| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| |
| <html> |
| <head> |
| <title>Kaleidoscope: Implementing code generation to LLVM IR</title> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| <meta name="author" content="Chris Lattner"> |
| <meta name="author" content="Erick Tryzelaar"> |
| <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <h1>Kaleidoscope: Code generation to LLVM IR</h1> |
| |
| <ul> |
| <li><a href="index.html">Up to Tutorial Index</a></li> |
| <li>Chapter 3 |
| <ol> |
| <li><a href="#intro">Chapter 3 Introduction</a></li> |
| <li><a href="#basics">Code Generation Setup</a></li> |
| <li><a href="#exprs">Expression Code Generation</a></li> |
| <li><a href="#funcs">Function Code Generation</a></li> |
| <li><a href="#driver">Driver Changes and Closing Thoughts</a></li> |
| <li><a href="#code">Full Code Listing</a></li> |
| </ol> |
| </li> |
| <li><a href="OCamlLangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer |
| Support</li> |
| </ul> |
| |
| <div class="doc_author"> |
| <p> |
| Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> |
| and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> |
| </p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="intro">Chapter 3 Introduction</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language |
| with LLVM</a>" tutorial. This chapter shows you how to transform the <a |
| href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into |
| LLVM IR. This will teach you a little bit about how LLVM does things, as well |
| as demonstrate how easy it is to use. It's much more work to build a lexer and |
| parser than it is to generate LLVM IR code. :) |
| </p> |
| |
| <p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or |
| LLVM SVN to work. LLVM 2.2 and before will not work with it.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="basics">Code Generation Setup</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p> |
| In order to generate LLVM IR, we want some simple setup to get started. First |
| we define virtual code generation (codegen) methods in each AST class:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| let rec codegen_expr = function |
| | Ast.Number n -> ... |
| | Ast.Variable name -> ... |
| </pre> |
| </div> |
| |
| <p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node |
| along with all the things it depends on, and they all return an LLVM Value |
| object. "Value" is the class used to represent a "<a |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect |
| of SSA values is that their value is computed as the related instruction |
| executes, and it does not get a new value until (and if) the instruction |
| re-executes. In other words, there is no way to "change" an SSA value. For |
| more information, please read up on <a |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| Assignment</a> - the concepts are really quite natural once you grok them.</p> |
| |
| <p>The |
| second thing we want is an "Error" exception like we used for the parser, which |
| will be used to report errors found during code generation (for example, use of |
| an undeclared parameter):</p> |
| |
| <div class="doc_code"> |
| <pre> |
| exception Error of string |
| |
| let context = global_context () |
| let the_module = create_module context "my cool jit" |
| let builder = builder context |
| let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 |
| let double_type = double_type context |
| </pre> |
| </div> |
| |
| <p>The static variables will be used during code generation. |
| <tt>Codgen.the_module</tt> is the LLVM construct that contains all of the |
| functions and global variables in a chunk of code. In many ways, it is the |
| top-level structure that the LLVM IR uses to contain code.</p> |
| |
| <p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to |
| generate LLVM instructions. Instances of the <a |
| href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> |
| class keep track of the current place to insert instructions and has methods to |
| create new instructions.</p> |
| |
| <p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined |
| in the current scope and what their LLVM representation is. (In other words, it |
| is a symbol table for the code). In this form of Kaleidoscope, the only things |
| that can be referenced are function parameters. As such, function parameters |
| will be in this map when generating code for their function body.</p> |
| |
| <p> |
| With these basics in place, we can start talking about how to generate code for |
| each expression. Note that this assumes that the <tt>Codgen.builder</tt> has |
| been set up to generate code <em>into</em> something. For now, we'll assume |
| that this has already been done, and we'll just use it to emit code.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="exprs">Expression Code Generation</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>Generating LLVM code for expression nodes is very straightforward: less |
| than 30 lines of commented code for all four of our expression nodes. First |
| we'll do numeric literals:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| | Ast.Number n -> const_float double_type n |
| </pre> |
| </div> |
| |
| <p>In the LLVM IR, numeric constants are represented with the |
| <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt> |
| internally (<tt>APFloat</tt> has the capability of holding floating point |
| constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just |
| creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR |
| that constants are all uniqued together and shared. For this reason, the API |
| uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".</p> |
| |
| <div class="doc_code"> |
| <pre> |
| | Ast.Variable name -> |
| (try Hashtbl.find named_values name with |
| | Not_found -> raise (Error "unknown variable name")) |
| </pre> |
| </div> |
| |
| <p>References to variables are also quite simple using LLVM. In the simple |
| version of Kaleidoscope, we assume that the variable has already been emitted |
| somewhere and its value is available. In practice, the only values that can be |
| in the <tt>Codegen.named_values</tt> map are function arguments. This code |
| simply checks to see that the specified name is in the map (if not, an unknown |
| variable is being referenced) and returns the value for it. In future chapters, |
| we'll add support for <a href="LangImpl5.html#for">loop induction variables</a> |
| in the symbol table, and for <a href="LangImpl7.html#localvars">local |
| variables</a>.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| | Ast.Binary (op, lhs, rhs) -> |
| let lhs_val = codegen_expr lhs in |
| let rhs_val = codegen_expr rhs in |
| begin |
| match op with |
| | '+' -> build_fadd lhs_val rhs_val "addtmp" builder |
| | '-' -> build_fsub lhs_val rhs_val "subtmp" builder |
| | '*' -> build_fmul lhs_val rhs_val "multmp" builder |
| | '<' -> |
| (* Convert bool 0/1 to double 0.0 or 1.0 *) |
| let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in |
| build_uitofp i double_type "booltmp" builder |
| | _ -> raise (Error "invalid binary operator") |
| end |
| </pre> |
| </div> |
| |
| <p>Binary operators start to get more interesting. The basic idea here is that |
| we recursively emit code for the left-hand side of the expression, then the |
| right-hand side, then we compute the result of the binary expression. In this |
| code, we do a simple switch on the opcode to create the right LLVM instruction. |
| </p> |
| |
| <p>In the example above, the LLVM builder class is starting to show its value. |
| IRBuilder knows where to insert the newly created instruction, all you have to |
| do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>), |
| which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally |
| provide a name for the generated instruction.</p> |
| |
| <p>One nice thing about LLVM is that the name is just a hint. For instance, if |
| the code above emits multiple "addtmp" variables, LLVM will automatically |
| provide each one with an increasing, unique numeric suffix. Local value names |
| for instructions are purely optional, but it makes it much easier to read the |
| IR dumps.</p> |
| |
| <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by |
| strict rules: for example, the Left and Right operators of |
| an <a href="../LangRef.html#i_add">add instruction</a> must have the same |
| type, and the result type of the add must match the operand types. Because |
| all values in Kaleidoscope are doubles, this makes for very simple code for add, |
| sub and mul.</p> |
| |
| <p>On the other hand, LLVM specifies that the <a |
| href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value |
| (a one bit integer). The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we combine the fcmp instruction with |
| a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction |
| converts its input integer into a floating point value by treating the input |
| as an unsigned value. In contrast, if we used the <a |
| href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<' |
| operator would return 0.0 and -1.0, depending on the input value.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| | Ast.Call (callee, args) -> |
| (* Look up the name in the module table. *) |
| let callee = |
| match lookup_function callee the_module with |
| | Some callee -> callee |
| | None -> raise (Error "unknown function referenced") |
| in |
| let params = params callee in |
| |
| (* If argument mismatch error. *) |
| if Array.length params == Array.length args then () else |
| raise (Error "incorrect # arguments passed"); |
| let args = Array.map codegen_expr args in |
| build_call callee args "calltmp" builder |
| </pre> |
| </div> |
| |
| <p>Code generation for function calls is quite straightforward with LLVM. The |
| code above initially does a function name lookup in the LLVM Module's symbol |
| table. Recall that the LLVM Module is the container that holds all of the |
| functions we are JIT'ing. By giving each function the same name as what the |
| user specifies, we can use the LLVM symbol table to resolve function names for |
| us.</p> |
| |
| <p>Once we have the function to call, we recursively codegen each argument that |
| is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call |
| instruction</a>. Note that LLVM uses the native C calling conventions by |
| default, allowing these calls to also call into standard library functions like |
| "sin" and "cos", with no additional effort.</p> |
| |
| <p>This wraps up our handling of the four basic expressions that we have so far |
| in Kaleidoscope. Feel free to go in and add some more. For example, by |
| browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find |
| several other interesting instructions that are really easy to plug into our |
| basic framework.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="funcs">Function Code Generation</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>Code generation for prototypes and functions must handle a number of |
| details, which make their code less beautiful than expression code |
| generation, but allows us to illustrate some important points. First, lets |
| talk about code generation for prototypes: they are used both for function |
| bodies and external function declarations. The code starts with:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| let codegen_proto = function |
| | Ast.Prototype (name, args) -> |
| (* Make the function type: double(double,double) etc. *) |
| let doubles = Array.make (Array.length args) double_type in |
| let ft = function_type double_type doubles in |
| let f = |
| match lookup_function name the_module with |
| </pre> |
| </div> |
| |
| <p>This code packs a lot of power into a few lines. Note first that this |
| function returns a "Function*" instead of a "Value*" (although at the moment |
| they both are modeled by <tt>llvalue</tt> in ocaml). Because a "prototype" |
| really talks about the external interface for a function (not the value computed |
| by an expression), it makes sense for it to return the LLVM Function it |
| corresponds to when codegen'd.</p> |
| |
| <p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt> |
| that should be used for a given Prototype. Since all function arguments in |
| Kaleidoscope are of type double, the first line creates a vector of "N" LLVM |
| double types. It then uses the <tt>Llvm.function_type</tt> method to create a |
| function type that takes "N" doubles as arguments, returns one double as a |
| result, and that is not vararg (that uses the function |
| <tt>Llvm.var_arg_function_type</tt>). Note that Types in LLVM are uniqued just |
| like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p> |
| |
| <p>The final line above checks if the function has already been defined in |
| <tt>Codegen.the_module</tt>. If not, we will create it.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| | None -> declare_function name ft the_module |
| </pre> |
| </div> |
| |
| <p>This indicates the type and name to use, as well as which module to insert |
| into. By default we assume a function has |
| <tt>Llvm.Linkage.ExternalLinkage</tt>. "<a href="LangRef.html#linkage">external |
| linkage</a>" means that the function may be defined outside the current module |
| and/or that it is callable by functions outside the module. The "<tt>name</tt>" |
| passed in is the name the user specified: this name is registered in |
| "<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call |
| code above.</p> |
| |
| <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases: |
| first, we want to allow 'extern'ing a function more than once, as long as the |
| prototypes for the externs match (since all arguments have the same type, we |
| just have to check that the number of arguments match). Second, we want to |
| allow 'extern'ing a function and then defining a body for it. This is useful |
| when defining mutually recursive functions.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| (* If 'f' conflicted, there was already something named 'name'. If it |
| * has a body, don't allow redefinition or reextern. *) |
| | Some f -> |
| (* If 'f' already has a body, reject this. *) |
| if Array.length (basic_blocks f) == 0 then () else |
| raise (Error "redefinition of function"); |
| |
| (* If 'f' took a different number of arguments, reject. *) |
| if Array.length (params f) == Array.length args then () else |
| raise (Error "redefinition of function with different # args"); |
| f |
| in |
| </pre> |
| </div> |
| |
| <p>In order to verify the logic above, we first check to see if the pre-existing |
| function is "empty". In this case, empty means that it has no basic blocks in |
| it, which means it has no body. If it has no body, it is a forward |
| declaration. Since we don't allow anything after a full definition of the |
| function, the code rejects this case. If the previous reference to a function |
| was an 'extern', we simply verify that the number of arguments for that |
| definition and this one match up. If not, we emit an error.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| (* Set names for all arguments. *) |
| Array.iteri (fun i a -> |
| let n = args.(i) in |
| set_value_name n a; |
| Hashtbl.add named_values n a; |
| ) (params f); |
| f |
| </pre> |
| </div> |
| |
| <p>The last bit of code for prototypes loops over all of the arguments in the |
| function, setting the name of the LLVM Argument objects to match, and registering |
| the arguments in the <tt>Codegen.named_values</tt> map for future use by the |
| <tt>Ast.Variable</tt> variant. Once this is set up, it returns the Function |
| object to the caller. Note that we don't check for conflicting |
| argument names here (e.g. "extern foo(a b a)"). Doing so would be very |
| straight-forward with the mechanics we have already used above.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| let codegen_func = function |
| | Ast.Function (proto, body) -> |
| Hashtbl.clear named_values; |
| let the_function = codegen_proto proto in |
| </pre> |
| </div> |
| |
| <p>Code generation for function definitions starts out simply enough: we just |
| codegen the prototype (Proto) and verify that it is ok. We then clear out the |
| <tt>Codegen.named_values</tt> map to make sure that there isn't anything in it |
| from the last function we compiled. Code generation of the prototype ensures |
| that there is an LLVM Function object that is ready to go for us.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| (* Create a new basic block to start insertion into. *) |
| let bb = append_block context "entry" the_function in |
| position_at_end bb builder; |
| |
| try |
| let ret_val = codegen_expr body in |
| </pre> |
| </div> |
| |
| <p>Now we get to the point where the <tt>Codegen.builder</tt> is set up. The |
| first line creates a new |
| <a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named |
| "entry"), which is inserted into <tt>the_function</tt>. The second line then |
| tells the builder that new instructions should be inserted into the end of the |
| new basic block. Basic blocks in LLVM are an important part of functions that |
| define the <a |
| href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>. |
| Since we don't have any control flow, our functions will only contain one |
| block at this point. We'll fix this in <a href="OCamlLangImpl5.html">Chapter |
| 5</a> :).</p> |
| |
| <div class="doc_code"> |
| <pre> |
| let ret_val = codegen_expr body in |
| |
| (* Finish off the function. *) |
| let _ = build_ret ret_val builder in |
| |
| (* Validate the generated code, checking for consistency. *) |
| Llvm_analysis.assert_valid_function the_function; |
| |
| the_function |
| </pre> |
| </div> |
| |
| <p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt> |
| method for the root expression of the function. If no error happens, this emits |
| code to compute the expression into the entry block and returns the value that |
| was computed. Assuming no error, we then create an LLVM <a |
| href="../LangRef.html#i_ret">ret instruction</a>, which completes the function. |
| Once the function is built, we call |
| <tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM. This |
| function does a variety of consistency checks on the generated code, to |
| determine if our compiler is doing everything right. Using this is important: |
| it can catch a lot of bugs. Once the function is finished and validated, we |
| return it.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| with e -> |
| delete_function the_function; |
| raise e |
| </pre> |
| </div> |
| |
| <p>The only piece left here is handling of the error case. For simplicity, we |
| handle this by merely deleting the function we produced with the |
| <tt>Llvm.delete_function</tt> method. This allows the user to redefine a |
| function that they incorrectly typed in before: if we didn't delete it, it |
| would live in the symbol table, with a body, preventing future redefinition.</p> |
| |
| <p>This code does have a bug, though. Since the <tt>Codegen.codegen_proto</tt> |
| can return a previously defined forward declaration, our code can actually delete |
| a forward declaration. There are a number of ways to fix this bug, see what you |
| can come up with! Here is a testcase:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| extern foo(a b); # ok, defines foo. |
| def foo(a b) c; # error, 'c' is invalid. |
| def bar() foo(1, 2); # error, unknown function "foo" |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="driver">Driver Changes and Closing Thoughts</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p> |
| For now, code generation to LLVM doesn't really get us much, except that we can |
| look at the pretty IR calls. The sample code inserts calls to Codegen into the |
| "<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR. This gives a |
| nice way to look at the LLVM IR for simple functions. For example: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>4+5</b>; |
| Read top-level expression: |
| define double @""() { |
| entry: |
| %addtmp = fadd double 4.000000e+00, 5.000000e+00 |
| ret double %addtmp |
| } |
| </pre> |
| </div> |
| |
| <p>Note how the parser turns the top-level expression into anonymous functions |
| for us. This will be handy when we add <a href="OCamlLangImpl4.html#jit">JIT |
| support</a> in the next chapter. Also note that the code is very literally |
| transcribed, no optimizations are being performed. We will |
| <a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly |
| in the next chapter.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b> |
| Read function definition: |
| define double @foo(double %a, double %b) { |
| entry: |
| %multmp = fmul double %a, %a |
| %multmp1 = fmul double 2.000000e+00, %a |
| %multmp2 = fmul double %multmp1, %b |
| %addtmp = fadd double %multmp, %multmp2 |
| %multmp3 = fmul double %b, %b |
| %addtmp4 = fadd double %addtmp, %multmp3 |
| ret double %addtmp4 |
| } |
| </pre> |
| </div> |
| |
| <p>This shows some simple arithmetic. Notice the striking similarity to the |
| LLVM builder calls that we use to create the instructions.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b> |
| Read function definition: |
| define double @bar(double %a) { |
| entry: |
| %calltmp = call double @foo(double %a, double 4.000000e+00) |
| %calltmp1 = call double @bar(double 3.133700e+04) |
| %addtmp = fadd double %calltmp, %calltmp1 |
| ret double %addtmp |
| } |
| </pre> |
| </div> |
| |
| <p>This shows some function calls. Note that this function will take a long |
| time to execute if you call it. In the future we'll add conditional control |
| flow to actually make recursion useful :).</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>extern cos(x);</b> |
| Read extern: |
| declare double @cos(double) |
| |
| ready> <b>cos(1.234);</b> |
| Read top-level expression: |
| define double @""() { |
| entry: |
| %calltmp = call double @cos(double 1.234000e+00) |
| ret double %calltmp |
| } |
| </pre> |
| </div> |
| |
| <p>This shows an extern for the libm "cos" function, and a call to it.</p> |
| |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>^D</b> |
| ; ModuleID = 'my cool jit' |
| |
| define double @""() { |
| entry: |
| %addtmp = fadd double 4.000000e+00, 5.000000e+00 |
| ret double %addtmp |
| } |
| |
| define double @foo(double %a, double %b) { |
| entry: |
| %multmp = fmul double %a, %a |
| %multmp1 = fmul double 2.000000e+00, %a |
| %multmp2 = fmul double %multmp1, %b |
| %addtmp = fadd double %multmp, %multmp2 |
| %multmp3 = fmul double %b, %b |
| %addtmp4 = fadd double %addtmp, %multmp3 |
| ret double %addtmp4 |
| } |
| |
| define double @bar(double %a) { |
| entry: |
| %calltmp = call double @foo(double %a, double 4.000000e+00) |
| %calltmp1 = call double @bar(double 3.133700e+04) |
| %addtmp = fadd double %calltmp, %calltmp1 |
| ret double %addtmp |
| } |
| |
| declare double @cos(double) |
| |
| define double @""() { |
| entry: |
| %calltmp = call double @cos(double 1.234000e+00) |
| ret double %calltmp |
| } |
| </pre> |
| </div> |
| |
| <p>When you quit the current demo, it dumps out the IR for the entire module |
| generated. Here you can see the big picture with all the functions referencing |
| each other.</p> |
| |
| <p>This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we'll |
| describe how to <a href="OCamlLangImpl4.html">add JIT codegen and optimizer |
| support</a> to this so we can actually start running code!</p> |
| |
| </div> |
| |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="code">Full Code Listing</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p> |
| Here is the complete code listing for our running example, enhanced with the |
| LLVM code generator. Because this uses the LLVM libraries, we need to link |
| them in. To do this, we use the <a |
| href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform |
| our makefile/command line about which options to use:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| # Compile |
| ocamlbuild toy.byte |
| # Run |
| ./toy.byte |
| </pre> |
| </div> |
| |
| <p>Here is the code:</p> |
| |
| <dl> |
| <dt>_tags:</dt> |
| <dd class="doc_code"> |
| <pre> |
| <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) |
| <*.{byte,native}>: g++, use_llvm, use_llvm_analysis |
| </pre> |
| </dd> |
| |
| <dt>myocamlbuild.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| open Ocamlbuild_plugin;; |
| |
| ocaml_lib ~extern:true "llvm";; |
| ocaml_lib ~extern:true "llvm_analysis";; |
| |
| flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; |
| </pre> |
| </dd> |
| |
| <dt>token.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| (*===----------------------------------------------------------------------=== |
| * Lexer Tokens |
| *===----------------------------------------------------------------------===*) |
| |
| (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of |
| * these others for known things. *) |
| type token = |
| (* commands *) |
| | Def | Extern |
| |
| (* primary *) |
| | Ident of string | Number of float |
| |
| (* unknown *) |
| | Kwd of char |
| </pre> |
| </dd> |
| |
| <dt>lexer.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| (*===----------------------------------------------------------------------=== |
| * Lexer |
| *===----------------------------------------------------------------------===*) |
| |
| let rec lex = parser |
| (* Skip any whitespace. *) |
| | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream |
| |
| (* identifier: [a-zA-Z][a-zA-Z0-9] *) |
| | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> |
| let buffer = Buffer.create 1 in |
| Buffer.add_char buffer c; |
| lex_ident buffer stream |
| |
| (* number: [0-9.]+ *) |
| | [< ' ('0' .. '9' as c); stream >] -> |
| let buffer = Buffer.create 1 in |
| Buffer.add_char buffer c; |
| lex_number buffer stream |
| |
| (* Comment until end of line. *) |
| | [< ' ('#'); stream >] -> |
| lex_comment stream |
| |
| (* Otherwise, just return the character as its ascii value. *) |
| | [< 'c; stream >] -> |
| [< 'Token.Kwd c; lex stream >] |
| |
| (* end of stream. *) |
| | [< >] -> [< >] |
| |
| and lex_number buffer = parser |
| | [< ' ('0' .. '9' | '.' as c); stream >] -> |
| Buffer.add_char buffer c; |
| lex_number buffer stream |
| | [< stream=lex >] -> |
| [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] |
| |
| and lex_ident buffer = parser |
| | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> |
| Buffer.add_char buffer c; |
| lex_ident buffer stream |
| | [< stream=lex >] -> |
| match Buffer.contents buffer with |
| | "def" -> [< 'Token.Def; stream >] |
| | "extern" -> [< 'Token.Extern; stream >] |
| | id -> [< 'Token.Ident id; stream >] |
| |
| and lex_comment = parser |
| | [< ' ('\n'); stream=lex >] -> stream |
| | [< 'c; e=lex_comment >] -> e |
| | [< >] -> [< >] |
| </pre> |
| </dd> |
| |
| <dt>ast.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| (*===----------------------------------------------------------------------=== |
| * Abstract Syntax Tree (aka Parse Tree) |
| *===----------------------------------------------------------------------===*) |
| |
| (* expr - Base type for all expression nodes. *) |
| type expr = |
| (* variant for numeric literals like "1.0". *) |
| | Number of float |
| |
| (* variant for referencing a variable, like "a". *) |
| | Variable of string |
| |
| (* variant for a binary operator. *) |
| | Binary of char * expr * expr |
| |
| (* variant for function calls. *) |
| | Call of string * expr array |
| |
| (* proto - This type represents the "prototype" for a function, which captures |
| * its name, and its argument names (thus implicitly the number of arguments the |
| * function takes). *) |
| type proto = Prototype of string * string array |
| |
| (* func - This type represents a function definition itself. *) |
| type func = Function of proto * expr |
| </pre> |
| </dd> |
| |
| <dt>parser.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| (*===---------------------------------------------------------------------=== |
| * Parser |
| *===---------------------------------------------------------------------===*) |
| |
| (* binop_precedence - This holds the precedence for each binary operator that is |
| * defined *) |
| let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 |
| |
| (* precedence - Get the precedence of the pending binary operator token. *) |
| let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 |
| |
| (* primary |
| * ::= identifier |
| * ::= numberexpr |
| * ::= parenexpr *) |
| let rec parse_primary = parser |
| (* numberexpr ::= number *) |
| | [< 'Token.Number n >] -> Ast.Number n |
| |
| (* parenexpr ::= '(' expression ')' *) |
| | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e |
| |
| (* identifierexpr |
| * ::= identifier |
| * ::= identifier '(' argumentexpr ')' *) |
| | [< 'Token.Ident id; stream >] -> |
| let rec parse_args accumulator = parser |
| | [< e=parse_expr; stream >] -> |
| begin parser |
| | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e |
| | [< >] -> e :: accumulator |
| end stream |
| | [< >] -> accumulator |
| in |
| let rec parse_ident id = parser |
| (* Call. *) |
| | [< 'Token.Kwd '('; |
| args=parse_args []; |
| 'Token.Kwd ')' ?? "expected ')'">] -> |
| Ast.Call (id, Array.of_list (List.rev args)) |
| |
| (* Simple variable ref. *) |
| | [< >] -> Ast.Variable id |
| in |
| parse_ident id stream |
| |
| | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") |
| |
| (* binoprhs |
| * ::= ('+' primary)* *) |
| and parse_bin_rhs expr_prec lhs stream = |
| match Stream.peek stream with |
| (* If this is a binop, find its precedence. *) |
| | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> |
| let token_prec = precedence c in |
| |
| (* If this is a binop that binds at least as tightly as the current binop, |
| * consume it, otherwise we are done. *) |
| if token_prec < expr_prec then lhs else begin |
| (* Eat the binop. *) |
| Stream.junk stream; |
| |
| (* Parse the primary expression after the binary operator. *) |
| let rhs = parse_primary stream in |
| |
| (* Okay, we know this is a binop. *) |
| let rhs = |
| match Stream.peek stream with |
| | Some (Token.Kwd c2) -> |
| (* If BinOp binds less tightly with rhs than the operator after |
| * rhs, let the pending operator take rhs as its lhs. *) |
| let next_prec = precedence c2 in |
| if token_prec < next_prec |
| then parse_bin_rhs (token_prec + 1) rhs stream |
| else rhs |
| | _ -> rhs |
| in |
| |
| (* Merge lhs/rhs. *) |
| let lhs = Ast.Binary (c, lhs, rhs) in |
| parse_bin_rhs expr_prec lhs stream |
| end |
| | _ -> lhs |
| |
| (* expression |
| * ::= primary binoprhs *) |
| and parse_expr = parser |
| | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream |
| |
| (* prototype |
| * ::= id '(' id* ')' *) |
| let parse_prototype = |
| let rec parse_args accumulator = parser |
| | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e |
| | [< >] -> accumulator |
| in |
| |
| parser |
| | [< 'Token.Ident id; |
| 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| args=parse_args []; |
| 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| (* success. *) |
| Ast.Prototype (id, Array.of_list (List.rev args)) |
| |
| | [< >] -> |
| raise (Stream.Error "expected function name in prototype") |
| |
| (* definition ::= 'def' prototype expression *) |
| let parse_definition = parser |
| | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> |
| Ast.Function (p, e) |
| |
| (* toplevelexpr ::= expression *) |
| let parse_toplevel = parser |
| | [< e=parse_expr >] -> |
| (* Make an anonymous proto. *) |
| Ast.Function (Ast.Prototype ("", [||]), e) |
| |
| (* external ::= 'extern' prototype *) |
| let parse_extern = parser |
| | [< 'Token.Extern; e=parse_prototype >] -> e |
| </pre> |
| </dd> |
| |
| <dt>codegen.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| (*===----------------------------------------------------------------------=== |
| * Code Generation |
| *===----------------------------------------------------------------------===*) |
| |
| open Llvm |
| |
| exception Error of string |
| |
| let context = global_context () |
| let the_module = create_module context "my cool jit" |
| let builder = builder context |
| let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 |
| let double_type = double_type context |
| |
| let rec codegen_expr = function |
| | Ast.Number n -> const_float double_type n |
| | Ast.Variable name -> |
| (try Hashtbl.find named_values name with |
| | Not_found -> raise (Error "unknown variable name")) |
| | Ast.Binary (op, lhs, rhs) -> |
| let lhs_val = codegen_expr lhs in |
| let rhs_val = codegen_expr rhs in |
| begin |
| match op with |
| | '+' -> build_add lhs_val rhs_val "addtmp" builder |
| | '-' -> build_sub lhs_val rhs_val "subtmp" builder |
| | '*' -> build_mul lhs_val rhs_val "multmp" builder |
| | '<' -> |
| (* Convert bool 0/1 to double 0.0 or 1.0 *) |
| let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in |
| build_uitofp i double_type "booltmp" builder |
| | _ -> raise (Error "invalid binary operator") |
| end |
| | Ast.Call (callee, args) -> |
| (* Look up the name in the module table. *) |
| let callee = |
| match lookup_function callee the_module with |
| | Some callee -> callee |
| | None -> raise (Error "unknown function referenced") |
| in |
| let params = params callee in |
| |
| (* If argument mismatch error. *) |
| if Array.length params == Array.length args then () else |
| raise (Error "incorrect # arguments passed"); |
| let args = Array.map codegen_expr args in |
| build_call callee args "calltmp" builder |
| |
| let codegen_proto = function |
| | Ast.Prototype (name, args) -> |
| (* Make the function type: double(double,double) etc. *) |
| let doubles = Array.make (Array.length args) double_type in |
| let ft = function_type double_type doubles in |
| let f = |
| match lookup_function name the_module with |
| | None -> declare_function name ft the_module |
| |
| (* If 'f' conflicted, there was already something named 'name'. If it |
| * has a body, don't allow redefinition or reextern. *) |
| | Some f -> |
| (* If 'f' already has a body, reject this. *) |
| if block_begin f <> At_end f then |
| raise (Error "redefinition of function"); |
| |
| (* If 'f' took a different number of arguments, reject. *) |
| if element_type (type_of f) <> ft then |
| raise (Error "redefinition of function with different # args"); |
| f |
| in |
| |
| (* Set names for all arguments. *) |
| Array.iteri (fun i a -> |
| let n = args.(i) in |
| set_value_name n a; |
| Hashtbl.add named_values n a; |
| ) (params f); |
| f |
| |
| let codegen_func = function |
| | Ast.Function (proto, body) -> |
| Hashtbl.clear named_values; |
| let the_function = codegen_proto proto in |
| |
| (* Create a new basic block to start insertion into. *) |
| let bb = append_block context "entry" the_function in |
| position_at_end bb builder; |
| |
| try |
| let ret_val = codegen_expr body in |
| |
| (* Finish off the function. *) |
| let _ = build_ret ret_val builder in |
| |
| (* Validate the generated code, checking for consistency. *) |
| Llvm_analysis.assert_valid_function the_function; |
| |
| the_function |
| with e -> |
| delete_function the_function; |
| raise e |
| </pre> |
| </dd> |
| |
| <dt>toplevel.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| (*===----------------------------------------------------------------------=== |
| * Top-Level parsing and JIT Driver |
| *===----------------------------------------------------------------------===*) |
| |
| open Llvm |
| |
| (* top ::= definition | external | expression | ';' *) |
| let rec main_loop stream = |
| match Stream.peek stream with |
| | None -> () |
| |
| (* ignore top-level semicolons. *) |
| | Some (Token.Kwd ';') -> |
| Stream.junk stream; |
| main_loop stream |
| |
| | Some token -> |
| begin |
| try match token with |
| | Token.Def -> |
| let e = Parser.parse_definition stream in |
| print_endline "parsed a function definition."; |
| dump_value (Codegen.codegen_func e); |
| | Token.Extern -> |
| let e = Parser.parse_extern stream in |
| print_endline "parsed an extern."; |
| dump_value (Codegen.codegen_proto e); |
| | _ -> |
| (* Evaluate a top-level expression into an anonymous function. *) |
| let e = Parser.parse_toplevel stream in |
| print_endline "parsed a top-level expr"; |
| dump_value (Codegen.codegen_func e); |
| with Stream.Error s | Codegen.Error s -> |
| (* Skip token for error recovery. *) |
| Stream.junk stream; |
| print_endline s; |
| end; |
| print_string "ready> "; flush stdout; |
| main_loop stream |
| </pre> |
| </dd> |
| |
| <dt>toy.ml:</dt> |
| <dd class="doc_code"> |
| <pre> |
| (*===----------------------------------------------------------------------=== |
| * Main driver code. |
| *===----------------------------------------------------------------------===*) |
| |
| open Llvm |
| |
| let main () = |
| (* Install standard binary operators. |
| * 1 is the lowest precedence. *) |
| Hashtbl.add Parser.binop_precedence '<' 10; |
| Hashtbl.add Parser.binop_precedence '+' 20; |
| Hashtbl.add Parser.binop_precedence '-' 20; |
| Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) |
| |
| (* Prime the first token. *) |
| print_string "ready> "; flush stdout; |
| let stream = Lexer.lex (Stream.of_channel stdin) in |
| |
| (* Run the main "interpreter loop" now. *) |
| Toplevel.main_loop stream; |
| |
| (* Print out all the generated code. *) |
| dump_module Codegen.the_module |
| ;; |
| |
| main () |
| </pre> |
| </dd> |
| </dl> |
| |
| <a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <hr> |
| <address> |
| <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| <a href="http://validator.w3.org/check/referer"><img |
| src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| |
| <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br> |
| <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> |
| Last modified: $Date$ |
| </address> |
| </body> |
| </html> |