkonce' |
| /// ::= 'linkonce_odr' |
| /// ::= 'appending' |
| /// ::= 'dllexport' |
| /// ::= 'common' |
| /// ::= 'dllimport' |
| /// ::= 'extern_weak' |
| /// ::= 'external' |
| bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { |
| HasLinkage = false; |
| switch (Lex.getKind()) { |
| default: Res=GlobalValue::ExternalLinkage; return false; |
| case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; |
| case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; |
| case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; |
| case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; |
| case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; |
| case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; |
| case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; |
| case lltok::kw_available_externally: |
| Res = GlobalValue::AvailableExternallyLinkage; |
| break; |
| case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; |
| case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; |
| case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; |
| case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; |
| case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; |
| case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; |
| } |
| Lex.Lex(); |
| HasLinkage = true; |
| return false; |
| } |
| |
| /// ParseOptionalVisibility |
| /// ::= /*empty*/ |
| /// ::= 'default' |
| /// ::= 'hidden' |
| /// ::= 'protected' |
| /// |
| bool LLParser::ParseOptionalVisibility(unsigned &Res) { |
| switch (Lex.getKind()) { |
| default: Res = GlobalValue::DefaultVisibility; return false; |
| case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; |
| case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; |
| case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// ParseOptionalCallingConv |
| /// ::= /*empty*/ |
| /// ::= 'ccc' |
| /// ::= 'fastcc' |
| /// ::= 'coldcc' |
| /// ::= 'x86_stdcallcc' |
| /// ::= 'x86_fastcallcc' |
| /// ::= 'arm_apcscc' |
| /// ::= 'arm_aapcscc' |
| /// ::= 'arm_aapcs_vfpcc' |
| /// ::= 'cc' UINT |
| /// |
| bool LLParser::ParseOptionalCallingConv(unsigned &CC) { |
| switch (Lex.getKind()) { |
| default: CC = CallingConv::C; return false; |
| case lltok::kw_ccc: CC = CallingConv::C; break; |
| case lltok::kw_fastcc: CC = CallingConv::Fast; break; |
| case lltok::kw_coldcc: CC = CallingConv::Cold; break; |
| case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; |
| case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; |
| case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; |
| case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; |
| case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; |
| case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC); |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// ParseOptionalAlignment |
| /// ::= /* empty */ |
| /// ::= 'align' 4 |
| bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { |
| Alignment = 0; |
| if (!EatIfPresent(lltok::kw_align)) |
| return false; |
| LocTy AlignLoc = Lex.getLoc(); |
| if (ParseUInt32(Alignment)) return true; |
| if (!isPowerOf2_32(Alignment)) |
| return Error(AlignLoc, "alignment is not a power of two"); |
| return false; |
| } |
| |
| /// ParseOptionalCommaAlignment |
| /// ::= /* empty */ |
| /// ::= ',' 'align' 4 |
| bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) { |
| Alignment = 0; |
| if (!EatIfPresent(lltok::comma)) |
| return false; |
| return ParseToken(lltok::kw_align, "expected 'align'") || |
| ParseUInt32(Alignment); |
| } |
| |
| /// ParseIndexList |
| /// ::= (',' uint32)+ |
| bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) { |
| if (Lex.getKind() != lltok::comma) |
| return TokError("expected ',' as start of index list"); |
| |
| while (EatIfPresent(lltok::comma)) { |
| unsigned Idx; |
| if (ParseUInt32(Idx)) return true; |
| Indices.push_back(Idx); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Parsing. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseType - Parse and resolve a full type. |
| bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) { |
| LocTy TypeLoc = Lex.getLoc(); |
| if (ParseTypeRec(Result)) return true; |
| |
| // Verify no unresolved uprefs. |
| if (!UpRefs.empty()) |
| return Error(UpRefs.back().Loc, "invalid unresolved type up reference"); |
| |
| if (!AllowVoid && Result.get() == Type::getVoidTy(Context)) |
| return Error(TypeLoc, "void type only allowed for function results"); |
| |
| return false; |
| } |
| |
| /// HandleUpRefs - Every time we finish a new layer of types, this function is |
| /// called. It loops through the UpRefs vector, which is a list of the |
| /// currently active types. For each type, if the up-reference is contained in |
| /// the newly completed type, we decrement the level count. When the level |
| /// count reaches zero, the up-referenced type is the type that is passed in: |
| /// thus we can complete the cycle. |
| /// |
| PATypeHolder LLParser::HandleUpRefs(const Type *ty) { |
| // If Ty isn't abstract, or if there are no up-references in it, then there is |
| // nothing to resolve here. |
| if (!ty->isAbstract() || UpRefs.empty()) return ty; |
| |
| PATypeHolder Ty(ty); |
| #if 0 |
| errs() << "Type '" << Ty->getDescription() |
| << "' newly formed. Resolving upreferences.\n" |
| << UpRefs.size() << " upreferences active!\n"; |
| #endif |
| |
| // If we find any resolvable upreferences (i.e., those whose NestingLevel goes |
| // to zero), we resolve them all together before we resolve them to Ty. At |
| // the end of the loop, if there is anything to resolve to Ty, it will be in |
| // this variable. |
| OpaqueType *TypeToResolve = 0; |
| |
| for (unsigned i = 0; i != UpRefs.size(); ++i) { |
| // Determine if 'Ty' directly contains this up-references 'LastContainedTy'. |
| bool ContainsType = |
| std::find(Ty->subtype_begin(), Ty->subtype_end(), |
| UpRefs[i].LastContainedTy) != Ty->subtype_end(); |
| |
| #if 0 |
| errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " |
| << UpRefs[i].LastContainedTy->getDescription() << ") = " |
| << (ContainsType ? "true" : "false") |
| << " level=" << UpRefs[i].NestingLevel << "\n"; |
| #endif |
| if (!ContainsType) |
| continue; |
| |
| // Decrement level of upreference |
| unsigned Level = --UpRefs[i].NestingLevel; |
| UpRefs[i].LastContainedTy = Ty; |
| |
| // If the Up-reference has a non-zero level, it shouldn't be resolved yet. |
| if (Level != 0) |
| continue; |
| |
| #if 0 |
| errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n"; |
| #endif |
| if (!TypeToResolve) |
| TypeToResolve = UpRefs[i].UpRefTy; |
| else |
| UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); |
| UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list. |
| --i; // Do not skip the next element. |
| } |
| |
| if (TypeToResolve) |
| TypeToResolve->refineAbstractTypeTo(Ty); |
| |
| return Ty; |
| } |
| |
| |
| /// ParseTypeRec - The recursive function used to process the internal |
| /// implementation details of types. |
| bool LLParser::ParseTypeRec(PATypeHolder &Result) { |
| switch (Lex.getKind()) { |
| default: |
| return TokError("expected type"); |
| case lltok::Type: |
| // TypeRec ::= 'float' | 'void' (etc) |
| Result = Lex.getTyVal(); |
| Lex.Lex(); |
| break; |
| case lltok::kw_opaque: |
| // TypeRec ::= 'opaque' |
| Result = OpaqueType::get(Context); |
| Lex.Lex(); |
| break; |
| case lltok::lbrace: |
| // TypeRec ::= '{' ... '}' |
| if (ParseStructType(Result, false)) |
| return true; |
| break; |
| case lltok::lsquare: |
| // TypeRec ::= '[' ... ']' |
| Lex.Lex(); // eat the lsquare. |
| if (ParseArrayVectorType(Result, false)) |
| return true; |
| break; |
| case lltok::less: // Either vector or packed struct. |
| // TypeRec ::= '<' ... '>' |
| Lex.Lex(); |
| if (Lex.getKind() == lltok::lbrace) { |
| if (ParseStructType(Result, true) || |
| ParseToken(lltok::greater, "expected '>' at end of packed struct")) |
| return true; |
| } else if (ParseArrayVectorType(Result, true)) |
| return true; |
| break; |
| case lltok::LocalVar: |
| case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 |
| // TypeRec ::= %foo |
| if (const Type *T = M->getTypeByName(Lex.getStrVal())) { |
| Result = T; |
| } else { |
| Result = OpaqueType::get(Context); |
| ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(), |
| std::make_pair(Result, |
| Lex.getLoc()))); |
| M->addTypeName(Lex.getStrVal(), Result.get()); |
| } |
| Lex.Lex(); |
| break; |
| |
| case lltok::LocalVarID: |
| // TypeRec ::= %4 |
| if (Lex.getUIntVal() < NumberedTypes.size()) |
| Result = NumberedTypes[Lex.getUIntVal()]; |
| else { |
| std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator |
| I = ForwardRefTypeIDs.find(Lex.getUIntVal()); |
| if (I != ForwardRefTypeIDs.end()) |
| Result = I->second.first; |
| else { |
| Result = OpaqueType::get(Context); |
| ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(), |
| std::make_pair(Result, |
| Lex.getLoc()))); |
| } |
| } |
| Lex.Lex(); |
| break; |
| case lltok::backslash: { |
| // TypeRec ::= '\' 4 |
| Lex.Lex(); |
| unsigned Val; |
| if (ParseUInt32(Val)) return true; |
| OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder. |
| UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT)); |
| Result = OT; |
| break; |
| } |
| } |
| |
| // Parse the type suffixes. |
| while (1) { |
| switch (Lex.getKind()) { |
| // End of type. |
| default: return false; |
| |
| // TypeRec ::= TypeRec '*' |
| case lltok::star: |
| if (Result.get() == Type::getLabelTy(Context)) |
| return TokError("basic block pointers are invalid"); |
| if (Result.get() == Type::getVoidTy(Context)) |
| return TokError("pointers to void are invalid; use i8* instead"); |
| if (!PointerType::isValidElementType(Result.get())) |
| return TokError("pointer to this type is invalid"); |
| Result = HandleUpRefs(PointerType::getUnqual(Result.get())); |
| Lex.Lex(); |
| break; |
| |
| // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*' |
| case lltok::kw_addrspace: { |
| if (Result.get() == Type::getLabelTy(Context)) |
| return TokError("basic block pointers are invalid"); |
| if (Result.get() == Type::getVoidTy(Context)) |
| return TokError("pointers to void are invalid; use i8* instead"); |
| if (!PointerType::isValidElementType(Result.get())) |
| return TokError("pointer to this type is invalid"); |
| unsigned AddrSpace; |
| if (ParseOptionalAddrSpace(AddrSpace) || |
| ParseToken(lltok::star, "expected '*' in address space")) |
| return true; |
| |
| Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace)); |
| break; |
| } |
| |
| /// Types '(' ArgTypeListI ')' OptFuncAttrs |
| case lltok::lparen: |
| if (ParseFunctionType(Result)) |
| return true; |
| break; |
| } |
| } |
| } |
| |
| /// ParseParameterList |
| /// ::= '(' ')' |
| /// ::= '(' Arg (',' Arg)* ')' |
| /// Arg |
| /// ::= Type OptionalAttributes Value OptionalAttributes |
| bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, |
| PerFunctionState &PFS) { |
| if (ParseToken(lltok::lparen, "expected '(' in call")) |
| return true; |
| |
| while (Lex.getKind() != lltok::rparen) { |
| // If this isn't the first argument, we need a comma. |
| if (!ArgList.empty() && |
| ParseToken(lltok::comma, "expected ',' in argument list")) |
| return true; |
| |
| // Parse the argument. |
| LocTy ArgLoc; |
| PATypeHolder ArgTy(Type::getVoidTy(Context)); |
| unsigned ArgAttrs1, ArgAttrs2; |
| Value *V; |
| if (ParseType(ArgTy, ArgLoc) || |
| ParseOptionalAttrs(ArgAttrs1, 0) || |
| ParseValue(ArgTy, V, PFS) || |
| // FIXME: Should not allow attributes after the argument, remove this in |
| // LLVM 3.0. |
| ParseOptionalAttrs(ArgAttrs2, 3)) |
| return true; |
| ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); |
| } |
| |
| Lex.Lex(); // Lex the ')'. |
| return false; |
| } |
| |
| |
| |
| /// ParseArgumentList - Parse the argument list for a function type or function |
| /// prototype. If 'inType' is true then we are parsing a FunctionType. |
| /// ::= '(' ArgTypeListI ')' |
| /// ArgTypeListI |
| /// ::= /*empty*/ |
| /// ::= '...' |
| /// ::= ArgTypeList ',' '...' |
| /// ::= ArgType (',' ArgType)* |
| /// |
| bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList, |
| bool &isVarArg, bool inType) { |
| isVarArg = false; |
| assert(Lex.getKind() == lltok::lparen); |
| Lex.Lex(); // eat the (. |
| |
| if (Lex.getKind() == lltok::rparen) { |
| // empty |
| } else if (Lex.getKind() == lltok::dotdotdot) { |
| isVarArg = true; |
| Lex.Lex(); |
| } else { |
| LocTy TypeLoc = Lex.getLoc(); |
| PATypeHolder ArgTy(Type::getVoidTy(Context)); |
| unsigned Attrs; |
| std::string Name; |
| |
| // If we're parsing a type, use ParseTypeRec, because we allow recursive |
| // types (such as a function returning a pointer to itself). If parsing a |
| // function prototype, we require fully resolved types. |
| if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || |
| ParseOptionalAttrs(Attrs, 0)) return true; |
| |
| if (ArgTy == Type::getVoidTy(Context)) |
| return Error(TypeLoc, "argument can not have void type"); |
| |
| if (Lex.getKind() == lltok::LocalVar || |
| Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 |
| Name = Lex.getStrVal(); |
| Lex.Lex(); |
| } |
| |
| if (!FunctionType::isValidArgumentType(ArgTy)) |
| return Error(TypeLoc, "invalid type for function argument"); |
| |
| ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); |
| |
| while (EatIfPresent(lltok::comma)) { |
| // Handle ... at end of arg list. |
| if (EatIfPresent(lltok::dotdotdot)) { |
| isVarArg = true; |
| break; |
| } |
| |
| // Otherwise must be an argument type. |
| TypeLoc = Lex.getLoc(); |
| if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || |
| ParseOptionalAttrs(Attrs, 0)) return true; |
| |
| if (ArgTy == Type::getVoidTy(Context)) |
| return Error(TypeLoc, "argument can not have void type"); |
| |
| if (Lex.getKind() == lltok::LocalVar || |
| Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 |
| Name = Lex.getStrVal(); |
| Lex.Lex(); |
| } else { |
| Name = ""; |
| } |
| |
| if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy)) |
| return Error(TypeLoc, "invalid type for function argument"); |
| |
| ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); |
| } |
| } |
| |
| return ParseToken(lltok::rparen, "expected ')' at end of argument list"); |
| } |
| |
| /// ParseFunctionType |
| /// ::= Type ArgumentList OptionalAttrs |
| bool LLParser::ParseFunctionType(PATypeHolder &Result) { |
| assert(Lex.getKind() == lltok::lparen); |
| |
| if (!FunctionType::isValidReturnType(Result)) |
| return TokError("invalid function return type"); |
| |
| std::vector<ArgInfo> ArgList; |
| bool isVarArg; |
| unsigned Attrs; |
| if (ParseArgumentList(ArgList, isVarArg, true) || |
| // FIXME: Allow, but ignore attributes on function types! |
| // FIXME: Remove in LLVM 3.0 |
| ParseOptionalAttrs(Attrs, 2)) |
| return true; |
| |
| // Reject names on the arguments lists. |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { |
| if (!ArgList[i].Name.empty()) |
| return Error(ArgList[i].Loc, "argument name invalid in function type"); |
| if (!ArgList[i].Attrs != 0) { |
| // Allow but ignore attributes on function types; this permits |
| // auto-upgrade. |
| // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0 |
| } |
| } |
| |
| std::vector<const Type*> ArgListTy; |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) |
| ArgListTy.push_back(ArgList[i].Type); |
| |
| Result = HandleUpRefs(FunctionType::get(Result.get(), |
| ArgListTy, isVarArg)); |
| return false; |
| } |
| |
| /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. |
| /// TypeRec |
| /// ::= '{' '}' |
| /// ::= '{' TypeRec (',' TypeRec)* '}' |
| /// ::= '<' '{' '}' '>' |
| /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>' |
| bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) { |
| assert(Lex.getKind() == lltok::lbrace); |
| Lex.Lex(); // Consume the '{' |
| |
| if (EatIfPresent(lltok::rbrace)) { |
| Result = StructType::get(Context, Packed); |
| return false; |
| } |
| |
| std::vector<PATypeHolder> ParamsList; |
| LocTy EltTyLoc = Lex.getLoc(); |
| if (ParseTypeRec(Result)) return true; |
| ParamsList.push_back(Result); |
| |
| if (Result == Type::getVoidTy(Context)) |
| return Error(EltTyLoc, "struct element can not have void type"); |
| if (!StructType::isValidElementType(Result)) |
| return Error(EltTyLoc, "invalid element type for struct"); |
| |
| while (EatIfPresent(lltok::comma)) { |
| EltTyLoc = Lex.getLoc(); |
| if (ParseTypeRec(Result)) return true; |
| |
| if (Result == Type::getVoidTy(Context)) |
| return Error(EltTyLoc, "struct element can not have void type"); |
| if (!StructType::isValidElementType(Result)) |
| return Error(EltTyLoc, "invalid element type for struct"); |
| |
| ParamsList.push_back(Result); |
| } |
| |
| if (ParseToken(lltok::rbrace, "expected '}' at end of struct")) |
| return true; |
| |
| std::vector<const Type*> ParamsListTy; |
| for (unsigned i = 0, e = ParamsList.size(); i != e; ++i) |
| ParamsListTy.push_back(ParamsList[i].get()); |
| Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed)); |
| return false; |
| } |
| |
| /// ParseArrayVectorType - Parse an array or vector type, assuming the first |
| /// token has already been consumed. |
| /// TypeRec |
| /// ::= '[' APSINTVAL 'x' Types ']' |
| /// ::= '<' APSINTVAL 'x' Types '>' |
| bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) { |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || |
| Lex.getAPSIntVal().getBitWidth() > 64) |
| return TokError("expected number in address space"); |
| |
| LocTy SizeLoc = Lex.getLoc(); |
| uint64_t Size = Lex.getAPSIntVal().getZExtValue(); |
| Lex.Lex(); |
| |
| if (ParseToken(lltok::kw_x, "expected 'x' after element count")) |
| return true; |
| |
| LocTy TypeLoc = Lex.getLoc(); |
| PATypeHolder EltTy(Type::getVoidTy(Context)); |
| if (ParseTypeRec(EltTy)) return true; |
| |
| if (EltTy == Type::getVoidTy(Context)) |
| return Error(TypeLoc, "array and vector element type cannot be void"); |
| |
| if (ParseToken(isVector ? lltok::greater : lltok::rsquare, |
| "expected end of sequential type")) |
| return true; |
| |
| if (isVector) { |
| if (Size == 0) |
| return Error(SizeLoc, "zero element vector is illegal"); |
| if ((unsigned)Size != Size) |
| return Error(SizeLoc, "size too large for vector"); |
| if (!VectorType::isValidElementType(EltTy)) |
| return Error(TypeLoc, "vector element type must be fp or integer"); |
| Result = VectorType::get(EltTy, unsigned(Size)); |
| } else { |
| if (!ArrayType::isValidElementType(EltTy)) |
| return Error(TypeLoc, "invalid array element type"); |
| Result = HandleUpRefs(ArrayType::get(EltTy, Size)); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Function Semantic Analysis. |
| //===----------------------------------------------------------------------===// |
| |
| LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f) |
| : P(p), F(f) { |
| |
| // Insert unnamed arguments into the NumberedVals list. |
| for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); |
| AI != E; ++AI) |
| if (!AI->hasName()) |
| NumberedVals.push_back(AI); |
| } |
| |
| LLParser::PerFunctionState::~PerFunctionState() { |
| // If there were any forward referenced non-basicblock values, delete them. |
| for (std::map<std::string, std::pair<Value*, LocTy> >::iterator |
| I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) |
| if (!isa<BasicBlock>(I->second.first)) { |
| I->second.first->replaceAllUsesWith( |
| UndefValue::get(I->second.first->getType())); |
| delete I->second.first; |
| I->second.first = 0; |
| } |
| |
| for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator |
| I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) |
| if (!isa<BasicBlock>(I->second.first)) { |
| I->second.first->replaceAllUsesWith( |
| UndefValue::get(I->second.first->getType())); |
| delete I->second.first; |
| I->second.first = 0; |
| } |
| } |
| |
| bool LLParser::PerFunctionState::VerifyFunctionComplete() { |
| if (!ForwardRefVals.empty()) |
| return P.Error(ForwardRefVals.begin()->second.second, |
| "use of undefined value '%" + ForwardRefVals.begin()->first + |
| "'"); |
| if (!ForwardRefValIDs.empty()) |
| return P.Error(ForwardRefValIDs.begin()->second.second, |
| "use of undefined value '%" + |
| utostr(ForwardRefValIDs.begin()->first) + "'"); |
| return false; |
| } |
| |
| |
| /// GetVal - Get a value with the specified name or ID, creating a |
| /// forward reference record if needed. This can return null if the value |
| /// exists but does not have the right type. |
| Value *LLParser::PerFunctionState::GetVal(const std::string &Name, |
| const Type *Ty, LocTy Loc) { |
| // Look this name up in the normal function symbol table. |
| Value *Val = F.getValueSymbolTable().lookup(Name); |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (Val == 0) { |
| std::map<std::string, std::pair<Value*, LocTy> >::iterator |
| I = ForwardRefVals.find(Name); |
| if (I != ForwardRefVals.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) { |
| if (Val->getType() == Ty) return Val; |
| if (Ty == Type::getLabelTy(F.getContext())) |
| P.Error(Loc, "'%" + Name + "' is not a basic block"); |
| else |
| P.Error(Loc, "'%" + Name + "' defined with type '" + |
| Val->getType()->getDescription() + "'"); |
| return 0; |
| } |
| |
| // Don't make placeholders with invalid type. |
| if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && |
| Ty != Type::getLabelTy(F.getContext())) { |
| P.Error(Loc, "invalid use of a non-first-class type"); |
| return 0; |
| } |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| Value *FwdVal; |
| if (Ty == Type::getLabelTy(F.getContext())) |
| FwdVal = BasicBlock::Create(F.getContext(), Name, &F); |
| else |
| FwdVal = new Argument(Ty, Name); |
| |
| ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty, |
| LocTy Loc) { |
| // Look this name up in the normal function symbol table. |
| Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (Val == 0) { |
| std::map<unsigned, std::pair<Value*, LocTy> >::iterator |
| I = ForwardRefValIDs.find(ID); |
| if (I != ForwardRefValIDs.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) { |
| if (Val->getType() == Ty) return Val; |
| if (Ty == Type::getLabelTy(F.getContext())) |
| P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block"); |
| else |
| P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" + |
| Val->getType()->getDescription() + "'"); |
| return 0; |
| } |
| |
| if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && |
| Ty != Type::getLabelTy(F.getContext())) { |
| P.Error(Loc, "invalid use of a non-first-class type"); |
| return 0; |
| } |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| Value *FwdVal; |
| if (Ty == Type::getLabelTy(F.getContext())) |
| FwdVal = BasicBlock::Create(F.getContext(), "", &F); |
| else |
| FwdVal = new Argument(Ty); |
| |
| ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| /// SetInstName - After an instruction is parsed and inserted into its |
| /// basic block, this installs its name. |
| bool LLParser::PerFunctionState::SetInstName(int NameID, |
| const std::string &NameStr, |
| LocTy NameLoc, Instruction *Inst) { |
| // If this instruction has void type, it cannot have a name or ID specified. |
| if (Inst->getType() == Type::getVoidTy(F.getContext())) { |
| if (NameID != -1 || !NameStr.empty()) |
| return P.Error(NameLoc, "instructions returning void cannot have a name"); |
| return false; |
| } |
| |
| // If this was a numbered instruction, verify that the instruction is the |
| // expected value and resolve any forward references. |
| if (NameStr.empty()) { |
| // If neither a name nor an ID was specified, just use the next ID. |
| if (NameID == -1) |
| NameID = NumberedVals.size(); |
| |
| if (unsigned(NameID) != NumberedVals.size()) |
| return P.Error(NameLoc, "instruction expected to be numbered '%" + |
| utostr(NumberedVals.size()) + "'"); |
| |
| std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = |
| ForwardRefValIDs.find(NameID); |
| if (FI != ForwardRefValIDs.end()) { |
| if (FI->second.first->getType() != Inst->getType()) |
| return P.Error(NameLoc, "instruction forward referenced with type '" + |
| FI->second.first->getType()->getDescription() + "'"); |
| FI->second.first->replaceAllUsesWith(Inst); |
| ForwardRefValIDs.erase(FI); |
| } |
| |
| NumberedVals.push_back(Inst); |
| return false; |
| } |
| |
| // Otherwise, the instruction had a name. Resolve forward refs and set it. |
| std::map<std::string, std::pair<Value*, LocTy> >::iterator |
| FI = ForwardRefVals.find(NameStr); |
| if (FI != ForwardRefVals.end()) { |
| if (FI->second.first->getType() != Inst->getType()) |
| return P.Error(NameLoc, "instruction forward referenced with type '" + |
| FI->second.first->getType()->getDescription() + "'"); |
| FI->second.first->replaceAllUsesWith(Inst); |
| ForwardRefVals.erase(FI); |
| } |
| |
| // Set the name on the instruction. |
| Inst->setName(NameStr); |
| |
| if (Inst->getNameStr() != NameStr) |
| return P.Error(NameLoc, "multiple definition of local value named '" + |
| NameStr + "'"); |
| return false; |
| } |
| |
| /// GetBB - Get a basic block with the specified name or ID, creating a |
| /// forward reference record if needed. |
| BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, |
| LocTy Loc) { |
| return cast_or_null<BasicBlock>(GetVal(Name, |
| Type::getLabelTy(F.getContext()), Loc)); |
| } |
| |
| BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { |
| return cast_or_null<BasicBlock>(GetVal(ID, |
| Type::getLabelTy(F.getContext()), Loc)); |
| } |
| |
| /// DefineBB - Define the specified basic block, which is either named or |
| /// unnamed. If there is an error, this returns null otherwise it returns |
| /// the block being defined. |
| BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, |
| LocTy Loc) { |
| BasicBlock *BB; |
| if (Name.empty()) |
| BB = GetBB(NumberedVals.size(), Loc); |
| else |
| BB = GetBB(Name, Loc); |
| if (BB == 0) return 0; // Already diagnosed error. |
| |
| // Move the block to the end of the function. Forward ref'd blocks are |
| // inserted wherever they happen to be referenced. |
| F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); |
| |
| // Remove the block from forward ref sets. |
| if (Name.empty()) { |
| ForwardRefValIDs.erase(NumberedVals.size()); |
| NumberedVals.push_back(BB); |
| } else { |
| // BB forward references are already in the function symbol table. |
| ForwardRefVals.erase(Name); |
| } |
| |
| return BB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constants. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseValID - Parse an abstract value that doesn't necessarily have a |
| /// type implied. For example, if we parse "4" we don't know what integer type |
| /// it has. The value will later be combined with its type and checked for |
| /// sanity. |
| bool LLParser::ParseValID(ValID &ID) { |
| ID.Loc = Lex.getLoc(); |
| switch (Lex.getKind()) { |
| default: return TokError("expected value token"); |
| case lltok::GlobalID: // @42 |
| ID.UIntVal = Lex.getUIntVal(); |
| ID.Kind = ValID::t_GlobalID; |
| break; |
| case lltok::GlobalVar: // @foo |
| ID.StrVal = Lex.getStrVal(); |
| ID.Kind = ValID::t_GlobalName; |
| break; |
| case lltok::LocalVarID: // %42 |
| ID.UIntVal = Lex.getUIntVal(); |
| ID.Kind = ValID::t_LocalID; |
| break; |
| case lltok::LocalVar: // %foo |
| case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0 |
| ID.StrVal = Lex.getStrVal(); |
| ID.Kind = ValID::t_LocalName; |
| break; |
| case lltok::Metadata: { // !{...} MDNode, !"foo" MDString |
| ID.Kind = ValID::t_Metadata; |
| Lex.Lex(); |
| if (Lex.getKind() == lltok::lbrace) { |
| SmallVector<Value*, 16> Elts; |
| if (ParseMDNodeVector(Elts) || |
| ParseToken(lltok::rbrace, "expected end of metadata node")) |
| return true; |
| |
| ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size()); |
| return false; |
| } |
| |
| // Standalone metadata reference |
| // !{ ..., !42, ... } |
| if (!ParseMDNode(ID.MetadataVal)) |
| return false; |
| |
| // MDString: |
| // ::= '!' STRINGCONSTANT |
| if (ParseMDString(ID.MetadataVal)) return true; |
| ID.Kind = ValID::t_Metadata; |
| return false; |
| } |
| case lltok::APSInt: |
| ID.APSIntVal = Lex.getAPSIntVal(); |
| ID.Kind = ValID::t_APSInt; |
| break; |
| case lltok::APFloat: |
| ID.APFloatVal = Lex.getAPFloatVal(); |
| ID.Kind = ValID::t_APFloat; |
| break; |
| case lltok::kw_true: |
| ID.ConstantVal = ConstantInt::getTrue(Context); |
| ID.Kind = ValID::t_Constant; |
| break; |
| case lltok::kw_false: |
| ID.ConstantVal = ConstantInt::getFalse(Context); |
| ID.Kind = ValID::t_Constant; |
| break; |
| case lltok::kw_null: ID.Kind = ValID::t_Null; break; |
| case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; |
| case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; |
| |
| case lltok::lbrace: { |
| // ValID ::= '{' ConstVector '}' |
| Lex.Lex(); |
| SmallVector<Constant*, 16> Elts; |
| if (ParseGlobalValueVector(Elts) || |
| ParseToken(lltok::rbrace, "expected end of struct constant")) |
| return true; |
| |
| ID.ConstantVal = ConstantStruct::get(Context, Elts.data(), |
| Elts.size(), false); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::less: { |
| // ValID ::= '<' ConstVector '>' --> Vector. |
| // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. |
| Lex.Lex(); |
| bool isPackedStruct = EatIfPresent(lltok::lbrace); |
| |
| SmallVector<Constant*, 16> Elts; |
| LocTy FirstEltLoc = Lex.getLoc(); |
| if (ParseGlobalValueVector(Elts) || |
| (isPackedStruct && |
| ParseToken(lltok::rbrace, "expected end of packed struct")) || |
| ParseToken(lltok::greater, "expected end of constant")) |
| return true; |
| |
| if (isPackedStruct) { |
| ID.ConstantVal = |
| ConstantStruct::get(Context, Elts.data(), Elts.size(), true); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| if (Elts.empty()) |
| return Error(ID.Loc, "constant vector must not be empty"); |
| |
| if (!Elts[0]->getType()->isInteger() && |
| !Elts[0]->getType()->isFloatingPoint()) |
| return Error(FirstEltLoc, |
| "vector elements must have integer or floating point type"); |
| |
| // Verify that all the vector elements have the same type. |
| for (unsigned i = 1, e = Elts.size(); i != e; ++i) |
| if (Elts[i]->getType() != Elts[0]->getType()) |
| return Error(FirstEltLoc, |
| "vector element #" + utostr(i) + |
| " is not of type '" + Elts[0]->getType()->getDescription()); |
| |
| ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size()); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::lsquare: { // Array Constant |
| Lex.Lex(); |
| SmallVector<Constant*, 16> Elts; |
| LocTy FirstEltLoc = Lex.getLoc(); |
| if (ParseGlobalValueVector(Elts) || |
| ParseToken(lltok::rsquare, "expected end of array constant")) |
| return true; |
| |
| // Handle empty element. |
| if (Elts.empty()) { |
| // Use undef instead of an array because it's inconvenient to determine |
| // the element type at this point, there being no elements to examine. |
| ID.Kind = ValID::t_EmptyArray; |
| return false; |
| } |
| |
| if (!Elts[0]->getType()->isFirstClassType()) |
| return Error(FirstEltLoc, "invalid array element type: " + |
| Elts[0]->getType()->getDescription()); |
| |
| ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0, e = Elts.size(); i != e; ++i) { |
| if (Elts[i]->getType() != Elts[0]->getType()) |
| return Error(FirstEltLoc, |
| "array element #" + utostr(i) + |
| " is not of type '" +Elts[0]->getType()->getDescription()); |
| } |
| |
| ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size()); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::kw_c: // c "foo" |
| Lex.Lex(); |
| ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false); |
| if (ParseToken(lltok::StringConstant, "expected string")) return true; |
| ID.Kind = ValID::t_Constant; |
| return false; |
| |
| case lltok::kw_asm: { |
| // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT |
| bool HasSideEffect; |
| Lex.Lex(); |
| if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || |
| ParseStringConstant(ID.StrVal) || |
| ParseToken(lltok::comma, "expected comma in inline asm expression") || |
| ParseToken(lltok::StringConstant, "expected constraint string")) |
| return true; |
| ID.StrVal2 = Lex.getStrVal(); |
| ID.UIntVal = HasSideEffect; |
| ID.Kind = ValID::t_InlineAsm; |
| return false; |
| } |
| |
| case lltok::kw_trunc: |
| case lltok::kw_zext: |
| case lltok::kw_sext: |
| case lltok::kw_fptrunc: |
| case lltok::kw_fpext: |
| case lltok::kw_bitcast: |
| case lltok::kw_uitofp: |
| case lltok::kw_sitofp: |
| case lltok::kw_fptoui: |
| case lltok::kw_fptosi: |
| case lltok::kw_inttoptr: |
| case lltok::kw_ptrtoint: { |
| unsigned Opc = Lex.getUIntVal(); |
| PATypeHolder DestTy(Type::getVoidTy(Context)); |
| Constant *SrcVal; |
| Lex.Lex(); |
| if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || |
| ParseGlobalTypeAndValue(SrcVal) || |
| ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || |
| ParseType(DestTy) || |
| ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) |
| return true; |
| if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) |
| return Error(ID.Loc, "invalid cast opcode for cast from '" + |
| SrcVal->getType()->getDescription() + "' to '" + |
| DestTy->getDescription() + "'"); |
| ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, |
| SrcVal, DestTy); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::kw_extractvalue: { |
| Lex.Lex(); |
| Constant *Val; |
| SmallVector<unsigned, 4> Indices; |
| if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| |
| ParseGlobalTypeAndValue(Val) || |
| ParseIndexList(Indices) || |
| ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) |
| return true; |
| if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType())) |
| return Error(ID.Loc, "extractvalue operand must be array or struct"); |
| if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), |
| Indices.end())) |
| return Error(ID.Loc, "invalid indices for extractvalue"); |
| ID.ConstantVal = |
| ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size()); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::kw_insertvalue: { |
| Lex.Lex(); |
| Constant *Val0, *Val1; |
| SmallVector<unsigned, 4> Indices; |
| if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| |
| ParseGlobalTypeAndValue(Val0) || |
| ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| |
| ParseGlobalTypeAndValue(Val1) || |
| ParseIndexList(Indices) || |
| ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) |
| return true; |
| if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType())) |
| return Error(ID.Loc, "extractvalue operand must be array or struct"); |
| if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), |
| Indices.end())) |
| return Error(ID.Loc, "invalid indices for insertvalue"); |
| ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, |
| Indices.data(), Indices.size()); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::kw_icmp: |
| case lltok::kw_fcmp: { |
| unsigned PredVal, Opc = Lex.getUIntVal(); |
| Constant *Val0, *Val1; |
| Lex.Lex(); |
| if (ParseCmpPredicate(PredVal, Opc) || |
| ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || |
| ParseGlobalTypeAndValue(Val0) || |
| ParseToken(lltok::comma, "expected comma in compare constantexpr") || |
| ParseGlobalTypeAndValue(Val1) || |
| ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) |
| return true; |
| |
| if (Val0->getType() != Val1->getType()) |
| return Error(ID.Loc, "compare operands must have the same type"); |
| |
| CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; |
| |
| if (Opc == Instruction::FCmp) { |
| if (!Val0->getType()->isFPOrFPVector()) |
| return Error(ID.Loc, "fcmp requires floating point operands"); |
| ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); |
| } else { |
| assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); |
| if (!Val0->getType()->isIntOrIntVector() && |
| !isa<PointerType>(Val0->getType())) |
| return Error(ID.Loc, "icmp requires pointer or integer operands"); |
| ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); |
| } |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| // Binary Operators. |
| case lltok::kw_add: |
| case lltok::kw_fadd: |
| case lltok::kw_sub: |
| case lltok::kw_fsub: |
| case lltok::kw_mul: |
| case lltok::kw_fmul: |
| case lltok::kw_udiv: |
| case lltok::kw_sdiv: |
| case lltok::kw_fdiv: |
| case lltok::kw_urem: |
| case lltok::kw_srem: |
| case lltok::kw_frem: { |
| bool NUW = false; |
| bool NSW = false; |
| bool Exact = false; |
| unsigned Opc = Lex.getUIntVal(); |
| Constant *Val0, *Val1; |
| Lex.Lex(); |
| LocTy ModifierLoc = Lex.getLoc(); |
| if (Opc == Instruction::Add || |
| Opc == Instruction::Sub || |
| Opc == Instruction::Mul) { |
| if (EatIfPresent(lltok::kw_nuw)) |
| NUW = true; |
| if (EatIfPresent(lltok::kw_nsw)) { |
| NSW = true; |
| if (EatIfPresent(lltok::kw_nuw)) |
| NUW = true; |
| } |
| } else if (Opc == Instruction::SDiv) { |
| if (EatIfPresent(lltok::kw_exact)) |
| Exact = true; |
| } |
| if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || |
| ParseGlobalTypeAndValue(Val0) || |
| ParseToken(lltok::comma, "expected comma in binary constantexpr") || |
| ParseGlobalTypeAndValue(Val1) || |
| ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) |
| return true; |
| if (Val0->getType() != Val1->getType()) |
| return Error(ID.Loc, "operands of constexpr must have same type"); |
| if (!Val0->getType()->isIntOrIntVector()) { |
| if (NUW) |
| return Error(ModifierLoc, "nuw only applies to integer operations"); |
| if (NSW) |
| return Error(ModifierLoc, "nsw only applies to integer operations"); |
| } |
| // API compatibility: Accept either integer or floating-point types with |
| // add, sub, and mul. |
| if (!Val0->getType()->isIntOrIntVector() && |
| !Val0->getType()->isFPOrFPVector()) |
| return Error(ID.Loc,"constexpr requires integer, fp, or vector operands"); |
| Constant *C = ConstantExpr::get(Opc, Val0, Val1); |
| if (NUW) |
| cast<OverflowingBinaryOperator>(C)->setHasNoUnsignedWrap(true); |
| if (NSW) |
| cast<OverflowingBinaryOperator>(C)->setHasNoSignedWrap(true); |
| if (Exact) |
| cast<SDivOperator>(C)->setIsExact(true); |
| ID.ConstantVal = C; |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| // Logical Operations |
| case lltok::kw_shl: |
| case lltok::kw_lshr: |
| case lltok::kw_ashr: |
| case lltok::kw_and: |
| case lltok::kw_or: |
| case lltok::kw_xor: { |
| unsigned Opc = Lex.getUIntVal(); |
| Constant *Val0, *Val1; |
| Lex.Lex(); |
| if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || |
| ParseGlobalTypeAndValue(Val0) || |
| ParseToken(lltok::comma, "expected comma in logical constantexpr") || |
| ParseGlobalTypeAndValue(Val1) || |
| ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) |
| return true; |
| if (Val0->getType() != Val1->getType()) |
| return Error(ID.Loc, "operands of constexpr must have same type"); |
| if (!Val0->getType()->isIntOrIntVector()) |
| return Error(ID.Loc, |
| "constexpr requires integer or integer vector operands"); |
| ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| case lltok::kw_getelementptr: |
| case lltok::kw_shufflevector: |
| case lltok::kw_insertelement: |
| case lltok::kw_extractelement: |
| case lltok::kw_select: { |
| unsigned Opc = Lex.getUIntVal(); |
| SmallVector<Constant*, 16> Elts; |
| bool InBounds = false; |
| Lex.Lex(); |
| if (Opc == Instruction::GetElementPtr) |
| InBounds = EatIfPresent(lltok::kw_inbounds); |
| if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || |
| ParseGlobalValueVector(Elts) || |
| ParseToken(lltok::rparen, "expected ')' in constantexpr")) |
| return true; |
| |
| if (Opc == Instruction::GetElementPtr) { |
| if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType())) |
| return Error(ID.Loc, "getelementptr requires pointer operand"); |
| |
| if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), |
| (Value**)(Elts.data() + 1), |
| Elts.size() - 1)) |
| return Error(ID.Loc, "invalid indices for getelementptr"); |
| ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], |
| Elts.data() + 1, Elts.size() - 1); |
| if (InBounds) |
| cast<GEPOperator>(ID.ConstantVal)->setIsInBounds(true); |
| } else if (Opc == Instruction::Select) { |
| if (Elts.size() != 3) |
| return Error(ID.Loc, "expected three operands to select"); |
| if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], |
| Elts[2])) |
| return Error(ID.Loc, Reason); |
| ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); |
| } else if (Opc == Instruction::ShuffleVector) { |
| if (Elts.size() != 3) |
| return Error(ID.Loc, "expected three operands to shufflevector"); |
| if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) |
| return Error(ID.Loc, "invalid operands to shufflevector"); |
| ID.ConstantVal = |
| ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); |
| } else if (Opc == Instruction::ExtractElement) { |
| if (Elts.size() != 2) |
| return Error(ID.Loc, "expected two operands to extractelement"); |
| if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) |
| return Error(ID.Loc, "invalid extractelement operands"); |
| ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); |
| } else { |
| assert(Opc == Instruction::InsertElement && "Unknown opcode"); |
| if (Elts.size() != 3) |
| return Error(ID.Loc, "expected three operands to insertelement"); |
| if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) |
| return Error(ID.Loc, "invalid insertelement operands"); |
| ID.ConstantVal = |
| ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); |
| } |
| |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| } |
| |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// ParseGlobalValue - Parse a global value with the specified type. |
| bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) { |
| V = 0; |
| ValID ID; |
| return ParseValID(ID) || |
| ConvertGlobalValIDToValue(Ty, ID, V); |
| } |
| |
| /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved |
| /// constant. |
| bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID, |
| Constant *&V) { |
| if (isa<FunctionType>(Ty)) |
| return Error(ID.Loc, "functions are not values, refer to them as pointers"); |
| |
| switch (ID.Kind) { |
| default: llvm_unreachable("Unknown ValID!"); |
| case ValID::t_Metadata: |
| return Error(ID.Loc, "invalid use of metadata"); |
| case ValID::t_LocalID: |
| case ValID::t_LocalName: |
| return Error(ID.Loc, "invalid use of function-local name"); |
| case ValID::t_InlineAsm: |
| return Error(ID.Loc, "inline asm can only be an operand of call/invoke"); |
| case ValID::t_GlobalName: |
| V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); |
| return V == 0; |
| case ValID::t_GlobalID: |
| V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); |
| return V == 0; |
| case ValID::t_APSInt: |
| if (!isa<IntegerType>(Ty)) |
| return Error(ID.Loc, "integer constant must have integer type"); |
| ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); |
| V = ConstantInt::get(Context, ID.APSIntVal); |
| return false; |
| case ValID::t_APFloat: |
| if (!Ty->isFloatingPoint() || |
| !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) |
| return Error(ID.Loc, "floating point constant invalid for type"); |
| |
| // The lexer has no type info, so builds all float and double FP constants |
| // as double. Fix this here. Long double does not need this. |
| if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble && |
| Ty == Type::getFloatTy(Context)) { |
| bool Ignored; |
| ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, |
| &Ignored); |
| } |
| V = ConstantFP::get(Context, ID.APFloatVal); |
| |
| if (V->getType() != Ty) |
| return Error(ID.Loc, "floating point constant does not have type '" + |
| Ty->getDescription() + "'"); |
| |
| return false; |
| case ValID::t_Null: |
| if (!isa<PointerType>(Ty)) |
| return Error(ID.Loc, "null must be a pointer type"); |
| V = ConstantPointerNull::get(cast<PointerType>(Ty)); |
| return false; |
| case ValID::t_Undef: |
| // FIXME: LabelTy should not be a first-class type. |
| if ((!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context)) && |
| !isa<OpaqueType>(Ty)) |
| return Error(ID.Loc, "invalid type for undef constant"); |
| V = UndefValue::get(Ty); |
| return false; |
| case ValID::t_EmptyArray: |
| if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0) |
| return Error(ID.Loc, "invalid empty array initializer"); |
| V = UndefValue::get(Ty); |
| return false; |
| case ValID::t_Zero: |
| // FIXME: LabelTy should not be a first-class type. |
| if (!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context)) |
| return Error(ID.Loc, "invalid type for null constant"); |
| V = Constant::getNullValue(Ty); |
| return false; |
| case ValID::t_Constant: |
| if (ID.ConstantVal->getType() != Ty) |
| return Error(ID.Loc, "constant expression type mismatch"); |
| V = ID.ConstantVal; |
| return false; |
| } |
| } |
| |
| bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { |
| PATypeHolder Type(Type::getVoidTy(Context)); |
| return ParseType(Type) || |
| ParseGlobalValue(Type, V); |
| } |
| |
| /// ParseGlobalValueVector |
| /// ::= /*empty*/ |
| /// ::= TypeAndValue (',' TypeAndValue)* |
| bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { |
| // Empty list. |
| if (Lex.getKind() == lltok::rbrace || |
| Lex.getKind() == lltok::rsquare || |
| Lex.getKind() == lltok::greater || |
| Lex.getKind() == lltok::rparen) |
| return false; |
| |
| Constant *C; |
| if (ParseGlobalTypeAndValue(C)) return true; |
| Elts.push_back(C); |
| |
| while (EatIfPresent(lltok::comma)) { |
| if (ParseGlobalTypeAndValue(C)) return true; |
| Elts.push_back(C); |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Function Parsing. |
| //===----------------------------------------------------------------------===// |
| |
| bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V, |
| PerFunctionState &PFS) { |
| if (ID.Kind == ValID::t_LocalID) |
| V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc); |
| else if (ID.Kind == ValID::t_LocalName) |
| V = PFS.GetVal(ID.StrVal, Ty, ID.Loc); |
| else if (ID.Kind == ValID::t_InlineAsm) { |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| const FunctionType *FTy = |
| PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; |
| if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) |
| return Error(ID.Loc, "invalid type for inline asm constraint string"); |
| V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal); |
| return false; |
| } else if (ID.Kind == ValID::t_Metadata) { |
| V = ID.MetadataVal; |
| } else { |
| Constant *C; |
| if (ConvertGlobalValIDToValue(Ty, ID, C)) return true; |
| V = C; |
| return false; |
| } |
| |
| return V == 0; |
| } |
| |
| bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) { |
| V = 0; |
| ValID ID; |
| return ParseValID(ID) || |
| ConvertValIDToValue(Ty, ID, V, PFS); |
| } |
| |
| bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) { |
| PATypeHolder T(Type::getVoidTy(Context)); |
| return ParseType(T) || |
| ParseValue(T, V, PFS); |
| } |
| |
| /// FunctionHeader |
| /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs |
| /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection |
| /// OptionalAlign OptGC |
| bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { |
| // Parse the linkage. |
| LocTy LinkageLoc = Lex.getLoc(); |
| unsigned Linkage; |
| |
| unsigned Visibility, CC, RetAttrs; |
| PATypeHolder RetType(Type::getVoidTy(Context)); |
| LocTy RetTypeLoc = Lex.getLoc(); |
| if (ParseOptionalLinkage(Linkage) || |
| ParseOptionalVisibility(Visibility) || |
| ParseOptionalCallingConv(CC) || |
| ParseOptionalAttrs(RetAttrs, 1) || |
| ParseType(RetType, RetTypeLoc, true /*void allowed*/)) |
| return true; |
| |
| // Verify that the linkage is ok. |
| switch ((GlobalValue::LinkageTypes)Linkage) { |
| case GlobalValue::ExternalLinkage: |
| break; // always ok. |
| case GlobalValue::DLLImportLinkage: |
| case GlobalValue::ExternalWeakLinkage: |
| if (isDefine) |
| return Error(LinkageLoc, "invalid linkage for function definition"); |
| break; |
| case GlobalValue::PrivateLinkage: |
| case GlobalValue::LinkerPrivateLinkage: |
| case GlobalValue::InternalLinkage: |
| case GlobalValue::AvailableExternallyLinkage: |
| case GlobalValue::LinkOnceAnyLinkage: |
| case GlobalValue::LinkOnceODRLinkage: |
| case GlobalValue::WeakAnyLinkage: |
| case GlobalValue::WeakODRLinkage: |
| case GlobalValue::DLLExportLinkage: |
| if (!isDefine) |
| return Error(LinkageLoc, "invalid linkage for function declaration"); |
| break; |
| case GlobalValue::AppendingLinkage: |
| case GlobalValue::GhostLinkage: |
| case GlobalValue::CommonLinkage: |
| return Error(LinkageLoc, "invalid function linkage type"); |
| } |
| |
| if (!FunctionType::isValidReturnType(RetType) || |
| isa<OpaqueType>(RetType)) |
| return Error(RetTypeLoc, "invalid function return type"); |
| |
| LocTy NameLoc = Lex.getLoc(); |
| |
| std::string FunctionName; |
| if (Lex.getKind() == lltok::GlobalVar) { |
| FunctionName = Lex.getStrVal(); |
| } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. |
| unsigned NameID = Lex.getUIntVal(); |
| |
| if (NameID != NumberedVals.size()) |
| return TokError("function expected to be numbered '%" + |
| utostr(NumberedVals.size()) + "'"); |
| } else { |
| return TokError("expected function name"); |
| } |
| |
| Lex.Lex(); |
| |
| if (Lex.getKind() != lltok::lparen) |
| return TokError("expected '(' in function argument list"); |
| |
| std::vector<ArgInfo> ArgList; |
| bool isVarArg; |
| unsigned FuncAttrs; |
| std::string Section; |
| unsigned Alignment; |
| std::string GC; |
| |
| if (ParseArgumentList(ArgList, isVarArg, false) || |
| ParseOptionalAttrs(FuncAttrs, 2) || |
| (EatIfPresent(lltok::kw_section) && |
| ParseStringConstant(Section)) || |
| ParseOptionalAlignment(Alignment) || |
| (EatIfPresent(lltok::kw_gc) && |
| ParseStringConstant(GC))) |
| return true; |
| |
| // If the alignment was parsed as an attribute, move to the alignment field. |
| if (FuncAttrs & Attribute::Alignment) { |
| Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); |
| FuncAttrs &= ~Attribute::Alignment; |
| } |
| |
| // Okay, if we got here, the function is syntactically valid. Convert types |
| // and do semantic checks. |
| std::vector<const Type*> ParamTypeList; |
| SmallVector<AttributeWithIndex, 8> Attrs; |
| // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function |
| // attributes. |
| unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; |
| if (FuncAttrs & ObsoleteFuncAttrs) { |
| RetAttrs |= FuncAttrs & ObsoleteFuncAttrs; |
| FuncAttrs &= ~ObsoleteFuncAttrs; |
| } |
| |
| if (RetAttrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); |
| |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { |
| ParamTypeList.push_back(ArgList[i].Type); |
| if (ArgList[i].Attrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); |
| } |
| |
| if (FuncAttrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); |
| |
| AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); |
| |
| if (PAL.paramHasAttr(1, Attribute::StructRet) && |
| RetType != Type::getVoidTy(Context)) |
| return Error(RetTypeLoc, "functions with 'sret' argument must return void"); |
| |
| const FunctionType *FT = |
| FunctionType::get(RetType, ParamTypeList, isVarArg); |
| const PointerType *PFT = PointerType::getUnqual(FT); |
| |
| Fn = 0; |
| if (!FunctionName.empty()) { |
| // If this was a definition of a forward reference, remove the definition |
| // from the forward reference table and fill in the forward ref. |
| std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = |
| ForwardRefVals.find(FunctionName); |
| if (FRVI != ForwardRefVals.end()) { |
| Fn = M->getFunction(FunctionName); |
| ForwardRefVals.erase(FRVI); |
| } else if ((Fn = M->getFunction(FunctionName))) { |
| // If this function already exists in the symbol table, then it is |
| // multiply defined. We accept a few cases for old backwards compat. |
| // FIXME: Remove this stuff for LLVM 3.0. |
| if (Fn->getType() != PFT || Fn->getAttributes() != PAL || |
| (!Fn->isDeclaration() && isDefine)) { |
| // If the redefinition has different type or different attributes, |
| // reject it. If both have bodies, reject it. |
| return Error(NameLoc, "invalid redefinition of function '" + |
| FunctionName + "'"); |
| } else if (Fn->isDeclaration()) { |
| // Make sure to strip off any argument names so we can't get conflicts. |
| for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); |
| AI != AE; ++AI) |
| AI->setName(""); |
| } |
| } |
| |
| } else if (FunctionName.empty()) { |
| // If this is a definition of a forward referenced function, make sure the |
| // types agree. |
| std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I |
| = ForwardRefValIDs.find(NumberedVals.size()); |
| if (I != ForwardRefValIDs.end()) { |
| Fn = cast<Function>(I->second.first); |
| if (Fn->getType() != PFT) |
| return Error(NameLoc, "type of definition and forward reference of '@" + |
| utostr(NumberedVals.size()) +"' disagree"); |
| ForwardRefValIDs.erase(I); |
| } |
| } |
| |
| if (Fn == 0) |
| Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); |
| else // Move the forward-reference to the correct spot in the module. |
| M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); |
| |
| if (FunctionName.empty()) |
| NumberedVals.push_back(Fn); |
| |
| Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); |
| Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); |
| Fn->setCallingConv(CC); |
| Fn->setAttributes(PAL); |
| Fn->setAlignment(Alignment); |
| Fn->setSection(Section); |
| if (!GC.empty()) Fn->setGC(GC.c_str()); |
| |
| // Add all of the arguments we parsed to the function. |
| Function::arg_iterator ArgIt = Fn->arg_begin(); |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { |
| // If the argument has a name, insert it into the argument symbol table. |
| if (ArgList[i].Name.empty()) continue; |
| |
| // Set the name, if it conflicted, it will be auto-renamed. |
| ArgIt->setName(ArgList[i].Name); |
| |
| if (ArgIt->getNameStr() != ArgList[i].Name) |
| return Error(ArgList[i].Loc, "redefinition of argument '%" + |
| ArgList[i].Name + "'"); |
| } |
| |
| return false; |
| } |
| |
| |
| /// ParseFunctionBody |
| /// ::= '{' BasicBlock+ '}' |
| /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0 |
| /// |
| bool LLParser::ParseFunctionBody(Function &Fn) { |
| if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin) |
| return TokError("expected '{' in function body"); |
| Lex.Lex(); // eat the {. |
| |
| PerFunctionState PFS(*this, Fn); |
| |
| while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end) |
| if (ParseBasicBlock(PFS)) return true; |
| |
| // Eat the }. |
| Lex.Lex(); |
| |
| // Verify function is ok. |
| return PFS.VerifyFunctionComplete(); |
| } |
| |
| /// ParseBasicBlock |
| /// ::= LabelStr? Instruction* |
| bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { |
| // If this basic block starts out with a name, remember it. |
| std::string Name; |
| LocTy NameLoc = Lex.getLoc(); |
| if (Lex.getKind() == lltok::LabelStr) { |
| Name = Lex.getStrVal(); |
| Lex.Lex(); |
| } |
| |
| BasicBlock *BB = PFS.DefineBB(Name, NameLoc); |
| if (BB == 0) return true; |
| |
| std::string NameStr; |
| |
| // Parse the instructions in this block until we get a terminator. |
| Instruction *Inst; |
| do { |
| // This instruction may have three possibilities for a name: a) none |
| // specified, b) name specified "%foo =", c) number specified: "%4 =". |
| LocTy NameLoc = Lex.getLoc(); |
| int NameID = -1; |
| NameStr = ""; |
| |
| if (Lex.getKind() == lltok::LocalVarID) { |
| NameID = Lex.getUIntVal(); |
| Lex.Lex(); |
| if (ParseToken(lltok::equal, "expected '=' after instruction id")) |
| return true; |
| } else if (Lex.getKind() == lltok::LocalVar || |
| // FIXME: REMOVE IN LLVM 3.0 |
| Lex.getKind() == lltok::StringConstant) { |
| NameStr = Lex.getStrVal(); |
| Lex.Lex(); |
| if (ParseToken(lltok::equal, "expected '=' after instruction name")) |
| return true; |
| } |
| |
| if (ParseInstruction(Inst, BB, PFS)) return true; |
| |
| BB->getInstList().push_back(Inst); |
| |
| // Set the name on the instruction. |
| if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; |
| } while (!isa<TerminatorInst>(Inst)); |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Parsing. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseInstruction - Parse one of the many different instructions. |
| /// |
| bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, |
| PerFunctionState &PFS) { |
| lltok::Kind Token = Lex.getKind(); |
| if (Token == lltok::Eof) |
| return TokError("found end of file when expecting more instructions"); |
| LocTy Loc = Lex.getLoc(); |
| unsigned KeywordVal = Lex.getUIntVal(); |
| Lex.Lex(); // Eat the keyword. |
| |
| switch (Token) { |
| default: return Error(Loc, "expected instruction opcode"); |
| // Terminator Instructions. |
| case lltok::kw_unwind: Inst = new UnwindInst(Context); return false; |
| case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; |
| case lltok::kw_ret: return ParseRet(Inst, BB, PFS); |
| case lltok::kw_br: return ParseBr(Inst, PFS); |
| case lltok::kw_switch: return ParseSwitch(Inst, PFS); |
| case lltok::kw_invoke: return ParseInvoke(Inst, PFS); |
| // Binary Operators. |
| case lltok::kw_add: |
| case lltok::kw_sub: |
| case lltok::kw_mul: { |
| bool NUW = false; |
| bool NSW = false; |
| LocTy ModifierLoc = Lex.getLoc(); |
| if (EatIfPresent(lltok::kw_nuw)) |
| NUW = true; |
| if (EatIfPresent(lltok::kw_nsw)) { |
| NSW = true; |
| if (EatIfPresent(lltok::kw_nuw)) |
| NUW = true; |
| } |
| // API compatibility: Accept either integer or floating-point types. |
| bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0); |
| if (!Result) { |
| if (!Inst->getType()->isIntOrIntVector()) { |
| if (NUW) |
| return Error(ModifierLoc, "nuw only applies to integer operations"); |
| if (NSW) |
| return Error(ModifierLoc, "nsw only applies to integer operations"); |
| } |
| if (NUW) |
| cast<OverflowingBinaryOperator>(Inst)->setHasNoUnsignedWrap(true); |
| if (NSW) |
| cast<OverflowingBinaryOperator>(Inst)->setHasNoSignedWrap(true); |
| } |
| return Result; |
| } |
| case lltok::kw_fadd: |
| case lltok::kw_fsub: |
| case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); |
| |
| case lltok::kw_sdiv: { |
| bool Exact = false; |
| if (EatIfPresent(lltok::kw_exact)) |
| Exact = true; |
| bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1); |
| if (!Result) |
| if (Exact) |
| cast<SDivOperator>(Inst)->setIsExact(true); |
| return Result; |
| } |
| |
| case lltok::kw_udiv: |
| case lltok::kw_urem: |
| case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); |
| case lltok::kw_fdiv: |
| case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); |
| case lltok::kw_shl: |
| case lltok::kw_lshr: |
| case lltok::kw_ashr: |
| case lltok::kw_and: |
| case lltok::kw_or: |
| case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); |
| case lltok::kw_icmp: |
| case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); |
| // Casts. |
| case lltok::kw_trunc: |
| case lltok::kw_zext: |
| case lltok::kw_sext: |
| case lltok::kw_fptrunc: |
| case lltok::kw_fpext: |
| case lltok::kw_bitcast: |
| case lltok::kw_uitofp: |
| case lltok::kw_sitofp: |
| case lltok::kw_fptoui: |
| case lltok::kw_fptosi: |
| case lltok::kw_inttoptr: |
| case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); |
| // Other. |
| case lltok::kw_select: return ParseSelect(Inst, PFS); |
| case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); |
| case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); |
| case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); |
| case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); |
| case lltok::kw_phi: return ParsePHI(Inst, PFS); |
| case lltok::kw_call: return ParseCall(Inst, PFS, false); |
| case lltok::kw_tail: return ParseCall(Inst, PFS, true); |
| // Memory. |
| case lltok::kw_alloca: |
| case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal); |
| case lltok::kw_free: return ParseFree(Inst, PFS); |
| case lltok::kw_load: return ParseLoad(Inst, PFS, false); |
| case lltok::kw_store: return ParseStore(Inst, PFS, false); |
| case lltok::kw_volatile: |
| if (EatIfPresent(lltok::kw_load)) |
| return ParseLoad(Inst, PFS, true); |
| else if (EatIfPresent(lltok::kw_store)) |
| return ParseStore(Inst, PFS, true); |
| else |
| return TokError("expected 'load' or 'store'"); |
| case lltok::kw_getresult: return ParseGetResult(Inst, PFS); |
| case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); |
| case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); |
| case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); |
| } |
| } |
| |
| /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. |
| bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { |
| if (Opc == Instruction::FCmp) { |
| switch (Lex.getKind()) { |
| default: TokError("expected fcmp predicate (e.g. 'oeq')"); |
| case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; |
| case lltok::kw_one: P = CmpInst::FCMP_ONE; break; |
| case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; |
| case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; |
| case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; |
| case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; |
| case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; |
| case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; |
| case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; |
| case lltok::kw_une: P = CmpInst::FCMP_UNE; break; |
| case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; |
| case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; |
| case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; |
| case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; |
| case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; |
| case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; |
| } |
| } else { |
| switch (Lex.getKind()) { |
| default: TokError("expected icmp predicate (e.g. 'eq')"); |
| case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; |
| case lltok::kw_ne: P = CmpInst::ICMP_NE; break; |
| case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; |
| case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; |
| case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; |
| case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; |
| case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; |
| case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; |
| case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; |
| case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; |
| } |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Terminator Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseRet - Parse a return instruction. |
| /// ::= 'ret' void |
| /// ::= 'ret' TypeAndValue |
| /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]] |
| bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, |
| PerFunctionState &PFS) { |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| if (ParseType(Ty, true /*void allowed*/)) return true; |
| |
| if (Ty == Type::getVoidTy(Context)) { |
| Inst = ReturnInst::Create(Context); |
| return false; |
| } |
| |
| Value *RV; |
| if (ParseValue(Ty, RV, PFS)) return true; |
| |
| // The normal case is one return value. |
| if (Lex.getKind() == lltok::comma) { |
| // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use |
| // of 'ret {i32,i32} {i32 1, i32 2}' |
| SmallVector<Value*, 8> RVs; |
| RVs.push_back(RV); |
| |
| while (EatIfPresent(lltok::comma)) { |
| if (ParseTypeAndValue(RV, PFS)) return true; |
| RVs.push_back(RV); |
| } |
| |
| RV = UndefValue::get(PFS.getFunction().getReturnType()); |
| for (unsigned i = 0, e = RVs.size(); i != e; ++i) { |
| Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv"); |
| BB->getInstList().push_back(I); |
| RV = I; |
| } |
| } |
| Inst = ReturnInst::Create(Context, RV); |
| return false; |
| } |
| |
| |
| /// ParseBr |
| /// ::= 'br' TypeAndValue |
| /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc, Loc2; |
| Value *Op0, *Op1, *Op2; |
| if (ParseTypeAndValue(Op0, Loc, PFS)) return true; |
| |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { |
| Inst = BranchInst::Create(BB); |
| return false; |
| } |
| |
| if (Op0->getType() != Type::getInt1Ty(Context)) |
| return Error(Loc, "branch condition must have 'i1' type"); |
| |
| if (ParseToken(lltok::comma, "expected ',' after branch condition") || |
| ParseTypeAndValue(Op1, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after true destination") || |
| ParseTypeAndValue(Op2, Loc2, PFS)) |
| return true; |
| |
| if (!isa<BasicBlock>(Op1)) |
| return Error(Loc, "true destination of branch must be a basic block"); |
| if (!isa<BasicBlock>(Op2)) |
| return Error(Loc2, "true destination of branch must be a basic block"); |
| |
| Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0); |
| return false; |
| } |
| |
| /// ParseSwitch |
| /// Instruction |
| /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' |
| /// JumpTable |
| /// ::= (TypeAndValue ',' TypeAndValue)* |
| bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy CondLoc, BBLoc; |
| Value *Cond, *DefaultBB; |
| if (ParseTypeAndValue(Cond, CondLoc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after switch condition") || |
| ParseTypeAndValue(DefaultBB, BBLoc, PFS) || |
| ParseToken(lltok::lsquare, "expected '[' with switch table")) |
| return true; |
| |
| if (!isa<IntegerType>(Cond->getType())) |
| return Error(CondLoc, "switch condition must have integer type"); |
| if (!isa<BasicBlock>(DefaultBB)) |
| return Error(BBLoc, "default destination must be a basic block"); |
| |
| // Parse the jump table pairs. |
| SmallPtrSet<Value*, 32> SeenCases; |
| SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; |
| while (Lex.getKind() != lltok::rsquare) { |
| Value *Constant, *DestBB; |
| |
| if (ParseTypeAndValue(Constant, CondLoc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after case value") || |
| ParseTypeAndValue(DestBB, BBLoc, PFS)) |
| return true; |
| |
| if (!SeenCases.insert(Constant)) |
| return Error(CondLoc, "duplicate case value in switch"); |
| if (!isa<ConstantInt>(Constant)) |
| return Error(CondLoc, "case value is not a constant integer"); |
| if (!isa<BasicBlock>(DestBB)) |
| return Error(BBLoc, "case destination is not a basic block"); |
| |
| Table.push_back(std::make_pair(cast<ConstantInt>(Constant), |
| cast<BasicBlock>(DestBB))); |
| } |
| |
| Lex.Lex(); // Eat the ']'. |
| |
| SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB), |
| Table.size()); |
| for (unsigned i = 0, e = Table.size(); i != e; ++i) |
| SI->addCase(Table[i].first, Table[i].second); |
| Inst = SI; |
| return false; |
| } |
| |
| /// ParseInvoke |
| /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList |
| /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue |
| bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy CallLoc = Lex.getLoc(); |
| unsigned CC, RetAttrs, FnAttrs; |
| PATypeHolder RetType(Type::getVoidTy(Context)); |
| LocTy RetTypeLoc; |
| ValID CalleeID; |
| SmallVector<ParamInfo, 16> ArgList; |
| |
| Value *NormalBB, *UnwindBB; |
| if (ParseOptionalCallingConv(CC) || |
| ParseOptionalAttrs(RetAttrs, 1) || |
| ParseType(RetType, RetTypeLoc, true /*void allowed*/) || |
| ParseValID(CalleeID) || |
| ParseParameterList(ArgList, PFS) || |
| ParseOptionalAttrs(FnAttrs, 2) || |
| ParseToken(lltok::kw_to, "expected 'to' in invoke") || |
| ParseTypeAndValue(NormalBB, PFS) || |
| ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || |
| ParseTypeAndValue(UnwindBB, PFS)) |
| return true; |
| |
| if (!isa<BasicBlock>(NormalBB)) |
| return Error(CallLoc, "normal destination is not a basic block"); |
| if (!isa<BasicBlock>(UnwindBB)) |
| return Error(CallLoc, "unwind destination is not a basic block"); |
| |
| // If RetType is a non-function pointer type, then this is the short syntax |
| // for the call, which means that RetType is just the return type. Infer the |
| // rest of the function argument types from the arguments that are present. |
| const PointerType *PFTy = 0; |
| const FunctionType *Ty = 0; |
| if (!(PFTy = dyn_cast<PointerType>(RetType)) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) |
| ParamTypes.push_back(ArgList[i].V->getType()); |
| |
| if (!FunctionType::isValidReturnType(RetType)) |
| return Error(RetTypeLoc, "Invalid result type for LLVM function"); |
| |
| Ty = FunctionType::get(RetType, ParamTypes, false); |
| PFTy = PointerType::getUnqual(Ty); |
| } |
| |
| // Look up the callee. |
| Value *Callee; |
| if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true; |
| |
| // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional |
| // function attributes. |
| unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; |
| if (FnAttrs & ObsoleteFuncAttrs) { |
| RetAttrs |= FnAttrs & ObsoleteFuncAttrs; |
| FnAttrs &= ~ObsoleteFuncAttrs; |
| } |
| |
| // Set up the Attributes for the function. |
| SmallVector<AttributeWithIndex, 8> Attrs; |
| if (RetAttrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); |
| |
| SmallVector<Value*, 8> Args; |
| |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly. Also, gather any parameter attributes. |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { |
| const Type *ExpectedTy = 0; |
| if (I != E) { |
| ExpectedTy = *I++; |
| } else if (!Ty->isVarArg()) { |
| return Error(ArgList[i].Loc, "too many arguments specified"); |
| } |
| |
| if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) |
| return Error(ArgList[i].Loc, "argument is not of expected type '" + |
| ExpectedTy->getDescription() + "'"); |
| Args.push_back(ArgList[i].V); |
| if (ArgList[i].Attrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); |
| } |
| |
| if (I != E) |
| return Error(CallLoc, "not enough parameters specified for call"); |
| |
| if (FnAttrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); |
| |
| // Finish off the Attributes and check them |
| AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); |
| |
| InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB), |
| cast<BasicBlock>(UnwindBB), |
| Args.begin(), Args.end()); |
| II->setCallingConv(CC); |
| II->setAttributes(PAL); |
| Inst = II; |
| return false; |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Operators. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseArithmetic |
| /// ::= ArithmeticOps TypeAndValue ',' Value |
| /// |
| /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, |
| /// then any integer operand is allowed, if it is 2, any fp operand is allowed. |
| bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc, unsigned OperandType) { |
| LocTy Loc; Value *LHS, *RHS; |
| if (ParseTypeAndValue(LHS, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' in arithmetic operation") || |
| ParseValue(LHS->getType(), RHS, PFS)) |
| return true; |
| |
| bool Valid; |
| switch (OperandType) { |
| default: llvm_unreachable("Unknown operand type!"); |
| case 0: // int or FP. |
| Valid = LHS->getType()->isIntOrIntVector() || |
| LHS->getType()->isFPOrFPVector(); |
| break; |
| case 1: Valid = LHS->getType()->isIntOrIntVector(); break; |
| case 2: Valid = LHS->getType()->isFPOrFPVector(); break; |
| } |
| |
| if (!Valid) |
| return Error(Loc, "invalid operand type for instruction"); |
| |
| Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| return false; |
| } |
| |
| /// ParseLogical |
| /// ::= ArithmeticOps TypeAndValue ',' Value { |
| bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc) { |
| LocTy Loc; Value *LHS, *RHS; |
| if (ParseTypeAndValue(LHS, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' in logical operation") || |
| ParseValue(LHS->getType(), RHS, PFS)) |
| return true; |
| |
| if (!LHS->getType()->isIntOrIntVector()) |
| return Error(Loc,"instruction requires integer or integer vector operands"); |
| |
| Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| return false; |
| } |
| |
| |
| /// ParseCompare |
| /// ::= 'icmp' IPredicates TypeAndValue ',' Value |
| /// ::= 'fcmp' FPredicates TypeAndValue ',' Value |
| bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc) { |
| // Parse the integer/fp comparison predicate. |
| LocTy Loc; |
| unsigned Pred; |
| Value *LHS, *RHS; |
| if (ParseCmpPredicate(Pred, Opc) || |
| ParseTypeAndValue(LHS, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after compare value") || |
| ParseValue(LHS->getType(), RHS, PFS)) |
| return true; |
| |
| if (Opc == Instruction::FCmp) { |
| if (!LHS->getType()->isFPOrFPVector()) |
| return Error(Loc, "fcmp requires floating point operands"); |
| Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); |
| } else { |
| assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); |
| if (!LHS->getType()->isIntOrIntVector() && |
| !isa<PointerType>(LHS->getType())) |
| return Error(Loc, "icmp requires integer operands"); |
| Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// ParseCast |
| /// ::= CastOpc TypeAndValue 'to' Type |
| bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc) { |
| LocTy Loc; Value *Op; |
| PATypeHolder DestTy(Type::getVoidTy(Context)); |
| if (ParseTypeAndValue(Op, Loc, PFS) || |
| ParseToken(lltok::kw_to, "expected 'to' after cast value") || |
| ParseType(DestTy)) |
| return true; |
| |
| if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { |
| CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); |
| return Error(Loc, "invalid cast opcode for cast from '" + |
| Op->getType()->getDescription() + "' to '" + |
| DestTy->getDescription() + "'"); |
| } |
| Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); |
| return false; |
| } |
| |
| /// ParseSelect |
| /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1, *Op2; |
| if (ParseTypeAndValue(Op0, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after select condition") || |
| ParseTypeAndValue(Op1, PFS) || |
| ParseToken(lltok::comma, "expected ',' after select value") || |
| ParseTypeAndValue(Op2, PFS)) |
| return true; |
| |
| if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) |
| return Error(Loc, Reason); |
| |
| Inst = SelectInst::Create(Op0, Op1, Op2); |
| return false; |
| } |
| |
| /// ParseVA_Arg |
| /// ::= 'va_arg' TypeAndValue ',' Type |
| bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Op; |
| PATypeHolder EltTy(Type::getVoidTy(Context)); |
| LocTy TypeLoc; |
| if (ParseTypeAndValue(Op, PFS) || |
| ParseToken(lltok::comma, "expected ',' after vaarg operand") || |
| ParseType(EltTy, TypeLoc)) |
| return true; |
| |
| if (!EltTy->isFirstClassType()) |
| return Error(TypeLoc, "va_arg requires operand with first class type"); |
| |
| Inst = new VAArgInst(Op, EltTy); |
| return false; |
| } |
| |
| /// ParseExtractElement |
| /// ::= 'extractelement' TypeAndValue ',' TypeAndValue |
| bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1; |
| if (ParseTypeAndValue(Op0, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after extract value") || |
| ParseTypeAndValue(Op1, PFS)) |
| return true; |
| |
| if (!ExtractElementInst::isValidOperands(Op0, Op1)) |
| return Error(Loc, "invalid extractelement operands"); |
| |
| Inst = ExtractElementInst::Create(Op0, Op1); |
| return false; |
| } |
| |
| /// ParseInsertElement |
| /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1, *Op2; |
| if (ParseTypeAndValue(Op0, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after insertelement value") || |
| ParseTypeAndValue(Op1, PFS) || |
| ParseToken(lltok::comma, "expected ',' after insertelement value") || |
| ParseTypeAndValue(Op2, PFS)) |
| return true; |
| |
| if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) |
| return Error(Loc, "invalid insertelement operands"); |
| |
| Inst = InsertElementInst::Create(Op0, Op1, Op2); |
| return false; |
| } |
| |
| /// ParseShuffleVector |
| /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1, *Op2; |
| if (ParseTypeAndValue(Op0, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after shuffle mask") || |
| ParseTypeAndValue(Op1, PFS) || |
| ParseToken(lltok::comma, "expected ',' after shuffle value") || |
| ParseTypeAndValue(Op2, PFS)) |
| return true; |
| |
| if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) |
| return Error(Loc, "invalid extractelement operands"); |
| |
| Inst = new ShuffleVectorInst(Op0, Op1, Op2); |
| return false; |
| } |
| |
| /// ParsePHI |
| /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')* |
| bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| Value *Op0, *Op1; |
| LocTy TypeLoc = Lex.getLoc(); |
| |
| if (ParseType(Ty) || |
| ParseToken(lltok::lsquare, "expected '[' in phi value list") || |
| ParseValue(Ty, Op0, PFS) || |
| ParseToken(lltok::comma, "expected ',' after insertelement value") || |
| ParseValue(Type::getLabelTy(Context), Op1, PFS) || |
| ParseToken(lltok::rsquare, "expected ']' in phi value list")) |
| return true; |
| |
| SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; |
| while (1) { |
| PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); |
| |
| if (!EatIfPresent(lltok::comma)) |
| break; |
| |
| if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || |
| ParseValue(Ty, Op0, PFS) || |
| ParseToken(lltok::comma, "expected ',' after insertelement value") || |
| ParseValue(Type::getLabelTy(Context), Op1, PFS) || |
| ParseToken(lltok::rsquare, "expected ']' in phi value list")) |
| return true; |
| } |
| |
| if (!Ty->isFirstClassType()) |
| return Error(TypeLoc, "phi node must have first class type"); |
| |
| PHINode *PN = PHINode::Create(Ty); |
| PN->reserveOperandSpace(PHIVals.size()); |
| for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) |
| PN->addIncoming(PHIVals[i].first, PHIVals[i].second); |
| Inst = PN; |
| return false; |
| } |
| |
| /// ParseCall |
| /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value |
| /// ParameterList OptionalAttrs |
| bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, |
| bool isTail) { |
| unsigned CC, RetAttrs, FnAttrs; |
| PATypeHolder RetType(Type::getVoidTy(Context)); |
| LocTy RetTypeLoc; |
| ValID CalleeID; |
| SmallVector<ParamInfo, 16> ArgList; |
| LocTy CallLoc = Lex.getLoc(); |
| |
| if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || |
| ParseOptionalCallingConv(CC) || |
| ParseOptionalAttrs(RetAttrs, 1) || |
| ParseType(RetType, RetTypeLoc, true /*void allowed*/) || |
| ParseValID(CalleeID) || |
| ParseParameterList(ArgList, PFS) || |
| ParseOptionalAttrs(FnAttrs, 2)) |
| return true; |
| |
| // If RetType is a non-function pointer type, then this is the short syntax |
| // for the call, which means that RetType is just the return type. Infer the |
| // rest of the function argument types from the arguments that are present. |
| const PointerType *PFTy = 0; |
| const FunctionType *Ty = 0; |
| if (!(PFTy = dyn_cast<PointerType>(RetType)) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) |
| ParamTypes.push_back(ArgList[i].V->getType()); |
| |
| if (!FunctionType::isValidReturnType(RetType)) |
| return Error(RetTypeLoc, "Invalid result type for LLVM function"); |
| |
| Ty = FunctionType::get(RetType, ParamTypes, false); |
| PFTy = PointerType::getUnqual(Ty); |
| } |
| |
| // Look up the callee. |
| Value *Callee; |
| if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true; |
| |
| // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional |
| // function attributes. |
| unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; |
| if (FnAttrs & ObsoleteFuncAttrs) { |
| RetAttrs |= FnAttrs & ObsoleteFuncAttrs; |
| FnAttrs &= ~ObsoleteFuncAttrs; |
| } |
| |
| // Set up the Attributes for the function. |
| SmallVector<AttributeWithIndex, 8> Attrs; |
| if (RetAttrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); |
| |
| SmallVector<Value*, 8> Args; |
| |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly. Also, gather any parameter attributes. |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { |
| const Type *ExpectedTy = 0; |
| if (I != E) { |
| ExpectedTy = *I++; |
| } else if (!Ty->isVarArg()) { |
| return Error(ArgList[i].Loc, "too many arguments specified"); |
| } |
| |
| if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) |
| return Error(ArgList[i].Loc, "argument is not of expected type '" + |
| ExpectedTy->getDescription() + "'"); |
| Args.push_back(ArgList[i].V); |
| if (ArgList[i].Attrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); |
| } |
| |
| if (I != E) |
| return Error(CallLoc, "not enough parameters specified for call"); |
| |
| if (FnAttrs != Attribute::None) |
| Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); |
| |
| // Finish off the Attributes and check them |
| AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); |
| |
| CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end()); |
| CI->setTailCall(isTail); |
| CI->setCallingConv(CC); |
| CI->setAttributes(PAL); |
| Inst = CI; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseAlloc |
| /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)? |
| /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)? |
| bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc) { |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| Value *Size = 0; |
| LocTy SizeLoc; |
| unsigned Alignment = 0; |
| if (ParseType(Ty)) return true; |
| |
| if (EatIfPresent(lltok::comma)) { |
| if (Lex.getKind() == lltok::kw_align) { |
| if (ParseOptionalAlignment(Alignment)) return true; |
| } else if (ParseTypeAndValue(Size, SizeLoc, PFS) || |
| ParseOptionalCommaAlignment(Alignment)) { |
| return true; |
| } |
| } |
| |
| if (Size && Size->getType() != Type::getInt32Ty(Context)) |
| return Error(SizeLoc, "element count must be i32"); |
| |
| if (Opc == Instruction::Malloc) |
| Inst = new MallocInst(Ty, Size, Alignment); |
| else |
| Inst = new AllocaInst(Ty, Size, Alignment); |
| return false; |
| } |
| |
| /// ParseFree |
| /// ::= 'free' TypeAndValue |
| bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val; LocTy Loc; |
| if (ParseTypeAndValue(Val, Loc, PFS)) return true; |
| if (!isa<PointerType>(Val->getType())) |
| return Error(Loc, "operand to free must be a pointer"); |
| Inst = new FreeInst(Val); |
| return false; |
| } |
| |
| /// ParseLoad |
| /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)? |
| bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS, |
| bool isVolatile) { |
| Value *Val; LocTy Loc; |
| unsigned Alignment; |
| if (ParseTypeAndValue(Val, Loc, PFS) || |
| ParseOptionalCommaAlignment(Alignment)) |
| return true; |
| |
| if (!isa<PointerType>(Val->getType()) || |
| !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) |
| return Error(Loc, "load operand must be a pointer to a first class type"); |
| |
| Inst = new LoadInst(Val, "", isVolatile, Alignment); |
| return false; |
| } |
| |
| /// ParseStore |
| /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)? |
| bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS, |
| bool isVolatile) { |
| Value *Val, *Ptr; LocTy Loc, PtrLoc; |
| unsigned Alignment; |
| if (ParseTypeAndValue(Val, Loc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after store operand") || |
| ParseTypeAndValue(Ptr, PtrLoc, PFS) || |
| ParseOptionalCommaAlignment(Alignment)) |
| return true; |
| |
| if (!isa<PointerType>(Ptr->getType())) |
| return Error(PtrLoc, "store operand must be a pointer"); |
| if (!Val->getType()->isFirstClassType()) |
| return Error(Loc, "store operand must be a first class value"); |
| if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) |
| return Error(Loc, "stored value and pointer type do not match"); |
| |
| Inst = new StoreInst(Val, Ptr, isVolatile, Alignment); |
| return false; |
| } |
| |
| /// ParseGetResult |
| /// ::= 'getresult' TypeAndValue ',' i32 |
| /// FIXME: Remove support for getresult in LLVM 3.0 |
| bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val; LocTy ValLoc, EltLoc; |
| unsigned Element; |
| if (ParseTypeAndValue(Val, ValLoc, PFS) || |
| ParseToken(lltok::comma, "expected ',' after getresult operand") || |
| ParseUInt32(Element, EltLoc)) |
| return true; |
| |
| if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType())) |
| return Error(ValLoc, "getresult inst requires an aggregate operand"); |
| if (!ExtractValueInst::getIndexedType(Val->getType(), Element)) |
| return Error(EltLoc, "invalid getresult index for value"); |
| Inst = ExtractValueInst::Create(Val, Element); |
| return false; |
| } |
| |
| /// ParseGetElementPtr |
| /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* |
| bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Ptr, *Val; LocTy Loc, EltLoc; |
| |
| bool InBounds = EatIfPresent(lltok::kw_inbounds); |
| |
| if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; |
| |
| if (!isa<PointerType>(Ptr->getType())) |
| return Error(Loc, "base of getelementptr must be a pointer"); |
| |
| SmallVector<Value*, 16> Indices; |
| while (EatIfPresent(lltok::comma)) { |
| if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; |
| if (!isa<IntegerType>(Val->getType())) |
| return Error(EltLoc, "getelementptr index must be an integer"); |
| Indices.push_back(Val); |
| } |
| |
| if (!GetElementPtrInst::getIndexedType(Ptr->getType(), |
| Indices.begin(), Indices.end())) |
| return Error(Loc, "invalid getelementptr indices"); |
| Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end()); |
| if (InBounds) |
| cast<GEPOperator>(Inst)->setIsInBounds(true); |
| return false; |
| } |
| |
| /// ParseExtractValue |
| /// ::= 'extractvalue' TypeAndValue (',' uint32)+ |
| bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val; LocTy Loc; |
| SmallVector<unsigned, 4> Indices; |
| if (ParseTypeAndValue(Val, Loc, PFS) || |
| ParseIndexList(Indices)) |
| return true; |
| |
| if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType())) |
| return Error(Loc, "extractvalue operand must be array or struct"); |
| |
| if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), |
| Indices.end())) |
| return Error(Loc, "invalid indices for extractvalue"); |
| Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end()); |
| return false; |
| } |
| |
| /// ParseInsertValue |
| /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ |
| bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val0, *Val1; LocTy Loc0, Loc1; |
| SmallVector<unsigned, 4> Indices; |
| if (ParseTypeAndValue(Val0, Loc0, PFS) || |
| ParseToken(lltok::comma, "expected comma after insertvalue operand") || |
| ParseTypeAndValue(Val1, Loc1, PFS) || |
| ParseIndexList(Indices)) |
| return true; |
| |
| if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType())) |
| return Error(Loc0, "extractvalue operand must be array or struct"); |
| |
| if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), |
| Indices.end())) |
| return Error(Loc0, "invalid indices for insertvalue"); |
| Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end()); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Embedded metadata. |
| //===----------------------------------------------------------------------===// |
| |
| /// ParseMDNodeVector |
| /// ::= Element (',' Element)* |
| /// Element |
| /// ::= 'null' | TypeAndValue |
| bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) { |
| assert(Lex.getKind() == lltok::lbrace); |
| Lex.Lex(); |
| do { |
| Value *V = 0; |
| if (Lex.getKind() == lltok::kw_null) { |
| Lex.Lex(); |
| V = 0; |
| } else { |
| PATypeHolder Ty(Type::getVoidTy(Context)); |
| if (ParseType(Ty)) return true; |
| if (Lex.getKind() == lltok::Metadata) { |
| Lex.Lex(); |
| MetadataBase *Node = 0; |
| if (!ParseMDNode(Node)) |
| V = Node; |
| else { |
| MetadataBase *MDS = 0; |
| if (ParseMDString(MDS)) return true; |
| V = MDS; |
| } |
| } else { |
| Constant *C; |
| if (ParseGlobalValue(Ty, C)) return true; |
| V = C; |
| } |
| } |
| Elts.push_back(V); |
| } while (EatIfPresent(lltok::comma)); |
| |
| return false; |
| } |