| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the LoopInfo class that is used to identify natural loops | 
 | // and determine the loop depth of various nodes of the CFG.  Note that the | 
 | // loops identified may actually be several natural loops that share the same | 
 | // header node... not just a single natural loop. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Assembly/Writer.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include <algorithm> | 
 | #include <iostream> | 
 | using namespace llvm; | 
 |  | 
 | static RegisterAnalysis<LoopInfo> | 
 | X("loops", "Natural Loop Construction", true); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Loop implementation | 
 | // | 
 | bool Loop::contains(const BasicBlock *BB) const { | 
 |   return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); | 
 | } | 
 |  | 
 | bool Loop::isLoopExit(const BasicBlock *BB) const { | 
 |   for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); | 
 |        SI != SE; ++SI) { | 
 |     if (!contains(*SI)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// getNumBackEdges - Calculate the number of back edges to the loop header. | 
 | /// | 
 | unsigned Loop::getNumBackEdges() const { | 
 |   unsigned NumBackEdges = 0; | 
 |   BasicBlock *H = getHeader(); | 
 |  | 
 |   for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I) | 
 |     if (contains(*I)) | 
 |       ++NumBackEdges; | 
 |  | 
 |   return NumBackEdges; | 
 | } | 
 |  | 
 | /// isLoopInvariant - Return true if the specified value is loop invariant | 
 | /// | 
 | bool Loop::isLoopInvariant(Value *V) const { | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return !contains(I->getParent()); | 
 |   return true;  // All non-instructions are loop invariant | 
 | } | 
 |  | 
 | void Loop::print(std::ostream &OS, unsigned Depth) const { | 
 |   OS << std::string(Depth*2, ' ') << "Loop Containing: "; | 
 |  | 
 |   for (unsigned i = 0; i < getBlocks().size(); ++i) { | 
 |     if (i) OS << ","; | 
 |     WriteAsOperand(OS, getBlocks()[i], false); | 
 |   } | 
 |   OS << "\n"; | 
 |  | 
 |   for (iterator I = begin(), E = end(); I != E; ++I) | 
 |     (*I)->print(OS, Depth+2); | 
 | } | 
 |  | 
 | void Loop::dump() const { | 
 |   print(std::cerr); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // LoopInfo implementation | 
 | // | 
 | void LoopInfo::stub() {} | 
 |  | 
 | bool LoopInfo::runOnFunction(Function &) { | 
 |   releaseMemory(); | 
 |   Calculate(getAnalysis<DominatorSet>());    // Update | 
 |   return false; | 
 | } | 
 |  | 
 | void LoopInfo::releaseMemory() { | 
 |   for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(), | 
 |          E = TopLevelLoops.end(); I != E; ++I) | 
 |     delete *I;   // Delete all of the loops... | 
 |  | 
 |   BBMap.clear();                             // Reset internal state of analysis | 
 |   TopLevelLoops.clear(); | 
 | } | 
 |  | 
 |  | 
 | void LoopInfo::Calculate(const DominatorSet &DS) { | 
 |   BasicBlock *RootNode = DS.getRoot(); | 
 |  | 
 |   for (df_iterator<BasicBlock*> NI = df_begin(RootNode), | 
 |          NE = df_end(RootNode); NI != NE; ++NI) | 
 |     if (Loop *L = ConsiderForLoop(*NI, DS)) | 
 |       TopLevelLoops.push_back(L); | 
 | } | 
 |  | 
 | void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequired<DominatorSet>(); | 
 | } | 
 |  | 
 | void LoopInfo::print(std::ostream &OS, const Module* ) const { | 
 |   for (unsigned i = 0; i < TopLevelLoops.size(); ++i) | 
 |     TopLevelLoops[i]->print(OS); | 
 | #if 0 | 
 |   for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(), | 
 |          E = BBMap.end(); I != E; ++I) | 
 |     OS << "BB '" << I->first->getName() << "' level = " | 
 |        << I->second->getLoopDepth() << "\n"; | 
 | #endif | 
 | } | 
 |  | 
 | static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { | 
 |   if (SubLoop == 0) return true; | 
 |   if (SubLoop == ParentLoop) return false; | 
 |   return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); | 
 | } | 
 |  | 
 | Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) { | 
 |   if (BBMap.find(BB) != BBMap.end()) return 0;   // Haven't processed this node? | 
 |  | 
 |   std::vector<BasicBlock *> TodoStack; | 
 |  | 
 |   // Scan the predecessors of BB, checking to see if BB dominates any of | 
 |   // them.  This identifies backedges which target this node... | 
 |   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) | 
 |     if (DS.dominates(BB, *I))   // If BB dominates it's predecessor... | 
 |       TodoStack.push_back(*I); | 
 |  | 
 |   if (TodoStack.empty()) return 0;  // No backedges to this block... | 
 |  | 
 |   // Create a new loop to represent this basic block... | 
 |   Loop *L = new Loop(BB); | 
 |   BBMap[BB] = L; | 
 |  | 
 |   BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock(); | 
 |  | 
 |   while (!TodoStack.empty()) {  // Process all the nodes in the loop | 
 |     BasicBlock *X = TodoStack.back(); | 
 |     TodoStack.pop_back(); | 
 |  | 
 |     if (!L->contains(X) &&         // As of yet unprocessed?? | 
 |         DS.dominates(EntryBlock, X)) {   // X is reachable from entry block? | 
 |       // Check to see if this block already belongs to a loop.  If this occurs | 
 |       // then we have a case where a loop that is supposed to be a child of the | 
 |       // current loop was processed before the current loop.  When this occurs, | 
 |       // this child loop gets added to a part of the current loop, making it a | 
 |       // sibling to the current loop.  We have to reparent this loop. | 
 |       if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X))) | 
 |         if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { | 
 |           // Remove the subloop from it's current parent... | 
 |           assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); | 
 |           Loop *SLP = SubLoop->ParentLoop;  // SubLoopParent | 
 |           std::vector<Loop*>::iterator I = | 
 |             std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); | 
 |           assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); | 
 |           SLP->SubLoops.erase(I);   // Remove from parent... | 
 |  | 
 |           // Add the subloop to THIS loop... | 
 |           SubLoop->ParentLoop = L; | 
 |           L->SubLoops.push_back(SubLoop); | 
 |         } | 
 |  | 
 |       // Normal case, add the block to our loop... | 
 |       L->Blocks.push_back(X); | 
 |  | 
 |       // Add all of the predecessors of X to the end of the work stack... | 
 |       TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); | 
 |     } | 
 |   } | 
 |  | 
 |   // If there are any loops nested within this loop, create them now! | 
 |   for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), | 
 |          E = L->Blocks.end(); I != E; ++I) | 
 |     if (Loop *NewLoop = ConsiderForLoop(*I, DS)) { | 
 |       L->SubLoops.push_back(NewLoop); | 
 |       NewLoop->ParentLoop = L; | 
 |     } | 
 |  | 
 |   // Add the basic blocks that comprise this loop to the BBMap so that this | 
 |   // loop can be found for them. | 
 |   // | 
 |   for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), | 
 |          E = L->Blocks.end(); I != E; ++I) { | 
 |     std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I); | 
 |     if (BBMI == BBMap.end() || BBMI->first != *I)  // Not in map yet... | 
 |       BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level | 
 |   } | 
 |  | 
 |   // Now that we have a list of all of the child loops of this loop, check to | 
 |   // see if any of them should actually be nested inside of each other.  We can | 
 |   // accidentally pull loops our of their parents, so we must make sure to | 
 |   // organize the loop nests correctly now. | 
 |   { | 
 |     std::map<BasicBlock*, Loop*> ContainingLoops; | 
 |     for (unsigned i = 0; i != L->SubLoops.size(); ++i) { | 
 |       Loop *Child = L->SubLoops[i]; | 
 |       assert(Child->getParentLoop() == L && "Not proper child loop?"); | 
 |  | 
 |       if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) { | 
 |         // If there is already a loop which contains this loop, move this loop | 
 |         // into the containing loop. | 
 |         MoveSiblingLoopInto(Child, ContainingLoop); | 
 |         --i;  // The loop got removed from the SubLoops list. | 
 |       } else { | 
 |         // This is currently considered to be a top-level loop.  Check to see if | 
 |         // any of the contained blocks are loop headers for subloops we have | 
 |         // already processed. | 
 |         for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { | 
 |           Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]]; | 
 |           if (BlockLoop == 0) {   // Child block not processed yet... | 
 |             BlockLoop = Child; | 
 |           } else if (BlockLoop != Child) { | 
 |             Loop *SubLoop = BlockLoop; | 
 |             // Reparent all of the blocks which used to belong to BlockLoops | 
 |             for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) | 
 |               ContainingLoops[SubLoop->Blocks[j]] = Child; | 
 |  | 
 |             // There is already a loop which contains this block, that means | 
 |             // that we should reparent the loop which the block is currently | 
 |             // considered to belong to to be a child of this loop. | 
 |             MoveSiblingLoopInto(SubLoop, Child); | 
 |             --i;  // We just shrunk the SubLoops list. | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return L; | 
 | } | 
 |  | 
 | /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of | 
 | /// the NewParent Loop, instead of being a sibling of it. | 
 | void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) { | 
 |   Loop *OldParent = NewChild->getParentLoop(); | 
 |   assert(OldParent && OldParent == NewParent->getParentLoop() && | 
 |          NewChild != NewParent && "Not sibling loops!"); | 
 |  | 
 |   // Remove NewChild from being a child of OldParent | 
 |   std::vector<Loop*>::iterator I = | 
 |     std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); | 
 |   assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); | 
 |   OldParent->SubLoops.erase(I);   // Remove from parent's subloops list | 
 |   NewChild->ParentLoop = 0; | 
 |  | 
 |   InsertLoopInto(NewChild, NewParent); | 
 | } | 
 |  | 
 | /// InsertLoopInto - This inserts loop L into the specified parent loop.  If the | 
 | /// parent loop contains a loop which should contain L, the loop gets inserted | 
 | /// into L instead. | 
 | void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) { | 
 |   BasicBlock *LHeader = L->getHeader(); | 
 |   assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); | 
 |  | 
 |   // Check to see if it belongs in a child loop... | 
 |   for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) | 
 |     if (Parent->SubLoops[i]->contains(LHeader)) { | 
 |       InsertLoopInto(L, Parent->SubLoops[i]); | 
 |       return; | 
 |     } | 
 |  | 
 |   // If not, insert it here! | 
 |   Parent->SubLoops.push_back(L); | 
 |   L->ParentLoop = Parent; | 
 | } | 
 |  | 
 | /// changeLoopFor - Change the top-level loop that contains BB to the | 
 | /// specified loop.  This should be used by transformations that restructure | 
 | /// the loop hierarchy tree. | 
 | void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) { | 
 |   Loop *&OldLoop = BBMap[BB]; | 
 |   assert(OldLoop && "Block not in a loop yet!"); | 
 |   OldLoop = L; | 
 | } | 
 |  | 
 | /// changeTopLevelLoop - Replace the specified loop in the top-level loops | 
 | /// list with the indicated loop. | 
 | void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { | 
 |   std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(), | 
 |                                              TopLevelLoops.end(), OldLoop); | 
 |   assert(I != TopLevelLoops.end() && "Old loop not at top level!"); | 
 |   *I = NewLoop; | 
 |   assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && | 
 |          "Loops already embedded into a subloop!"); | 
 | } | 
 |  | 
 | /// removeLoop - This removes the specified top-level loop from this loop info | 
 | /// object.  The loop is not deleted, as it will presumably be inserted into | 
 | /// another loop. | 
 | Loop *LoopInfo::removeLoop(iterator I) { | 
 |   assert(I != end() && "Cannot remove end iterator!"); | 
 |   Loop *L = *I; | 
 |   assert(L->getParentLoop() == 0 && "Not a top-level loop!"); | 
 |   TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); | 
 |   return L; | 
 | } | 
 |  | 
 | /// removeBlock - This method completely removes BB from all data structures, | 
 | /// including all of the Loop objects it is nested in and our mapping from | 
 | /// BasicBlocks to loops. | 
 | void LoopInfo::removeBlock(BasicBlock *BB) { | 
 |   std::map<BasicBlock *, Loop*>::iterator I = BBMap.find(BB); | 
 |   if (I != BBMap.end()) { | 
 |     for (Loop *L = I->second; L; L = L->getParentLoop()) | 
 |       L->removeBlockFromLoop(BB); | 
 |  | 
 |     BBMap.erase(I); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // APIs for simple analysis of the loop. | 
 | // | 
 |  | 
 | /// getExitBlocks - Return all of the successor blocks of this loop.  These | 
 | /// are the blocks _outside of the current loop_ which are branched to. | 
 | /// | 
 | void Loop::getExitBlocks(std::vector<BasicBlock*> &ExitBlocks) const { | 
 |   for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(), | 
 |          BE = Blocks.end(); BI != BE; ++BI) | 
 |     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) | 
 |       if (!contains(*I))               // Not in current loop? | 
 |         ExitBlocks.push_back(*I);          // It must be an exit block... | 
 | } | 
 |  | 
 |  | 
 | /// getLoopPreheader - If there is a preheader for this loop, return it.  A | 
 | /// loop has a preheader if there is only one edge to the header of the loop | 
 | /// from outside of the loop.  If this is the case, the block branching to the | 
 | /// header of the loop is the preheader node. | 
 | /// | 
 | /// This method returns null if there is no preheader for the loop. | 
 | /// | 
 | BasicBlock *Loop::getLoopPreheader() const { | 
 |   // Keep track of nodes outside the loop branching to the header... | 
 |   BasicBlock *Out = 0; | 
 |  | 
 |   // Loop over the predecessors of the header node... | 
 |   BasicBlock *Header = getHeader(); | 
 |   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); | 
 |        PI != PE; ++PI) | 
 |     if (!contains(*PI)) {     // If the block is not in the loop... | 
 |       if (Out && Out != *PI) | 
 |         return 0;             // Multiple predecessors outside the loop | 
 |       Out = *PI; | 
 |     } | 
 |  | 
 |   // Make sure there is only one exit out of the preheader... | 
 |   succ_iterator SI = succ_begin(Out); | 
 |   ++SI; | 
 |   if (SI != succ_end(Out)) | 
 |     return 0;  // Multiple exits from the block, must not be a preheader. | 
 |  | 
 |   // If there is exactly one preheader, return it.  If there was zero, then Out | 
 |   // is still null. | 
 |   return Out; | 
 | } | 
 |  | 
 | /// getLoopLatch - If there is a latch block for this loop, return it.  A | 
 | /// latch block is the canonical backedge for a loop.  A loop header in normal | 
 | /// form has two edges into it: one from a preheader and one from a latch | 
 | /// block. | 
 | BasicBlock *Loop::getLoopLatch() const { | 
 |   BasicBlock *Header = getHeader(); | 
 |   pred_iterator PI = pred_begin(Header), PE = pred_end(Header); | 
 |   if (PI == PE) return 0;  // no preds? | 
 |    | 
 |   BasicBlock *Latch = 0; | 
 |   if (contains(*PI)) | 
 |     Latch = *PI; | 
 |   ++PI; | 
 |   if (PI == PE) return 0;  // only one pred? | 
 |    | 
 |   if (contains(*PI)) { | 
 |     if (Latch) return 0;  // multiple backedges | 
 |     Latch = *PI; | 
 |   } | 
 |   ++PI; | 
 |   if (PI != PE) return 0;  // more than two preds | 
 |    | 
 |   return Latch;   | 
 | } | 
 |  | 
 | /// getCanonicalInductionVariable - Check to see if the loop has a canonical | 
 | /// induction variable: an integer recurrence that starts at 0 and increments by | 
 | /// one each time through the loop.  If so, return the phi node that corresponds | 
 | /// to it. | 
 | /// | 
 | PHINode *Loop::getCanonicalInductionVariable() const { | 
 |   BasicBlock *H = getHeader(); | 
 |  | 
 |   BasicBlock *Incoming = 0, *Backedge = 0; | 
 |   pred_iterator PI = pred_begin(H); | 
 |   assert(PI != pred_end(H) && "Loop must have at least one backedge!"); | 
 |   Backedge = *PI++; | 
 |   if (PI == pred_end(H)) return 0;  // dead loop | 
 |   Incoming = *PI++; | 
 |   if (PI != pred_end(H)) return 0;  // multiple backedges? | 
 |  | 
 |   if (contains(Incoming)) { | 
 |     if (contains(Backedge)) | 
 |       return 0; | 
 |     std::swap(Incoming, Backedge); | 
 |   } else if (!contains(Backedge)) | 
 |     return 0; | 
 |  | 
 |   // Loop over all of the PHI nodes, looking for a canonical indvar. | 
 |   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { | 
 |     PHINode *PN = cast<PHINode>(I); | 
 |     if (Instruction *Inc = | 
 |         dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) | 
 |       if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) | 
 |         if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) | 
 |           if (CI->equalsInt(1)) | 
 |             return PN; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds | 
 | /// the canonical induction variable value for the "next" iteration of the loop. | 
 | /// This always succeeds if getCanonicalInductionVariable succeeds. | 
 | /// | 
 | Instruction *Loop::getCanonicalInductionVariableIncrement() const { | 
 |   if (PHINode *PN = getCanonicalInductionVariable()) { | 
 |     bool P1InLoop = contains(PN->getIncomingBlock(1)); | 
 |     return cast<Instruction>(PN->getIncomingValue(P1InLoop)); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// getTripCount - Return a loop-invariant LLVM value indicating the number of | 
 | /// times the loop will be executed.  Note that this means that the backedge of | 
 | /// the loop executes N-1 times.  If the trip-count cannot be determined, this | 
 | /// returns null. | 
 | /// | 
 | Value *Loop::getTripCount() const { | 
 |   // Canonical loops will end with a 'setne I, V', where I is the incremented | 
 |   // canonical induction variable and V is the trip count of the loop. | 
 |   Instruction *Inc = getCanonicalInductionVariableIncrement(); | 
 |   if (Inc == 0) return 0; | 
 |   PHINode *IV = cast<PHINode>(Inc->getOperand(0)); | 
 |  | 
 |   BasicBlock *BackedgeBlock = | 
 |     IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); | 
 |  | 
 |   if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) | 
 |     if (BI->isConditional()) | 
 |       if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition())) | 
 |         if (SCI->getOperand(0) == Inc) | 
 |           if (BI->getSuccessor(0) == getHeader()) { | 
 |             if (SCI->getOpcode() == Instruction::SetNE) | 
 |               return SCI->getOperand(1); | 
 |           } else if (SCI->getOpcode() == Instruction::SetEQ) { | 
 |             return SCI->getOperand(1); | 
 |           } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | //===-------------------------------------------------------------------===// | 
 | // APIs for updating loop information after changing the CFG | 
 | // | 
 |  | 
 | /// addBasicBlockToLoop - This function is used by other analyses to update loop | 
 | /// information.  NewBB is set to be a new member of the current loop.  Because | 
 | /// of this, it is added as a member of all parent loops, and is added to the | 
 | /// specified LoopInfo object as being in the current basic block.  It is not | 
 | /// valid to replace the loop header with this method. | 
 | /// | 
 | void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) { | 
 |   assert((Blocks.empty() || LI[getHeader()] == this) && | 
 |          "Incorrect LI specified for this loop!"); | 
 |   assert(NewBB && "Cannot add a null basic block to the loop!"); | 
 |   assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); | 
 |  | 
 |   // Add the loop mapping to the LoopInfo object... | 
 |   LI.BBMap[NewBB] = this; | 
 |  | 
 |   // Add the basic block to this loop and all parent loops... | 
 |   Loop *L = this; | 
 |   while (L) { | 
 |     L->Blocks.push_back(NewBB); | 
 |     L = L->getParentLoop(); | 
 |   } | 
 | } | 
 |  | 
 | /// replaceChildLoopWith - This is used when splitting loops up.  It replaces | 
 | /// the OldChild entry in our children list with NewChild, and updates the | 
 | /// parent pointers of the two loops as appropriate. | 
 | void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) { | 
 |   assert(OldChild->ParentLoop == this && "This loop is already broken!"); | 
 |   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); | 
 |   std::vector<Loop*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(), | 
 |                                              OldChild); | 
 |   assert(I != SubLoops.end() && "OldChild not in loop!"); | 
 |   *I = NewChild; | 
 |   OldChild->ParentLoop = 0; | 
 |   NewChild->ParentLoop = this; | 
 | } | 
 |  | 
 | /// addChildLoop - Add the specified loop to be a child of this loop. | 
 | /// | 
 | void Loop::addChildLoop(Loop *NewChild) { | 
 |   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); | 
 |   NewChild->ParentLoop = this; | 
 |   SubLoops.push_back(NewChild); | 
 | } | 
 |  | 
 | template<typename T> | 
 | static void RemoveFromVector(std::vector<T*> &V, T *N) { | 
 |   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N); | 
 |   assert(I != V.end() && "N is not in this list!"); | 
 |   V.erase(I); | 
 | } | 
 |  | 
 | /// removeChildLoop - This removes the specified child from being a subloop of | 
 | /// this loop.  The loop is not deleted, as it will presumably be inserted | 
 | /// into another loop. | 
 | Loop *Loop::removeChildLoop(iterator I) { | 
 |   assert(I != SubLoops.end() && "Cannot remove end iterator!"); | 
 |   Loop *Child = *I; | 
 |   assert(Child->ParentLoop == this && "Child is not a child of this loop!"); | 
 |   SubLoops.erase(SubLoops.begin()+(I-begin())); | 
 |   Child->ParentLoop = 0; | 
 |   return Child; | 
 | } | 
 |  | 
 |  | 
 | /// removeBlockFromLoop - This removes the specified basic block from the | 
 | /// current loop, updating the Blocks and ExitBlocks lists as appropriate.  This | 
 | /// does not update the mapping in the LoopInfo class. | 
 | void Loop::removeBlockFromLoop(BasicBlock *BB) { | 
 |   RemoveFromVector(Blocks, BB); | 
 | } |