| //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the pass that transforms the X86 machine instructions into |
| // actual executable machine code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "X86TargetMachine.h" |
| #include "X86.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Function.h" |
| #include "Support/Debug.h" |
| #include "Support/Statistic.h" |
| #include "Config/alloca.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> |
| NumEmitted("x86-emitter", "Number of machine instructions emitted"); |
| |
| class JITResolver { |
| MachineCodeEmitter &MCE; |
| |
| // LazyCodeGenMap - Keep track of call sites for functions that are to be |
| // lazily resolved. |
| std::map<unsigned, Function*> LazyCodeGenMap; |
| |
| // LazyResolverMap - Keep track of the lazy resolver created for a |
| // particular function so that we can reuse them if necessary. |
| std::map<Function*, unsigned> LazyResolverMap; |
| public: |
| JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} |
| unsigned getLazyResolver(Function *F); |
| unsigned addFunctionReference(unsigned Address, Function *F); |
| |
| private: |
| unsigned emitStubForFunction(Function *F); |
| static void CompilationCallback(); |
| unsigned resolveFunctionReference(unsigned RetAddr); |
| }; |
| |
| static JITResolver &getResolver(MachineCodeEmitter &MCE) { |
| static JITResolver *TheJITResolver = 0; |
| if (TheJITResolver == 0) |
| TheJITResolver = new JITResolver(MCE); |
| return *TheJITResolver; |
| } |
| } |
| |
| |
| void *X86JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE) { |
| return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F)); |
| } |
| |
| void X86JITInfo::replaceMachineCodeForFunction (void *Old, void *New) { |
| char *OldByte = (char *) Old; |
| *OldByte++ = 0xE9; // Emit JMP opcode. |
| int32_t *OldWord = (int32_t *) OldByte; |
| int32_t NewAddr = (intptr_t) New; |
| int32_t OldAddr = (intptr_t) OldWord; |
| *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. |
| } |
| |
| /// addFunctionReference - This method is called when we need to emit the |
| /// address of a function that has not yet been emitted, so we don't know the |
| /// address. Instead, we emit a call to the CompilationCallback method, and |
| /// keep track of where we are. |
| /// |
| unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { |
| LazyCodeGenMap[Address] = F; |
| return (intptr_t)&JITResolver::CompilationCallback; |
| } |
| |
| unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { |
| std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); |
| assert(I != LazyCodeGenMap.end() && "Not in map!"); |
| Function *F = I->second; |
| LazyCodeGenMap.erase(I); |
| return MCE.forceCompilationOf(F); |
| } |
| |
| unsigned JITResolver::getLazyResolver(Function *F) { |
| std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F); |
| if (I != LazyResolverMap.end() && I->first == F) return I->second; |
| |
| //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; |
| |
| unsigned Stub = emitStubForFunction(F); |
| LazyResolverMap.insert(I, std::make_pair(F, Stub)); |
| return Stub; |
| } |
| |
| void JITResolver::CompilationCallback() { |
| unsigned *StackPtr = (unsigned*)__builtin_frame_address(0); |
| unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0); |
| assert(StackPtr[1] == RetAddr && |
| "Could not find return address on the stack!"); |
| |
| // It's a stub if there is an interrupt marker after the call... |
| bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD; |
| |
| // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame |
| // pointer elimination has been performed. Having a variable sized alloca |
| // disables frame pointer elimination currently, even if it's dead. This is a |
| // gross hack. |
| alloca(10+isStub); |
| // FIXME FIXME FIXME FIXME |
| |
| // The call instruction should have pushed the return value onto the stack... |
| RetAddr -= 4; // Backtrack to the reference itself... |
| |
| #if 0 |
| DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr |
| << " ESP=0x" << (unsigned)StackPtr << std::dec |
| << ": Resolving call to function: " |
| << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); |
| #endif |
| |
| // Sanity check to make sure this really is a call instruction... |
| assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); |
| |
| JITResolver &JR = getResolver(*(MachineCodeEmitter*)0); |
| unsigned NewVal = JR.resolveFunctionReference(RetAddr); |
| |
| // Rewrite the call target... so that we don't fault every time we execute |
| // the call. |
| *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4; |
| |
| if (isStub) { |
| // If this is a stub, rewrite the call into an unconditional branch |
| // instruction so that two return addresses are not pushed onto the stack |
| // when the requested function finally gets called. This also makes the |
| // 0xCD byte (interrupt) dead, so the marker doesn't effect anything. |
| ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9; |
| } |
| |
| // Change the return address to reexecute the call instruction... |
| StackPtr[1] -= 5; |
| } |
| |
| /// emitStubForFunction - This method is used by the JIT when it needs to emit |
| /// the address of a function for a function whose code has not yet been |
| /// generated. In order to do this, it generates a stub which jumps to the lazy |
| /// function compiler, which will eventually get fixed to call the function |
| /// directly. |
| /// |
| unsigned JITResolver::emitStubForFunction(Function *F) { |
| MCE.startFunctionStub(*F, 6); |
| MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... |
| |
| unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F); |
| MCE.emitWord(Address-MCE.getCurrentPCValue()-4); |
| |
| MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub! |
| return (intptr_t)MCE.finishFunctionStub(*F); |
| } |
| |
| |
| |
| namespace { |
| class Emitter : public MachineFunctionPass { |
| const X86InstrInfo *II; |
| MachineCodeEmitter &MCE; |
| std::map<const BasicBlock*, unsigned> BasicBlockAddrs; |
| std::vector<std::pair<const BasicBlock*, unsigned> > BBRefs; |
| public: |
| Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { |
| return "X86 Machine Code Emitter"; |
| } |
| |
| private: |
| void emitBasicBlock(MachineBasicBlock &MBB); |
| void emitInstruction(MachineInstr &MI); |
| |
| void emitPCRelativeBlockAddress(BasicBlock *BB); |
| void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative); |
| void emitGlobalAddressForCall(GlobalValue *GV); |
| void emitGlobalAddressForPtr(GlobalValue *GV); |
| |
| void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); |
| void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); |
| void emitConstant(unsigned Val, unsigned Size); |
| |
| void emitMemModRMByte(const MachineInstr &MI, |
| unsigned Op, unsigned RegOpcodeField); |
| |
| }; |
| } |
| |
| /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get |
| /// machine code emitted. This uses a MachineCodeEmitter object to handle |
| /// actually outputting the machine code and resolving things like the address |
| /// of functions. This method should returns true if machine code emission is |
| /// not supported. |
| /// |
| bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, |
| MachineCodeEmitter &MCE) { |
| PM.add(new Emitter(MCE)); |
| // Delete machine code for this function |
| PM.add(createMachineCodeDeleter()); |
| return false; |
| } |
| |
| bool Emitter::runOnMachineFunction(MachineFunction &MF) { |
| II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo(); |
| |
| MCE.startFunction(MF); |
| MCE.emitConstantPool(MF.getConstantPool()); |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| emitBasicBlock(*I); |
| MCE.finishFunction(MF); |
| |
| // Resolve all forward branches now... |
| for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { |
| unsigned Location = BasicBlockAddrs[BBRefs[i].first]; |
| unsigned Ref = BBRefs[i].second; |
| *(unsigned*)(intptr_t)Ref = Location-Ref-4; |
| } |
| BBRefs.clear(); |
| BasicBlockAddrs.clear(); |
| return false; |
| } |
| |
| void Emitter::emitBasicBlock(MachineBasicBlock &MBB) { |
| if (uint64_t Addr = MCE.getCurrentPCValue()) |
| BasicBlockAddrs[MBB.getBasicBlock()] = Addr; |
| |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) |
| emitInstruction(**I); |
| } |
| |
| |
| /// emitPCRelativeBlockAddress - This method emits the PC relative address of |
| /// the specified basic block, or if the basic block hasn't been emitted yet |
| /// (because this is a forward branch), it keeps track of the information |
| /// necessary to resolve this address later (and emits a dummy value). |
| /// |
| void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) { |
| // FIXME: Emit backward branches directly |
| BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue())); |
| MCE.emitWord(0); // Emit a dummy value |
| } |
| |
| /// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative. |
| /// |
| void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) { |
| if (isPCRelative) |
| MCE.emitWord(Address-MCE.getCurrentPCValue()-4); |
| else |
| MCE.emitWord(Address); |
| } |
| |
| /// emitGlobalAddressForCall - Emit the specified address to the code stream |
| /// assuming this is part of a function call, which is PC relative. |
| /// |
| void Emitter::emitGlobalAddressForCall(GlobalValue *GV) { |
| // Get the address from the backend... |
| unsigned Address = MCE.getGlobalValueAddress(GV); |
| |
| if (Address == 0) { |
| // FIXME: this is JIT specific! |
| Address = getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(), |
| cast<Function>(GV)); |
| } |
| emitMaybePCRelativeValue(Address, true); |
| } |
| |
| /// emitGlobalAddress - Emit the specified address to the code stream assuming |
| /// this is part of a "take the address of a global" instruction, which is not |
| /// PC relative. |
| /// |
| void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) { |
| // Get the address from the backend... |
| unsigned Address = MCE.getGlobalValueAddress(GV); |
| |
| // If the machine code emitter doesn't know what the address IS yet, we have |
| // to take special measures. |
| // |
| if (Address == 0) { |
| // FIXME: this is JIT specific! |
| Address = getResolver(MCE).getLazyResolver((Function*)GV); |
| } |
| |
| emitMaybePCRelativeValue(Address, false); |
| } |
| |
| |
| |
| /// N86 namespace - Native X86 Register numbers... used by X86 backend. |
| /// |
| namespace N86 { |
| enum { |
| EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 |
| }; |
| } |
| |
| |
| // getX86RegNum - This function maps LLVM register identifiers to their X86 |
| // specific numbering, which is used in various places encoding instructions. |
| // |
| static unsigned getX86RegNum(unsigned RegNo) { |
| switch(RegNo) { |
| case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; |
| case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; |
| case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; |
| case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; |
| case X86::ESP: case X86::SP: case X86::AH: return N86::ESP; |
| case X86::EBP: case X86::BP: case X86::CH: return N86::EBP; |
| case X86::ESI: case X86::SI: case X86::DH: return N86::ESI; |
| case X86::EDI: case X86::DI: case X86::BH: return N86::EDI; |
| |
| case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: |
| case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: |
| return RegNo-X86::ST0; |
| default: |
| assert(RegNo >= MRegisterInfo::FirstVirtualRegister && |
| "Unknown physical register!"); |
| assert(0 && "Register allocator hasn't allocated reg correctly yet!"); |
| return 0; |
| } |
| } |
| |
| inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, |
| unsigned RM) { |
| assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); |
| return RM | (RegOpcode << 3) | (Mod << 6); |
| } |
| |
| void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ |
| MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); |
| } |
| |
| void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { |
| // SIB byte is in the same format as the ModRMByte... |
| MCE.emitByte(ModRMByte(SS, Index, Base)); |
| } |
| |
| void Emitter::emitConstant(unsigned Val, unsigned Size) { |
| // Output the constant in little endian byte order... |
| for (unsigned i = 0; i != Size; ++i) { |
| MCE.emitByte(Val & 255); |
| Val >>= 8; |
| } |
| } |
| |
| static bool isDisp8(int Value) { |
| return Value == (signed char)Value; |
| } |
| |
| void Emitter::emitMemModRMByte(const MachineInstr &MI, |
| unsigned Op, unsigned RegOpcodeField) { |
| const MachineOperand &Disp = MI.getOperand(Op+3); |
| if (MI.getOperand(Op).isConstantPoolIndex()) { |
| // Emit a direct address reference [disp32] where the displacement of the |
| // constant pool entry is controlled by the MCE. |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); |
| unsigned Index = MI.getOperand(Op).getConstantPoolIndex(); |
| unsigned Address = MCE.getConstantPoolEntryAddress(Index); |
| MCE.emitWord(Address+Disp.getImmedValue()); |
| return; |
| } |
| |
| const MachineOperand &BaseReg = MI.getOperand(Op); |
| const MachineOperand &Scale = MI.getOperand(Op+1); |
| const MachineOperand &IndexReg = MI.getOperand(Op+2); |
| |
| // Is a SIB byte needed? |
| if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) { |
| if (BaseReg.getReg() == 0) { // Just a displacement? |
| // Emit special case [disp32] encoding |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); |
| emitConstant(Disp.getImmedValue(), 4); |
| } else { |
| unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); |
| if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) { |
| // Emit simple indirect register encoding... [EAX] f.e. |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); |
| } else if (isDisp8(Disp.getImmedValue())) { |
| // Emit the disp8 encoding... [REG+disp8] |
| MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); |
| emitConstant(Disp.getImmedValue(), 1); |
| } else { |
| // Emit the most general non-SIB encoding: [REG+disp32] |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); |
| emitConstant(Disp.getImmedValue(), 4); |
| } |
| } |
| |
| } else { // We need a SIB byte, so start by outputting the ModR/M byte first |
| assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!"); |
| |
| bool ForceDisp32 = false; |
| bool ForceDisp8 = false; |
| if (BaseReg.getReg() == 0) { |
| // If there is no base register, we emit the special case SIB byte with |
| // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); |
| ForceDisp32 = true; |
| } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) { |
| // Emit no displacement ModR/M byte |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); |
| } else if (isDisp8(Disp.getImmedValue())) { |
| // Emit the disp8 encoding... |
| MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); |
| ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP |
| } else { |
| // Emit the normal disp32 encoding... |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); |
| } |
| |
| // Calculate what the SS field value should be... |
| static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; |
| unsigned SS = SSTable[Scale.getImmedValue()]; |
| |
| if (BaseReg.getReg() == 0) { |
| // Handle the SIB byte for the case where there is no base. The |
| // displacement has already been output. |
| assert(IndexReg.getReg() && "Index register must be specified!"); |
| emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); |
| } else { |
| unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); |
| unsigned IndexRegNo; |
| if (IndexReg.getReg()) |
| IndexRegNo = getX86RegNum(IndexReg.getReg()); |
| else |
| IndexRegNo = 4; // For example [ESP+1*<noreg>+4] |
| emitSIBByte(SS, IndexRegNo, BaseRegNo); |
| } |
| |
| // Do we need to output a displacement? |
| if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) { |
| if (!ForceDisp32 && isDisp8(Disp.getImmedValue())) |
| emitConstant(Disp.getImmedValue(), 1); |
| else |
| emitConstant(Disp.getImmedValue(), 4); |
| } |
| } |
| } |
| |
| static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) { |
| switch (Desc.TSFlags & X86II::ArgMask) { |
| case X86II::Arg8: return 1; |
| case X86II::Arg16: return 2; |
| case X86II::Arg32: return 4; |
| case X86II::ArgF32: return 4; |
| case X86II::ArgF64: return 8; |
| case X86II::ArgF80: return 10; |
| default: assert(0 && "Memory size not set!"); |
| return 0; |
| } |
| } |
| |
| void Emitter::emitInstruction(MachineInstr &MI) { |
| NumEmitted++; // Keep track of the # of mi's emitted |
| |
| unsigned Opcode = MI.getOpcode(); |
| const TargetInstrDescriptor &Desc = II->get(Opcode); |
| |
| // Emit instruction prefixes if necessary |
| if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size... |
| |
| switch (Desc.TSFlags & X86II::Op0Mask) { |
| case X86II::TB: |
| MCE.emitByte(0x0F); // Two-byte opcode prefix |
| break; |
| case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: |
| case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: |
| MCE.emitByte(0xD8+ |
| (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8) |
| >> X86II::Op0Shift)); |
| break; // Two-byte opcode prefix |
| default: assert(0 && "Invalid prefix!"); |
| case 0: break; // No prefix! |
| } |
| |
| unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode); |
| switch (Desc.TSFlags & X86II::FormMask) { |
| default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); |
| case X86II::Pseudo: |
| if (Opcode != X86::IMPLICIT_USE && |
| Opcode != X86::IMPLICIT_DEF && |
| Opcode != X86::FP_REG_KILL) |
| std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI; |
| break; |
| |
| case X86II::RawFrm: |
| MCE.emitByte(BaseOpcode); |
| if (MI.getNumOperands() == 1) { |
| MachineOperand &MO = MI.getOperand(0); |
| if (MO.isPCRelativeDisp()) { |
| // Conditional branch... FIXME: this should use an MBB destination! |
| emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue())); |
| } else if (MO.isGlobalAddress()) { |
| assert(MO.isPCRelative() && "Call target is not PC Relative?"); |
| emitGlobalAddressForCall(MO.getGlobal()); |
| } else if (MO.isExternalSymbol()) { |
| unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName()); |
| assert(Address && "Unknown external symbol!"); |
| emitMaybePCRelativeValue(Address, MO.isPCRelative()); |
| } else { |
| assert(0 && "Unknown RawFrm operand!"); |
| } |
| } |
| break; |
| |
| case X86II::AddRegFrm: |
| MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg())); |
| if (MI.getNumOperands() == 2) { |
| MachineOperand &MO1 = MI.getOperand(1); |
| if (MO1.isImmediate() || MO1.getVRegValueOrNull() || |
| MO1.isGlobalAddress() || MO1.isExternalSymbol()) { |
| unsigned Size = sizeOfPtr(Desc); |
| if (Value *V = MO1.getVRegValueOrNull()) { |
| assert(Size == 4 && "Don't know how to emit non-pointer values!"); |
| emitGlobalAddressForPtr(cast<GlobalValue>(V)); |
| } else if (MO1.isGlobalAddress()) { |
| assert(Size == 4 && "Don't know how to emit non-pointer values!"); |
| assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?"); |
| emitGlobalAddressForPtr(MO1.getGlobal()); |
| } else if (MO1.isExternalSymbol()) { |
| assert(Size == 4 && "Don't know how to emit non-pointer values!"); |
| |
| unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName()); |
| assert(Address && "Unknown external symbol!"); |
| emitMaybePCRelativeValue(Address, MO1.isPCRelative()); |
| } else { |
| emitConstant(MO1.getImmedValue(), Size); |
| } |
| } |
| } |
| break; |
| |
| case X86II::MRMDestReg: { |
| MCE.emitByte(BaseOpcode); |
| MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode)); |
| emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg())); |
| if (MI.getNumOperands() == 4) |
| emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc)); |
| break; |
| } |
| case X86II::MRMDestMem: |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg())); |
| break; |
| |
| case X86II::MRMSrcReg: |
| MCE.emitByte(BaseOpcode); |
| |
| if (MI.getNumOperands() == 2) { |
| emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(), |
| getX86RegNum(MI.getOperand(0).getReg())); |
| } else if (MI.getOperand(2).isImmediate()) { |
| emitRegModRMByte(MI.getOperand(1).getReg(), |
| getX86RegNum(MI.getOperand(0).getReg())); |
| |
| emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc)); |
| } else { |
| emitRegModRMByte(MI.getOperand(2).getReg(), |
| getX86RegNum(MI.getOperand(0).getReg())); |
| } |
| break; |
| |
| case X86II::MRMSrcMem: |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, MI.getNumOperands()-4, |
| getX86RegNum(MI.getOperand(0).getReg())); |
| break; |
| |
| case X86II::MRMS0r: case X86II::MRMS1r: |
| case X86II::MRMS2r: case X86II::MRMS3r: |
| case X86II::MRMS4r: case X86II::MRMS5r: |
| case X86II::MRMS6r: case X86II::MRMS7r: |
| MCE.emitByte(BaseOpcode); |
| emitRegModRMByte(MI.getOperand(0).getReg(), |
| (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r); |
| |
| if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) { |
| unsigned Size = sizeOfPtr(Desc); |
| emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size); |
| } |
| break; |
| |
| case X86II::MRMS0m: case X86II::MRMS1m: |
| case X86II::MRMS2m: case X86II::MRMS3m: |
| case X86II::MRMS4m: case X86II::MRMS5m: |
| case X86II::MRMS6m: case X86II::MRMS7m: |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m); |
| |
| if (MI.getNumOperands() == 5) { |
| unsigned Size = sizeOfPtr(Desc); |
| emitConstant(MI.getOperand(4).getImmedValue(), Size); |
| } |
| break; |
| } |
| } |