| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "assembler" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/Target/TargetMachOWriterInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <vector> |
| using namespace llvm; |
| |
| class MachObjectWriter; |
| |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments"); |
| |
| // FIXME FIXME FIXME: There are number of places in this file where we convert |
| // what is a 64-bit assembler value used for computation into a value in the |
| // object file, which may truncate it. We should detect that truncation where |
| // invalid and report errors back. |
| |
| static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, |
| MachObjectWriter &MOW); |
| |
| /// isVirtualSection - Check if this is a section which does not actually exist |
| /// in the object file. |
| static bool isVirtualSection(const MCSection &Section) { |
| // FIXME: Lame. |
| const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); |
| unsigned Type = SMO.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; |
| return (Type == MCSectionMachO::S_ZEROFILL); |
| } |
| |
| class MachObjectWriter { |
| // See <mach-o/loader.h>. |
| enum { |
| Header_Magic32 = 0xFEEDFACE, |
| Header_Magic64 = 0xFEEDFACF |
| }; |
| |
| static const unsigned Header32Size = 28; |
| static const unsigned Header64Size = 32; |
| static const unsigned SegmentLoadCommand32Size = 56; |
| static const unsigned Section32Size = 68; |
| static const unsigned SymtabLoadCommandSize = 24; |
| static const unsigned DysymtabLoadCommandSize = 80; |
| static const unsigned Nlist32Size = 12; |
| static const unsigned RelocationInfoSize = 8; |
| |
| enum HeaderFileType { |
| HFT_Object = 0x1 |
| }; |
| |
| enum HeaderFlags { |
| HF_SubsectionsViaSymbols = 0x2000 |
| }; |
| |
| enum LoadCommandType { |
| LCT_Segment = 0x1, |
| LCT_Symtab = 0x2, |
| LCT_Dysymtab = 0xb |
| }; |
| |
| // See <mach-o/nlist.h>. |
| enum SymbolTypeType { |
| STT_Undefined = 0x00, |
| STT_Absolute = 0x02, |
| STT_Section = 0x0e |
| }; |
| |
| enum SymbolTypeFlags { |
| // If any of these bits are set, then the entry is a stab entry number (see |
| // <mach-o/stab.h>. Otherwise the other masks apply. |
| STF_StabsEntryMask = 0xe0, |
| |
| STF_TypeMask = 0x0e, |
| STF_External = 0x01, |
| STF_PrivateExtern = 0x10 |
| }; |
| |
| /// IndirectSymbolFlags - Flags for encoding special values in the indirect |
| /// symbol entry. |
| enum IndirectSymbolFlags { |
| ISF_Local = 0x80000000, |
| ISF_Absolute = 0x40000000 |
| }; |
| |
| /// RelocationFlags - Special flags for addresses. |
| enum RelocationFlags { |
| RF_Scattered = 0x80000000 |
| }; |
| |
| enum RelocationInfoType { |
| RIT_Vanilla = 0, |
| RIT_Pair = 1, |
| RIT_Difference = 2, |
| RIT_PreboundLazyPointer = 3, |
| RIT_LocalDifference = 4 |
| }; |
| |
| /// MachSymbolData - Helper struct for containing some precomputed information |
| /// on symbols. |
| struct MachSymbolData { |
| MCSymbolData *SymbolData; |
| uint64_t StringIndex; |
| uint8_t SectionIndex; |
| |
| // Support lexicographic sorting. |
| bool operator<(const MachSymbolData &RHS) const { |
| const std::string &Name = SymbolData->getSymbol().getName(); |
| return Name < RHS.SymbolData->getSymbol().getName(); |
| } |
| }; |
| |
| raw_ostream &OS; |
| bool IsLSB; |
| |
| public: |
| MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true) |
| : OS(_OS), IsLSB(_IsLSB) { |
| } |
| |
| /// @name Helper Methods |
| /// @{ |
| |
| void Write8(uint8_t Value) { |
| OS << char(Value); |
| } |
| |
| void Write16(uint16_t Value) { |
| if (IsLSB) { |
| Write8(uint8_t(Value >> 0)); |
| Write8(uint8_t(Value >> 8)); |
| } else { |
| Write8(uint8_t(Value >> 8)); |
| Write8(uint8_t(Value >> 0)); |
| } |
| } |
| |
| void Write32(uint32_t Value) { |
| if (IsLSB) { |
| Write16(uint16_t(Value >> 0)); |
| Write16(uint16_t(Value >> 16)); |
| } else { |
| Write16(uint16_t(Value >> 16)); |
| Write16(uint16_t(Value >> 0)); |
| } |
| } |
| |
| void Write64(uint64_t Value) { |
| if (IsLSB) { |
| Write32(uint32_t(Value >> 0)); |
| Write32(uint32_t(Value >> 32)); |
| } else { |
| Write32(uint32_t(Value >> 32)); |
| Write32(uint32_t(Value >> 0)); |
| } |
| } |
| |
| void WriteZeros(unsigned N) { |
| const char Zeros[16] = { 0 }; |
| |
| for (unsigned i = 0, e = N / 16; i != e; ++i) |
| OS << StringRef(Zeros, 16); |
| |
| OS << StringRef(Zeros, N % 16); |
| } |
| |
| void WriteString(const StringRef &Str, unsigned ZeroFillSize = 0) { |
| OS << Str; |
| if (ZeroFillSize) |
| WriteZeros(ZeroFillSize - Str.size()); |
| } |
| |
| /// @} |
| |
| void WriteHeader32(unsigned NumLoadCommands, unsigned LoadCommandsSize, |
| bool SubsectionsViaSymbols) { |
| uint32_t Flags = 0; |
| |
| if (SubsectionsViaSymbols) |
| Flags |= HF_SubsectionsViaSymbols; |
| |
| // struct mach_header (28 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(Header_Magic32); |
| |
| // FIXME: Support cputype. |
| Write32(TargetMachOWriterInfo::HDR_CPU_TYPE_I386); |
| // FIXME: Support cpusubtype. |
| Write32(TargetMachOWriterInfo::HDR_CPU_SUBTYPE_I386_ALL); |
| Write32(HFT_Object); |
| Write32(NumLoadCommands); // Object files have a single load command, the |
| // segment. |
| Write32(LoadCommandsSize); |
| Write32(Flags); |
| |
| assert(OS.tell() - Start == Header32Size); |
| } |
| |
| /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command. |
| /// |
| /// \arg NumSections - The number of sections in this segment. |
| /// \arg SectionDataSize - The total size of the sections. |
| void WriteSegmentLoadCommand32(unsigned NumSections, |
| uint64_t VMSize, |
| uint64_t SectionDataStartOffset, |
| uint64_t SectionDataSize) { |
| // struct segment_command (56 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(LCT_Segment); |
| Write32(SegmentLoadCommand32Size + NumSections * Section32Size); |
| |
| WriteString("", 16); |
| Write32(0); // vmaddr |
| Write32(VMSize); // vmsize |
| Write32(SectionDataStartOffset); // file offset |
| Write32(SectionDataSize); // file size |
| Write32(0x7); // maxprot |
| Write32(0x7); // initprot |
| Write32(NumSections); |
| Write32(0); // flags |
| |
| assert(OS.tell() - Start == SegmentLoadCommand32Size); |
| } |
| |
| void WriteSection32(const MCSectionData &SD, uint64_t FileOffset, |
| uint64_t RelocationsStart, unsigned NumRelocations) { |
| // The offset is unused for virtual sections. |
| if (isVirtualSection(SD.getSection())) { |
| assert(SD.getFileSize() == 0 && "Invalid file size!"); |
| FileOffset = 0; |
| } |
| |
| // struct section (68 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| // FIXME: cast<> support! |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(SD.getSection()); |
| WriteString(Section.getSectionName(), 16); |
| WriteString(Section.getSegmentName(), 16); |
| Write32(SD.getAddress()); // address |
| Write32(SD.getSize()); // size |
| Write32(FileOffset); |
| |
| assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); |
| Write32(Log2_32(SD.getAlignment())); |
| Write32(NumRelocations ? RelocationsStart : 0); |
| Write32(NumRelocations); |
| Write32(Section.getTypeAndAttributes()); |
| Write32(0); // reserved1 |
| Write32(Section.getStubSize()); // reserved2 |
| |
| assert(OS.tell() - Start == Section32Size); |
| } |
| |
| void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols, |
| uint32_t StringTableOffset, |
| uint32_t StringTableSize) { |
| // struct symtab_command (24 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(LCT_Symtab); |
| Write32(SymtabLoadCommandSize); |
| Write32(SymbolOffset); |
| Write32(NumSymbols); |
| Write32(StringTableOffset); |
| Write32(StringTableSize); |
| |
| assert(OS.tell() - Start == SymtabLoadCommandSize); |
| } |
| |
| void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol, |
| uint32_t NumLocalSymbols, |
| uint32_t FirstExternalSymbol, |
| uint32_t NumExternalSymbols, |
| uint32_t FirstUndefinedSymbol, |
| uint32_t NumUndefinedSymbols, |
| uint32_t IndirectSymbolOffset, |
| uint32_t NumIndirectSymbols) { |
| // struct dysymtab_command (80 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(LCT_Dysymtab); |
| Write32(DysymtabLoadCommandSize); |
| Write32(FirstLocalSymbol); |
| Write32(NumLocalSymbols); |
| Write32(FirstExternalSymbol); |
| Write32(NumExternalSymbols); |
| Write32(FirstUndefinedSymbol); |
| Write32(NumUndefinedSymbols); |
| Write32(0); // tocoff |
| Write32(0); // ntoc |
| Write32(0); // modtaboff |
| Write32(0); // nmodtab |
| Write32(0); // extrefsymoff |
| Write32(0); // nextrefsyms |
| Write32(IndirectSymbolOffset); |
| Write32(NumIndirectSymbols); |
| Write32(0); // extreloff |
| Write32(0); // nextrel |
| Write32(0); // locreloff |
| Write32(0); // nlocrel |
| |
| assert(OS.tell() - Start == DysymtabLoadCommandSize); |
| } |
| |
| void WriteNlist32(MachSymbolData &MSD) { |
| MCSymbolData &Data = *MSD.SymbolData; |
| const MCSymbol &Symbol = Data.getSymbol(); |
| uint8_t Type = 0; |
| uint16_t Flags = Data.getFlags(); |
| uint32_t Address = 0; |
| |
| // Set the N_TYPE bits. See <mach-o/nlist.h>. |
| // |
| // FIXME: Are the prebound or indirect fields possible here? |
| if (Symbol.isUndefined()) |
| Type = STT_Undefined; |
| else if (Symbol.isAbsolute()) |
| Type = STT_Absolute; |
| else |
| Type = STT_Section; |
| |
| // FIXME: Set STAB bits. |
| |
| if (Data.isPrivateExtern()) |
| Type |= STF_PrivateExtern; |
| |
| // Set external bit. |
| if (Data.isExternal() || Symbol.isUndefined()) |
| Type |= STF_External; |
| |
| // Compute the symbol address. |
| if (Symbol.isDefined()) { |
| if (Symbol.isAbsolute()) { |
| llvm_unreachable("FIXME: Not yet implemented!"); |
| } else { |
| Address = Data.getFragment()->getAddress() + Data.getOffset(); |
| } |
| } else if (Data.isCommon()) { |
| // Common symbols are encoded with the size in the address |
| // field, and their alignment in the flags. |
| Address = Data.getCommonSize(); |
| |
| // Common alignment is packed into the 'desc' bits. |
| if (unsigned Align = Data.getCommonAlignment()) { |
| unsigned Log2Size = Log2_32(Align); |
| assert((1U << Log2Size) == Align && "Invalid 'common' alignment!"); |
| if (Log2Size > 15) |
| llvm_report_error("invalid 'common' alignment '" + |
| Twine(Align) + "'"); |
| // FIXME: Keep this mask with the SymbolFlags enumeration. |
| Flags = (Flags & 0xF0FF) | (Log2Size << 8); |
| } |
| } |
| |
| // struct nlist (12 bytes) |
| |
| Write32(MSD.StringIndex); |
| Write8(Type); |
| Write8(MSD.SectionIndex); |
| |
| // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' |
| // value. |
| Write16(Flags); |
| Write32(Address); |
| } |
| |
| struct MachRelocationEntry { |
| uint32_t Word0; |
| uint32_t Word1; |
| }; |
| void ComputeScatteredRelocationInfo(MCAssembler &Asm, |
| MCSectionData::Fixup &Fixup, |
| DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap, |
| std::vector<MachRelocationEntry> &Relocs) { |
| uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset; |
| unsigned IsPCRel = 0; |
| unsigned Type = RIT_Vanilla; |
| |
| // See <reloc.h>. |
| |
| const MCSymbol *A = Fixup.Value.getSymA(); |
| MCSymbolData *SD = SymbolMap.lookup(A); |
| uint32_t Value = SD->getFragment()->getAddress() + SD->getOffset(); |
| uint32_t Value2 = 0; |
| |
| if (const MCSymbol *B = Fixup.Value.getSymB()) { |
| Type = RIT_LocalDifference; |
| |
| MCSymbolData *SD = SymbolMap.lookup(B); |
| Value2 = SD->getFragment()->getAddress() + SD->getOffset(); |
| } |
| |
| unsigned Log2Size = Log2_32(Fixup.Size); |
| assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!"); |
| |
| // The value which goes in the fixup is current value of the expression. |
| Fixup.FixedValue = Value - Value2 + Fixup.Value.getConstant(); |
| |
| MachRelocationEntry MRE; |
| MRE.Word0 = ((Address << 0) | |
| (Type << 24) | |
| (Log2Size << 28) | |
| (IsPCRel << 30) | |
| RF_Scattered); |
| MRE.Word1 = Value; |
| Relocs.push_back(MRE); |
| |
| if (Type == RIT_LocalDifference) { |
| Type = RIT_Pair; |
| |
| MachRelocationEntry MRE; |
| MRE.Word0 = ((0 << 0) | |
| (Type << 24) | |
| (Log2Size << 28) | |
| (0 << 30) | |
| RF_Scattered); |
| MRE.Word1 = Value2; |
| Relocs.push_back(MRE); |
| } |
| } |
| |
| void ComputeRelocationInfo(MCAssembler &Asm, |
| MCSectionData::Fixup &Fixup, |
| DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap, |
| std::vector<MachRelocationEntry> &Relocs) { |
| // If this is a local symbol plus an offset or a difference, then we need a |
| // scattered relocation entry. |
| if (Fixup.Value.getSymB()) // a - b |
| return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs); |
| if (Fixup.Value.getSymA() && Fixup.Value.getConstant()) |
| if (!Fixup.Value.getSymA()->isUndefined()) |
| return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs); |
| |
| // See <reloc.h>. |
| uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset; |
| uint32_t Value = 0; |
| unsigned Index = 0; |
| unsigned IsPCRel = 0; |
| unsigned IsExtern = 0; |
| unsigned Type = 0; |
| |
| if (Fixup.Value.isAbsolute()) { // constant |
| // SymbolNum of 0 indicates the absolute section. |
| Type = RIT_Vanilla; |
| Value = 0; |
| llvm_unreachable("FIXME: Not yet implemented!"); |
| } else { |
| const MCSymbol *Symbol = Fixup.Value.getSymA(); |
| MCSymbolData *SD = SymbolMap.lookup(Symbol); |
| |
| if (Symbol->isUndefined()) { |
| IsExtern = 1; |
| Index = SD->getIndex(); |
| Value = 0; |
| } else { |
| // The index is the section ordinal. |
| // |
| // FIXME: O(N) |
| Index = 1; |
| for (MCAssembler::iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it, ++Index) |
| if (&*it == SD->getFragment()->getParent()) |
| break; |
| Value = SD->getFragment()->getAddress() + SD->getOffset(); |
| } |
| |
| Type = RIT_Vanilla; |
| } |
| |
| // The value which goes in the fixup is current value of the expression. |
| Fixup.FixedValue = Value + Fixup.Value.getConstant(); |
| |
| unsigned Log2Size = Log2_32(Fixup.Size); |
| assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!"); |
| |
| // struct relocation_info (8 bytes) |
| MachRelocationEntry MRE; |
| MRE.Word0 = Address; |
| MRE.Word1 = ((Index << 0) | |
| (IsPCRel << 24) | |
| (Log2Size << 25) | |
| (IsExtern << 27) | |
| (Type << 28)); |
| Relocs.push_back(MRE); |
| } |
| |
| void BindIndirectSymbols(MCAssembler &Asm, |
| DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap) { |
| // This is the point where 'as' creates actual symbols for indirect symbols |
| // (in the following two passes). It would be easier for us to do this |
| // sooner when we see the attribute, but that makes getting the order in the |
| // symbol table much more complicated than it is worth. |
| // |
| // FIXME: Revisit this when the dust settles. |
| |
| // Bind non lazy symbol pointers first. |
| for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it) { |
| // FIXME: cast<> support! |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(it->SectionData->getSection()); |
| |
| unsigned Type = |
| Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; |
| if (Type != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) |
| continue; |
| |
| MCSymbolData *&Entry = SymbolMap[it->Symbol]; |
| if (!Entry) |
| Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm); |
| } |
| |
| // Then lazy symbol pointers and symbol stubs. |
| for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it) { |
| // FIXME: cast<> support! |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(it->SectionData->getSection()); |
| |
| unsigned Type = |
| Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; |
| if (Type != MCSectionMachO::S_LAZY_SYMBOL_POINTERS && |
| Type != MCSectionMachO::S_SYMBOL_STUBS) |
| continue; |
| |
| MCSymbolData *&Entry = SymbolMap[it->Symbol]; |
| if (!Entry) { |
| Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm); |
| |
| // Set the symbol type to undefined lazy, but only on construction. |
| // |
| // FIXME: Do not hardcode. |
| Entry->setFlags(Entry->getFlags() | 0x0001); |
| } |
| } |
| } |
| |
| /// ComputeSymbolTable - Compute the symbol table data |
| /// |
| /// \param StringTable [out] - The string table data. |
| /// \param StringIndexMap [out] - Map from symbol names to offsets in the |
| /// string table. |
| void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable, |
| std::vector<MachSymbolData> &LocalSymbolData, |
| std::vector<MachSymbolData> &ExternalSymbolData, |
| std::vector<MachSymbolData> &UndefinedSymbolData) { |
| // Build section lookup table. |
| DenseMap<const MCSection*, uint8_t> SectionIndexMap; |
| unsigned Index = 1; |
| for (MCAssembler::iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it, ++Index) |
| SectionIndexMap[&it->getSection()] = Index; |
| assert(Index <= 256 && "Too many sections!"); |
| |
| // Index 0 is always the empty string. |
| StringMap<uint64_t> StringIndexMap; |
| StringTable += '\x00'; |
| |
| // Build the symbol arrays and the string table, but only for non-local |
| // symbols. |
| // |
| // The particular order that we collect the symbols and create the string |
| // table, then sort the symbols is chosen to match 'as'. Even though it |
| // doesn't matter for correctness, this is important for letting us diff .o |
| // files. |
| for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), |
| ie = Asm.symbol_end(); it != ie; ++it) { |
| const MCSymbol &Symbol = it->getSymbol(); |
| |
| // Ignore assembler temporaries. |
| if (it->getSymbol().isTemporary()) |
| continue; |
| |
| if (!it->isExternal() && !Symbol.isUndefined()) |
| continue; |
| |
| uint64_t &Entry = StringIndexMap[Symbol.getName()]; |
| if (!Entry) { |
| Entry = StringTable.size(); |
| StringTable += Symbol.getName(); |
| StringTable += '\x00'; |
| } |
| |
| MachSymbolData MSD; |
| MSD.SymbolData = it; |
| MSD.StringIndex = Entry; |
| |
| if (Symbol.isUndefined()) { |
| MSD.SectionIndex = 0; |
| UndefinedSymbolData.push_back(MSD); |
| } else if (Symbol.isAbsolute()) { |
| MSD.SectionIndex = 0; |
| ExternalSymbolData.push_back(MSD); |
| } else { |
| MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); |
| assert(MSD.SectionIndex && "Invalid section index!"); |
| ExternalSymbolData.push_back(MSD); |
| } |
| } |
| |
| // Now add the data for local symbols. |
| for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), |
| ie = Asm.symbol_end(); it != ie; ++it) { |
| const MCSymbol &Symbol = it->getSymbol(); |
| |
| // Ignore assembler temporaries. |
| if (it->getSymbol().isTemporary()) |
| continue; |
| |
| if (it->isExternal() || Symbol.isUndefined()) |
| continue; |
| |
| uint64_t &Entry = StringIndexMap[Symbol.getName()]; |
| if (!Entry) { |
| Entry = StringTable.size(); |
| StringTable += Symbol.getName(); |
| StringTable += '\x00'; |
| } |
| |
| MachSymbolData MSD; |
| MSD.SymbolData = it; |
| MSD.StringIndex = Entry; |
| |
| if (Symbol.isAbsolute()) { |
| MSD.SectionIndex = 0; |
| LocalSymbolData.push_back(MSD); |
| } else { |
| MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); |
| assert(MSD.SectionIndex && "Invalid section index!"); |
| LocalSymbolData.push_back(MSD); |
| } |
| } |
| |
| // External and undefined symbols are required to be in lexicographic order. |
| std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); |
| std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end()); |
| |
| // Set the symbol indices. |
| Index = 0; |
| for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) |
| LocalSymbolData[i].SymbolData->setIndex(Index++); |
| for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) |
| ExternalSymbolData[i].SymbolData->setIndex(Index++); |
| for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) |
| UndefinedSymbolData[i].SymbolData->setIndex(Index++); |
| |
| // The string table is padded to a multiple of 4. |
| // |
| // FIXME: Check to see if this varies per arch. |
| while (StringTable.size() % 4) |
| StringTable += '\x00'; |
| } |
| |
| void WriteObject(MCAssembler &Asm) { |
| unsigned NumSections = Asm.size(); |
| |
| // Compute the symbol -> symbol data map. |
| // |
| // FIXME: This should not be here. |
| DenseMap<const MCSymbol*, MCSymbolData *> SymbolMap; |
| for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), |
| ie = Asm.symbol_end(); it != ie; ++it) |
| SymbolMap[&it->getSymbol()] = it; |
| |
| // Create symbol data for any indirect symbols. |
| BindIndirectSymbols(Asm, SymbolMap); |
| |
| // Compute symbol table information. |
| SmallString<256> StringTable; |
| std::vector<MachSymbolData> LocalSymbolData; |
| std::vector<MachSymbolData> ExternalSymbolData; |
| std::vector<MachSymbolData> UndefinedSymbolData; |
| unsigned NumSymbols = Asm.symbol_size(); |
| |
| // No symbol table command is written if there are no symbols. |
| if (NumSymbols) |
| ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData, |
| UndefinedSymbolData); |
| |
| // The section data starts after the header, the segment load command (and |
| // section headers) and the symbol table. |
| unsigned NumLoadCommands = 1; |
| uint64_t LoadCommandsSize = |
| SegmentLoadCommand32Size + NumSections * Section32Size; |
| |
| // Add the symbol table load command sizes, if used. |
| if (NumSymbols) { |
| NumLoadCommands += 2; |
| LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize; |
| } |
| |
| // Compute the total size of the section data, as well as its file size and |
| // vm size. |
| uint64_t SectionDataStart = Header32Size + LoadCommandsSize; |
| uint64_t SectionDataSize = 0; |
| uint64_t SectionDataFileSize = 0; |
| uint64_t VMSize = 0; |
| for (MCAssembler::iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| VMSize = std::max(VMSize, SD.getAddress() + SD.getSize()); |
| |
| if (isVirtualSection(SD.getSection())) |
| continue; |
| |
| SectionDataSize = std::max(SectionDataSize, |
| SD.getAddress() + SD.getSize()); |
| SectionDataFileSize = std::max(SectionDataFileSize, |
| SD.getAddress() + SD.getFileSize()); |
| } |
| |
| // The section data is passed to 4 bytes. |
| // |
| // FIXME: Is this machine dependent? |
| unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4); |
| SectionDataFileSize += SectionDataPadding; |
| |
| // Write the prolog, starting with the header and load command... |
| WriteHeader32(NumLoadCommands, LoadCommandsSize, |
| Asm.getSubsectionsViaSymbols()); |
| WriteSegmentLoadCommand32(NumSections, VMSize, |
| SectionDataStart, SectionDataSize); |
| |
| // ... and then the section headers. |
| // |
| // We also compute the section relocations while we do this. Note that |
| // compute relocation info will also update the fixup to have the correct |
| // value; this will be overwrite the appropriate data in the fragment when |
| // it is written. |
| std::vector<MachRelocationEntry> RelocInfos; |
| uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize; |
| for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; |
| ++it) { |
| MCSectionData &SD = *it; |
| |
| // The assembler writes relocations in the reverse order they were seen. |
| // |
| // FIXME: It is probably more complicated than this. |
| unsigned NumRelocsStart = RelocInfos.size(); |
| for (unsigned i = 0, e = SD.fixup_size(); i != e; ++i) |
| ComputeRelocationInfo(Asm, SD.getFixups()[e - i - 1], SymbolMap, |
| RelocInfos); |
| |
| unsigned NumRelocs = RelocInfos.size() - NumRelocsStart; |
| uint64_t SectionStart = SectionDataStart + SD.getAddress(); |
| WriteSection32(SD, SectionStart, RelocTableEnd, NumRelocs); |
| RelocTableEnd += NumRelocs * RelocationInfoSize; |
| } |
| |
| // Write the symbol table load command, if used. |
| if (NumSymbols) { |
| unsigned FirstLocalSymbol = 0; |
| unsigned NumLocalSymbols = LocalSymbolData.size(); |
| unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; |
| unsigned NumExternalSymbols = ExternalSymbolData.size(); |
| unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; |
| unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); |
| unsigned NumIndirectSymbols = Asm.indirect_symbol_size(); |
| unsigned NumSymTabSymbols = |
| NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols; |
| uint64_t IndirectSymbolSize = NumIndirectSymbols * 4; |
| uint64_t IndirectSymbolOffset = 0; |
| |
| // If used, the indirect symbols are written after the section data. |
| if (NumIndirectSymbols) |
| IndirectSymbolOffset = RelocTableEnd; |
| |
| // The symbol table is written after the indirect symbol data. |
| uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize; |
| |
| // The string table is written after symbol table. |
| uint64_t StringTableOffset = |
| SymbolTableOffset + NumSymTabSymbols * Nlist32Size; |
| WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols, |
| StringTableOffset, StringTable.size()); |
| |
| WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, |
| FirstExternalSymbol, NumExternalSymbols, |
| FirstUndefinedSymbol, NumUndefinedSymbols, |
| IndirectSymbolOffset, NumIndirectSymbols); |
| } |
| |
| // Write the actual section data. |
| for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) |
| WriteFileData(OS, *it, *this); |
| |
| // Write the extra padding. |
| WriteZeros(SectionDataPadding); |
| |
| // Write the relocation entries. |
| for (unsigned i = 0, e = RelocInfos.size(); i != e; ++i) { |
| Write32(RelocInfos[i].Word0); |
| Write32(RelocInfos[i].Word1); |
| } |
| |
| // Write the symbol table data, if used. |
| if (NumSymbols) { |
| // Write the indirect symbol entries. |
| for (MCAssembler::indirect_symbol_iterator |
| it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it) { |
| // Indirect symbols in the non lazy symbol pointer section have some |
| // special handling. |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(it->SectionData->getSection()); |
| unsigned Type = |
| Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; |
| if (Type == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) { |
| // If this symbol is defined and internal, mark it as such. |
| if (it->Symbol->isDefined() && |
| !SymbolMap.lookup(it->Symbol)->isExternal()) { |
| uint32_t Flags = ISF_Local; |
| if (it->Symbol->isAbsolute()) |
| Flags |= ISF_Absolute; |
| Write32(Flags); |
| continue; |
| } |
| } |
| |
| Write32(SymbolMap[it->Symbol]->getIndex()); |
| } |
| |
| // FIXME: Check that offsets match computed ones. |
| |
| // Write the symbol table entries. |
| for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) |
| WriteNlist32(LocalSymbolData[i]); |
| for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) |
| WriteNlist32(ExternalSymbolData[i]); |
| for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) |
| WriteNlist32(UndefinedSymbolData[i]); |
| |
| // Write the string table. |
| OS << StringTable.str(); |
| } |
| } |
| }; |
| |
| /* *** */ |
| |
| MCFragment::MCFragment() : Kind(FragmentType(~0)) { |
| } |
| |
| MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) |
| : Kind(_Kind), |
| Parent(_Parent), |
| FileSize(~UINT64_C(0)) |
| { |
| if (Parent) |
| Parent->getFragmentList().push_back(this); |
| } |
| |
| MCFragment::~MCFragment() { |
| } |
| |
| uint64_t MCFragment::getAddress() const { |
| assert(getParent() && "Missing Section!"); |
| return getParent()->getAddress() + Offset; |
| } |
| |
| /* *** */ |
| |
| MCSectionData::MCSectionData() : Section(0) {} |
| |
| MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) |
| : Section(&_Section), |
| Alignment(1), |
| Address(~UINT64_C(0)), |
| Size(~UINT64_C(0)), |
| FileSize(~UINT64_C(0)), |
| LastFixupLookup(~0) |
| { |
| if (A) |
| A->getSectionList().push_back(this); |
| } |
| |
| const MCSectionData::Fixup * |
| MCSectionData::LookupFixup(const MCFragment *Fragment, uint64_t Offset) const { |
| // Use a one level cache to turn the common case of accessing the fixups in |
| // order into O(1) instead of O(N). |
| unsigned i = LastFixupLookup, Count = Fixups.size(), End = Fixups.size(); |
| if (i >= End) |
| i = 0; |
| while (Count--) { |
| const Fixup &F = Fixups[i]; |
| if (F.Fragment == Fragment && F.Offset == Offset) { |
| LastFixupLookup = i; |
| return &F; |
| } |
| |
| ++i; |
| if (i == End) |
| i = 0; |
| } |
| |
| return 0; |
| } |
| |
| /* *** */ |
| |
| MCSymbolData::MCSymbolData() : Symbol(0) {} |
| |
| MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, |
| uint64_t _Offset, MCAssembler *A) |
| : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset), |
| IsExternal(false), IsPrivateExtern(false), |
| CommonSize(0), CommonAlign(0), Flags(0), Index(0) |
| { |
| if (A) |
| A->getSymbolList().push_back(this); |
| } |
| |
| /* *** */ |
| |
| MCAssembler::MCAssembler(MCContext &_Context, raw_ostream &_OS) |
| : Context(_Context), OS(_OS), SubsectionsViaSymbols(false) |
| { |
| } |
| |
| MCAssembler::~MCAssembler() { |
| } |
| |
| void MCAssembler::LayoutSection(MCSectionData &SD) { |
| uint64_t Address = SD.getAddress(); |
| |
| for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) { |
| MCFragment &F = *it; |
| |
| F.setOffset(Address - SD.getAddress()); |
| |
| // Evaluate fragment size. |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| |
| uint64_t Size = OffsetToAlignment(Address, AF.getAlignment()); |
| if (Size > AF.getMaxBytesToEmit()) |
| AF.setFileSize(0); |
| else |
| AF.setFileSize(Size); |
| break; |
| } |
| |
| case MCFragment::FT_Data: |
| F.setFileSize(F.getMaxFileSize()); |
| break; |
| |
| case MCFragment::FT_Fill: { |
| MCFillFragment &FF = cast<MCFillFragment>(F); |
| |
| F.setFileSize(F.getMaxFileSize()); |
| |
| // If the fill value is constant, thats it. |
| if (FF.getValue().isAbsolute()) |
| break; |
| |
| // Otherwise, add fixups for the values. |
| for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { |
| MCSectionData::Fixup Fix(F, i * FF.getValueSize(), |
| FF.getValue(),FF.getValueSize()); |
| SD.getFixups().push_back(Fix); |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Org: { |
| MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| if (!OF.getOffset().isAbsolute()) |
| llvm_unreachable("FIXME: Not yet implemented!"); |
| uint64_t OrgOffset = OF.getOffset().getConstant(); |
| uint64_t Offset = Address - SD.getAddress(); |
| |
| // FIXME: We need a way to communicate this error. |
| if (OrgOffset < Offset) |
| llvm_report_error("invalid .org offset '" + Twine(OrgOffset) + |
| "' (at offset '" + Twine(Offset) + "'"); |
| |
| F.setFileSize(OrgOffset - Offset); |
| break; |
| } |
| |
| case MCFragment::FT_ZeroFill: { |
| MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F); |
| |
| // Align the fragment offset; it is safe to adjust the offset freely since |
| // this is only in virtual sections. |
| uint64_t Aligned = RoundUpToAlignment(Address, ZFF.getAlignment()); |
| F.setOffset(Aligned - SD.getAddress()); |
| |
| // FIXME: This is misnamed. |
| F.setFileSize(ZFF.getSize()); |
| break; |
| } |
| } |
| |
| Address += F.getFileSize(); |
| } |
| |
| // Set the section sizes. |
| SD.setSize(Address - SD.getAddress()); |
| if (isVirtualSection(SD.getSection())) |
| SD.setFileSize(0); |
| else |
| SD.setFileSize(Address - SD.getAddress()); |
| } |
| |
| /// WriteFileData - Write the \arg F data to the output file. |
| static void WriteFileData(raw_ostream &OS, const MCFragment &F, |
| MachObjectWriter &MOW) { |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| ++EmittedFragments; |
| |
| // FIXME: Embed in fragments instead? |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| uint64_t Count = AF.getFileSize() / AF.getValueSize(); |
| |
| // FIXME: This error shouldn't actually occur (the front end should emit |
| // multiple .align directives to enforce the semantics it wants), but is |
| // severe enough that we want to report it. How to handle this? |
| if (Count * AF.getValueSize() != AF.getFileSize()) |
| llvm_report_error("undefined .align directive, value size '" + |
| Twine(AF.getValueSize()) + |
| "' is not a divisor of padding size '" + |
| Twine(AF.getFileSize()) + "'"); |
| |
| for (uint64_t i = 0; i != Count; ++i) { |
| switch (AF.getValueSize()) { |
| default: |
| assert(0 && "Invalid size!"); |
| case 1: MOW.Write8 (uint8_t (AF.getValue())); break; |
| case 2: MOW.Write16(uint16_t(AF.getValue())); break; |
| case 4: MOW.Write32(uint32_t(AF.getValue())); break; |
| case 8: MOW.Write64(uint64_t(AF.getValue())); break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Data: |
| OS << cast<MCDataFragment>(F).getContents().str(); |
| break; |
| |
| case MCFragment::FT_Fill: { |
| MCFillFragment &FF = cast<MCFillFragment>(F); |
| |
| int64_t Value = 0; |
| if (FF.getValue().isAbsolute()) |
| Value = FF.getValue().getConstant(); |
| for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { |
| if (!FF.getValue().isAbsolute()) { |
| // Find the fixup. |
| // |
| // FIXME: Find a better way to write in the fixes. |
| const MCSectionData::Fixup *Fixup = |
| F.getParent()->LookupFixup(&F, i * FF.getValueSize()); |
| assert(Fixup && "Missing fixup for fill value!"); |
| Value = Fixup->FixedValue; |
| } |
| |
| switch (FF.getValueSize()) { |
| default: |
| assert(0 && "Invalid size!"); |
| case 1: MOW.Write8 (uint8_t (Value)); break; |
| case 2: MOW.Write16(uint16_t(Value)); break; |
| case 4: MOW.Write32(uint32_t(Value)); break; |
| case 8: MOW.Write64(uint64_t(Value)); break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Org: { |
| MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i) |
| MOW.Write8(uint8_t(OF.getValue())); |
| |
| break; |
| } |
| |
| case MCFragment::FT_ZeroFill: { |
| assert(0 && "Invalid zero fill fragment in concrete section!"); |
| break; |
| } |
| } |
| |
| assert(OS.tell() - Start == F.getFileSize()); |
| } |
| |
| /// WriteFileData - Write the \arg SD data to the output file. |
| static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, |
| MachObjectWriter &MOW) { |
| // Ignore virtual sections. |
| if (isVirtualSection(SD.getSection())) { |
| assert(SD.getFileSize() == 0); |
| return; |
| } |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| for (MCSectionData::const_iterator it = SD.begin(), |
| ie = SD.end(); it != ie; ++it) |
| WriteFileData(OS, *it, MOW); |
| |
| // Add section padding. |
| assert(SD.getFileSize() >= SD.getSize() && "Invalid section sizes!"); |
| MOW.WriteZeros(SD.getFileSize() - SD.getSize()); |
| |
| assert(OS.tell() - Start == SD.getFileSize()); |
| } |
| |
| void MCAssembler::Finish() { |
| // Layout the concrete sections and fragments. |
| uint64_t Address = 0; |
| MCSectionData *Prev = 0; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| // Skip virtual sections. |
| if (isVirtualSection(SD.getSection())) |
| continue; |
| |
| // Align this section if necessary by adding padding bytes to the previous |
| // section. |
| if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) { |
| assert(Prev && "Missing prev section!"); |
| Prev->setFileSize(Prev->getFileSize() + Pad); |
| Address += Pad; |
| } |
| |
| // Layout the section fragments and its size. |
| SD.setAddress(Address); |
| LayoutSection(SD); |
| Address += SD.getFileSize(); |
| |
| Prev = &SD; |
| } |
| |
| // Layout the virtual sections. |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSectionData &SD = *it; |
| |
| if (!isVirtualSection(SD.getSection())) |
| continue; |
| |
| SD.setAddress(Address); |
| LayoutSection(SD); |
| Address += SD.getSize(); |
| } |
| |
| // Write the object file. |
| MachObjectWriter MOW(OS); |
| MOW.WriteObject(*this); |
| |
| OS.flush(); |
| } |